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Recent years have seen a growing interest in topological phases beyond the standard paradigm of gapped
isolated systems. One recent direction is to explore topological features in non-Hermitian systems that are
commonly used as effective descriptions of open systems. Another direction explores the fate of topology at
critical points, where the bulk gap collapses. One interesting observation is that both systems, though very
different, share certain topological features. For instance, both systems can host half-integer quantized winding
numbers and have very similar entanglement spectra. Here we make this similarity explicit by showing the
equivalence of topological invariants in critical systems with non-Hermitian point-gap phases, in the presence
of sublattice symmetry. Also, the corresponding entanglement spectra show the same topological features.
This correspondence may carry over to other features and even be helpful to deepen our understanding of
non-Hermitian systems using our knowledge of critical systems and vice versa.

DOI: 10.1103/PhysRevB.107.235112

I. INTRODUCTION

In recent years non-Hermitian systems have attracted a
great deal of attention in the condensed-matter commu-
nity due to the unique phenomena that they can exhibit.
In the field of symmetry protected topological phases, non-
Hermitian systems harbor a particularly rich variety of phases,
as the non-Hermiticity enhances the ten Hermitian topological
classes [1–3] into 38 [4–7]. This enhancement originates in
having effectively more symmetries available, as conjugation
and transposition are not equivalent any longer. Furthermore,
non-Hermiticity may lead to new physics without a Hermitian
equivalent: So-called point-gap phases and exceptional points
[8,9] lead to new physics with no Hermitian equivalent, like
the skin effect [5,8,10–13].

For non-Hermitian systems, we need to distinguish be-
tween line-gapped and point-gapped systems. For the former,
it is possible to draw a line in the complex plane which sep-
arates the different bands. On the other hand, a phase is said
to be point gapped at E0 if it has a nonzero energy vorticity
for this point, i.e., the complex energy bands wind around
E0. While the topology of line-gapped systems can be under-
stood from their connection to Hermitian and anti-Hermitian
Hamiltonians [6], point-gapped systems have features that are
thought to be intrinsically non-Hermitian. In this paper we
focus on these systems and show how some of their features
are inherited from related Hermitian critical models.
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The topic of topological phenomena in critical systems has
recently been revisited [14–18]. Topology is a global (non-
local) property of the system and it was previously thought
that the divergent correlation length of critical systems always
rendered the system topologically trivial. However, it has been
shown recently that this is not the case [14]. Critical systems
can harbor topologically protected zero-energy edge states
that are protected by a topological invariant and do not hy-
bridize with the bulk. The topological phases in these systems
have been characterized by invariants that are quantized to
half-integers [15].

The latter is also true for some non-Hermitian systems.
For example, systems in the topological class AI (with a
sublattice symmetry S that commutes with time reversal) are
characterized by two winding numbers which can take half-
integer values when the system has a point gap [5,19–21].
This similarity in the topology of Hermitian critical and non-
Hermitian systems has been pointed out in the literature before
[22], but it has not yet been explored in depth. In this pa-
per we aim to relate the bulk topological features of critical
Hermitian systems and point-gapped non-Hermitian systems.
We will introduce two different methods of generalizing a
Hermitian critical Hamiltonian to a non-Hermitian one, show-
ing that the resulting model always is in a point-gap phase.
We also analyze how bulk topological features evolve with
the non-Hermiticity, in particular the topological invariants
and the so-called entanglement occupancy spectrum (EOS)
[23–25]. While the two generalizations considered here are
somewhat limited, the second includes two of the most used
non-Hermitian models, the Hatano-Nelson model and the Su-
Schrieffer-Heeger (SSH) chain with unbalanced hopping.

In Hermitian systems the EOS, computed for periodic
boundary conditions, provides the same topological informa-
tion as the surface energy spectrum [26,27], and it has been
connected to topological invariants such as the polarization
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[28] and the winding number [29]. For non-Hermitian point-
gapped systems the bulk-boundary correspondence is broken
due to the skin effect. Thus one cannot use the surface spec-
trum to study bulk topology (and vice versa). In this case,
the EOS becomes more interesting, as it can be computed
for periodic boundary conditions and can be related to bulk
invariants [30,31]. We show that the topological features of
the EOS of non-Hermitian point-gap phases are dictated by
the related Hermitian critical one, thus providing a physical
interpretation for the former. More generally, connecting Her-
mitian critical and non-Hermitian point-gap systems would
allow one to compute objects for non-Hermitian models using
Hermitian physics, as well as use the more developed topo-
logical classification for non-Hermitian systems to address
questions regarding critical Hermitian systems.

The paper is organized as follows. In Sec. II we cover some
necessary background material. In Sec. III we consider a very
simple non-Hermitian generalization to elucidate the main
ideas. A more complex generalization is shown in Sec. IV,
where the non-Hermiticity is introduced by making the mo-
menta complex. The entanglement occupancy spectrum is
discussed in Sec. V. Some explicit examples are covered in
Appendix A.

II. BACKGROUND

Throughout the paper, we restrict the discussion to a gen-
eral two-band model given by the Hamiltonian

H (k) = h(k) · σ = hx(k)σx + hy(k)σy

=
(

0 f1(k)
f2(k) 0

)
, (1)

where we set hz to zero because of sublattice symmetry.
Both ways of describing the Hamiltonian will prove useful in
the following. Note that for non-Hermitian models, f2(k) �=
f ∗
1 (k), while in the Hermitian case we suppress the index

and use f (k) ≡ f1(k) = f ∗
2 (k). The right eigenstates of such

two-band Hamiltonians are in general given by

vR
±(k) = 1√

2
[±

√
f1(k)/ f2(k), 1], (2)

with energies ±√
f1(k) f2(k). The corresponding left ones are

vL
±(k) = 1√

2
[±

√
f2(k)/ f1(k), 1]. (3)

For Hermitian two-band models, the winding number [3]
can be written as

ν = 1

2π

∫ 2π

0
dk ∂k arg[hx(k) − ihy(k)] (4)

or alternatively as

ν = 1

2π

∫ 2π

0
dk

[∂khx(k)]hy(k) − hx(k)∂khy(k)

hx(k)2 + hy(k)2
. (5)

For non-Hermitian models both expressions are no longer
equal. The second expression (5) is usually employed to
compute the winding number [5,6,19]. While the Hamilto-
nian (1) is of course restrictive, it nevertheless covers two of
the most studied non-Hermitian models, the Hatano-Nelson

model [32–34] and the non-Hermitian extension to the SSH
model [35].

A. Topological invariants for critical systems

Topological invariants are usually considered meaningful
only in gapped systems. This raises the question if and how
topological features survive the presence of gapless modes,
e.g., by coupling to a gapless environment [36] or by driv-
ing to a phase transition between two topological phases
[14,15]. For the latter, the usual definitions of topological
invariants become ill-defined. A general recipe for obtaining
well-defined invariants for critical systems was first presented
in [15], by removing an infinitesimal region around each of
the gapless points.

For the winding number, this implies that instead of (4), we
use the regularized version

νε = 1

2π

∫
()

dk ∂k arg[hx(k) − ihy(k)], (6)

where () denotes that we removed a region [kc − ε, kc + ε]
from the integration around each gapless point kc. In the limit
ε → 0, νε becomes half-integer quantized and is given gener-
ically by the mean of the winding numbers on either side of
the critical point (for details see Ref. [15]). In particular, at the
critical point between gapped phases with winding numbers 0
and 1, respectively, the winding number νε → 1

2 for ε → 0.
There is an alternative formulation of the winding number

for gapped systems by interpreting f (= f1 = f ∗
2 ) in Eq. (1) as

a complex function f (z = eik ) and relating the winding num-
ber to the difference in numbers of zeros and poles within the
unit circle, using Cauchy’s argument principle [5,14,37,38],

ν = 1

2π i

∮
dz

f ′(z)

f (z)
= Z − P, (7)

where Z and P denote the numbers of zeros and poles, re-
spectively, within the unit circle. This identity is not valid
for gapless systems because there is a zero in the contour.
One alternative for gapless systems is to again exclude an
infinitesimal region around each point z,

νε = 1

2π i

∮
()

dz
f ′(z)

f (z)
. (8)

Each zero of order n on the unit circle contributes n/2 to
the winding number, in agreement with the discussion in
the previous above. One could, however, have chosen to de-
fine the invariant differently, namely, as ν̃ = Z − P, where Z
and P are the zeros and poles strictly within the unit circle,
respectively. This instead gives an integer (not half-integer)
quantized invariant, which in addition is related to the number
of topologically protected edge modes [14,17].

One disadvantage of Verresen’s approach in Ref. [15] is
that one needs to compute different invariants, depending on
whether the system is gapless or gapped; the invariant for
gapped systems is ill-defined for gapless ones. A different way
of regularizing the winding number for gapless systems was
discussed in Ref. [18], namely, by considering the system at
finite temperatures. Computing the T → 0 limit in a gapped
system yields (4), while doing the same for a critical system
yields the ε → 0 limit of Eq. (6), as the Boltzmann weights
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suppress the contribution in the vicinity of gapless points.
It thus has the advantage that gapped and gapless systems
can be treated on the same footing. The generalization to
non-Hermitian systems detailed in Secs. III and IV can, in
some sense, be regarded as yet another regularization of the
winding number that treats gapped and gapless systems on
the same footing.

Note that the winding number limε→0 νε does not uniquely
characterize the critical system, nor is it connected to the
number of topologically protected edge modes. Two differ-
ent critical points, e.g., the phase transitions ν = 0 → 3 and
ν = 1 → 2, have the same value ν = 3

2 of the winding num-
ber. The first critical point has no protected topological edge
modes, while the latter has one. In general, the number of
topological edge modes is given by [14]

Ntop =

⎧⎪⎨
⎪⎩

ν̃ if ν̃ > 0

|ν̃ + N | if ν̃ < −N

0 otherwise,

(9)

where ν̃ = Z − P = ν − N/2, Z and P are the number of
zeros and poles strictly within the unit circle, respectively, and
N is the number of zeros (times their multiplicity) on the unit
circle. A complete characterization of the critical system thus
requires two numbers, e.g., ν̃ and N . This is very similar to
the non-Hermitian point-gap phases discussed below.

B. Non-Hermitian systems with sublattice symmetry

In this paper we focus on systems in symmetry class AI,
with a sublattice symmetry S that commutes with time rever-
sal.1 Such systems are specified by two winding numbers. A
commonly used characterization uses winding numbers ν and
ν ′, where ν is given by Eq. (5) and ν ′ denotes the winding
of the complex energy bands around the origin [5,10] (some-
times referred to as energy vorticity):

ν ′ = 1

2π

∮
dk ∂k arg[

√
hx(k)2 + hy(k)2]. (10)

An alternative formulation was presented in Refs. [5,19].
Since f1 �= f ∗

2 (1) in non-Hermitian systems, we can define
two independent winding numbers by

ν1 = 1

2π i

∫
dk ∂k ln[ f1(k)],

ν2 = − 1

2π i

∫
dk ∂k ln[ f2(k)], (11)

which fulfill

ν = 1
2 (ν1 + ν2),

ν ′ = 1
2 (ν1 − ν2). (12)

Note that the minus sign in the second of Eqs. (11) ensures
that ν1 = ν2 in the Hermitian limit.2 An appealing feature of

1In the notation of Table VII in Ref. [6] we consider systems in AI
with S+.

2We should note that our conventions differ from those of [19].
Using a tilde to indicate the conventions of the latter, we use ν = −ν̃,
ν ′ = ν̃ ′, ν1 = −ν̃2, and ν2 = −ν̃1.

the winding numbers ν1/2 is that they are directly related to the
presence of topologically protected boundary modes present
at the right/left edge of a semi-infinite open system [19].
We will later see that ν1/2 also have a natural interpretation
in the connected Hermitian critical system: They can often
be identified with the winding numbers of the neighboring
gapped phases, which will be discussed in Sec. IV.

C. Entanglement occupancy spectrum

The entanglement spectrum was originally proposed for
strongly interacting fractional quantum Hall liquids [39] as
a useful tool to obtain information about the topology of the
state. It is obtained by first partitioning the system into two
parts A and B (usually in real space) and tracing out the
degrees of freedom in B to obtain the reduced density matrix
ρA = TrB(|ψ〉〈ψ |), where |ψ〉 denotes the ground state of the
system. We can now define an entanglement Hamiltonian HA

by

ρA = e−HA , (13)

whose spectrum is called an entanglement spectrum and con-
tains valuable information about the topological properties of
the system.

The entanglement spectrum is also of interest in noninter-
acting systems, as it is directly connected to the topological
edge modes in gapped topological insulators [26]. Peschel
showed that for noninteracting systems one does not need
to compute the full many-body entanglement spectrum (a
difficult task even for noninteracting systems) [24]. Instead,
one can obtain the same information from the spectrum of the
reduced correlation matrix

CA
j, j′,α,β = 〈gs|c†

j,αc j′,β |gs〉, (14)

where α and β denote internal degrees of freedom and j and
j′ denote sites in region A. In the following, we will call the
spectrum of CA the EOS. Topological states correspond to ξ =
1
2 modes of the EOS, since these give rise to degeneracies in
the many-body entanglement spectrum. The number of ξ = 1

2
modes is identical to the number of topologically protected
edge modes (see Ref. [26]).

The correlation matrix spectrum for non-Hermitian sys-
tems was first studied in Ref. [31]. Since left and right
eigenstates are not equivalent anymore, there are in principle
three distinct versions of Eq. (14), using either the left-left,
right-right, or left-right ground states. As argued in [31], the
left-right choice is usually the one that behaves best and which
we use throughout the paper. Numerical simulations suggest
that the topological features of the EOS for line gap phases are
similar to those of Hermitian gapped phases. In particular, one
finds a one-to-one correspondence between the topological
zero-energy states in the open system and the ξ = 1

2 modes
in the EOS. For a sublattice symmetric model with winding
number ν there will be 2ν topological zero-energy modes, ν

on each edge, and the same number of 1
2 modes in the EOS.

Focusing on two-band models with sublattice symmetry as
in (1), an intuitive way of arguing for this is the following:
The correlation matrix in momentum space can be written as

C(k) = 1
2 [1 + Q(k)], (15)
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where Q(k) is given by

Q(k) =
(

0 −√
f1(k)/ f2(k)

−√
f2(k)/ f1(k) 0

)
, (16)

using the explicit form of the left and right eigenvectors in
(2) and (3). We can choose the branch cuts of the square
root in such a way that Q(k) is continuous and differentiable.
In addition, it is 2π periodic in k. Thus, we can interpret Q
as a Hamiltonian with sublattice symmetry and compute the
winding number relevant for line-gapped systems,

ν = 1

2π i

∫ 2π

0
dk ∂k ln

√
f1(k)/ f2(k)

= 1

2

1

2π i

∫ 2π

0
dk ∂k[ln f1(k) − ln f2(k)]

= 1

2
(ν1 + ν2). (17)

Since the system is line gapped, ν1 = ν2 = ν and Q(k) has the
same winding number as the original Hamiltonian. Comput-
ing CA amounts to computing the real-space Fourier transform
of Q in region A. The latter harbors 2ν topological zero modes,
resulting in 2ν, 1

2 modes in the EOS using Eq. (15).
The situation for Hermitian critical and non-Hermitian

point-gap phases is more complicated. An imminent problem
is that it is not clear which ground state to use in (14). Numer-
ical simulations show that for point-gapped systems, the EOS
seems to harbor min(NL, NR), 1

2 modes, where NL and NR are
the topological zero modes of a semi-infinite system [40]. In
addition, these topological features were seen to be insensitive
to the particular choice of ground state, while nontopological
modes may be affected. In our numerical simulations, the
same seems to hold for critical systems, where now NL = NR

are the number of topologically protected edge modes on
the left/right edge in the open boundary system. We will
comment more on this in Sec. V, where we will also prove
the equivalence of the EOS between Hermitian critical and
non-Hermitian point-gapped phases for simple yet nontrivial
cases.

III. GENERALIZING EIGENENERGIES

As we mention in the Introduction, the aim of this paper is
to show the connection in the topological features of critical
Hermitian models and point-gapped non-Hermitian ones. In
order to do that we first start with Hermitian models at a
critical point and deform them to become non-Hermitian,
showing that the topological features remain unchanged by
this deformation. We consider two distinct ways of deforming
the Hermitian critical system. The first and simpler approach,
discussed in this section, amounts to making eigenenergies
complex while keeping the eigenstates unchanged. Since we
do not modify the eigenstates, the left and right non-Hermitian
eigenstates are still equal to each other and one can use
all the usual techniques in Hermitian quantum mechanics.
To further simplify the discussion, we only consider critical
systems where the gapless points are zeros of order 1. Gener-
alizing to higher orders is straightforward. A less restrictive

generalization, which also modifies the eigenstates, is dis-
cussed in Sec. IV.

For a given Hermitian Hamiltonian, written in the eigenba-
sis

H =
∑
kμ

εkμ|ψkμ〉〈ψkμ|, (18)

the eigenenergies are modified by adding the perturbation

H (g) =
∑
kμ

εkμ(g)|ψkμ〉〈ψkμ|

=
∑
kμ

(εkμ + ig∂kεkμ)|ψkμ〉〈ψkμ|, (19)

where εkμ are the energies of the Hermitian system, μ is
the band index, and ∂kεk,μ is by assumption nonzero. By
construction, the eigenstates remain intact. As will be shown
below, this generalization results in a point-gapped Hamilto-
nian. However, we first want to illustrate this generalization
by the simplest possible example, assuming eigenenergies
εk,μ = ± sin(k/2) with a single gapless point at k = 0. In
order to construct the resulting complex band structure, it is
easier to regard the model as an effective one-band model
in an extended Brillouin zone k ∈ [−2π, 2π ). The resulting
complex energies are

ε̃k (g) = sin(k/2) + i
g

2
cos(k/2), (20)

which is nothing but the parametric equation of an ellipse
in the complex plane. The system has therefore a point-gap
around zero. More generally, zeros of the Hermitian model
correspond to crossings of the imaginary axis (with a finite
imaginary part), while maxima and minima correspond to
crossings of the real axis.

In terms of the Hamiltonian (1), the generalization in (19)
can be written as

H (k, g) = ε(k, g)ĥ(k) · σ = [ε(k) + ig∂kε(k)]ĥ(k) · σ, (21)

with both ε(k) and ĥ(k) continuous and differentiable. This
can always be done for finite-range hopping Hamiltonians.
Even though ĥ(k) is not uniquely defined at a gapless point
kc, there is a consistent limit

lim
δ→0

ĥ(kc + δ) = lim
δ→0

ĥ(kc − δ) (22)

as long as ε(k) changes sign at kc (for a single zero). For
explicit examples on how to choose ε(k) and ĥ(k), we refer
the reader to Appendix A.

We now proceed to compute the winding number ν for the
original, critical Hamiltonian H (k, 0), using the conventions
of (21). A short calculation shows that ν only depends on ĥ,
but not on ε,

νε = 1

2π

∫
()

dk
[∂khx(k)]hy(k) − hx(k)∂khy(k)

hx(k)2 + hy(k)2

= 1

2π

∫
()

dk
ε(k)2(ĥ′

xĥy − ĥxĥ′
y)

ε(k)2

→ 1

2π

∫
dk(ĥ′

xĥy − ĥxĥ′
y) for ε → 0, (23)
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where we abbreviated ∂kĥα = ĥ′
α . The last equality is valid

as long as the integrand is regular, i.e., neither ĥ or ĥ′ has
singularities at the gapless points of the critical system. This
is trivially satisfied for the finite-range hopping models usu-
ally considered. The resulting winding number is half-integer
quantized (see [15]). Repeating the same computation for the
non-Hermitian Hamiltonian, we find that the winding number

ν(g) = 1

2π

∫
dk

[∂khx(k, g)]hy(k, g) − hx(k, g)∂khy(k, g)

hx(k, g)2 + hy(k, g)2

= 1

2π

∫
dk

ε(k, g)2(ĥ′
xĥy − ĥxĥ′

y)

ε(k, g)2

= 1

2π

∫
dk(ĥ′

xĥy − ĥxĥ′
y) (24)

is again independent of ε (and thus g) and equal to the last
line of (23). This shows that the generalization of the critical
system to the non-Hermitian one does not alter the winding
number ν.

We can now continue taking a look at the second non-
Hermitian winding number

ν ′ = 1

2π

∮ 2π

0
dk ∂kIm log det[h(k, g)], (25)

which is equivalent to the phase winding of one of the energy
bands. In order to use the form of Eq. (21), it is advantages
to compute 2ν ′ by extending the integration from 0 to 4π ,
thus allowing us to consider ε(k, g) as one of the energy
bands. In order to compute the winding, we now count the
crossings at the positive imaginary axis (with an additional
sign depending on the orientation). We will now show that
the contribution of all gapless points to the winding number
sums up, with only an overall sign depending on the sign of g.
Let us fix the sign of g to be positive and focus on one of the
gapless points, denoted by kc. If ∂kε(k) > 0, the crossing hap-
pens on the positive imaginary part from Re[ε(kc − δ)] < 0
to Re[ε(kc + δ)] > 0. If instead ∂kε(k) < 0, the crossing hap-
pens on the negative imaginary part from Re[ε(kc − δ)] > 0 to
Re[ε(kc + δ)] < 0, i.e., it has the same orientation as above.
Thus, the contributions of all gapless points simply add up
with a positive sign. Switching the sign of g, switches the
orientation. Thus, the winding number ν ′ is given by

ν ′ = sgn(g)N/2, (26)

where N is the total number of zeros, without multiplicity, and
the 1

2 factor is because our previous argument was made for
2ν ′. Clearly, ν ′ itself is not well defined in the g → 0 limit,
though its absolute value is and simply counts the number of
gapless points.

IV. GENERALIZATION TO COMPLEX MOMENTUM

In the preceding section we have shown a method for
obtaining a point-gapped phase from a Hermitian critical
system that can be used to relate the topology of both mod-
els. However, the generalization considered, modifying only
the eigenvalues and not the eigenstates, is overly simplistic
and artificial. A more realistic generalization one can make
is by performing an analytical continuation of the momenta

in the Bloch Hamiltonian into the complex plane, H (k) →
H (k, g) = H (k − ig). For a Hermitian model, a general Bloch
Hamiltonian with sublattice symmetry can be written as

H (k) =
(

0 f
f ∗ 0

)
, f =

∑
n

tneikn, (27)

where tn are all possible hoppings. The non-Hermitian gener-
alization reads

H (k, g) =
(

0
∑

n tnegneikn∑
n t∗

n e−gne−ikn 0

)
. (28)

It is equivalent to introducing nonreciprocity in the intercell
hopping terms, which is a common way of introducing non-
Hermiticity. Adding nonreciprocity generically leads to an
unbalanced hopping resulting in the skin effect, where for
open boundary conditions electrons accumulate at one of the
boundaries. The skin effect is a characteristic property of
point-gapped phases, and the expectation is that the pertur-
bation (28) will evolve the critical system into a point-gapped
phase. We will see below that this is indeed the case.

Before continuing, let us consider g as a small perturbation

H (k, g) =h(k, g) · σ

=h(k, g)ĥ(k, g) · σ

≈{h(k)ĥ(k) + g[∂gh(k, g)|g=0]ĥ(k)

+ gh(k)∂gĥ(k, g)|g=0} · σ. (29)

Using that ∂gh(k, g) = −i∂kh(k, g),

H (k, g) ≈[h(k) − ig∂kh(k)]ĥ(k) · σ

− igh(k)∂kĥ(k) · σ, (30)

we note that the first term is exactly the generalization con-
sidered in the preceding section (up to the unimportant sign
of g), but we now obtain a second term that also modifies
the eigenvectors. Therefore, in the perturbative limit the two
generalizations may be similar, though not identical. More
specifically, they connect to the same phase as long as the
critical system has no zeros with multiplicity n > 1.

In contrast to the first generalization to non-Hermitian sys-
tems considered in Sec. III, it is now much easier to compute
the winding numbers ν1/2 and then use their relation to ν and
ν ′ (12) to connect the result to the critical system. We begin by
rewriting the expression for winding number ν1 in (11) in the
complex plane, employing z = eik as the holomorphic variable

ν1 = 1

2π i

∮
|z|=1

dz ∂z ln[ f (ze−g)] (31)

and using f (z) = ∑
n tnzn, i.e., the appropriate expression for

the critical system. We can absorb the scale factor by a change
of variables z′ = ze−g and obtain

ν1(g) = 1

2π i

∫
|z|′=e−g

dz′∂ ′
z ln[ f (z′)], (32)

which can now be obtained as ν1 = Z1 − P1, where Z1 and
P1 are the zeros and poles, respectively, of f (z) inside the
circle |z| = e−g (times their multiplicity). Note that, for the
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Hamiltonian considered here,

f (z) =
r∑

n=−l

tnzn = Pl+r (z)

zl
(33)

is a polynomial with P = l poles at zero and l + r zeros. For
most of the commonly used model Hamiltonians, l = 0 (e.g.,
the extension of the SSH model used in Appendix A or the
Hatano-Nelson model), but this is by no means a prerequisite.

For ν2 we perform exactly the same steps, after substituting
k′ = −k so that f2 becomes a holomorphic, not antiholomor-
phic, function after expressing z = eik′

:

ν2 = 1

2π i

∫ 2π

0
dk′∂k′ ln f (zeg)

= 1

2π i

∮
|z|=1

dz ∂z ln[ f (zeg)]. (34)

We can again absorb the scale factor by a change of variables,
but now we set z′ = zeg instead. Consequently, ν2 is given by
ν2 = Z2 − P2, where Z2 and P2 are now the zeros and poles,
respectively, of f (z) inside the circle |z| = eg.

For infinitesimal g > 0, ν1 counts (Z − P) for all zeros and
poles that lie strictly within the unit circle ν1 = ν̃, while ν2

even counts the zeros that lie on the unit circle. Assuming we
do not go through any phase transition when enlarging g, the
difference of the two winding numbers is simply the number
of zeros of f (z) on the unit circle times their multiplicity,

ν1(g) − ν2(g) = N = 2ν ′. (35)

When the underlying critical system has only single zeros, this
is consistent with our previous results (26).3 Interestingly, as
long as we look at phase transitions where zeros do not move
simultaneously into and out of the unit circle, ν1 and ν2 also
correspond to the winding numbers of the gapped Hermitian
phases surrounding the gapless point. However, this interpre-
tation of ν1 and ν2 depends on our particular generalization
from critical to non-Hermitian systems and will not hold in
general.

In order to illustrate this, we consider a very small anti-
Hermitian perturbation to our Hamiltonian such that

f1(k) = f (k) + δ,

f2(k) = f (k) − δ∗. (36)

Nonzero δ will generically move the complex zeros either into
or out of the unit circle. Let us first consider ν1 and observe
that since f (z) has a zero on the unit circle, we can write f1(z)
as

f1(z) = A(z)(z − z0) + δ, (37)

where z0 denotes the position of the gapless point. Given that
δ is small, we can approximate A(z) by a constant in the

3In the case in which the critical system has zeros with higher
multiplicity, the two generalizations to non-Hermitian systems are
not equivalent, as (26) only depends on the number of zeros, but not
their multiplicity. This is a direct consequence of the generalization
in Sec. III being too simplistic.

environment of z0, yielding

f1(z) ≈ A(z0)[z − z0 + δ/A(z0)] (38)

for z ≈ z0. Similarly, for the other winding number we have

f2(z) ≈ A(z0)[z − z0 − δ∗/A(z0)]. (39)

From these expressions we can now deduce how the zeros
move. In the case where δ is real, the zero of one of the
functions moves inside the unit circle while the other one
moves out, depending on the sign of δ/A(z0). This results in ν1

and ν2 being the winding numbers of the gapped neighboring
phases of the gapless point. That is no longer the case for
purely imaginary δ, as both zeros move in the same direction.

V. ENTANGLEMENT OCCUPANCY SPECTRUM

In this section we show some rigorous results on the EOS
for the non-Hermitian generalizations considered above.

A. EOS for generalizing eigenenergies

In this simple case it is trivial to see that the EOS is in-
dependent of g, the non-Hermitian parameter. This is because
the EOS only depends on the occupied eigenstates, which are
not modified by this particular generalization. If we choose to
occupy the same eigenstates, independently of g, then the
Hermitian and non-Hermitian models will share the same
EOS. Furthermore, since the real part of the energies is also
independent of g, the common choice of occupying the states
with Re(εkμ) < 0 will lead to the same EOS.

When extending the critical model to non-Hermitian
phases, we note that ν̃ in Eq. (9) becomes identical to ν1

(ν2) for sufficiently small g > 0 (g < 0). The second important
quantity, the number of gapless points on the unit circle N , is
encoded in |ν ′| = |ν1 − ν2|/2. For the non-Hermitian phases
that are of current interest, ν1/2 � 0, which explains their
identification with the number of left/right topological edge
states in Ref. [19]. However, this identification will fail if one
or both of the winding numbers are negative, and one needs to
revert to arguments similar to those used in Ref. [14] to derive
the correct number of topological edge modes. In general,
extensive numerical simulations suggest that the number of
topological 1/2 states in the EOS is equal to min(NL, NR),
where NL/R are the number of edge modes in the semi-infinite
chain (see Ref. [40]). In the limit of the Hermitian critical
system, this reduces to Eq. (9). Note that even though the
second non-Hermitian winding number ν ′ does not have a
well-defined Hermitian limit, its absolute value |ν ′| = N/2
still carries topological information.

B. EOS for generalizing to complex momenta

Making the momenta complex, k → k − ig, modifies the
eigenenergies in a similar way to our first generalization [see,
e.g., (30)], but it will also modify the eigenstates. So it is
far from obvious that the EOS will remain qualitatively un-
changed by this generalization.

In the following we show how the number of topological
eigenvalues in the EOS remains unchanged by the non-
Hermiticity. To do so, instead of the correlation matrix C, we
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consider the matrix

Q = 2C − I (40)

[see Eq. (16)]. The spectrum of the subsystem matrix QA

is equivalent to the EOS, with the virtual topological states
having zero eigenvalue.

For critical systems, the ground state is degenerate and Q
generally depends on the particular ground state chosen. For
systems with only one gapless point at kc, there is a well-
defined procedure to choose the ground state by filling either
the + or the − band from (2) for k ∈ (kc, kc + 2π ].4 Using this
choice of ground state, the momentum space representation of
Q becomes

Q(k) =
(

0 −eiφ(k)

−e−iφ(k) 0

)
, (41)

where eiφ(k) = √
f (k)/ f ∗(k). Note that φ(k) is not nec-

essarily 2π periodic, in contrast to Hermitian gapped or
non-Hermitian line-gapped phases. Inspecting the explicit
form of the eigenstates (2) reveals that φ(k) is 2π periodic
for gapped systems, as well as critical systems with an even
number of zeros (counting their multiplicity), while for an odd
number of zeros it is 4π periodic, as v+(k + 2π ) = v−(k).
After the non-Hermitian generalization, the Q matrix becomes

Q(k, g) =
(

0 −eiφ(k−ig)

−e−iφ(k−ig) 0

)
. (42)

We express the subsystem matrix in position space as

QA(g) =
( −0 qA(g)

q̃A(g) 0

)
, (43)

where

qA
xy(g) = 1

L

∑
k

eik(x−y)eiφ(k−ig), (44)

q̃A
xy(g) = 1

L

∑
k

eik(x−y)e−iφ(k−ig), (45)

and x, y ∈ [1, L/2]. We will now show that assuming that for
the critical system there exists an (approximate) zero-energy
state of QA(g = 0), localized at one of the edges, there also
exists an (approximate) zero-energy state at QA(g �= 0), again
localized at the edge.

We start by assuming that the critical system harbors a
zero-energy state |ψ (0)〉 that is localized on the left edge near
x = 1, with only support on the b sublattice. (The discussion
of localized states on the other edge, localized on the a sub-
lattice, can be found in Appendix B.) This is the case for
the Hamiltonian of critical semi-infinite chains [14,17]. Our
numerics suggests that this is also valid for the EOS.

For a finite size the topological states are not exactly at
zero, but one can always construct a state with only support
on the b sublattice such that

|QA(0)|ψ (0)〉| = O(1/L2). (46)

4This choice ensures that the Resta polarization behaves consis-
tently with the T → 0 limit of finite-temperature computations [18].

Given a finite g and Eq. (46), we can construct the state |ψ (g)〉
such that

|QA(g)|ψ (g)〉| � const × |QA(0)|ψ (0)〉| (47)

holds. For a general non-Hermitian matrix, the equation above
does not guarantee that the matrix has an eigenvalue close to
zero in the thermodynamic limit. However, since there is no
skin effect in the EOS, it is reasonable to expect that O(1/L)
effects also vanish for the non-Hermitian case. This is also
confirmed by our numerical simulations.

In order to simplify the notation, we express the state with
support only on the b sublattice as

|ψ (g)〉 =
(

(0
|u(g)〉

)
(48)

and the eigenvalue equation reduces to

qA(g)|u(g)〉 ≈ 0. (49)

1. Case 1: Gapped systems

Before proceeding with critical systems it is worth consid-
ering a simpler case first: gapped systems, where qA is 2π

periodic. In this case, we can expand the exponential as a
Fourier series, given by

eiφ(k) =
∞∑

m=−∞
γmeikm. (50)

For a gapped system φ(k) is continuously differentiable and
thus the Fourier series converges. However, we need to addi-
tionally require that the coefficients γm decay exponentially
for large m and that |g| is sufficiently small such that even
γmegm decays exponentially. We confirmed numerically that
the coefficients γme|g|m decay exponentially for the short-
range hopping model considered here, (A1).

Plugging this expression into Eq. (44), assuming g > 0,
and evaluating the sum, we find that

qA
xy(g) = γy−xeg(−x+y). (51)

Inserting this expression in the eigenvalue equation, we obtain

〈x|QA(g)|ψ (g)〉 = −
∑
y∈A

γy−xe−g(x−y)uy(g). (52)

We now use the (unnormalized) ansatz |ψ (g)〉 = e−gx̂|ψ (0)〉,
where |ψ (0)〉 is the approximate zero eigenstate of QA(0),

〈x|QA(g)|ψ (g)〉 = −e−gx
∑
y∈A

γy−xuy(0)

= e−gx〈x|QA(0)|ψ (0)〉. (53)

Since e−gx is bounded from above for x ∈ [1, L/2], we find
that

〈x|QA(g)|ψ (g)〉 � const × 〈x|QA(0)|ψ (0)〉 (54)

and thus Eq. (47) is satisfied and the ansatz is an approximate
zero eigenstate of QA(g) in the line-gapped phase. The expo-
nential factor in the ansatz may seem problematic for g < 0,
even though our numerics shows that it is not, at least for the
simple model Hamiltonian considered here. The proper way
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to deal with g < 0 is to consider the left eigenstate of QA(g)
(see, e.g., the discussion for the gapless case below).

2. Case 2: Critical systems with a single zero

We now consider the case where φ(k + 2π ) = φ(k) + π .
In this case the exponential can be decomposed as

eiφ(k) = eik/2
∞∑

m=−∞
γmeikm. (55)

For a system with only a single zero, we can again choose the
branch cuts such that φ(k) is continuously differentiable in
the interval (kc, kc + 2π ], where kc denotes the gapless point.
This ensures that the Fourier series converges. However, as in
the discussion above, we need to require that the coefficients
γm decay exponentially for large |m|, which is the case for the
critical lines in the model system used in Appendix A 1. The
non-Hermitian generalization can then be written as

eiφ(k−ig) = ei(k−ig)/2
∞∑

m=−∞
γmei(k−ig)m, (56)

and we require |g| to be sufficiently small such that γmegm still
decays exponentially for large |m|. This allows us to truncate
the sum at large |m|, up to errors that are exponentially small
in |m|.

We look again at the matrix qA(g), with elements

qA
xy(g) = 1

L

∑
k

eik(x−y)eiφ(k−ig)

= eg/2
∞∑

m=−∞
egmγm

(
1

L

∑
k

eik(m+x−y+1/2)

)
. (57)

We can identify the expression in large parentheses as a matrix
with dimensions L × L/2,

Mm,y = 1

L

∑
k

eik(m−y+1/2), (58)

where y ∈ [1, L/2], whereas m is defined modulo L. The ma-
trix M is well defined and invertible (see Appendix C. Now qA

can be written as

qA
xy(g) = eg/2

∞∑
m=−∞

egmγmMm+x,y

= eg/2
∞∑

m=−∞
eg(m−x)γm−xMm,y

= eg/2
L∑

m=1

∞∑
j=−∞

eg(m−x+ jL)γm−x+ jLMm,y, (59)

where in the last step we use that Mm+L,y = Mm,y.
We now assume g > 0 and consider the (unnormalized)

ansatz

uy(g) =
L∑

s=1

L/2∑
y′=1

M−1
y,s e−gsMs,y′uy′ (0), (60)

where again |ψ (g)〉 = [0, |u(0)〉]T is the approximate zero-
energy eigenstate of QA(0). The state |u(g)〉 is also localized

to the edge x = 1 and exists on the same sublattice as |u(0)〉.
Acting with QA(g) on this state |ψ (g)〉 gives

−〈x|QA|ψ (g)〉 =
L/2∑
y=1

qA
x,y(g)uy(g)

= eg/2
L/2∑
y=1

∞∑
m=−∞

eg(m−x)γm−xMm,yuy(g)

= eg/2−gx
L∑

m,s=1

∞∑
j=−∞

eg(m+ jL)γm−x+ jL

×
L/2∑
y=1

Mm,y(M−1)y,s

︸ ︷︷ ︸
δm,s

e−gs[M|u(0)〉]s

= eg/2−gx
L∑

m=1

∞∑
j=−∞

egjLγm−x+ jL[M|u(0)〉]m

≈ eg/2−gx
L∑

m=1

γm−x[M|u(0)〉]m︸ ︷︷ ︸
=−〈x|QA(0)|ψ (0)〉

. (61)

Going to the last line, we use that terms in the j sum different
from j = 0 are exponentially small in system size. In order to
see this explicitly, we can take a closer look at the j sum. The
terms for j = −1, 0, 1 are

eg( jL−x)γm−x+ jL =

⎧⎪⎨
⎪⎩

e−g(L+x)γm−x−L, j = −1

e−gxγm−x, j = 0

eg(L−x)γm−x+L, j = 1.

(62)

For j = −1 we have the largest terms for m − x − L ≈ 0, but
they are still exponentially suppressed compared to e−gxγm−x

due to the exponential e−gL. On the other hand, with j = 1
the largest terms are obtained for m = 1 and x close to L/2
(remember that by assumption the γm decay faster than egm

grows). The resulting terms, such as egL/2γ1+L/2, are still sup-
pressed due to the exponential decay on the γm coefficients.

In general, for j > 0 we have that

|egjL−gxγm−x+ jL| < |eg(m+ jL−x)γm−x+ jL|,
where the latter decays exponentially in system size for large
j by assumption. For j < 0,

|egjL−gxγm−x+ jL| < |γm−x+ jL|,
where the latter also decays with j exponentially by assump-
tion. As |ψ (0)〉 is a zero-energy eigenstate of QA(0) up to
finite-size corrections and the prefactor is bounded from above
for g > 0, it follows that |ψ (g)〉 is a zero-energy state of QA(g)
up to finite-size corrections.

The proof above was done assuming that g > 0 and the
eigenstates are localized on the left edge. In the case where
the eigenstate is localized on the left edge but g < 0, we can
look at the left eigenstate of QA instead,

QA(g)†|ψL(g)〉 ≈ 0. (63)
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(a) (b)

FIG. 1. (a) Real part of the EOS as a function of g, when generalizing the critical Hamiltonian defined by f (k) = 1 + eik − 2e2ik

[see Eq. (1)]. (b) The EOS remains qualitatively unchanged until g = ln 2, where a phase transition to a trivial phase occurs.

As with the right one, the eigenvector is localized on the b
sublattice |ψL(g)〉 = [0, |uL(g)〉]T and the eigenvalue equa-
tion reduces to

q̃A(g)†|uL(g)〉 ≈ 0. (64)

Comparing qA(g) and q̃A(g) in Eq. (44), we see that

q̃A(g)† = qA(−g). (65)

The eigenvalue equation can now be expressed as

qA(−g)†|uL(g)〉 ≈ 0, (66)

where −g > 0. Therefore, the same proof used above for
g > 0 can be used in this case to show the existence of zero
eigenvalues of QA(g)†. Since the eigenvalues of QA(g) and
QA(g)† are related by conjugation, a zero eigenvalue of QA(g)†

implies that QA(g) also has a zero eigenvalue. The proof
for eigenstates localized at the right edge (x = L/2) can be
found in Appendix B. Apart from the topological modes in
the EOS, we generically observe that the rest of the entan-
glement occupancy spectrum remains qualitatively invariant
to the non-Hermitian term, as it can be seen in Fig. 1 for
a Hermitian Hamiltonian defined by f (k) = 1 + eik − 2e2ik .
This is correct up to the point where non-Hermiticity drives
the system to a phase transition, where the EOS changes
drastically from the initial Hermitian case.

VI. CONCLUSION

In this paper we have proven analytically that the topologi-
cal invariants characterizing Hermitian critical systems are the
same as those of two distinct generalizations to non-Hermitian
point-gap systems. While one of the generalizations also
leaves the EOS (a useful tool for characterizing topology)
invariant, the other one in general does not. Despite that,
numerical simulations strongly suggest that the topological
features remain unchanged. We have proven this explicitly
for a simple yet nontrivial model. The close relation between
Hermitian critical and non-Hermitian point-gapped phases
also lends some physical interpretation to some properties of
the latter, in particular explaining the number of topological
modes in the EOS.

The two non-Hermitian perturbations we considered here
are not the only types of perturbation that lead to the same

result. In Appendix D we analyze which types of perturbations
drive the system into a gapless phase and which to one of
the neighboring gapped phases. In particular, we show that
any perturbation that mixes the left- and right-moving states
directly at the band crossing results in a line-gapped phase.
Perturbations that shift the momenta by an imaginary value
k + ig result in a point-gapped phase. Note, however, that
this restriction only applies directly at the critical point. Away
from the critical point, we can allow mixing of the right and
left movers and still obtain a point-gapped phase. The second
generalization considered in this paper is a special case of the
latter, because it does not mix left and right movers at any
momentum.

Our results might be utilized in at least two different ways.
We can regard the non-Hermitian generalizations discussed
in Secs. III and IV as a regularization of the critical phase,
which might prove useful in studying critical systems. It also
allows us to compute quantities for non-Hermitian models
using Hermitian physics and to address questions regarding
critical Hermitian systems using the well-studied topologi-
cal classification for non-Hermitian systems. The latter has
proven useful in finding a physical explanation for the number
of virtual edge modes in the EOS of non-Hermitian systems,
which in fact is determined by the corresponding Hermitian
critical system.

In this paper we focused on one-dimensional systems
chiral symmetry, which are characterized by winding num-
bers. We expect our results to generalize to other topological
classes, although a thorough analysis of this is beyond the
scope of this paper. In one dimension, the nontrivial critical
systems are those with a Z classification and therefore are
covered by the results of this paper. However, more interesting
phenomena could appear in higher dimensions. Consider the
Chern insulator in topological class A, for example. In the
Hermitian case, the critical point is characterized again by a
half-integer invariant. As opposed to one dimension, adding
a perturbation will generically lead to a gapless phase with
exceptional points. We expect that the gapless non-Hermitian
phase inherits some of the topological features of the Hermi-
tian critical system.

Note added. Recently, another work was put forward [41]
that deals with the relation of non-Hermitian to Hermitian
critical systems. However, in [41] the authors relate Hermitian
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FIG. 2. Phase diagram for the Hamiltonian (A1) with t1 = 1 for
(a) g = 0 and (b) g = 0.2. The color code indicates ν, while the
numbers indicate ν ′ (only nonzero for g �= 0).

critical systems to non-Hermitian critical systems. An im-
portant aspect of their construction is that the non-Hermitian
energy spectrum is real (and gapless). Thus, their construction
is distinct from ours, even though many of the features are
similar. In particular, also for point-gap phases, one obtains
an entanglement entropy scaling linear in subsystem size,
implying critical behavior.
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APPENDIX A: EXPLICIT EXAMPLES

In this Appendix we exemplify some of the statements of
the main text. Throughout, we use a simple model Hamilto-
nian given by

H = h(k) · σ, (A1)

with

hx(k) = t0 + t1 cos(k) + t2 cos(2k)

hy(k) = t1 sin(k) + t2 sin(2k),

which implies that

f (k) = t0 + t1eik + t2e2ik . (A2)

The phase diagram of the Hermitian system is shown in
Fig. 2(a). We focus our analysis on four critical points given
by

(i) {t0, t1, t2} = {0, 1,−1} (ν : 1 → 2),

(ii) {t0, t1, t2} = {−1, 1, 0} (ν : 0 → 1),

(iii) {t0, t1, t2} = {−1, 1,−1} (ν : 0 → 2),

(iv) {t0, t1, t2} = {− 1
2 , 1,− 1

2 } (tricritical). (A3)

Without loss of generality, we assume g > 0 in the following.

1. Generalizing eigenenergies

Let us first consider the first method, described in Sec. III,
on how to connect these critical points to non-Hermitian

point-gap phases. Below we give the analytical expressions
for ε(k, g) as well as ĥ.

(i) For ν : 1 → 2,

ε(k, g) = 2 sin(k/2) + igcos(k/2),

ĥx(k) = sin(3k/2),

ĥy(k) = cos(3k/2). (A4)

(ii) For ν : 0 → 1,

ε(k, g) = 2 sin(k/2) + igcos(k/2),

ĥx(k) = − sin(k/2),

ĥy(k) = − cos(k/2). (A5)

(iii) For ν : 0 → 2,

ε(k, g) = 1 − 2 cos(k) + 2ig sin(k),

ĥx(k) = cos(k),

ĥy(k) = − sin(k). (A6)

(iv) For the tricritical point,

ε(k, g) = 1 − cos(k) + ig sin(k),

ĥx(k) = cos(k),

ĥy(k) = − sin(k). (A7)

Note first that whenever there is an odd number of gapless
points, ε(k) cannot be chosen as 2π periodic, but must be 4π

periodic. This is intimately related to ĥ(k + 2π ) = −ĥ(k) and
thus a half-integer quantized winding number. The winding
numbers of (i) and (ii) are 3

2 and 1
2 , respectively. For cases

(iii) and (iv), we note that both ε and ĥ are 2π periodic. The
corresponding winding number is 1. At first glance, it may
be surprising that the winding number of the tricritical point
is at all well defined. It is however a fact that appears again
in our second non-Hermitian generalization. In the latter, the
tricritical point connects to the same point-gapped phase as
(iii).

2. Generalizing to complex momenta

We now consider the non-Hermitian generalization of criti-
cal systems, obtained by letting the momenta become complex
as eik → eik−g. The resulting phase diagram is shown in Fig. 2,
with the color code indicating ν and the numbers indicating
ν ′. Note that increasing g turns the critical line into point-gap
phases, while gapped phases smoothly evolve to line-gapped
phases (with ν ′ = 0) as expected [6].

For (i) ν : 1 → 2 and using z = eik , f1 is given by

f1(z) = e−gz − e−2gz2 = e−gz(1 − e−gz), (A8)

which has single zeros at z = 0 and z = eig. Thus, the second
zero has moved outside the unit circle and the resulting wind-
ing number in Eq. (31) evaluates to 1. For f2 we instead find

f2(z) = egz − e2gz2 = egz(1 − egz), (A9)

with z = eik′ = e−ik , which has single zeros at z = 0 and z =
e−ig. Thus the zero has moved inside the unit circle and the
resulting winding number [see Eq. (34)] is 2.
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For case (ii), f1/ f2 instead become

f1/2 = −1 + ze∓g, (A10)

which when compared to (i) above lacks the single zero at
z = 0, thus yielding ν1 = 0 and ν2 = 1 when evaluating the
winding number integrals.

For case (iii),

f1/2 = −1 + ze∓g − z2e∓2g

= (z − e−π i/3e∓g)(z − eiπ/3e∓g); (A11)

thus both zeros move simultaneously either inside or outside
the unit circle yielding ν1 = 0 and ν2 = 2.

Finally, for case (iv) one finds

f1/2 = − 1
2 + ze∓g − 1

2 z2e∓2g = (z − e∓g)2, (A12)

which is completely equivalent to case (iii), except that both
zeros now sit at the same point. Again, the winding numbers
are given by ν1 = 0 and ν2 = 2. In all these cases, the gapless
point(s) for each winding number move either all inside or all
outside, thus allowing us to identify ν1 and ν2 with the gapped
phases on each side of the critical point.

APPENDIX B: EOS MIDGAP STATES
FOR LOCALIZATION AT L/2

Here we discuss the case where the approximate eigenstate
exists on the a sublattice and is localized on the edge at x =
L/2. In this case, we need to ensure that the ansatz for g �= 0
is localized at L/2, which is achieved by using

ψy(g) =
L/2∑

s=−L/2+1

L/2∑
y′=1

M−1
y,s eg(L/2−s)Ms,y′ψy′ (0), (B1)

where we assume that g < 0. Note that it is important to
change the range of the internal index of M to [−L/2 + 1,

L/2]. Strictly speaking, this is now a different matrix than
in the main text, but we will still call it M. Now we need
to Fourier transform q̃A(g), which has in fact the same form
as qA just that we replace γ by γ̃ . If |γm| is maximal for
small positive m, γ̃ will be so for small negative m. Otherwise,
they share the same features. In particular, we also require the
exponential decay for large |m|.

Let us now act with QA on our ansatz

−〈x|QA(g)|ψ (g)〉 = eg/2
L/2∑
y=1

∞∑
m=−∞

eg(m−x)γ̃m−xMm,yψy(g)

= eg/2−gx
L/2∑

s,m=−L/2+1

∞∑
j=−∞

eg(m+ jL)γm−x+ jL

×
L/2∑

y,y′=1

Mm,y(M−1)y,s

︸ ︷︷ ︸
δm,s

eg(L/2−s)Msyψy(0)

= eg/2+g(L/2−x)
L/2∑

m=−L/2+1

∞∑
j=−∞

egjLγm−x+ jL

×
∑

y

Mmyψy(0). (B2)

We will now argue that we can restrict the sum to the terms
with j = 0, making an exponentially small error. First of all,
we notice that egjLγm−x+ jL decays exponentially in system
size with large | j|, independently of m and x. Note that
m − x ∈ [−L + 1, L/2 − 1]. We now compare coefficients for
different values of j = −1, 0, 1,

eg( jL+L/2−x)γm−x+ jL =

⎧⎪⎨
⎪⎩

e−g(L/2+x)γm−(L+x), j = −1

eg(L/2−x)γm−x, j = 0

eg(3L/2−x)γm+L−x, j = 1,

(B3)

and show that all but the j = 0 term can be neglected. Consid-
ering j = −1, the largest coefficient is generically obtained
by choosing m = L/2: e−g(L/2+x)γ−(L/2+x). Since x > 0, and
e−gmγm is assumed to decay exponentially for large |m|, this
coefficient is exponentially small in system size. For j = 1,
the largest term is generically obtained for m = −L/2:
eg(3L/2−x)γL/2−x. For the latter, γ can be of order unity for
x ≈ L/2, but the full term is again exponentially suppressed
by the extra egL. As a result, we can truncate the sum over
j to the j = 0 term, which implies that the second part of the
expression is again equal to the eigenvalue equation for g = 0:

〈x|QA(g)|ψ (g)〉 = eg/2+g(L/2−x)〈x|QA(0)|ψ (0)〉. (B4)

Given that the x-dependent factors in front lie in the interval
[0,1], we can conclude that |ψ (g)〉 is again a zero-energy
eigenstate up to finite-size corrections.

For g > 0, we instead need to consider the left eigenstate
of QA, using the same steps as explained in the main text for
g > 0 and localization at x = 1. Again, we find that depending
on the sign of g, we can find either right or a left eigenstate of
QA(g), which has eigenvalue 0 [up to O(1/L) errors].

APPENDIX C: BEHAVIOR OF THE ANSATZ STATE

In this Appendix we study the ansatz used in Eq. (60) and
show that it is well behaved. One interesting feature of this
ansatz is that the transformation matrix is model independent,
depending only on the g parameter. Let us focus first on the M
matrix, given again by

Mmy = 1

L

∑
k

eik(m−y+1/2). (C1)

This matrix is in fact unitary,

[M†M]xy =
∑

s

(
1

L

∑
k′

eik(x−s−1/2)

)(
1

L

∑
k

eik(s−y+1/2)

)

= 1

L

∑
kk′

δk,k′eik′(x−1/2)eik(−y+1/2)

= 1

L

∑
k

eik′(x−y)

= δx,y, (C2)
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FIG. 3. (a) First 40 × 40 submatrix of the transformation matrix
T = M−1e−gxM, computed for g = 0.2 and L = 200. It has two main
features: (b) a diagonal that is exponentially decaying, with the
diagonal shown in a log plot, and (c) the first row shown in a log-log
plot, pointing to a polynomial decay.

and therefore it is always invertible. The elements of the M
matrix can be expressed as

1

L

∑
k

eik(n+1/2) = − 1

L
+

∞∑
j=−∞

2i

π

1

1 + 2(n + jL)

= − 1

L
+

�∑
j=−�

2i

π

1

1 + 2(n + jL)

+ O

(
1

�L2

)
, (C3)

where n is an integer and � a cutoff. Choosing � = 0 still
gives a very good approximation to the correct result in the
large-system-size limit, due to the 1

L2 dependence of the error.
Despite the simple form of the M matrix, it is not possible

to obtain a compact expression for the transformation matrix
T = M−1e−gx̂M. We can instead study this transformation
matrix numerically, shown in Fig. 3. The transformation ma-
trix has a diagonal that decays exponentially [see Fig. 3(b)].
The rows and columns decay polynomially away from the
diagonal [see Fig. 3(c)].

It is now necessary to emphasize certain differences be-
tween the topological zero-energy edge modes and the virtual
topological modes of the EOS. The former are always expo-
nentially localized at the edge, for both gapped and critical
systems. For gapped systems, also the virtual topological
modes of the EOS are exponentially localized at the virtual
edge. In the critical case, however, we find that they are
only polynomially localized, most probably due to the long-
range nature of the reduced correlation matrix. Applying the
transformation matrix to such a state results in a state that is
also polynomially localized, i.e., the transformation does not
change the nature of the virtual topological modes. Moreover,
in Fig. 4 we plot the norm of the unnormalized ansatz state
obtained using the model in Eq. (A1) with t0 = t1, t2 = −2t1,
and g = 0.2, showing that it is well behaved and it converges
to a finite number in the thermodynamic limit. Thus, the

FIG. 4. Norm of the unnormalized ansatz topological state for
the model in Eq. (A1) with t0 = t1 and t2 = −2t1 for g = 0.2 and
increasing system size, up to L = 600 sites. The ansatz state is well
behaved and its norm appears to converge to a finite number in the
thermodynamic limit.

ansatz will not cause difficulties in our interpretation of the
eigenvalue equation (61).

APPENDIX D: GENERAL NON-HERMITIAN
GENERALIZATION

In the main text we described two different generalizations
to the non-Hermitian case. These are chosen because they
simplify the mathematics and allow us to show analytical re-
sults, but the generalizations are not unique. Here we study the
requirements for a non-Hermitian term to evolve the critical
point into a point-gapped phase by looking at what happens
near the band crossing.

Without loss of generality, consider a system with one band
crossing at k = 0. Near the crossing the Hamiltonian can be
expressed in its eigenbasis as

H = kσz, (D1)

with left- and right-moving states. Consider first a perturba-
tion of the form

H = xσx + yσy + kσz. (D2)

Any perturbation like this that mixes left and right movers will
result in a line gap opening, even in the non-Hermitian case
where x and y are complex. We can see this by calculating the
non-Hermitian winding number in Eq. (25),

ν ′ = 1

2π

∮ ∞

−∞
dk ∂kIm log det[h(k, g)]

= 1

2π
Im

∮ ∞

−∞
dk

2k

k2 + x2 + y2

= 0, (D3)

where the integration now takes place over the real axis.
The winding number vanishes since the integrand is an odd
function of k.

This leaves us with only one type of perturbation,

H = (k + ig)σz, (D4)
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FIG. 5. Energy bands in the complex plane for the Hamiltonian
in Eq. (D5) with g = 1

2 for the perturbation constant, resulting in a
point-gapped phase around E = 0.

which separates left and right movers in the complex
energy plane without mixing them. The corresponding non-
Hermitian winding number can be obtained as ν ′ = −sgn(g)
[42] and therefore for finite g the system will be in a point-
gapped phase. This is expected because the igσz term gives
different dissipation to left and right movers, which creates

an unbalance in the transport. For open boundary conditions
this will lead to a skin effect [43], which is characteristic of
point-gapped phases.

In this approximation this is equivalent to the second case
considered in the main text, but it only needs to apply exactly
at the band crossing. To exemplify this, consider once again
the critical point of the SSH chain, with an added perturbation
igcos(k)σy,

H =
(

0 1 − eik + gcos(k)
1 − e−ik − gcos(k) 0

)
. (D5)

Near the band crossing at k = 0 we have

H =
(

0 −i(k + ig)
i(k + ig) 0

)
, (D6)

which is the desired result. Even though the perturbation
might mix both bands at other points in k, as long as the
perturbation is smaller than the band gap at k, the resulting
complex bands should have a point gap. We show that this is
the case for the example considered here in Fig. 5.
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