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Topological pump of SU (Q) quantum chain and Diophantine equation
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We propose a general construction scheme of topological pump for correlated systems with local gauge
symmetry. The bulk-edge correspondence is one of its natural consequences. As a concrete example, an SU (Q)
quantum chain associated with a local [U (1)]⊗Q gauge invariance of colored fermions is discussed in detail.
The SU (Q) invariant dimer phases are characterized by the ZQ Berry phases as a topological order parameter
with a d-dimensional twist space (d = Q − 1) as a synthetic Brillouin zone. By inclusion of the symmetry
breaking perturbation specified by a rational parameter � = P/Q, the pump that encloses around the phase
boundary, is characterized by the Q Chern numbers associated with the currents due to uniform infinitesimal
twists. The analysis of the systems under the open/periodic/twisted boundary conditions clarifies the bulk-edge
correspondence of the pump where the large gauge transformation generated by the center-of-mass (CoM) plays
a central role. An explicit formula for the Chern number is given by using the Diophantine equation. Numerical
demonstrations by the exact diagonalization and the DMRG for finite systems (Q = 3, 4, and 5) have been
presented to confirm the general discussions for low-energy spectra, edge states, CoM’s, Chern numbers, and
the bulk-edge correspondence. A modified Lieb-Schultz-Mattis type argument for the general SU (Q) quantum
chain is also mentioned.
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I. INTRODUCTION

U (1) gauge invariance is a key ingredient for the quantum
Hall effects as pointed out by Laughlin [1] and is true for the
Chern insulators where the conserved current associated with
the gauge field is closely related with the topological numbers:
the Chern number of the gapped many-body state and the
Thouless—Kohmoto—Nightingale—den Nijs (TKNN) inte-
gers of the one-particle bands [2–6]. It guarantees topological
stability of the phase without any further symmetry protection.
Existence of the nontrivial phases with nonzero Chern number
is only allowed with time-reversal symmetry breaking that
suggests chiral nature of the phase.

As for most of the topological phases, the bulk is hidden,
in a sense that the topological number of the bulk without
boundaries is not a physical observable. What have been
observed experimentally are low-energy localized modes as
the chiral edge states localized near the boundaries [7–9].
The edge states reflect the topological number of the bulk as
the bulk-edge correspondence [10–17] where U (1) local
gauge field associated with the Aharonov-Bohm flux is crucial
due to the Laughlin argument. The effective theory also justi-
fies the bulk-edge correspondence for topologically nontrivial
systems [18].

Focused studies in the decades reveal various chiral modes
of quantum and nonquantum phenomena in quite different
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phenomena have a topological origin. They are under the con-
trol of the bulk-edge correspondence where the Chern number
of the bulk predicts the direction and the number of the chiral
modes. The first nonquantum example is one-way propagating
modes of a gyromagnetic photonic crystal [19–21], mechan-
ical chiral modes in microtubes [22], and coupled optical
resonators [23] are also governed by the bulk-edge correspon-
dence. The concept is applied to a wide variety of phenomena
in photonics [24–26] and topological circuits [27,28]. It also
includes mechanical systems [29,30] and cold atoms [31]. The
bulk-edge correspondence is also a key concept in the focused
studies of topological insulators in the decades [32–36]. One
of the recent surprises is that equatorial waves near the equator
of the earth, that is well known in geophysics, are the chiral
edge modes associated with the nonzero-Chern number [37].
There exist chiral edge modes in evolutionary game theory
[38] and biological flows in neural progenitor cells [39].
The bulk-edge correspondence is universal. In these classical
phenomena, chiral edge states are topologically stable and
protected by the bulk gap, although the Chern numbers of
the bulk are hardly observed but guarantee the existence of
the edge states. Even in these phenomena, one can introduce
U (1) gauge fields to the governing equation by the minimal
coupling to the spatial derivative. The U (1) gauge field is
fictitious and never observed but it predicts the chiral edge
states associated with the Laughlin argument, which implies
the bulk-edge correspondence in classical systems as well.

The local U (1) gauge invariance in one dimension implies
an adiabatic charge transport of a gapped quantum chain
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associated with time as an additional synthetic dimension.
This is a topological pump originally proposed by Thouless
[40–44] in (1+1) dimensions where the transported charge is
quantized as is written by the Chern number. Similar pump-
ing for other degrees of freedom have been also proposed
[45–47]. Here we do not need time-reversal symmetry break-
ing in the 1D system for the nontrivial topological pump.
This idea of the topological pump is old but only after more
than three decades’ experimental trials, the topological pump
has been finally realized in cold atom experiments [48,49].
The pump is real and topological. These discoveries moti-
vate to clarify the effects of edge states in the topological
pump [50]. The topological pump is an adiabatic transfer of
the charge. As for a system with boundaries, the adiabatic
cycle of the pump implies everything is going back to the
original state after the period assuming the gap. It implies
nothing is transported in total. What occurs is that the con-
tributions due to the bulk and edges are canceled. That is,
the pumped charge due to bulk is given by a back action of the
edge states. In a suitable normalization, a localization length
of the edge states scales to zero in a large system-size limit.
It implies a quantization of contribution due to edge states
in a large system. It guarantees quantization of the pumped
charge due to bulk. This is the key idea of a topological nature
of the topological pump and the bulk-edge correspondence of
the pump [50]. The bulk-edge correspondence is special in the
topological pump, that is, the edge is hidden and the bulk gives
a physical observable, the center-of-mass (CoM), that is a time
integral of the current [50–53]. The pumped U (1) charge due
to the edge states is never experimentally observed due to the
gapless nature of the edge states. It implies the breakdown of
the adiabaticity. In other words, contribution of the edge states
can not be measured experimentally in a finite speed pump
since the adiabatic condition can not be satisfied rigorously
at the moments edge states appear. What is measured is that
of the bulk. In the experiment, one measures a motion of the
CoM of the system. Its derivative is the current.

Recently this bulk-edge correspondence of the topological
pump is also investigated for interacting fermions [52,54],
quantum spins [55,56], and bosons [57–59]. This cancella-
tion mechanism is also applied for fractional quantum Hall
states [60]. A phase transition point between gapped symme-
try protected topological phases (SPT) [61,62] is a source of
nontrivial topology. This topological transition is character-
ized by the change of quantized Berry phases [63–68] where
the gap closes. Breaking the symmetry constraint that sup-
ports the quantization of the Berry phase, topological pump
is realized for the gapped systems. The role of the edge
states of spin pumping is also discussed in a mathematically
rigorous way for the AKLT Hamiltonian [69] and its modifica-
tions [70]. Note that experimental studies for the topological
pump using cold atoms are rapidly developing as well
[71–73].

Although the topological pump of correlated systems is
one of the most active and unsolved fields of theoreti-
cal/experimental topological physics, the guiding principle
of the search for the nontrivial pump is missing. Especially
what kind of degrees of freedom can be pumped is totally
unclear for the correlated systems where various degrees of
freedom, such as charge, spins, and orbitals, are correlated and

interacting each other. Based on the situation in the correlated
systems as a background, we propose a general scheme to
construct a topological pump for gapped correlated systems.
We only require a local gauge symmetry for the system. It
directly implies the bulk-edge correspondence. Since the local
gauge symmetry implies associated local constraints, which
can be one of the fundamental character of the correlated
systems, this general proposal can be applied for various
correlated systems that motivates not only theoretical but also
experimental studies for a wide class of physical systems
where various degrees of freedom interact with each other.
As a concrete and fundamental example, we here investigate
topological pump of the SU (Q) quantum chain. It is surprising
rich and the bulk-edge correspondence clarifies all details of
the rich structures. One of the surprises is the Diophantine
equation that has successfully explained the TKNN integer
of the quantum Hall effect (Harper equation) on a lattice
also used to explain the Chern numbers of the SU (Q) pump
analytically.

Since the paper is extensive, let us describe the contents of
this paper and the summary of the main findings before the
discussion.

After the Introduction, in Sec. II, the SU (Q) quantum chain
[“SU (Q) spin” chain], due to Affleck [74–77] is described
as a generalization of the S = 1 bilinear-biquadratic quantum
chain. By using a colored fermion representation, symmetries
of the system are described. Especially ZQ symmetry and
the large gauge transformation due to Q gauge symmetry are
introduced. A gapped SU (Q) symmetric dimer phase is dis-
cussed for a periodic system that is a source of the nontrivial
topological pump.

In Sec. III, by using a time as a synthetic dimension and
introducing the SU (Q) symmetry breaking term, an SU (Q)
topological pump is proposed that goes around the gap closing
dimer transition of the SU (Q) quantum chain. The Q currents
associated with the gauge symmetries are introduced and the
CoM that generates the large gauge transformation is defined.
The systems with open/twisted/periodic boundary conditions
are carefully discussed. The d = Q − 1 dimensional synthetic
Brillouin zone as a parameter space to define the current and
Q-closed paths passing through the ZQ symmetric point are in-
troduced where the averaged currents along the paths are used
to define the topological pump in the adiabatic approximation.
As for the periodic boundary condition, the time integral of
each current gives the pumped charge that is a topological
number of the bulk (Chern number). The averaged CoM along
the path for the open boundary condition is not continuous
in time. A topological number of the edge states is defined
by using this discontinuities. The bulk-edge correspondence
that is an equivalence of the above two topological numbers is
proposed for the Q different topological numbers of the bulk
and edges.

In Sec. IV, we discuss SU (Q) symmetric systems without
a symmetry breaking term. Here ZQ quantization of the Berry
phases is defined by the loop in the synthetic Brillouin zone
and discussed in detail. The gap closing point of this sym-
metric system is the origin of nontrivial topological pump. A
modified Lieb-Schultz-Mattis type argument is also given as-
sociated with the (anti)translational symmetry of the uniform
problem.
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In Sec. V, at the beginning, ZQ symmetry of systems with
odd number of sites are discussed in relation to the edge
states with numerical justifications. Also ZQ × ZQ emergent
symmetry for systems of the open boundary condition is
discussed, which appears taking an infinite-size limit with
the open boundary condition. It is justified by the numerical
calculations of low-energy spectra. Then systems with the
symmetry breaking term is discussed perturbatively. Possible
level crossings of the low-energy spectra due to the edge states
are predicted associated with the emergent ZQ × ZQ symmetry
of an infinite system with boundaries. The topological num-
bers of the system with edges are explicitly given due to this
emergent symmetry. Based on the bulk-edge correspondence,
an explicit analytical formula of the Q Chern numbers of bulk
is given by using the Diophantine equation of the TKNN for
the quantum Hall effect on the lattice.

In Sec. VI, numerical evaluation of the topological num-
bers of edges and bulk are explicitly given by using the exact
diagonalization and DMRG calculation for Q = 3, 4, and 5
systems that justify the consistency of the discussion.

In the Appendices, supplemental discussions including
technical details are given.

As in the Laughlin argument of the quantum Hall effect [1],
the local gauge invariance is the key idea in the topological
pump. The role is twofold. It implies a conservation law of the
charge that induces level crossings of a low-energy multiplet
due to the edge states. It results in the singularities of CoM
that is a topological number due to the edge states. The large
gauge transformation associated with labeling of the sites
defines a current of the pump and the twist, which defines a
bulk topological number. Then the two topological numbers
of the bulk and the edges are necessarily related with each
other. This is the bulk-edge correspondence of the topological
pump. This scenario is general. As for a correlated system,
there can be various local gauge invariances due to coupled
degree of freedom, which implies variety of the bulk-edge
correspondence. We demonstrate the validity of the general
scheme in the present studies.

II. SU (Q) QUANTUM CHAIN

A. Fermion representation

Let us start considering an S = 1 quantum spin chain with
nearest-neighbor bilinear-biquadratic interaction

HS (ωS ) =
∑

j

[cos ωS (S j · S j+1) + sin ωS (S j · S j+1)2],

where [S j,α, S j,β ] = i
∑

γ εαβγ S j,γ , (α, β = 1, 2, 3) and S2
j =

S(S + 1), (S = 1). It has a long history of study [78–82].
We discuss its nonuniform SU (Q) extension, (Q = 2, 3, · · · )
by a fermion representation due to Affleck [74–77] (see also
Appendix A)

S j · S j+1 = (H (1)({1}) − H (2)({1}))|Q=3 + (const), (1)

(S j · S j+1)2 = H (2)({1})|Q=3 + (const), (2)

where H (1,2) are defined for general Q as

H (1,2)
({

J (1,2)
j,αβ

}) =
∑

j

h(1,2)
j, j+1,

h(1)
j, j+1 =

Q∑
αβ

J (1)
j,αβc†

j,αc†
j+1,βc j+1,αc j,β

=
Q∑
αβ

J (1)
j,αβhex

j,α; j+1,β , (3)

h(2)
j, j+1 =

Q∑
αβ

J (2)
j,αβc†

j,αc†
j+1,αc j+1,βc j,β

=
Q∑
αβ

J (2)
j,αβhph

j,α; jβ, (4)

hph
j,α; jβ = ψ

†
j,α; j+1,αψ j,β; j+1,β , (5)

where (J (1,2)
j )† = J (1,2)

j , (J (1,2)
j )α,β = J (1,2)

j,αβ , and c j,α , (α =
1, · · · , Q) is a canonical fermion annihilation operator for a
color α = 1, · · · , Q at the site j, {c j,α, c†

j′,β} = δ j j′δαβ with a
constraint at each site ∀ j,∑

α

n̂ j,α = 1, (6)

where n̂ j,α = c†
j,αc j,α [83]. The exchange of the colors hex

i,α; j,β

and the pair hopping hph
i,α; j,β at the link i, j are defined as

hex
i,α; j,β = c†

i,αc†
j,βc j,αci,β , (7)

hph
i,α; j,β = ψ

†
i,α; j,αψi,β; j,β , (8)

where ψi,α; j,β = ci,αc j,β is a pairing amplitude. They operate
as

hex
i,α; j,β |βiα j〉 = |αiβ j〉,

hph
i,α; j,β |βiβ j〉 = |αiα j〉,

where |αiβ j〉 = c†
i,αc†

j,β |0〉. The models described by the
Hamiltonians H (1) and H (2) can be implemented by using
a scattering process between different hyperfine states of
cold atoms. Such an idea has been proposed in [84,85]. Es-
pecially H (1) can be realized experimentally by using cold
atoms [86,87]. Up to constant, HS reduces to the sum of
H (1) and H (2) when Q = 3. The spin-1 operators at the site
j is written by a generator of the SO(3) spatial rotation as
S j,α =∑βγ c†

j,βSα
βγ c j,γ , where Sα

βγ = −iεαβγ , (α = 1, 2, 3)
[88] (see also Appendix A). As for the boundary condition, we
discuss both of the open boundary condition and the periodic
boundary condition (cL+1,α ≡ c1,α) assuming the lattice sites
are labeled as j = 1, · · · , L unless otherwise specified.

We discuss each of the H (1,2) separately for general Q since
the transformation properties are different. After discussing
their gauge symmetries in Sec. II B, we focus on topologi-
cal properties of a unique ground state of the Hamiltonian
H (2)({Ji}) for general Q by introducing a dimerization that
preserves SU (Q) symmetries. To realize a topological pump
based on this dimerized SU (Q) quantum chains, we further
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include a symmetry breaking term HB for H (2). We demon-
strate their topological properties numerically for several Q’s.
As for Q = 3, H (1) and H (2) are reproduced by the bilinear-
biquadratic Hamiltonian HS (ωS ) at ωS = π

4 , 0 respectively.

B. SU (Q) and ZQ symmetries

When the coupling is color independent, J (1,2)
j,αβ = J (1,2)

j , the
Hamiltonian H (1,2) is invariant for the global SU (Q) transfor-
mation respectively,

U (1)H (1)(U (1) )† = H (1),

U (2)H (2)(U (2) )† = H (2),

U (1) = e−i
∑

j,αβ c†
j,αuαβ c j,β , (9)

U (2) = e−i
∑

j,αβ (−1) j−1c†
j,αuαβ c j,β , (10)

where u is a generator of a Q × Q traceless hermitian matrix
(Tr u = 0 and u† = u) [89]. Note that the fermions transform
as (g = (g∗)−1 = eiu ∈ SU (Q) [90])

U (1)c j,α (U (1))† =
∑

β

gαβc j,β , (11)

U (2)c j,α (U (2))† =
{∑

β gαβc j,β j : odd∑
β g∗

αβc j,β j : even
. (12)

Especially ZQ ⊂ SU (Q) symmetry is important for the fol-
lowing discussion from topological view points. Although the
twists introduced later break SU (Q) symmetry in general, this
ZQ still remains as a symmetry at the high-symmetric twists
(denoted by G, see below), which is a generalized antiperiodic
boundary condition for Q = 2 [91].

ZQ is given by the global cyclic shift of the fermion colors
as

c j,α → c j,α−1, mod Q = UZQ c j,αU†
ZQ

, (13)⎛
⎜⎜⎝

c j,1

c j,2
...

c j,Q

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

c j,Q

c j,1
...

c j,Q−1

⎞
⎟⎟⎠,

= ZQ

⎛
⎜⎜⎝

c j,1

c j,2
...

c j,Q

⎞
⎟⎟⎠ = UZQ

⎛
⎜⎜⎝

c j,1

c j,2
...

c j,Q

⎞
⎟⎟⎠U†

ZQ
,

where

ZQ =

⎛
⎜⎜⎜⎝

0 0 · · · 1

1 0 0
...

...
. . .

. . . 0
0 · · · 1 0

⎞
⎟⎟⎟⎠ = eizQ ∈ SU (Q), (14)

UZQ =
∏

j

e−ic†
j,α (zQ )αβc j,β . (15)

See Sec. III A.
It implies that all of the eigenstates are labeled by the

eigenvalues of the unitary transformation UZQ as

UZQ |ωn〉 = |ωn〉ωn.

C. Gauge symmetry

Further the Hamiltonians have a (local) [U (1)]Q gauge
invariance for ϕ j,α ∈ R, (∀ j and ∀α) as

U (1)
G H (1)

({
J (1)

j,αβ

})(
U (1)

G

)† = H (1)
({

J̄ (1)
j,αβ

})
,

U (2)
G H (2)

({
J (2)

j,αβ

})(
U (2)

G

)† = H (2)
({

J̄ (2)
j,αβ

})
,

U (1)
G c j,α

(
U (1)

G

)† = eiϕ j,α c j,α, (16)

U (2)
G c j,α

(
U (2)

G

)† = ei(−1) j−1ϕ j,α c j,α, (17)

where

U (1)
G = e−i

∑
j,α ϕ j,α n̂ j,α , (18)

U (2)
G = e−i

∑
j,α (−1) j−1ϕ j,α n̂ j,α . (19)

Then, the couplings in the Hamiltonian of Eq. (2) are trans-
formed as

J̄ (1)
j,αβ = ei� j,α; j+1,β J (1)

j,αβ, (20)

J̄ (2)
j,αβ = ei(−1) j−1� j,α; j+1,β J (2)

j,αβ, (21)

� j,α; j+1,β = −(ϕ j,α − ϕ j,β ) + (ϕ j+1,α − ϕ j+1,β ), (22)

where j = 1, . . . , L − 1 for the open boundary condition and
ϕL+1,α ≡ ϕ1,α for the periodic boundary condition. We always
assume the system size L is even for the discussion of the
periodic boundary condition.

Taking all local gauge parameters constant, ϕ j,α = φα , one
has

e−iφαNα H (1)eiφαNα = H (1), (23)

e−iφα N̄α H (2)eiφα N̄α = H (2), (24)

where Nα =∑ j n̂ j,α and N̄α =∑ j (−1) j−1n̂ j,α . Differentia-
tion by φα implies Q conservation laws (α = 1, . . . , Q)

[Nα, H (1)] = 0, [N̄α, H (2)] = 0, (25)

where [Nα, Nβ ] = 0 and [N̄α, N̄β ] = 0.
Since the ZQ operation shifts these quantum numbers as

N̄α → N̄α−1, it results in degeneracy if

(N̄1, . . . , N̄Q) �= (N̄Q, N̄1, . . . , N̄Q−1).

D. Large gauge transformation

Taking the gauge parameters as

ϕ j,α = x jϕα, ( j = 1, . . . , L) (26)

x j = j − j0
L

∈
[
−1

2
,

1

2

]
, j0 = L + 1

2
, (27)

� j,α; j+1β =
{

1
L (ϕα − ϕβ ) j = 1, . . . , L − 1(

1
L − 1

)
(ϕα − ϕβ ) j = L

, (28)

the [U (1)]Q large gauge transformation U (1,2)
LG is defined by

U (1)
LG = e−i

∑
α ϕαP (1)

α , (29)

U (2)
LG = e−i

∑
α ϕαP (2)

α , (30)
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TABLE I. Energies and eigenstates of H (1) (Q = 3) where
|αaβb〉 = c†

iαc†
jβ |0〉. The sites are labeled by a (:odd) and b (:even).

State E (N1, N2, N3)

|1a1b〉 J (2,0,0)
|2a2b〉 J (0,2,0)
|3a3b〉 J (0,0,2)
(|1a2b〉 + |2a1b〉)/

√
2 J (1,1,0)

(|1a2b〉 − |2a1b〉)/
√

2 −J (1,1,0)
(|2a3b〉 + |3a2b〉)/

√
2 J (0,1,1)

(|3a2b〉 − |2a3b〉)/
√

2 −J (0,1,1)
(|3a1b〉 + |1a3b〉)/

√
2 J (1,0,1)

(|3a1b〉 − |1a3b〉)/
√

2 −J (1,0,1)

where

P (1)
α =

∑
j

x j n̂ j,α, P (2)
α =

∑
j

(−1) j−1x j n̂ j,α, (31)

are the CoM [92–95]. They are generators of the large gauge
transformations [50,53]. They induce changes in the couplings
as

U (1)
LGH (1)

({
J (1)

j,αβ

})(
U (1)

LG

)† = H (1)
({

J̄ (1),G
j,αβ

})
,

U (2)
LGH (2)

({
J (2)

j,αβ

})(
U (2)

LG

)† = H (2)
({

J̄ (2),G
j,αβ

})
,

J̄ (1),G
j,αβ = ei

ϕα−ϕβ

L J (1)
j,αβ

{
1 j = 1, . . . , L − 1

e−i(ϕα−ϕβ ) j = L
, (32)

J̄ (2),G
j,αβ = ei(−1) j−1 ϕα−ϕβ

L J (2)
j,αβ

{
1 j = 1, . . . , L − 1
e+i(ϕα−ϕβ ) j = L : even

,

(33)

where

U (1)
LGc j,α

(
U (1)

LG

)† = eiϕαx j c j,α, (34)

U (2)
LGc j,α

(
U (2)

LG

)† = eiϕα (−1) j−1x j c j,α. (35)

Note that the constraint
∑

α n̂ j,α = 1 implies [96]
Q∑

α=1

P (1)
α =

∑
j

x j = 0, (36)

Q∑
α=1

P (2)
α =

{
− 1

2 L : even

0 L : odd
. (37)

E. Periodic system: Gapped ground state of dimers

To realize a topological pump, we require a gapped unique
ground state for a periodic boundary condition and also with
nontrivial edge states for a system with edges. See examples
[50,52,54,56,97,98].

As for the Q = 3 case, the spectra and eigenstates of the
two-site systems H (1,2)

a,b are listed in Tables I and II (Jαβ,1 = J)
respectively (|0〉 is a fermion vacuum). Generic Q case for
H (2)

a,b is summarized in Table III. The sites are labeled by

TABLE II. Energy and eigenstates of H (2) (Q = 3). The sites are
labeled by a (:odd) and b (:even) (ω = −1+i

√
3

2 ).

State E (N̄1, N̄2, N̄3)

|Sab〉 = (|1a1b〉 + |2a2b〉 + |3a3b〉)/
√

3 3J (0,0,0)
|ωab〉 = (|1a1b〉 + ω|2a2b〉 + ω2|3a3b〉)/

√
3 0 (0,0,0)

|ω2
ab〉 = (|1a1b〉 + ω2|2a2b〉 + ω4|3a3b〉)/

√
3 0 (0,0,0)

|1a2b〉 0 (1,−1, 0)
|2a1b〉 0 (−1, 1, 0)
|2a3b〉 0 (0, 1, −1)
|3a2b〉 0 (0,−1, 1)
|3a1b〉 0 (−1, 0, 1)
|1a3b〉 0 (1, 0, −1)

a (odd) and b (even). They are consistent with the decom-
position of the representations, 3 ⊗ 3 = 3̄ ⊕ 6 and 3 ⊗ 3̄ =
1 ⊕ 8.

Since we need a unique (singlet) ground state for the two
site problem as a dimer in the following, we discuss H (2) or
HS of ωS = π

4

Jj =
{

Jo j : odd

Je j : even
, Jo, Je � 0.

The extension to the SU (Q) case (Table III) is straightfor-
ward and due to the decomposition Q ⊗ Q̄ = 1 ⊕ (Q2 − 1)
[99]. It is an SPT protected by ZQ symmetry [63,100]. The
two-site Hamiltonian for Jj = J < 0 is

Hab = Jψ
†
a,bψa,b

where ψa,b = Q−1/2∑
α ψa,α;b,α , (a �= b).

The singlet is given by |Sab〉 = ψ
†
a,b|0〉 with its energy

QJ and N̄α = 0,∀ α, since [ψa,b, ψ
†
a,b]|0〉 = 1 [101]. The rest

of zero energy Q2 − 1 states are given by the Q − 1 states,
|ωn

i j〉 = Q−1/2∑
α ωnα|αiα j〉, n = 1, · · · , Q − 1 with N̄α = 0

and Q(Q − 1) states, |αiβ j〉, (α �= β) with N̄α = 1, N̄β =
−1, N̄γ = 0, (γ �= α, β ) where we assume a is odd and b is
even.

Noting this two-site problem, we have two different unique
gapped ground states for the periodic system (cL+1,α ≡ c1,α)
with different dimer limits Jo = 0 and Je = 0 as

|gpe,eo〉 =
L/2∏
j=1

ψ
†
2 j+1,2 j |0〉, (Jo = 0), (38)

|gpe,oe〉 =
L/2∏
j=1

ψ
†
2 j−1,2 j |0〉, (Je = 0). (39)

TABLE III. Energies and eigenstates of H (2) where |ωn
i j〉, n =

1, . . . , Q − 1, |αaβb〉, α �= β = 1, . . . , Q, (ω = ei 2π
Q ). The sites are

labeled by a (:odd) and b (:even). Generic case.

State E N̄α

|Sa,b〉 = ψ†
a,b|0〉 QJ ∀N̄α = 0

|ωn
ab〉 = 1√

Q

∑Q
α=1 ωαn|αaαb〉 0 ∀N̄α = 0

|αaβb〉, α �= β 0 N̄α = −N̄β = 1, N̄γ �=α,β = 0

235106-5



YASUHIRO HATSUGAI AND YOSHIHITO KUNO PHYSICAL REVIEW B 107, 235106 (2023)

Note that both states are labeled by the occupations, N̄α = 0,
α = 1, . . . , Q.

Due to the adiabatic continuity, the ground state is gapped
and unique if the interaction between the dimers (Jj,αβ ,
j:even) is finite but weak enough (J2 �= 0, |J2| � |J1|). It is
a SPT phase protected by ZQ symmetry associated with the
quantized Berry phase [66,100]. See Sec. III A. As is clear
in Table III, we do not require SU (Q) symmetry. We may
allow ZQ invariant twists at any links as is introduced later.
At Jo = Je, the energy gap (of a finite system) closes as is
clear from the discontinuous change of the quantized Berry
phase (discussed later). This gap closing point is a source of
the nontrivial topology, which we discuss in this paper.

III. TOPOLOGICAL PUMP: CURRENTS,
CENTER-OF-MASS, AND BULK-EDGE

CORRESPONDENCE

A. Current and synthetic Brillouin zone (twist space)

Noting the large gauge transformation, let us start consid-
ering a dimerized Hamiltonian H (2)({J (2)

j,αβ}) by

Jj,αβ =

⎧⎪⎨
⎪⎩

Jj j = 1, . . . , L − 1

Jje−i(ϕα−ϕβ ) PBC, j = L : even

0 OBC, j = L

, (40)

Ji = J0 + δJ (−1) j cos
2πt

T
∈ R, (41)

where J0, δJ ∈ R and t is a time with a period T . To be
explicit, we take J0 < 0 and δJ > 0 in the following numerical
demonstration. We also include a symmetry breaking term to
realize the topological pump. To be concrete, let us consider a
following term for the generic SU (Q) case [it reduces to the
staggered potential for SU (2) case]:

HB(t ) =
∑
j,α

n̂ j,α�α (t ), (42)

�α (t ) = � sin 2π

(
t

T
+ �α

)
, (43)

where � = P
Q and � is a strength of a symmetry breaking

[102]. The integers P and Q are mutually coprime. We omit
the superscript “(2)” unless explicitly specified and both of the
periodic/open systems are discussed.

As a topological pump of the SU (Q) quantum chain, we
discuss a time-dependent Hamiltonian

H (t ) = H (2)
({

J (2)
j,αβ

})+ HB(t ), (44)

where Jj = Jj (t ) is also time dependent as specified later [see
Eq. (138)]. It is also written by the SU (Q) spins due to Affleck
[76,103]. Further assuming the ground state of the periodic
system is unique and gapped and the time dependence is adia-
batically slow compared with the many-body energy gap, we
consider a many-body SU (Q)-charge pump. As we have men-
tioned repeatedly, it is also understood as the “SU (Q)-spin”
pump. There can be various protocols (time dependencies of
the Hamiltonian), to be simple, we use the one, Eq. (138), for
the numerical demonstration in Sec. VI.

Noting that Eq. (40), the Hamiltonian Hop({Jj,αβ}) for the
open system is ϕα independent and Hpe({Jj,αβ}) ≡ Htw, for
the periodic system, is with a twisted boundary condition. The

difference between Hop and Htw is only at the boundary link,
j = L. Then the large gauge transformation by ULG induces
O(L−1) twists for each link as

H̄op,pe = Hop,pe({J̄ j,αβ}), (45)

J̄ j,αβ = ei(−1) j−1 ϕα−ϕβ

L Jj

{
( j = 1, . . . , L − 1) : open
( j = 1, . . . , L) : periodic .

(46)

Explicitly for the open/periodic cases, they are written as
H̄op = ULGHopU†

LG, (47)

H̄pe = ULGHtwU†
LG, (48)

ULG = e−i
∑

α ϕαPα . (49)

The twists are uniform both for the periodic H̄pe and the
open H̄op Hamiltonians. The periodic system is translational
invariant by the period 2 with dimerization.

Without dimerization, uniformity of the Hpe is written as
Jj = J ( j independent). This is inherited as antitranslation
invariance of H̄pe as

AT H̄peA−1
T = H̄pe, (50)

AT = UT K, (51)

UT c j,αU†
T = c j+1,α, (52)

where UT is unitary and AT is antiunitary (K is a complex
conjugate). It implies J̄ j,αβ = (J̄ j±1,αβ )∗.

In the following, the Hamiltonian is extended by adding
a symmetry breaking term HB that is gauge invariant as
ULGHBU†

LG = HB. See Table IV and Fig. 1.
To define a current, let us introduce a d-dimensional twist

space (d-dimensional torus), T d = {(θ1, θ2, . . . , θd )| θα ∈
[0, 2π ], α = 1, . . . , d}(d = Q − 1). This is a synthetic Bril-
louin zone [100], which introduces twist for the Hamiltonian
Htw by

ϕ1 = θ1,

ϕ2 = θ1 + θ2,

...

ϕα = θ1 + · · · + θα,

...

ϕd = θ1 + θ2 + · · · + θd ,

ϕQ ≡ ϕ0 = 0,

that is,

ϕ1 − ϕ0 = θ1,

ϕ2 − ϕ1 = θ2,

...

ϕα − ϕα−1 = θα,

...

ϕd − ϕd−1 = θd ,

ϕQ − ϕQ−1 = −θ1 − θ2 · · · − θd ≡ θQ,
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TABLE IV. Hamiltonians, energies and states with different boundary conditions.

θ dependence On T d (�) Energy on T d (�) Ground state Current

Hop Independent Independent Independent |g0,op〉
H̄op Uniform Ill defineda Independent |gop〉 = ULG|g0,op〉 jop = h̄−1〈gop|∂θ H̄op|gop〉
Htw At the boundaries Well defined Well definedb |g0,tw〉
H̄pe Uniform Ill defineda Well definedb |gpe〉 = ULG|g0,tw〉 jpe = h̄−1〈gpe|∂θ H̄pe|gpe〉
aDoes not satisfy the periodicity in �.
bAssuming the unique ground state on �, Etw = Epe.

where θα is defined in modulo 2π , that is, θα = 0 and 2π are
identified. It implies a formal relation θ1 + · · · + θd + θQ = 0.
Note that the Hamiltonian depends on

ϕα − ϕβ = θα + · · · + θβ+1,
∀α, β, α � β + 1.

Since the Hamiltonian is invariant for the ZQ shift of the
fermions, c j,α → c j,α−1, which induces a shift ϕα → ϕα+1,
and also for the constant shift of ∀ϕα by subtracting θ1 denoted
by ∼ as

ϕ1 → ϕ2 = θ1 + θ2 ∼ θ2,

ϕ2 → ϕ3 = θ1 + θ2 + θ3 ∼ θ2 + θ3,

...

ϕα → ϕα+1 = θ1 + · · · + θα+1 ∼ θ2 + · · · + θα+1,

...

ϕd−1 → ϕd = θ1 + θ2 + · · · + θd ∼ θ2 + · · · + θd ,

ϕd → ϕd+1 = ϕQ = θ1 + θ2 + · · · + θd + θQ,

∼ θ2 + · · · + θd + θQ,

ϕQ = ϕ0 → ϕ1 = θ1 ∼ 0.

It is given by the cyclic shift of the parameter space supple-
mented by θQ,

(θ1, . . . , θd , θQ) → (θ2, . . . , θQ, θ1). (53)

It implies ZQ equivalence of loops �VαGVα+1 , α = 1, . . . , Q as
shown later.

It is useful to express this parameter space as shown in
Figs. 2 and 3. Let us start Q = d + 1 equivalent points Vα ,
(α = 1, . . . , Q ≡ 0) on a (d − 1)-dimensional sphere Sd−1,
which is constructed recursively from the zero-dimensional
sphere (two points). G = ( 2π

Q , . . . , 2π
Q ) is a center-of-mass of

all vertices V0, . . . ,Vd , which is a center of the sphere on
which all vertices lie. See Ref. [100] for the details. Its low-
dimensional examples are two vertices of a line [S0, d = 1,
Fig. 3(a)], three vertices of a triangle on a circle [S1, d = 2,

FIG. 1. Four Hamiltonians with different boundary conditions.

Fig. 3(b)], and four vertices of a tetrahedron on a sphere in
three dimension (S2, d = 3). T d is spanned by the d vec-
tors, �e j = −−→

V0Vα/2π , α = 1, . . . , d as � = θ1�e1 + · · · + θd �ed ,
which is abbreviated as � = (θ1, . . . , θd ).

It defines a synthetic Brillouin zone for the twisted Hamil-
tonian

Htw(�) = Htw(� + 2π �eα ), (α = 1, . . . , d ), (54)

that is, all vertices ∀Vα are identified.
Note that the Q paths

�VαGVα+1 = −−−→
GVα + −−−→

GVα+1, α = 1, . . . , Q, (55)

in Fig. 2, forms loops for Htw(�). Note that H̄pe(�) does not
satisfies this periodicity.

By taking any path � = {�|(� = �(θ ), θ ∈ [0, 2π ]} pa-
rameterized by θ in the parameter space, let us define a current

J � ≡ h̄−1∂θ H̄ = h̄−1∂θH ({J̄ j,αβ}). (56)

Equations (47) and (48) imply respectively

Jop = h̄−1∂θ H̄op = −ih̄−1
∑

α

∂θϕα[Pα, H̄op], (57)

Jpe = h̄−1∂θ H̄pe = −ih̄−1
∑

α

∂θϕα[Pα, H̄pe]

+ h̄−1ULG∂θHtwU†
LG. (58)

Then the evaluation by the time-dependent state |Gop(t )〉
for the open boundary condition that obeys the Schrödinger
equation, ih̄∂t |Gop(t )〉 = H̄op|Gop(t )〉, (〈Gop|Gop〉 = 1) gives

jG
op ≡ 〈Gop(t )|Jop|Gop(t )〉 =

∑
α

∂θϕα∂t P
G
op,α, (59)

FIG. 2. d-dimensional parameter space of the twist and Q loops
�V0GV1 , �V1GV2 , . . . , �Vd GV0 on torus T d .
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FIG. 3. Examples for the paths in the parameter spaces for
(a) d = 1, Q = 2 and (b) d = 2, Q = 3 where G is a ZQ symmetric
point. The twist at G, Q = 2 corresponds to the antiperiodic bound-
ary condition.

where

PG
op,α (t ) = 〈Gop(t )|Pα|Gop(t )〉, (60)

is a CoM of |Gop(t )〉. Note that the similar discussion for the
periodic boundary condition is not simple. Equation (58) has
an extra term (Htw depends on ϕα) and also the operator Pα

itself does not have a physical meaning since the origin of the
reduced coordinate x j is arbitrary for the periodic boundary
condition.

B. Adiabatic current

Let us start by a general discussion of the time-dependent
evolution of a state by the adiabatic approximation assuming
the initial state |G(0)〉 is a gapped unique ground state |g(0)〉
of the snapshot Hamiltonian H̄ (t ),

|G(0)〉 = |g(0)〉,
H̄ (t )|n(t )〉 = |n(t )〉En(t ),

where n = 0, 1, 2, . . . , and |g〉 = |n〉, n = 0, 〈n|n′〉 = δnn′ . We
further assume the snapshot Hamiltonian is always gapped
En(t ) > Eg(t ), (n �= g). When the time modulation of the
Hamiltonian is slow enough, the adiabatic approximation is
justified (see Appendix C) as

|G〉 ≈ C

⎡
⎣|g〉 + ih̄

∑
n �=g

|n〉〈n|∂t g〉
En − Eg

⎤
⎦, (61)

where C is a time-dependent phase factor (|C| = 1). In the
present discussion, H̄ is H̄op or H̄pe.

Under this adiabatic approximation, the observed current
is given by [40] (see also Appendix C)

jG = 〈G|J |G〉 ≈ j, (62)

j = h̄−1〈g|∂θ H̄ |g〉 − iB, (63)

B = ∂θAt − ∂t Aθ , (64)

where Aμ (μ = θ, t) is the Berry connection

Aμ = 〈g|∂μg〉. (65)

Here we assume the ground state |g〉 as a function of θ

and t by H̄ (θ, t )|g(θ, t )〉 = |g(θ, t )〉Eg(θ, t ). It is covariant
for the phase transformation, |g′〉 = |g〉eiχ , [χ = χ (θ, t )] that
induces the gauge transformation for the Berry connection

A′
μ = Aμ + ∂μχ, (66)

although the field strength B and the current j are gauge
invariant.

Let us here define the average current along the path � such
as �VαGVα+1 connecting two equivalent points in the parameter
space (parameterized by θ ∈ [0, 2π ])

j̄�(t ) =
∫ 2π

0

dθ

2π
j(θ, t ). (67)

Due to the Feynman’s theorem, the first term Eq. (63) is writ-
ten as 〈g|∂θ H̄ |g〉 = ∂θE (θ ), Eθ = 〈g|H̄ |g〉. It vanishes for the
open boundary condition, since Eop is θ independent. As for

the periodic boundary condition, again
∫ 2π

0 dθ∂θEpe(θ ) = 0
since Epe(θ ) = Etw(θ ) is periodic for any closed path connect-
ing the equivalent points in the period T . See Table IV and
Fig. 1. It results in

j̄�(t ) = −i
∫

�

dθ

2π
B. (68)

Note that this is valid both for the open and the periodic
boundary conditions. Since the current is carried by bulk, the
effect of the boundaries is O(L−1). One can expect, in the
infinite size limit (see Fig. 1),

j̄�pe = j̄�op, (L → ∞). (69)

This is the bulk-edge correspondence for the adiabatic current.

C. Temporal gauge and discontinuity of CoM

Adiabatic pump is a periodic transfer of charge between
the time period [0, T ] assuming that the periodicity of the
Hamiltonian as H̄ (t + T ) = H̄ (t ) under the adiabatic condi-
tion. Here H̄ denotes H̄pe or H̄op respectively. As for the gauge
fixing of the Berry connection, let us take a temporal gauge
A(t )

t (θ, t ) = 0 by

A(t )
θ (θ, t ) = −

∫ t

0
dτ B(θ, τ ). (70)

This is apparently gauge invariant and one may check B =
∂θA(t )

t − ∂t A
(t )
θ = −∂t A

(t )
θ . Note that A(t )

θ is not periodic in
time, A(t )(θ, t + T ) �= A(t )(θ, t ), although H̄ is periodic in
time (period T ). It is further written by the Berry connection
in a generic gauge as [50]

A(t )
θ (θ, t ) = −

∫ t

0
dτ [∂θAt (θ, τ ) − ∂τ Aθ (θ, τ )]

= Aθ (θ, t ) − ∂θ

∫ t

0
dτ At (θ, τ ) − Aθ (θ, 0). (71)

The average current in the temporal gauge is written as

j̄�(t ) = −i
∫

�

dθ

2π
B = i∂t Ā

(t )
θ (t ), (72)

Ā(t ),�
θ (t ) =

∫
�

dθ

2π
A(t )

θ (θ, t )

= −1

2π

∫
�

dθ

∫ t

0
dτB(θ, τ ). (73)
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This is valid both for open and periodic boundary condition.
As for the open boundary condition, the parameter de-

pendence is only due to the large gauge transformation ULG

as |gop〉 = ULG|g0,op〉 where |g0,op〉, is a ground state of Hop,
(Hop|g0,op〉 = |g0,op〉Eg). We safely assume |g0,op〉 is θ inde-
pendent, ∂θ |g0,op〉 = 0. It implies

At,op = 〈gop|∂t gop〉 = 〈g0,op|∂t g0,op〉, ∂θAt,op = 0, (74)

Aθ,op = 〈gop|∂θgop〉 = 〈g0,op|U†
LG∂θULG|g0,op〉

= −i
∑

α

∂θϕαPα (t ), (75)

where

Pα (t ) = 〈g0,op|Pα|g0,op〉 =
∑

j

(−1) j−1x jn j,α (t ), (76)

is a CoM of the α fermions without twists [n j,α (t ) =
〈g0,op(t )|n̂ j,α|g0,op(t )〉]. It is also written by the SU (Q) spins
[104].

The Berry connection in the temporal gauge is written as

A(t )
θ,op(θ, t ) = −i

∑
α

∂θϕα[Pα (t ) − Pα (0)]. (77)

The current averaged over the path � is written as

j̄� =
[ ∫

�

dθ

2π

∑
α

∂αϕα

]
∂t Pα (t )

= ∂t P̄
�(t ), (78)

where

P̄�(t ) =
∑

α

�ϕα

2π
Pα (t ), (79)

�ϕα = ϕα (2π ) − ϕα (0). (80)

Along the path �V0GV1 , θ1 : 0 → 2π and θα : 0 → 0, α =
2, . . . , d . It implies ϕα : 0 → 2π , �ϕα = 2π for all α =
1, . . . , d . Also ϕ0 = ϕQ = 0. Therefore the averaged current

j̄
�V0GV1
op is written as

j̄
�V0GV1
op = ∂t P̄

�V0GV1 , (81)

P̄�V0GV1 = −P0, (82)

where P0 ≡ −∑d
α=1 Pα . [Note that P0 = PQ, (L: odd) and

P0 = PQ + 1/2, (L: even) due to the constraint Eq. (37).] As
for Q = 3, P0 = −P1 − P2 (see Fig. 3). Along the path �V1GV2 ,
θ1 : 2π → 0, θ2 : 0 → 2π , θα : 0 → 0, (α = 3, . . . , d). It im-
plies �ϕ1 = −2π , �ϕα = 0, (α = 2, . . . , d) and

j̄
�V1GV2
op = ∂t P̄

�V1GV2 , (83)

P̄�V1GV2 = −P1. (84)

Similarly along the path �VαGVα+1 , (α = 1, . . . , d − 1), θα :
2π → 0 and θα+1 : 0 → 2π . It implies �ϕα = −2π , �ϕβ =
0, (β �= α). Then, in general,

j̄
�VαGVα+1
op = ∂t P̄

�VαGVα+1 , (85)

P̄�VαGVα+1 = −Pα, α = 1, . . . , d − 1, d. (86)

Note that this is justified also for α = d , since along the last
path �Vd GVQ = �Vd GV0 , θd : 2π → 0 and �ϕd = −2π . Since
the CoM, Pα is a physical observable of the snapshot ground
state for the open boundary condition, it is periodic in time,
Pα (t + T ) = Pα (t ), as the Hamiltonian is periodic in time. An
important observation is that P̄�(t ) is not continuous (L → ∞)
and has discontinuities at t = ti, i = 1, 2, . . . of the jumps
in unit of ± 1

2 due to edge states (as shown later). Then the
pumped charge Q�

op in the cycle T due to the current j̄�op is
written as

Q�
op =

∫ T

0
dt j̄�op =

∑
i

∫ ti+1

ti

dt j̄�op

=
∑

i

∫ ti+1−0

ti+0
dt ∂t P̄

�(t ) =
∑

i

P̄�(t )
∣∣ti+1−0

ti+0

= −
∑

i

P̄�(t )|ti+0
ti−0 = −

∑
i

�P̄�(ti ) = I�. (87)

The discontinuities I� is defined by

−I� =
∑

i

�P̄�(ti ), (88)

�P̄�(ti) = P̄�(t )|ti+0
ti−0 = ±1

2
, (89)

where P̄�(t ) is not continuous at t = ti (i = 1, . . .) [105]. The
sign is determined by the behavior of the edge state that causes
the jump. Since the localization length (typical length scale) of
the edge states is finite, it scales to zero in the rescaled coordi-
nate x j . It implies the contribution of the edge states localized
near one of the boundaries is ± 1

2 (see Appendix G). Due to the
conservation of the charge, the number of the discontinuities
is even. It implies the sum of the discontinuities I is an integer.
This is the quantization of the pumped charge.

The physical current j̄�op is carried by the bulk even with
the open boundary condition and is determined by the discon-
tinuities due to the edge states by the back action based on the
periodicity of P̄� in time.

D. Bulk-edge correspondence

As for the periodic boundary condition, Ā(t ),�
θ is smooth and

the pumped charge averaged along the path � is given by

Q�
pe ≡

∫ T

0
dt j̄�pe

= 1

2π i

∫ T

0
dt
∫

�

dθ Bpe(θ, t ), (90)

Bpe(θ, t ) = ∂θAt,pe − ∂t Aθ,pe, (91)

Aμ,pe = 〈gpe|∂μgpe〉, (92)

where H̄pe|gpe〉 = |gpe〉Eg. As for the periodic boundary con-
dition, the Berry connection Aμ,pe and thus Bpe is also defined
by the Hamiltonian H̄pe, Eq. (48), that is not periodic/invariant
by the shift � → � + 2π �eα . See Table IV. It implies that the
periodic Hamiltonian H̄pe, Eq. (48), is not defined on the torus
T d . On the other hand, the ground state |g0,tw〉 of the twisted
Hamiltonian Htw, Eq. (47), is periodic by the shift and well
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defined on the torus T d . Noting that |gpe〉 = ULG|g0,tw〉 and
Htw|g0,tw〉 = |g0,tw〉E tw

g , one has

Aθ,pe = −i
∑

α

∂θϕαPα,tw + Aθ,tw, (93)

At,pe = At,tw, (94)

where Pα,tw = 〈g0,tw|Pα|g0,tw〉.
It results in

Bpe = Btw + i
∑

α

∂θϕα∂t Pα,tw. (95)

Since Pα,tw is smooth and periodic in time, the last term does
not contribute to the total pumped charge. Then

Q�
pe = 1

2π i

∫
�

dθ

∫ T

0
dt Btw(θ, t ) ≡ C�. (96)

This integral is over a torus T 2 = {(θ, t )|θ ∈ [0, 2π ], t ∈
[0, T ]} without boundaries. It gives the Chern number C that
is integer. Now due to Eq. (87), we have

Q�
pe = Q�

tw = Q�
op= C�, (97)

I� = C�. (98)

This is the bulk-edge correspondence of the topological pump.
As for the canonical path �VαGVα+1 , α = 0, . . . d = Q − 1, it

is given by

Iα = Cα= Qα, α = 0, . . . , Q − 1, (99)

where

Iα ≡ I�VαGVα+1 =
∑

i

�Pα (ti ), (100)

is a sum of the discontinuities of the α particle in the cycle and
Cα ≡ C�VαGVα+1 is the Chern number defined on a torus T 2 =
[0, T ] × VαGVα+1. It implies the Chern number Cα measures
the pumped charge of α fermion Qα [95] due to the bulk-edge
correspondence.

The twist is a gauge field and may not be easy to measure
directly. It implies the Berry connection itself is not a physical
observable. However, the Chern number as the topological
invariant associated with the Berry connection is a pumped
charge of the bulk and directly measurable by experiments.
This is compensated by the discontinuities of the CoM of the
edge states due to the bulk-edge correspondence. These are
also physical observables but can not be accessed by a usual
experimental setup since the adiabatic condition of the gapless
edge states is never satisfied by a finite speed pump.

IV. ZQ BERRY PHASE, SYMMETRY, AND GAP CLOSING

A. ZQ quantization

In this section, let us discuss the Hamiltonian without sym-
metry breaking term (� = 0). Using the Hamiltonian Htw, the
Berry phase γ� is defined since the path � forms a loop for Htw

as

iγ� =
∫

�

dθ Aθ . (101)

The ZQ shift UZQ as a shift in the parameter space as
shown in Sec. II B induces a map of the Hamiltonians in the

FIG. 4. ZQ Berry phase γQ for Q = 3, 4, and 5 as a function of
Je/Jo (L = 8). We have confirmed that the results are reproduced by
the symmetry indicators Eq. (118).

parameter space ϕα → ϕα+1 [see Eq. (53)] and the canonical
loop �VαGVα+1 ,

UZQ H̄tw(θ)U†
ZQ

= H̄tw(θ′), (102)

where two points θ and θ′ in � are parameterized by the same
θ as

θ ∈ �Vα−1GVα
(θ ),

θ′ ∈ �VαGVα+1 (θ ).

It implies that we may take

|g0,tw(θ′)〉 = UZQ |g0,tw(θ)〉, (103)

and

γ�Vα−1GVα
= γ�VαGVα+1

≡ γQ, α = 1, · · · Q, (104)

since UZQ does not depend on the parameter and thus
〈g0,tw(θ′)|∂θg0,tw(θ′)〉 = 〈g0,tw(θ)|∂θg0,tw(θ)〉. Then using the
fact,

Q∑
α=1

�VαGVα+1 = 0, (105)

it results QγQ = 0, (mod 2π ). It implies ZQ quantization

γQ = 2πn

Q
, n ∈ Z. (106)

This ZQ Berry phase characterizes a symmetry pro-
tected topological phase [63,66,100,106]. It is a gener-
alized Z2 Berry phase that characterizes a singlet pair
or a covalent bond [63,107] on the twisted link. Simi-
larly γQ characterizes the SU (Q) dimer phase. The dimer
limit is characterized by this ZQ Berry phase and the
symmetry protection and adiabatic continuity guarantee
the quantization. Unless the gap closes by the deformation to
the dimer limit Ji = 0 (i:odd), the Berry phase is given by (see
Fig. 4 and Appendix E)

γQ = +2π

Q
, mod 2π. (107)
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It is topologically stable unless the gap closes against finite
coupling Jp < Je < 0 and Je < Jo < 0. It also gives

γVαGVβ′ = +2π

Q
(α − β ), mod 2π. (108)

B. Symmetry indicators

Let us first note that the Berry phase needs to be evaluated
by a single gauge fixing [63,106,108,109] (see Appendix D).
Here we assume that |gφ〉 is gauge fixed over the loop
�Vα−1GVα

= �Vα−1G − �VαG by a single gauge fixing by |φ〉 as

|gφ〉 = P|φ〉/√Nφ, (109)

where P = |g0,tw〉〈g0,tw| and Nφ = |〈φ|g0,tw〉|2 �= 0 [110].
Noting that

Htw(θ′) = UZQ Htw(θ)U†
ZQ

, (110)

where θ ∈ �Vα−1G(θ ), and θ′ ∈ �VαG(θ ), one has

|gφ (θ′)〉 = UZQ |gφ (θ)〉e−i∃�(θ). (111)

This extra phase factor is due to the fact that the phase con-
vention of the state |gφ (θ′)〉 by |φ〉 at θ′ is, in general, different
from that of UZQ |gφ (θ)〉.

Since UZQ is independent of the parameter, the Berry phase
is written as

γQ = γ�Vα−1GVα
= −i

∫
�Vα−1GVα

dθ 〈gφ|∂θgφ〉

= −i
∫

�Vα−1G

dθ 〈gφ|∂θgφ〉 + i
∫

�VαG

dθ 〈gφ|∂θgφ〉

= +
∫

�Vα−1G

dθ ∂θ� = �(G) − �(O), (112)

where all vertices Vα are identified to the origin O in modulo
2π . Supplementing θQ = −∑d

α=1 θα , at the vertices O and G,
the parameters are

θ = O : (θ1, . . . , θQ) = (0, . . . , 0), mod 2π, (113)

θ = G : (θ1, . . . , θQ) =
(

2π

Q
, . . . ,

2π

Q

)
, mod 2π. (114)

It implies the Hamiltonian is invariant by the shift of the
fermions by UZQ at O and G as

[Htw(θ),UZQ ] = 0, θ = O, G. (115)

Therefore UZQ is a symmetry of the Hamiltonian and ei� is an
eigenvalue of the symmetry operation (symmetry indicator) as

UZQ |gφ (O)〉 = |gφ (O)〉e+i�(O), (116)

UZQ |gφ (G)〉 = |gφ (G)〉e+i�(G). (117)

Since UZQ is trivial at O and �(O) = 0, it results in

γQ = �(G) = Arg 〈gφ (G)|UZQ |gφ (G)〉. (118)

Physical meaning of these quantities is clear by the adiabatic
deformation to the dimer limit by the ZQ Berry phase. It also

implies the gap closing at G associated with a topological
transition due to the discrete change of the ZQ Berry phase.

It is also directly observed by the discretized formula of
the Berry phase (discretizing the path V0G into M segments
θm = 2π

Q
m
M , (m = 0, . . . , M) as

γQ = lim
M→∞

Arg (〈θ0|θ1〉〈θ1|θ2〉 · · · 〈θM−1|θM〉
× 〈θM |θ ′

M−1〉 · · · 〈θ ′
2|θ ′

1〉〈θ ′
1|θ0〉),

where |θ ′
m〉 = UZQ |θm〉, |θm〉 = |gφ (θm)〉. Since UZQ |θM〉 =

|θM〉ei�(G) and UZQ |θ0〉 = |θ0〉ei�(O), it is written as

γQ = lim
M→∞

Arg (〈θ0|θ1〉〈θ1|θ2〉 · · · 〈θM−1|θM〉

× 〈θM |UZQ |θM−1〉 · · · 〈θ2|θ1〉〈θ1|U†
ZQ

|θ0〉)

= �(G) − �(O),

where U†
ZQ

|θ0〉 = |θ0〉e−i�(O) and 〈θM |UZQ = ei�(G)〈θM | due to
Eqs. (116) and (117).

C. Modified Lieb-Schultz-Mattis (LSM) argument

As is clear, the system of the dimer limit is gapped. This
gap is stable for inclusion of finite coupling between the
dimers, at least, for a finite-size system. One may naturally
expect this gap converges to some finite values by taking
an infinite size limit L → ∞ assuming the ground state is
adiabatically connected to a set of disconnected dimers. As
for a uniform system, existence of the gap is unclear and the
problem has a long history of studies. Some of the recent
studies are topological, especially in relation with the Haldane
conjecture for the S = 1 Heisenberg model [111]. Since H (2)

for Q = 2 is equivalent to the standard S = 1/2 Heisenberg
model, H (1) (Appendix B), well-known Lieb-Schultz-Mattis
(LSM) theorem [112,113] is applied and the energy gap of the
finite system with the periodic boundary condition vanishes
when L → ∞. This is consistent with the existence of the
gapless excitation as the des Cloizeaux and Pearson mode of
the Q = 2 case [114]. Note that the LSM theorem also allows
existence of the finite-size gap between the states, which be-
come degenerate in the thermodynamic limit associated with
the symmetry breaking. On the other hand, for the Q = 3 case,
a series of studies [115–117] has clarified that the uniform
system has doubly degenerate dimerized ground states in the
L → ∞ limit. The case, Q > 3, is also discussed by Affleck
suggesting a similar conclusion (double degeneracy due to
dimerization) [118]. In this subsection, we give a topological
argument for the gap closing for even Q � 2 of the finite-size
system.

The gap of the finite system under the twist is strongly
constrained by considering the Berry phase, which works as
a topological order parameter responding to the local twist as
an external perturbation [60,63,100,119–121]. In Ref. [122],
the standard S = 1/2 Heisenberg model, H (1) (Q = 2) was
considered. If the gap remains open for all values of the twist,
one can prove that the Berry phase pattern, associated with the
local twist at the link, needs to be alternating in this S = 1/2
case. This clearly contradicts the uniformity of the system. It
results in that the Berry phase can not be defined, that is, the
gap closing of the system at some twist [122]. The argument
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can be extended to the present system Q > 2 as shown here.
The claim is that, as for a finite system of even Q � 2, the
energy gap between the ground state and the next one under
the twisted boundary condition vanishes at some twist.

Up to this point, we have discussed Berry phases associated
with the twist at the boundary link L and 1. Let us write it as
γ L

� . In a similar way, one may also define the Berry phase
γ L−1 associated with the twist at L − 1 and L. Let us write the
Hamiltonians with the twists as

HL
tw = Je

∑
α,β

e−i(ϕα−ϕβ )c†
L,αc†

1,αc1,βcL,β

+ Jo

∑
α,β

c†
L−1,αc†

L,αcL,βcL−1,β + · · · , (119)

HL−1
tw = Je

∑
α,β

c†
L,αc†

1,αc1,βcL,β

+ Jo

∑
α,β

e+i(ϕα−ϕβ )c†
L−1,αc†

L,αcL,βcL−1,β + · · · ,

(120)

where · · · does not include cL,α . Note that the sign of
the twist is reversed. They are related with each other by
the the gauge transformation UL = e−i

∑
α ϕα n̂L,α , U†

L cL,αUL =
e+iϕα n̂L,α cL,α (see also Appendix E) as

HL
tw = ULHL−1

tw U†
L . (121)

The Berry phases are defined by |gL〉 and |gL−1〉, which are
the ground states of HL

tw and HL−1
tw respectively as

iγ L =
∫

�

dθAL, AL = 〈gL|∂θgL〉, (122)

iγ L−1 =
∫

�

dθAL−1, AL−1 = 〈gL−1|∂θgL−1〉, (123)

where HL|gL〉 = |gL〉E and HL−1|gL−1〉 = |gL−1〉E . Noting
that |gL〉 = UL|gL−1〉 [123], it induces

AL = AL−1−i
∑

α

(∂θϕα )〈gL−1|n̂L,α|gL−1〉. (124)

Generically, with the twist, SU (Q) symmetry is (slightly)
broken even without explicit symmetry breaking term HB,
that is, the fermions with different colors are not equivalent
and 〈gL−1|n̂L,α|gL−1〉 �= 1

Q . However, this symmetry breaking
effect due to the twist is not localized at the twisted link.
The large gauge transformation Eqs. (30) and (49), ULG,
maps the periodic system with O(1/L) twist to the system
with twisted boundary condition preserving the local charge
density remains unchanged because ([ULG, n̂ j,α] = 0). Then
〈gL−1|n̂ j,α|gL−1〉 is j independent both for the periodic/twisted
system. It implies the effects are of the order of L−1 as
〈gL−1|n̂L,α|gL−1〉 = 1

Q + O(L−1). Then integrating Eq. (124)
over the loop �VαGVα+1 , we have for a sufficiently large system

γ L
�VαGVα+1

= γ L−1
�VαGVα+1

+ 2π

Q
, (125)

since �ϕβ = −2π (β = α), 0(β �= α). Note that the possible
O(L−1) extra term vanishes after the integration to be con-
sistent with the ZQ quantization of the Berry phases. This

constraint needs to be satisfied for any systems even with site-
dependent Ji’s. The two dimer limits, γ L

�VαGVα+1
= 0, γ L−1

�VαGVα+1
=

− 2π
Q and γ L

�VαGVα+1
= + 2π

Q , γ L−1
�VαGVα+1

= 0, are consistent with

Eq. (125).
If the system is uniform, Jo = Je, the antitranslation in-

variance of the system with the twist, HL
tw = AT HL−1

tw A−1
T ,

implies

γ L
�VαGVα+1

= −γ L−1
�VαGVα+1

, mod 2π. (126)

By Eqs. (125) and (126), we have constraints for the Berry
phase for a uniform system as

γ L
�VαGVα+1

= −γ L−1
�VαGVα+1

= +π

Q
, mod 2π (127)

or

γ L
�VαGVα+1

= π
Q+1

Q
, γ L−1

�VαGVα+1
= π

Q−1

Q
, mod 2π. (128)

As for the even Q, these constraints, Eqs. (127) and
(128), contradict the ZQ quantization of the Berry phases
γ = 2π n

Q , n ∈ Z. This contradiction implies that the Berry
phase can not be well defined. It is only possible when the gap
of the (finite size) system closes. A level crossing between the
ground state and the next one occurs at some twist parameter.
Assuming the degenerate dimer states for the infinite size
system, the gap between the linear combinations of the dimer
states of the finite size system closes at the twisted parameters.
As for the odd Q, the second case, Eq. (128), is compatible
with the ZQ quantization (Q ± 1 is even), although these quan-
tized values are different from that of the dimer limit [124].
In principle, it allows a unique gapped ground state of the
uniform system for any value of the twist. Although it does not
occur in the present numerical calculations shown in Fig. 4,
inclusion of long range couplings and additional terms, which
respect ZQ symmetry may realize such a ground state.

V. EMERGENT ZQ × ZQ SYMMETRY
AND EXPLICIT CHERN NUMBERS

A. Open system: Edge states and low-energy spectrum

Although most of the discussion in the paper is for even L
systems, let us consider, in this section, even/odd L systems
separately, especially near the dimer limits |Jo| � |Je| and
|Je| � |Jo|.

L: odd. When the system size L is odd, the ground states are
given for each dimer limits Jo = 0 and Je = 0 as (see Fig. 5)

∣∣gL:odd
1,eo , α

〉 = c†
1,α

(L−1)/2∏
j=1

ψ
†
2 j+1,2 j |0〉, (Jo = 0), (129)

∣∣gL:odd
L,eo , α

〉 = c†
L,α

(L−1)/2∏
j=1

ψ
†
2 j−1,2 j |0〉, (Je = 0), (130)

where N̄β = 1 for β = α and 0 otherwise. It implies Q-fold
degeneracy of the ground states. Their charge distributions are

〈
gL:odd

1,eo , α
∣∣n j,β

∣∣gL:odd
1,eo , α

〉 =
⎧⎪⎨
⎪⎩

1
Q j �= 1

0 j = 1, β �= α

1 j = 1, β = α

, (131)

235106-12



TOPOLOGICAL PUMP OF SU (Q) QUANTUM CHAIN AND … PHYSICAL REVIEW B 107, 235106 (2023)

FIG. 5. Dimer configurations of open systems for even/odd sites.

〈
gL:odd

L,eo , α
∣∣n j,β

∣∣gL:odd
L,eo , α

〉 =
⎧⎪⎨
⎪⎩

1
Q j �= L

0 j = 1, β �= α

1 j = 1, β = α

, (132)

where |gL:odd
1,eo , α〉 is a product of the bulk and completely

localized state at j = 1 with the color α. Similarly |gL:odd
L,eo , α〉

is a product of the bulk and completely localized state at
j = L with the color α. This degeneracy is stable for inclusion
of a finite coupling Jo and Je since finite matrix elements
with different quantum numbers N̄α’s are prohibited due to
the symmetry. It implies the charge distributions are modified
continuously for a finite coupling. The numerical results for
L = 9 systems with dimerization N̄α : (1, 0, 0, 0, 0) are ob-
tained by the exact diagonalization and shown in Fig. 6. They
are consistent with the present picture. The ground state is
given by the gapped bulk and boundary states (edge states at
both ends) localized near the boundaries.

L: even. As for the system with L: even, the ground states
of the dimer limit are again given by

∣∣gL:even
op,eo (α, β )

〉 = c†
1,αc†

L,β

L/2−1∏
j=1

ψ
†
2 j+1,2 j |0〉, (Jo = 0)

(133)∣∣gL:even
op,oe

〉 = L/2∏
j=1

ψ
†
2 j−1,2 j |0〉, (Je = 0) (134)

where N̄γ = 0,∀γ for both cases. It implies Q2-fold degener-
acy for Jo = 0 and gapped unique ground state for Je = 0. If
|Jo| > |Je|, the unique gapped ground state |gL:even

eo 〉 is stable
for inclusion of the finite coupling Je. However, as for |Jo| <

|Je|, in contrast to the L: odd case, the Q2-fold degeneracy
of the ground states is unstable for the finite size systems.
The degeneracy is lifted for the finite coupling due to the
residual interaction between the edge states at both ends.
As for a chain of the finite length, we expect an effective
coupling between the two boundary states at both ends. It is
a generalization of the Kennedy’s discussion [125–128]. This
effective coupling Jeff is expected to behave as e−L/ξ for L
where ξ is a correlation length between the edge states, which

FIG. 6. Charge distribution 〈nj,α〉 of the unique ground state of
the odd L system (L=9) with Q=5, N̄α : (1, 0, 0, 0, 0) (a) Jo= − 0.8,
Je = −1.2 and (b) Jo = −1.2, Je = −0.8.

can be proportional to the inverse of the bulk energy gap. This
is confirmed numerically for Q = 3 and 4 in Figs. 7 and 8.

That is, we expect an exponentially small coupling
between the both ends, which operates for the Q2-fold low-
energy multiplet of the edge states. It is described by the
effective Hamiltonian of the effective boundary fermions (as-
suming that they live at j = 1 and L) c1,α and cL,α (α =
1, . . . , N ) as

heff = Jeffc
†
1,αc1,βc†

L,αcL,β = QJeffψ
†
1,Lψ1,L. (135)

The energy spectrum of the low-energy multiplet is given
by the decomposition of the tensor product of SU (Q) rep-
resentation as Q ⊗ Q̄ = 1 ⊕ (Q2 − 1) as a generalization of
singlet-triplet decomposition for the Kennedy’s case. The
unique ground state among the multiple is a singlet approx-
imately given by

|S1,L〉 = ψ
†
1,L ⊗

L/2−1∏
j

ψ
†
2 j+1,2 j |0〉, (136)

with its energy QJeff. This is a generalization of the Kenndey’s
singlet and triplet for the S = 1 Haldane chain [125–128].
Note that the state |S1,L〉 is interpreted as a tensor product
of a gapped bulk and edge states. Due to the uniqueness and
the SU (Q) invariance, it implies that the one-point function is

235106-13



YASUHIRO HATSUGAI AND YOSHIHITO KUNO PHYSICAL REVIEW B 107, 235106 (2023)

FIG. 7. Energy gap of the SU (3) symmetric Hamiltonian H (2),
(a) periodic boundary condition and (b) open boundary condition.
The system sizes are L = 6, 8, 10, 12, 14, 16, and Jj = −0.8( j :
odd) and Jj = −1.2( j : even). The data of the open boundary condi-
tion for L � 10 are fitted by the localization length ξ = 1.52.

constant as 〈S1,L|n jα|S1,L〉 = 1/Q for all α when the average
is defined by the trace over the degenerate states. Anything
localized is not observed in the charge distribution. This is to
be compared with the results shown in Fig. 6 for the odd L
case. The other Q2 − 1(= 8, N = 3) are at the zero energy.
The lowest 15 energies of Q = 3 are listed in Table V. System
size dependencies of the gap for the Q = 3 and Q = 5 are
shown in the insets of Figs. 7 and 8. They show Je f f ∝ e−L/ξ ,
which implies that the low-energy multiplets are described
by the edge states. Assuming this behavior, we may assume
exact Q2 degeneracy for the infinite system with boundaries,
that is, taking an infinite size limit for the open system. This
Q2-fold degeneracy is exact only in the L → ∞ limit. In
this sense, the Q2-fold degeneracy implies that emergence
of Z left

Q × Z right
Q symmetry in the infinite chain, which was

originally mentioned in a chiral symmetric fermion system
[129]. This corresponds to the 22-fold degeneracy and Z2 × Z2

symmetry of the Haldane chain [130] and dimer phases of
S = 1/2 quantum spin chain [131]. See Table V as well.

FIG. 8. Energy gap of the SU (5) symmetric Hamiltonian H (2),
(a) periodic boundary condition and (b) open boundary condition.
The system sizes are L = 4, 6, 8, 10, and Jj = −0.8( j : odd) and
Jj = −1.2( j : even). The data of the open boundary condition for
L � 6 are fitted by the localization length ξ = 0.91.

B. Low-energy multiplet of edge states with symmetry breaking

Let us consider a dimerized system |Je| �= |Jo|, (Ji < 0)
with open boundary condition. We assume the system size
L is even assuming it is sufficiently large (compared with
the gap). When |Jo| < |Je|, the low-energy sector of the sys-
tem is composed of a Q-fold degenerate multiplet with edge
states localized near j = 1 and j = L, which is spanned by
degenerate Q2 low-energy states Eq. (133), {|gL:even

eo;α,β〉|α, β =
1, . . . , Q}. This multiplet is separated from the other states
by the bulk gap. The interaction between the both ends are
negligibly small since we assume the system size is large.
Then the low-energy multiplet is Q2-fold degenerate and the
ZQ symmetry breaking term HB, Eq. (43), operates within this
multiplet perturbatively assuming that the symmetry break-
ing is small compared with the bulk gap. This perturbative
discussion is exact as for the level crossing (selection rule)
within the multiplet assuming the gap between the multiplet
and the others (global spectral structure) is finite where the
energy scale of the splitting is governed by the gap of the

235106-14



TOPOLOGICAL PUMP OF SU (Q) QUANTUM CHAIN AND … PHYSICAL REVIEW B 107, 235106 (2023)

TABLE V. Lowest 15 energies of H (2) with Q = 3 (L = 6 and 8).

Periodic Open Open

(−0.8,−1.2), (−1.2, −0.8) (−1.2, −0.8) (−0.8,−1.2)

(J1, J2) L = 6 L = 8 L = 6 L = 8 L = 6 L = 8

1 −12.00000000 −15.91335471 −11.54504463 −15.51898367 −9.19845500 −12.87602132
2 −9.32998146 −13.40936964 −8.73554793 −12.84032668 −8.65117764 −12.67776804
3 −9.32998146 −13.40936964 −8.73554793 −12.84032668 −8.65117764 −12.67776804
4 −9.32998146 −13.40936964 −8.73554793 −12.84032668 −8.65117764 −12.67776804
5 −9.32998146 −13.40936964 −8.73554793 −12.84032668 −8.65117764 −12.67776804
6 −9.32998146 −13.40936964 −8.73554793 −12.84032668 −8.65117764 −12.67776804
7 −9.32998146 −13.40936964 −8.73554793 −12.84032668 −8.65117764 −12.67776804
8 −9.32998146 −13.40936964 −8.73554793 −12.84032668 −8.65117764 −12.67776804
9 −9.32998146 −13.40936964 −8.73554793 −12.84032668 −8.65117764 −12.67776804
10 −8.40000000 −12.45492049 −8.01759677 −12.29865018 −7.32249080 −11.45644523
11 −8.04273842 −12.45492049 −8.01759677 −12.29865018 −6.72949546 −10.84747170
12 −8.04273842 −12.45492049 −8.01759677 −12.29865018 −6.72949546 −10.84747170
13 −8.04273842 −12.45492049 −8.01759677 −12.29865018 −6.72949546 −10.84747170
14 −8.04273842 −12.45492049 −8.01759677 −12.29865018 −6.72949546 −10.84747170
15 −8.04273842 −12.45492049 −8.01759677 −12.29865018 −6.72949546 −10.84747170

bulk. When the dimerization pattern is reversed, |Jo| > |Je|,
the system is gapped even for the open boundary condition
and the ground state is adiabatically connected to the unique
gapped one, Eq. (134).

Let us extend the time dependence of the pump by shifting
the timing of the dimerization as follows:

Ji = J0 + (−1) jδJ cos

(
2π

(
t − t0

T

))
, J0 < 0, δJ > 0,

(137)

�α = � sin

(
2π

(
�α + t

T

))
. (138)

This is the pumping protocol of the topological pump. As
for the open boundary condition, the edge states only appear
when the coupling is weak at the both boundaries (L: even),
that is, |Jo| < |Je| (J0 < 0, δJ > 0). This period is specified by

t0
T

+ 1

4
+ n <

t

T
<

t0
T

+ 3

4
+ n, ∃n ∈ Z. (139)

Let us first discuss energies of the symmetry breaking
Hamiltonian HB, Eq. (43), within the Q-fold degenerate mul-
tiplet |α, β〉 = |gL:even

op,eo (α, β )〉, α, β = 1, . . . , Q,

HB(t )
∣∣gL:even

op,eo (α, β )
〉 = ∣∣gL:even

op,eo (α, β )
〉
Eαβ (t ),

Eαβ (t ) = �α (t ) + �β (t ).

See Table VI and Fig. 9. Assuming the system size is
sufficiently large L → ∞, the CoM, Pα , and the quantum
numbers N̄α are also shown. For example, as for the state,
|11, 1L〉 = |gL:even

op,eo (1, 1)〉, the CoM’s are P1 = x1 · (+1) + xL ·
(−1) → −1, P2 = 0, and P3 = 0. As for the state, |11, 2L〉 =
|gL:even

op,eo (1, 2)〉, P1 = x1 · (+1) → − 1
2 , P2 = xL · (−1) → − 1

2
and P3 = 0. Generically, as for the state, |α1, αL〉, N̄α =
(0, · · · , 0). Its CoM’s are Pα = −1 and Pγ = 0 for any γ �= α.
As for the state, |α, β〉, (α �= β), N̄α = +1, N̄β = −1, N̄γ = 0
for any γ �= α, β. Its CoM’s are Pα = Pβ = − 1

2 , Pγ = 0 (γ �=
α, β). Explicit examples for Q = 3 are shown in Table VI.

Examples of the time dependence of Eαβ (t ) for Q = 3,
Q = 4, and Q = 5 are shown in Fig. 9. Generically the lowest
energies are always given by Eαα (t ) if � > 0. Then the jth
level crossing between Eαα (t ) and Eββ (t ), (α �= β), at t = t j ,
( j = 1, . . . , Q) occurs when

sin 2π

(
P

Q
α + t j

T

)
= sin 2π

(
P

Q
β + t j

T

)
, (140)

Pα ≡ j (mod Q), (141)

Pβ ≡ j + 1 (mod Q). (142)

Let us write as α = τ j and β = τ j+1 where the Diophantine
equation due to TKNN [2,132] is

j = τ jP + s jQ, (143)

where τ j, s j ∈ Z is used in modulo Q.

TABLE VI. Energies Eαβ (t ) = �α (t ) + �β (t ), quantum num-
bers N̄α , and CoM’s Pα of the symmetry breaking term HB for
the multiplet of the boundary spins, �α = � sin 2π (�α + t

T ), α =
1, 2, 3 where � = P/Q, P = 1, Q = 3. The generic Q case is dis-
cussed in a straightforward way.

Multiplet Eα + Eβ N̄α Pα , (L → ∞)

|11, 1L〉 E11 = 2�1 (0, 0, 0) (−1, 0, 0)

|21, 2L〉 E22 = 2�2 (0,0,0) (0,−1, 0)

|31, 3L〉 E33 = 2�3 (0,0,0) (0, 0, −1))

|11, 2L〉 E12 = �1 + �2 (+1, −1, 0) (− 1
2 , − 1

2 , 0)

|21, 1L〉 E21 = �2 + �1 (−1, +1, 0) (− 1
2 , − 1

2 , 0)

|11, 3L〉 E13 = �1 + �2 (+1, 0, −1) (− 1
2 , − 1

2 , 0)

|31, 1L〉 E31 = �3 + �1 (−1, 0, +1) (− 1
2 , 0, − 1

2 )

|21, 3L〉 E23 = �2 + �3 (0, +1, −1) (0, − 1
2 , − 1

2 )

|31, 2L〉 E32 = �3 + �2 (0, −1, +1) (0,− 1
2 , − 1

2 )
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FIG. 9. Normalized low-energy spectra of the symmetry break-
ing term HB(t ) for the multiplet |αLβR〉 where L and R are effective
spins at both ends, Eαβ (t ) = �α (t ) + �β (t ) as a function of t .
The gray rectangles show the region |Jo| < |Je| that is specified by
Eq. (139) for t0/T = 0.01. Colored lines are Eαα and the numbers
shown in the bottom denote α. They are for P = 1, � = 1/Q and
the ones in the parenthesis are for P = 2, � = 2/Q. (a) Q = 3
(b) Q = 4, and (c) Q = 5.

It implies that the level crossing from the energy Eτ j ,τ j to
Eτ j+1,τ j+1 occurs at t j (see Fig. 9) [133]

t j

T
= 3

4
− j + 1

2

Q
, mod 1. (144)

Let us discuss the shift t0 dependence of the low-energy
spectrum of the Hamiltonians with open boundary condition.
The low-energy spectrum without symmetry breaking pertur-
bation for Q = 3 is shown in Fig. 10. It shows (approximate)

FIG. 10. The lowest 15 energy levels of the SU (3) symmetric
Hamiltonian of the 12-site system with open boundary condition
within N̄α sectors, where δ = 0.5, � = 0.00001. To avoid numer-
ical instability of the diagonalization, � = 0.0 is not used. The
black lines are for N̄α : (0, 0, 0), the red ones are for (1, −1, 0) and
(−1, 1, 0), the orange ones are for (0, 1, −1) and (0,−1, 1), and the
blue ones are for (−1, 0, 1) and (1, 0, −1). The colored lines are
degenerate with the black ones and hidden within the width of the
lines. The gray region is for |J0(t )| < |Je(t )| where the low-energy
spectrum is composed of approximately degenerate 32 edge states of
the multiplet. This justifies that the calculation for the sector N̄α = 0
(∀α) can be enough as for the low-energy spectra.

Q2 = 9 fold degeneracy due to edge states when the coupling
at the boundary is weak as specified in the period by Eq. (139).
Generically the degeneracy is Q2. Assuming the emergent
Q × Q symmetry of the infinite chain with boundaries, this
degeneracy is lifted by the symmetry breaking perturbation
HB. The low-energy spectra for Q = 3 and Q = 5 are shown
in Figs. 11 and 12.

As the results indicate, the hybridization of the edge states
at both boundaries is negligibly small. Then approximate level
crossings in the figures are identified only by the spectrum
of the symmetry breaking Hamiltonian HB between the edge
states, which are explicitly shown in Figs. 11 and 12. For
example, in Fig. 11(a), there is a threefold (approximate)
level crossing at t = t3. This should be compared with the
level crossing in Fig. 9(a) at t = t3. As for the spectrum of
HB, the threefold degeneracy is given by the change of the
ground state from the state with the energy E11 (red) to that
with E33 (blue). At the level crossing, some other states with
energies Eαβ (α �= β) also pass through the level crossing.
Correspondingly, in Fig. 11(a), the ground state is given by
the state of the sector Nα : (0, 0, 0) and the other (−1, 1, 0) is
passing through. The behavior of the ground-state energy is
cusp like. However, it should not be a rigorous level crossing
due to the mixture of the edge states at both ends. It induces
tiny (exponentially small as a function of the system size,
L) level repulsion. This level repulsion vanishes by taking
L → ∞. This is negligibly small for the present parameter
in Fig. 11. The emergent symmetry Z left

Q × Z right
Q (L → ∞)

protects this (asymptotic) level crossing. Just before the level
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FIG. 11. t0 dependence of the lowest 15 energy levels of the SU (3) symmetric Hamiltonian of the 12-site system with open boundary
condition within N̄α sectors, where δ = 0.5, � = 0.5, and � = 1/3 (Q = 3). The black lines are for N̄α : (0, 0, 0), the red ones are for
(1, −1, 0) and (−1, 1, 0), the orange ones are for (0, 1,−1) and (0,−1, 1), and the blue ones are for (−1, 0, 1) and (1, 0, −1). The gray
region is for |J0(t )| < |Je(t )| where the low-energy spectrum is composed of the multiplet of the edge states of the dimension Q2. One expects
Q × Q emergent symmetry, in the L → ∞ limit, that is responsible for the level crossings within the multiplet. The lowest eigenstate is
identified by Eαα assuming the emergent Q × Q symmetry for the infinite system. The dimensions of the Hilbert spaces are 35169 for (0,0,0)
and 27888 for the others (Compare with the Fig. 9). Due to Eq. (100), Iα =∑i �Pα (ti ).
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FIG. 12. t0 dependence of the lowest 15 energy levels of the SU (5) symmetric Hamiltonian of the 10-site system with open boundary
condition within N̄α sectors, where δ = 0.5, � = 0.5, and � = 1/5 (Q = 5). Only the date for N̄α : (0, 0, 0, 0, 0) are shown, which give
ground-state energies. The gray region is for |Jo(t )| < |Je(t )| where the low-energy spectrum is composed of the multiplet of the edge states of
the dimension Q2. One expects Q × Q emergent symmetry, in the L → ∞ limit, that is responsible for the level crossings within the multiplet.
The lowest eigenstate is identified by Eαα assuming the emergent Q × Q symmetry for the infinite system. The dimensions of the Hilbert
spaces are 127905 (compare with the Fig. 9). Due to Eq. (100), Iα =∑i �Pα (ti ).
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crossing (t = t3−), the edge state due to α = 1 near j = 1
and α = 1 near j = L are the ground state. The edge states at
both ends contribute to P1 by −1 in pair (see Table VI). Note
that there is another contribution due to bulk as well. After
the crossing (t = t3+), the edge state changes to the one due
to α = 3 near j = 1 and α = 3 near j = L. As for the CoM
P1, contribution from the edge state with energy E11 vanishes
at t = t3. The bulk contribution remains the same (since it is
continuous in time t) at t = t3. Then it implies �P1 = +1. The
similar consideration implies �P3 = −1. In the present case,
there is no further level crossing in Fig. 11(a). Then according
to Eq. (100), I1 = +1, I2 = 0, and I3 = −1. Assuming this
emergent symmetry and the level crossings, each jump of the
CoM �Pα is identified for each level crossing as shown in
the caption of Figs. 11 and 12 supplemented with the sum of
the discontinuities Iα . In the next section, CoM’s for Q = 3
case is directly calculated by using the DMRG calculation.
Also direct calculation of the Chern number Cα are compared
in the following section. It enables us to confirm the bulk-edge
correspondence Eqs. (87) and (98).

C. Explicit Chern numbers and Diophantine equation

To be simple let us first consider a system at t0 = +0 (see
Fig. 9). In the pump cycle, one may see a series of the jumps
in Pα . As for the sum of the discontinuities Iα , a pair of the
jumps, except the first and the last ones, is canceled (see
Figs. 11 and 12). The last jump is due to the level crossing
from some state with energy Eαα to the state with EQQ. It
results in IQ = −1. Similarly the first jump is a level crossing
from the state with energy Eαα (α = τ Q−1

2
) to the state with

energy Eββ (β = τ Q−1
2 −1) for Q: odd and from Eαα (α = τ Q

2
)

to Eββ (β = τ Q
2 −1) for Q: even. It results in I

τ Q−1
2 = +1 for Q

(odd) and I
τ Q

2 = +1 for Q (even).
In a similar way as for the time dependence Eq. (138), the

edge states appear at t/T = tini/T ≡ t0/T + 1/4 and vanish
at t/T = tfin/T ≡ t0/T + 3/4 for each t0. Within the period
[tini, tfin], the level crossings due to the edge state β = τ j+1

to α = τ j occur at t = t j , Eq. (144), that cause the jumps in
�P̄τ j = −1 and �P̄τ j+1 = +1 for all j’s that satisfy tini < t j <

tfin (see Fig. 9). Since the paired jumps inside the period cancel
with each other, the first one t jini , tini < t jini < tini + 1/Q gives
the sum of the discontinuity, Iτ jini+1 = +1. Similarly, the last
one t jfin , tfin − 1/Q < t jfin < tfin gives to the sum of the discon-
tinuity Iτ jfin = −1. Otherwise Iα = 0 (α /∈ {τ jini+1, τ jfin}). The
conditions are written as [134]

t0
T

+ 1

4
<

3

4
− jini + 1

2

Q
<

t0
T

+ 1

4
+ 1

Q
, (145)

t0
T

+ 3

4
− 1

Q
<

3

4
− jfin + 1

2

Q
<

t0
T

+ 3

4
. (146)

It implies

jini + 1 =
⌊

Q

(
1

2
− t0

T

)
+ 1

2

⌋
, (147)

jfin =
⌊
−Q

t0
T

+ 1

2

⌋
, (148)

where �x� is the largest integer less than x. Finally we have
with using the bulk-edge correspondence

Iα (t0) = Cα (t0) =

⎧⎪⎨
⎪⎩

−1 α ≡ τ�Q(1− t0
T )+ 1

2 � mod Q
+1 α ≡ τ�Q( 1

2 − t0
T )+ 1

2 � mod Q
0 otherwise

. (149)

It implies a series of topological transitions associated with
the shift of the dimerization t0.

The Chern numbers of the generic path �VαGVβ
, (1 � α <

β � Q), C�VαGVβ is simply given by

C�VαGVβ =
β−1∑
γ=α

Cγ . (150)

VI. NUMERICAL EVALUATION
OF TOPOLOGICAL NUMBERS

In this section, extensive data for the numerical evaluation
of the low-energy spectra, the CoMs, and the topological num-
bers (the sum of the jumps and the Chern numbers) are shown.
They are given by the DMRG and the exact diagonalization.

A. Low-energy spectra of the finite-size systems

Low-energy spectra of the Q = 3, L = 12 system and the
Q = 5, L = 10 system are shown in Figs. 11 and 12. The
results for the Q = 3 case are consistently compared with the
DMRG calculation shown in Sec. VI B.

B. Discontinuities of CoM by DMRG

In this section, the CoM’s as discussed are directly calcu-
lated by using the DMRG method. The Q = 3 fermion system
can be simulated by mapping to the following biquadratic
spin model with open boundary condition [see Appendix A,
Eq. (A1)],

HS = H (2)
S + HS

B , (151)

where

H (2)
S =

L/2∑
�=1

[Jo(t )(�S2�−1 · �S2�)2 + Je(t )(�S2� · �S2�+1)2],

HS
B (t ) = −

∑
j,α

�α

(
Sα

j

)2
. (152)

Here Jo = Ji∈odd, Je = Ji∈even and �α is given by Eq. (138).
We calculate the staggered quadratic CoM, given by

Ps
1 (t ) =

L∑
j=1

(−1) jx j
〈
Sx2

j

〉= δL + P1,

Ps
2 (t ) =

L∑
j=1

(−1) jx j
〈
Sy2

j

〉= δL + P2,

Ps
3 (t ) =

L∑
j=1

(−1) jx j
〈
Sz2

j

〉= δL + P3, (153)

where δL = 0 (L : odd), 1/2 (L : even), j0 = (L + 1)/2 and
〈·〉 means taking the expectation value for the ground state
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α = 1

t t

t t

t t
FIG. 13. The behavior of the sq-CoM’s Ps

α for various t0 and components. The system size is L = 64 with open boundary condition. The
data shows t0/T = 1/12 (a), 3/12 (b), 5/12 (c), 7/12 (d), 9/12 (e), and 11/12 (f).

at the time t . The CoM of the spins Ps
α , (α = 1, 2, 3) is

directly related to that of fermions Pα . Note that the fac-
tor (−1) j−1 in Eq. (76) and the summation over j. In
the following, we fix the parameters as J0 = −1, δJ = 0.5,
and � = 0.5, same to the parameter set of the results in
Figs. 8–10.

To calculate the behavior of the CoM, we employ DMRG
algorithm in TeNPy package [135]. The numerical results for
various t0 are shown in Fig. 13. We observe the behavior of the
CoM in all data divides into two parts, continuous part, and
jump part. The time evolution of the CoM in the continuous
part indicates the presence of the bulk current. We verify that

TABLE VII. Jumps of the CoM, the sum of them in Fig. 13 and values of the numerically obtained Chern numbers picked up from
Figs. 15(a), 15(b), and 15(c).

t0 (�P1, �P2,�P3)|t=t1 (�P1, �P2,�P3)|t=t2 (�P1, �P2,�P3)|t=t3 (I1, I2, I3) (C1,C2,C3 = C0)
1

12 T (0, 0, 0) (0, 0, 0) (+1, 0, −1) (+1, 0, −1) (+1, 0, −1)
3

12 T (0, 0, 0) (0,−1, +1) (+1, 0, −1) (+1,−1, 0) (+1, −1, 0)
5

12 T (0, 0, 0) (0,−1, +1) (0,0,0) (0,−1, +1) (0, −1, +1)
7

12 T (−1, +1, 0) (0,−1, +1) (0,0,0) (−1, 0, +1) (−1, 0, +1)
9

12 T (−1, +1, 0) (0, 0, 0) (0,0,0) (−1,+1, 0) (−1, +1, 0)
11
12 T (−1, +1, 0) (0, 0, 0) (+1, 0, −1) (0,+1, −1) (0,+1, −1)
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FIG. 14. System size dependence of the jumps of CoM’s at t = t3

and t0/T = 1/12. Results for (a) �Ps
1 and (b) �Ps

3 .

each jump point is identical to the level crossing point (t1, t2,
and t3), expected from Figs. 9 and 11. The jumps of the CoM
Pα and the sum them Iα are summarized in Table VII. This is

consistent with the low-energy spectra shown in Fig. 11 (see
the caption).

As for a finite-size effect mentioned in the Appendix G,
we have shown a concrete example, in Fig. 14. The jump
of �Ps

1 and �Ps
3 approach to 1 and –1 for L → ∞. This

agrees to the exponential localization of the edge states as
discussed.

C. Direct evaluation of Chern numbers

Using the bulk-edge correspondence of the topological
pump, the Chern number that is a total pumped charge of the
bulk should be the same to the discontinuity of the CoMs,
Eq. (149). We have confirmed it by a direct evaluation of
the Chern number Eq. (96) obtained by the integral of the
field strength Btw. This is done by using the Fukui-Hatsugai-
Suzuki formula [136] for Q = 3, � = 1/3, 2/3, Q = 4,

FIG. 15. t0 dependence of the Chern numbers. Q = 3, � = 1
3 and 2

3 . J0 = −1.0, δ = 0.5 and � = 0.5. The dimension of the Hilbert space
is 4653 (L = 10). The data points are for t0 = (i − 0.5)/51, i = 1, . . . , 51. Red points are numerical evaluation of Eq. (96) by Fukui-Hatsugai-
Suzuki formula [136] and the lines are analytical results, Eq. (149).
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FIG. 16. t0 dependence of the Chern numbers. Q = 4, � = 1
4 and 3

4 . J0 = −1.0, δ = 0.5, and � = 0.5. The dimension of the Hilbert space
is 2716 (L = 8). The data points are for t0 = (i − 0.5)/51, i = 1, . . . , 51. Red points are numerical evaluation of Eq. (96) by Fukui-Hatsugai-
Suzuki formula [136] and the lines are analytical results, Eq. (149).

� = 1/4, 3/4, and Q = 5, � = 1/5, 2/5, 3/5, 4/5. We have
plotted the Chern numbers as a function of t0. The results
are shown in Figs. 15–18. The analytic formula Eq. (149) is
plotted by the solid lines and the numerical values obtained by
discretized integration formula by the Fukui-Hatsugai-Suzuki

formula are shown in the red circles. They agree with each
other almost completely except a few points for Q = 5,
� = 2/5, and � = 3/5 [137]. They are near the topologi-
cal phase transitions where any numerical calculation can be
unstable.
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FIG. 17. t0 dependence of the Chern numbers. Q = 5, � = 1
5 and 2

5 . J0 = −1.0, δ = 0.5 and � = 0.5. The dimension of the Hilbert space
is 545 (L = 6). The data points are for t0 = (i − 0.5)/51, i = 1, . . . , 51. Red points are numerical evaluation of Eq. (96) by Fukui-Hatsugai-
Suzuki formula [136] and the lines are analytical results, Eq. (149).
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FIG. 18. t0 dependence of the Chern numbers. Q = 5, � = 3
5 and 4

5 . J0 = −1.0, δ = 0.5 and � = 0.5. The dimension of the Hilbert space
is 545 (L = 6). The data points are for t0 = (i − 0.5)/51, i = 1, . . . , 51. Red points are numerical evaluation of Eq. (96) by Fukui-Hatsugai-
Suzuki formula [136] and the lines are analytical results, Eq. (149).
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VII. SUMMARY

A general scheme to construct a topological pump for a
correlated system is proposed assuming the system is gapped
and possesses a local gauge symmetry. Following the general
idea, a topological pump of the SU (Q) invariant quantum
chain is discussed where the gauge invariance of the colored
fermions plays a central role. Introducing a symmetry break-
ing perturbation, Q Chern numbers, which are given by the
integral over the torus defined by the symmetric path in the
synthetic Brillouin zone and the time cycle, characterize the
bulk pump topologically. As for an open boundary condition,
the sums of the discontinuities in Q different center-of-
masses, which generate the large gauge transformation, give
topological numbers of the pump as well. These discontinu-
ities are topological numbers due to the edge states. Relations
among the open/periodic/twisted boundary conditions are dis-
cussed in detail that justifies the bulk-edge correspondence.
Using this bulk-edge correspondence, an explicit analytic for-
mula for the Q Chern numbers that is associated with the
Diophantine equation due to TKNN, is given. The low-energy
spectra and the topological quantities are numerically evalu-
ated. It confirms the consistency of the whole discussion.

The validity of the general scheme as demonstrated in
detail for the SU (Q) quantum chain opens a new paradigm
of the topological pump for correlated systems.
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APPENDIX A: COLOR DESCRIPTION
OF S = 1 SPINS [74,75]

Let us first summarize a vector representation of S = 1
angular momentum in relation to the rotations in 3D as

Rx(α) =
⎡
⎣1

cos α − sin α

sin α cos α

⎤
⎦ = 1 ⊕ (cos α − iσy sin α)

= 1 ⊕ e−iασy ≡ e−iαT 1
,

T 1 = −i

⎡
⎣0

0 1
−1 0

⎤
⎦, T 1

i j = −iε1i j .

Similarly,

Ry(β ) = e−iβT 2
,

Rz(γ ) = e−iγ T 3
,

where

T a
i j = −iεai j .

To summarize, they are explicitly defined by

T 1 =
⎡
⎣0 0 0

0 0 −i
0 i 0

⎤
⎦, T 2 =

⎡
⎣ 0 0 i

0 0 0
−i 0 0

⎤
⎦,

T 3 =
⎡
⎣0 −i 0

i 0 0
0 0 0

⎤
⎦.

They are spins as

([T a, T b])i j = −εaikεbk j + εbikεak j = εaikεb jk − εbikεa jk

= δabδi j − δa jδib − δbaδi j + δb jδai

= δaiδb j − δa jδib,

iεabcT c
i j = εabcεci j = εabcεi jc

= δaiδb j − δa jδbi.

Thus

[T a, T b] = iεabcT c.

Further

(T aT a)i j = T a
ik T a

k j = −εaikεak j = εakiεak j = 2δi j,

T aT a = 2E3.

This implies S = 1.
Let us consider a bilinear-biquadratic Hamiltonian of

S = 1 quantum spin chain as

H =
∑

n

[cos ωS (Sn · Sn+1) + sin ωS (Sn · Sn+1)2].

The spin-1 operators are written by color fermions, c† =
(c†

+1, c†
0, c†

−1), due to Affleck as

Sa = c†T ac = c†
αT a

αβcβ, α, β = 1, 2, 3

with a constraint ∑
α

nα = 1, nα = c†
αcα.

Let us check here.
Using a useful relations [138]

T a
αβT a

γ δ = δαδδβγ − δαγ δβδ,

(T aT b)αβ (T aT b)γ δ = δαβδγ δ + δαγ δβδ,

and noting the constraint, we have

[Sa, Sb] = c†
αcβc†

γ cδ

(
T a

αβT b
γ δ − T b

αβT a
γ δ

)
= c†

α (δβγ − c†
γ cβ )cδ

(
T a

αβT b
γ δ − T b

αβT a
γ δ

)
= c†

αcδ

(
T a

αβT b
βδ − T b

αβT a
βδ

)
= c†

αcδ ([T a, T b])αδ = iεabcSc,

S2 = SaSa = c†
αcβc†

γ cδT a
αβT a

γ δ

= c†
α (δβγ − c†

γ cβ )cδT a
αβT a

γ δ

= c†
αcδT a

αβT a
βδ = c†

αcβ (T a2)αβ = 2
∑

α

nα = 2.

As for the interaction between the sites i, j, it is written as

Si · S j = c†
i,αT a

αβci,βc†
j,γ T a

γ δc j,δ

= c†
i,αci,βc†

j,γ c j,δT a
αβT a

γ δ

= c†
i,αci,βc†

j,γ c j,δ (δαδδβγ − δαγ δβδ ),
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= c†
i,αci,βc†

j,βc j,α − c†
i,αci,βc†

j,αc j,β ,

(Si · S j )
2 = (c†

i,αci,βc†
j,γ c j,δT a

αβT a
γ δ

)(
c†

i,α′ci,β ′c†
j,γ ′c j,δ′T b

α′β ′T b
γ ′δ′
)

= (c†
i,αci,βc†

i,α′ci,β ′ )(c†
j,γ c j,δc†

j,γ ′c j,δ′ )T a
αβT a

γ δT b
α′β ′T b

γ ′δ′

= c†
i,α (δβα′ − c†

i,α′ci,β )ci,β ′ · c†
j,γ (δγ ′δ − c†

jγ ′c j,δ )c j,δ′

T a
αβT a

γ δT b
α′β ′T b

γ ′δ′

= c†
i,αci,β ′ · c†

j,γ c j,δ′δβα′δγ ′δT a
αβT a

γ δT b
α′β ′T b

γ ′δ′

= c†
i,αci,β ′c†

j,γ c j,δ′T a
αβT a

γ δT b
ββ ′T b

δδ′

= c†
i,αci,β ′c†

j,γ c j,δ′ (T aT b)αβ ′ (T aT b)γ δ′

= c†
i,αci,β ′c†

j,γ c j,δ′ (δαβ ′δγ δ′ + δαγ δβ ′δ′ )

= c†
i,αci,αc†

j,γ c j,γ + c†
i,αci,βc†

j,αc j,β

= c†
i,αci,βc†

j,αc j,β + 1.

Note that the fermion number operators are written by the
spin-1 operators as

n j,α = 1 − (Sα
j

)2
. (A1)

Then omitting the constant, the Hamiltonian is given as

H =
∑
i< j

cos ωS c†
i,αci,βc†

j,βc j,α

+ (sin ωS − cos ωS )c†
i,αci,βc†

j,αc j,β

= cos ωSH (1)({1}) + (sin ωS − cos ωS )H (2)({1})

where (slightly extending the parameter space) with J1,2
αβ = 1

as

H (1)
({

J (1)
i,α; j,β

}) =
∑
i< j

J (1)
i,α j; j,βc†

iαci,βc†
j,βc j,α,

H (2)
({

J (2)
i,α j; j,β

}) =
∑
i< j

J (2)
i,α j; j,βc†

i,αci,βc†
j,αc j,β .

Hermiticity implies

[
H (1)

(
J (1)

i,α; j,β

)]† =
∑
i< j

(
J (1)

i,α; jβ

)∗
c†

j,αc j,βc†
i,βci,α

=
∑
i< j

(
J (1)

i,β; j,α

)∗
c†

i,αci,βc†
j,βc j,α,

J (1)
i,α; j,β = J (1)

i,β j,α,[
H (2)({J (2)

i,α; j,β

})]† =
∑
i< j

(
J (2)

i,α; jβ

)∗
c†

j,βc j,αc†
i,βci,α

=
∑
i< j

(
J (2)

i,β; j,α

)∗
c†

i,αci,βc†
j,αc j,β ,

J (2)
i,α; j,β = J (2)

i,β j,α.

It is written as a matrix form (J(1,2)
i j )† = J (1,2)

i j where

(J (1,2)
i j )α,β = J (1,2)

i,α; j,β .

APPENDIX B: SU (2) CASE

For the N = 2 case, let us perform a particle-hole transfor-
mation for the odd site j as

U� =
←∏

j:odd

ξ j = · · · ξ5ξ3ξ1, U−1
� =

→∏
j:odd

ξ j = ξ1ξ3ξ5 . . . ,

U�c j,αU−1
� =

{
c j,α j : even

c†
j,α j : odd

,

where ξ j = c j + c†
j and ξ 2

j = 1. The Hamiltonian H (2)

(J2
j,αβ = J (2)

j ) is transformed as

U�H (2)
({

J (2)
j

})
U� =

∑
j:odd,αβ

J (2)
j c j,αc†

j+1,αc j+1,βc†
j,β

+
∑

j:even,αβ

J (2)
j c†

j,αc j+1,αc†
j+1,βc j,β

=
∑

j:odd,αβ

J (2)
j (δαβc†

j+1,αc j+1,β

− c†
j,βc†

j+1,αc j+1,βc j,α )

−
∑

j:even,αβ

J (2)
j c†

j,αc†
j+1,βc j+1,αc j,β

= −H (1)
({

J (2)
j

})+ const.

Note that H (1) is the SU (2) Heisenberg model as confirmed
by writing c j,α = aα and c j+1,α = bα∑

αβ

a†
αaβb†

βbα = a†
↑a↑b†

↑b↑ + a†
↑a↓b†

↓b↑ + a†
↓a↑b†

↑b↓

+ a†
↓a↓b†

↓b↓

= na
↑nb

↑ + na
↓nb

↓ + Sa
+Sb

− + Sa
−Sb

+

= 2Sa · Sb + 1

2
,

where 4Sa
z Sb

z = (na
↑ − na

↓)(nb
↑ − nb

↓) = na
↑nb

↑ + na
↓nb

↓ − na
↑nb

↓
− na

↓nb
↑ = 2(na

↑nb
↑ + na

↓nb
↓) − (na

↑ + na
↓)(na

↑ + nb
↓) = 2(na

↑nb
↑

+ na
↓nb

↓) − 1 due to the constraint.

APPENDIX C: ADIABATIC APPROXIMATION
AND THE CURRENT

Now let us here summarize a derivation of the current
j = 〈G|Ĵ|G〉 in the adiabatic approximation [40],

Ĵ = h̄−1∂θH (θ ).

The many-body state |G〉 is adiabatically evolved from the
snapshot ground state of a time-dependent H (t ) as

ih̄|Ġ(t )〉 = H (t )|G(t )〉, |G(0)〉 = |g〉,
where |α〉 = |α(t )〉 is a orthonormalized eigenstates of the
snapshot Hamiltonian and |g〉 is its ground state as

H (t )|α(t )〉 = Eα (t )|α(t )〉, 〈α|β〉 = δαβ.
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Writing as |G〉 = e−(i/h̄)
∫ t

0 dt ′ Eg(t ′ )∑
α |α〉cα , cg(0) = 1,

cα (0) = 0, (α �= g), the Schrodinger equation is written as

Eg

∑
α

|α〉cα + ih̄
∑

α

(|α〉ċα + |∂tα〉cα ) =
∑

α

Eα|α〉cα.

Then multiplying 〈g|, and noting that |cα| � |cg|, α �= g, it
reduces to ċg + cg〈g|∂t g〉 ≈ 0, that implies

cg = eiγ (t ), γ (t ) = i
∫ t

0
dt ′ 〈g|∂t g〉.

Also multiplying 〈α|, (α �= g), one obtains Egcα +
ih̄〈α|∂t g〉cg ≈ Eαcα that implies cα = ih̄ 〈α|∂t g〉cg

Eα−Eg
. Now the

time-dependent ground state is given as

|G〉 = e−(i/h̄)
∫ t

0 dt ′Eg(t ′ )eiγ (t )

[
|g〉 + ih̄

∑
α �=g

|α〉〈α|∂t g〉
Eα − Eg

]
.

Then the expectation value of ∂θH is written as

〈G|∂θH |G〉 = 〈g|∂θH |g〉
+ ih̄

∑
α �=g

〈g|∂θH |α〉〈α|∂t g〉 − 〈∂t g|α〉〈α|∂θH |g〉
Eα − Eg

.

Here let us remind a general relation 〈g|∂θH |α〉 =
(Eα − Eg)〈g|∂θα〉, that obeys from taking a derivative of
the eigenequation H |α〉 = Eα|α〉 as 〈β|∂H |α〉 + Eβ〈β|∂α〉 =
∂Eα〈β|α〉 + Eα〈β|∂α〉,

δ jx = 〈G|J|G〉 − 〈g|J|g〉,
= i
∑
α �=g

(〈g|∂θα〉〈α|∂t g〉 + 〈∂t g|α〉〈α|∂θg〉)

= −i
∑
α �=g

(〈∂θg|α〉〈α|∂t g〉 − 〈∂t g|α〉〈α|∂θ g〉)

= −i
∑

α

(〈∂θg|α〉〈α|∂t g〉 − 〈∂t g|α〉〈α|∂θ g〉)

= −i(〈∂θg|∂t g〉 − 〈∂t g|∂θg〉) = −iB,

where the field strength B and the Berry connection Aμ are
defined as

B = ∂θAt − ∂t Aθ , Aμ = 〈g|∂μg〉, μ = θ, t .

To summarize, in the adiabatic approximation, we have

|G〉 = C

[
|g〉 + ih̄

∑
α �=g

|α〉〈α|∂t g〉
Eα − Eg

]
,

〈G|Ĵ|G〉 = 〈g|Ĵ|g〉 − iB,

where C = e−(i/h̄)
∫ t

0 dt ′Eg(t ′ )eiγ (t ).

APPENDIX D: BERRY PHASE AND GAUGE
FIXING [63,106,108,109]

Let us start a D-dimensional Euclidean space x =
(x1, x2, . . . , xD) ∈ RD as a parameter space of the Hamilto-
nian H (x). As for the Berry phase associated with a loop �,
we further assume that its ground state |g(x)〉,

H |g〉 = |g〉Eg, 〈g|g〉 = 1,

is gapped along the path �,

H (x)|n(x)〉 = |n(x)〉En(x), En(x) > Eg(x), n �= g, ∀x ∈ �.

Note that the phase of the snapshot eigenstate is arbitrary

|g〉 = |g′〉ei�, � ∈ R

where H |g′〉 = |g′〉Eg and 〈g′|g′〉 = 1.
As is well known the Berry connection Aμ = 〈g|∂μg〉,

μ = 1, . . . , D depends of the phase of the ground state as

Aμ = 〈g|∂μg〉 = A′
μ + i∂μ�,

where A′
μ = 〈g′|∂μg′〉 and we assume that the parameter de-

pendence of |g〉 and |g′〉 is smooth and differentiable. The
Berry phase is define as

iγ� =
∫

�

dxμAμ,

which is gauge dependent (summation over μ is assumed). To
be specific, let us assume the closed path � is parameterized
by θ ∈ [θi, θ f ] and take a different gauge when θ ∈ [θ1, θ2].
Then we have

γ� = −i
∫ t f

ti

dθ ẋμAμ,

(
ẋμ = dxμ

dθ

)

= −i

[∫ t1

ti

dθ ẋμAμ +
∫ t2

t1

dθ ẋμAμ +
∫ t f

t2

dθ ẋμAμ

]
= γ ′

� + ��,

where �� = �(x(θ ))|θ2

θ1
and

γ ′
� = −i

[∫ t1

ti

dθ ẋμAμ +
∫ t2

t1

dθ ẋμA′
μ +

∫ t f

t2

dθ ẋμAμ

]
.

Since �� is arbitrary, γ� does not have a definite meaning
unless one fixes the gauge globally.

The gauge is explicitly fixed by the scheme in Ref. [108].
Let us start by taking an arbitrary state |φ〉 as a reference state.
Taking a constant |φ〉 is simple but it may not be necessarily
constant but need to be single valued along the path �. Then
taking a gauge-independent projection P = |g〉〈g|, the gauge
fixing state by φ is given by

|gφ〉 = P|φ〉/√Nφ,

where Nφ = 〈φ|P|φ〉 = η∗
φηφ and ηφ = 〈φ|g〉. This gauge fix-

ing is only allowed if Nφ = |ηφ|2 �= 0. Since ηφ ∈ C, this
condition is always satisfied all over the (one-dimensional)
loop � by a suitable choice of |φ〉 (if ηφ = 0 for ∃x ∈ �, one
may modify φ slightly).

Then by taking a different |φi〉, i = 1, 2, they are related
with each other as

|gφ1〉 = |gφ2〉ei�12 ,

ei�12 =
√

Nφ2

Nφ1

〈g|φ1〉
〈g|φ2〉 = ei(θ1−θ2 ),

where 〈g|φi〉 = |〈g|φi〉|eiθi , i = 1, 2.
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Assuming that |gφ1〉 and |gφ2〉 are single valued on the loop
x ∈ �, Berry phases γ1 and γ1 are related as

γ1 = γ2 +
∫

�

d�12 ≡ γ2, mod 2π

since ei� is single valued over the loop and
∫
�

d�12 =∫ θ f

θi
dθ ẋμ∂μ�(x) = ∫ θ f

θi
dθ d

dθ
�(x(θ )) = �(x(θ ))|θ f

θi
= 2πn,

n ∈ Z.
This ambiguity also clears from the discretized expression

of the Berry phase (limL→∞ γL = γ )

γL ≡ Arg 〈g0|g1〉 · · · · · · 〈gn|gn+1〉 · · · 〈gL−1|gL〉,
where θn = θi + n

L (θ f − θi ), n = 1, · · · , L and |g0〉 ≡ |gL〉.
The expression is gauge invariant but the Arg is well defined
only in modulo 2π .

APPENDIX E: DIMER LIMIT

Assuming L: even, let us consider a dimer limit (1)Jo <

0, Je = 0 or (2)Jo = 0, Je < 0 (o: odd and e: even) for
the twisted Hamiltonian Eq. (40). The Berry phase de-
fined on the canonical path � = �VαGVα+1 , α = 0, . . . , Q, γQ =
−i
∫
�

dθ 〈gtw|∂θgtw〉 is quantized due to the ZQ symmetry as
discussed.

In the limit (1), it is trivially γQ = 0 since the twist does not
affect the Hamiltonian. Also inclusion of Je unless the finite
gap closes, γQ = 0 even for the finite coupling case. Only
after the gap closing, the Berry phase may change. This is
a topological symmetry protection.

As for the case (2), the Hamiltonian HJo=0
tw is decoupled for

each dimers and is written as [see Eq. (40)]

HJo=0
tw = Je

∑
α,β

e−i(ϕα−ϕβ )c†
L,αc†

1,αc1,βcL,β

+ (ϕα, ϕβ independent terms),

where the last terms do not include cL,α .
This is gauge out by the transformation at the site L

[63,66,122],

UL = e−i
∑

α ϕα n̂L,α ,

ULcL,αU†
L = e+iϕα cL,α,

ULHJo=0
0 U†

L = HJo=0
tw ,

where HJo=0
0 is without twist.

Then the ground state of the twisted Hamiltonian Htw

is given by |g〉 = UL|g0〉 where |g0〉 is ϕα independent as
H0|g0〉 = |g0〉E . The Berry phase is given by

γQ = −i
∫

�

dθ〈g|U†
L∂θUL|g〉

= −
∫

�

dθ∂θϕα〈g0|n̂L,α|g0〉 = − 1

Q

∑
α

�ϕα,

since 〈g0|n̂L,α|g0〉 = 1/Q due to the SU (Q) invariance of H0.
Noting the discussion in Sec. III C,

∑
α �ϕα = 2π (Q − 1) for

a path �V0GV1 and
∑

α �ϕα = −2π for a path, �Vβ GVβ+1 (β =

2, . . . , Q),

γQ = +2π

Q
, mod 2π.

APPENDIX F: SYMMETRY OF THE PATHS

Let us first discuss N = 3 case to be simple. The three
paths are decomposed into �Vj G ( j = 0, 1, 2) and explicitly
parameterized by θ ∈ (0, 2π

3 ) as

�V0G = {(θ1, θ2) = (θ, θ )},
�V1G = {(θ1, θ2) = (2π − 2θ, θ ) ≡ (−2θ, θ )},
�V2G = {(θ1, θ2) = (θ, 2π − 2θ ) ≡ (θ,−2θ )}.

The modification associated with the twist is given by the
gauge transformation at the site L,

θ ∈ �V0G (ϕ1, ϕ2, ϕ3) = (θ, 2θ, 0),

θ ∈ �V1G (ϕ1, ϕ2, ϕ3) = (0, θ, 2θ ),

θ ∈ �V2G (ϕ1, ϕ2, ϕ3) = (2θ, 0, θ ),

where (ϕ0 = ϕ3)

θ1 = ϕ1 − ϕ0,

θ2 = ϕ2 − ϕ1,

θ3 = ϕ0 − ϕ2.

Then Z3 transformation of the Hamiltonian is as follows:

UZ3 H (V0G)U†
Z3

= H (V1G),

UZ3 H (V1G)U†
Z3

= H (V2G),

UZ3 H (V2G)U†
Z3

= H (V0G).

In case of the generic SU (Q), the Q paths are defined in
a d-dimensional parameter space (d = Q − 1) and parameter-
ized by θ ∈ (0, 2π

Q ) as

�V0G = {(θ1, . . . , θd ) = (θ, . . . , θ )},

�Vj G = {(θ1, . . . , θd ) = (θ, . . . ,

j︷ ︸︸ ︷
−(Q − 1)θ, . . . , θ )},

j = 1, . . . , Q − 1 = d

θ ∈ �V0G (ϕ1, . . . , ϕN ) = (θ, . . . , θ,−(Q − 1)θ ),

θ ∈ �Vj G (ϕ1, . . . , ϕQ) = (θ, . . . ,

j︷ ︸︸ ︷
−(Q − 1)θ, . . . , θ )}.

Again ZQ invariance, c j,α → c j,α+1, of the Hamiltonian is
written as

H (θ ′) = U j
ZQ

H (θ )(U j
ZQ

)†, j = 1, . . . , Q = d + 1, (F1)

where θ ∈ �V0G and θ ′ ∈ �Vj G. It implies a relation between the
ground states

|g(θ ′)〉 = U j
ZQ

|g(θ )〉.
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Note that at the vertices Vj’s and G = ( 2π
N , . . .), the Hamil-

tonian is invariant as

[H (Vj ),UZQ ] = 0, (F2)

[H (G),UZQ ] = 0. (F3)

APPENDIX G: DISCONTINUITY OF THE CENTER
OF MASS: �P = ± 1

2

Noting that N =∑ j ρ̂ j , ρ̂ j = (−1) j n̂ j commutes with the
Hamiltonian as

[H, Nρ] = 0, Nρ =
∑

j

ρ̂ j,

let us assume that a (generic) level crossing of the ground state
|g(t )〉 at t = ti between |g−〉 and |g+〉 as

〈g+|N |g+〉 − 〈g−|N |g−〉 =
∑

j

(ρ+
j − ρ−

j ) = ±1,

ρ±
j = 〈g±|ρ̂ j |g±〉.

We may further assume that this is due to the edge state
localized near j ∼ L with a localization length ξ . This can
be justified by the low-energy spectrum as discussed in
Sec. VI A. Then it implies

�ρ j = ρ+
j − ρ−

j → Cej/ξ , (L → ∞).

The normalization constant is evaluated as ±C−1 =∑
j e jξ−1 = e1/ξ eL/ξ −1

e1/ξ −1 = eL/ξ+O(1) and

�P = 〈g+|P|g+〉 − 〈g−|P|g−〉
=
∑

j

1

L
( j − j0)�ρ j = CL−1

∑
j

( j − j0)e jξ−1

→ CL−1

(
d

dξ−1
eLξ−1 − j0eLξ−1

)

= ±1

2
+O(L−1), L → ∞.
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It implies that the agreement of the analytic formula of the
Chern numbers, Eq. (149), with the numerical evaluation is
highly nontrivial.
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