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Triangular lattice Hubbard model physics at intermediate temperatures
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Moiré systems offer an exciting playground to study the many-body effects of strongly correlated electrons
in regimes that are not easily accessible in conventional material settings. Motivated by a recent experiment
on WSe2/WS2 moiré bilayers [Y. Tang et al., Nature (London) 579, 353 (2020)], which realized a triangular
superlattice with a small hopping (of approximately 10 Kelvin), with tunable density of holes, we explore the
Hubbard model on the triangular lattice for intermediate temperatures t � T < U . Employing finite-temperature
Lanczos calculations and closely following the fitting protocols used in the experiment, we recover the observed
trends in the reported Curie-Weiss temperature � with filling, using the reported interaction strength U/t = 20.
We focus on the large increase of |�| on decreasing the density below half filling and the sign change of � at
higher fillings, which signals the onset of ferromagnetism. The increase in |�| is also seen in the t-J model (the
low-energy limit of the Hubbard model) in the intermediate temperature range, which we clarify is opposite to
the trend in its high temperature limit. Differences between the low, intermediate, and high temperature regimes
are discussed. Our numerical calculations also capture the crossover between short-range antiferromagnetic to
ferromagnetic order in the intermediate temperature regime, a result broadly consistent with the experimental
findings. We find that this behavior is a finite-temperature remnant of the underlying zero-temperature phase
transition, which we explore with ground-state density matrix renormalization group calculations. We provide
evidence of ferromagnetism characterized by weak (but robust) correlations that explain the small � seen in the
experiment.
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I. INTRODUCTION

Magnetism in strongly correlated electronic systems poses
fundamental questions related to the intricate ways elec-
trons can order (or fail to order) in different settings and
conditions—temperature, lattice geometry, frustrated interac-
tions, spin-orbit coupling, and so on [1]. While there has been
tremendous progress in our understanding of low-temperature
and ground-state properties of such systems (see, for example,
Refs. [2–6]), far less is definitively understood about their
finite-temperature properties and response. The “intermedi-
ate temperature scale” (temperature larger than hopping but
smaller than the interaction strength) in real materials can be
rather large (∼1000 K or more) and is hence difficult to access
experimentally. This situation changed with a recent break-
through in engineering moiré systems [7–11] which realize a
triangular superlattice with significantly renormalized param-
eters but with relative interaction to kinetic energy strengths
(e.g., U/t in the Hubbard model) comparable to other strongly
correlated materials, such as the high-Tc superconducting
cuprates. Moiré systems thus offer an exciting platform to
study many-body effects of strongly correlated electrons in
regimes that are not easily accessible in conventional material
settings.

*These authors contributed equally to this work.
†hchanglani@fsu.edu

Our work here is motivated by experiments on a transi-
tion metal dichalcogenide (TMD) WSe2/WS2 bilayer system
[9,12], which realizes a triangular moiré superlattice with a
small hopping of approximately 10 Kelvin, with a tunable
density of holes and whose intermediate temperature scale has
been readily accessed. We henceforth refer to Ref. [9] as the
“Cornell experiment” (CE). Rather curiously, and somewhat
unexpectedly, CE reported an increase in the absolute value
of the Curie-Weiss (CW) temperature on reducing the hole
density from half filling. This may appear counterintuitive and
defies the expectation that the effective magnetic interactions
must decrease (and hence the CW temperature must decrease)
with lowering the particle density. CE also suggested the
existence of a ferromagnet (FM) based on the positivity of
the CW temperature for a range of densities above half filling.
While the Nagaoka theorem [13,14] admits such a possibility
at infinite U for the square lattice, FM has not been observed
at finite U . The frustrated/nonbipartite nature of the triangular
lattice has been argued to potentially destabilize the tendency
for local antiferromagnetism (AFM) and admit a FM ground
state especially at large U/t [15–18] and in a finite magnetic
field [19]. Nagaoka ferromagnetism has been found to be
unstable in the U = ∞ limit on the hole-doped side [20]; it
is thus useful to clarify the theoretical situation for finite but
large U/t .

While the details of a quantitatively accurate effective
Hamiltonian of the TMD bilayer system still remain to be
completely fleshed out, we study the simplest model believed
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to be broadly consistent with experiments—the Hubbard
model [21] on the triangular lattice

H = −t
∑

〈i, j〉,σ

(
c†

i,σ c j,σ + c†
j,σ ci,σ

) + U
∑

i

ni,↑ni,↓, (1)

where c†
i,σ (ci,σ ) refers to the usual creation (annihilation)

operators with spin σ at site i, and ni,σ refers to number
operators. 〈i, j〉 refers to nearest neighbor pairs of sites. We
will denote the filling by f ∈ [0, 1]. For example, f = 1/2
refers to half filling, i.e., one hole per triangular site. We
focus on the reported value of U/t = 20 [9] and intermediate
temperatures t � T < U .

A key result of this work is that our numerical simulations
recover the reported trends of the CW temperature � as a
function of particle density. We also find the increase in |�|
on reducing the particle density away from half filling within
the framework of the t-J model, the low-energy limit of the
Hubbard model. However, this trend is the opposite of the
one predicted by the high-T expansion; we probe this further
and explain the origin of this apparent conflict. Finally, we
monitor the spin-structure factor in our numerical calcula-
tions, which explain how FM and AFM correlations develop
on lowering the temperature. It also reveals parallels with
the underlying zero-temperature phase transition, which we
explore with the ground-state density matrix renormalization
group (DMRG) [22].

II. FINITE-TEMPERATURE LANCZOS RESULTS
AND COMPARISON WITH EXPERIMENTS

The ground-state phase diagram of the triangular lat-
tice Hubbard model has been extensively investigated, partly
due to its relevance to organic-charge transfer salts such as
(BEDT-TTF)2X [23], using a variety of numerical methods
including exact diagonalization (ED), dynamical mean-field
theory (DMFT) [24,25], and DMRG [26–29]. At f = 1/2 and
for large U/t , 120 degree spiral order is stabilized; at low U/t ,
a metallic phase exists and at intermediate U/t ≈ 8 a gapless
[26] and possible chiral spin liquid [28] was reported. Less
is definitively known for the case of doping away from half
filling: At low filling ( f = 0.2 − 0.3), a stripe AFM [24] and
at higher filling ( f ∼ 0.75, and at large U/t) a FM is stabilized
[24,25].

We explore the intermediate temperature regime [30]
with ED and the finite-temperature Lanczos method (FTLM)
[31,32] on triangular lattices with N = 9, 12, and 15 sites,
which we refer to as “T-N” clusters (see Appendix A for
cluster shapes). We typically use M = 150 Krylov vectors and
R = 100–1500 seeds (per sector). We compute the suscepti-
bility χ (per site) at temperature T within the framework of
fluctuation dissipation, i.e., using

χ =
〈
S2

z

〉
th − 〈Sz〉2

th

T N
, (2)

where 〈· · · 〉th represents the thermal average. Note that
〈Sz〉th = 0 since the Hamiltonian is time-reversal symmetric.
To extract the CW temperature we use the mean-field result

χ = C

T − �
, (3)

(a) (b)

FIG. 1. Inverse susceptibility (1/χ ) versus temperature (T , in
units of t) for the T-9 cluster for fillings (a) f = 0.39 and (b) f =
0.56. Red dashed lines represent the linear fits to the data for T/t ∈
[0.8, 5.5]. Insets show the range where the linear fits intersect the
horizontal temperature axis, the intercept yields the Curie-Weiss
temperature �. Similar analyses are performed for the T-12 and
T-15 clusters with the finite-temperature Lanczos method to generate
Fig. 2(a).

where C is the Curie constant [which, for a purely magnetic
model, equals 1

3 S(S + 1) where S is the spin of a single
magnetic moment] and � is the CW temperature, � > 0
corresponds to effective FM and � < 0 AFM interactions.
To carry out a one-to-one comparison with CE, we choose
the same range of temperatures for fitting (0.8t � T � 5.5t).
The fitting range is important since the CW temperature is
sensitive to the temperature window used, an issue we will
elaborate on.

The results of our fits for two representative doping den-
sities are presented in Fig. 1 (other representative fits are
shown in Appendix B). We find that the linear approximation
for 1/χ is indeed rather remarkable, at least visually, given
that the experimental temperature ranges are not in the truly
“high-temperature” limit. We determine � from the intercept
on the horizontal (temperature) axis, which is compared with
CE in Fig. 2(a). While there are variations in the CW estimates
as a function of system size, the general trends and magnitude
of the effect are captured well, given the inherent experimental
uncertainties. For the purpose of comparison, we also consider
the case of the square-lattice Hubbard model in Appendix C.

The susceptibility is characterized by the CW form only
for temperatures much higher than the effective magnetic
interaction J . The situation is more complex for the Hubbard
model—there are three energy scales: J ∼ t2/U which is re-
lated to magnetism, effective/renormalized hopping/kinetic
energy (bandwidth), and Hubbard interactions. The specific
heat, shown in Fig. 2(b) for the T-15 cluster, reveals these
scales. For example, the effective hopping is quenched at f =
1/2, but it does show up as a intermediate temperature bump
that (typically) moves to higher temperature on lowering the
filling, by f = 1/3 this bump occurs at T ∼ t . A third bump at
higher temperature corresponds to the scale at which double
occupancy becomes important: we observe that this scale also
increases on either side of half filling. This filling dependence
is expected since (for f < 1/2) the lower the density, the
easier it is to avoid the double occupancy cost at increasing
temperatures. This temperature scale is less than U = 20t , in
fact, double occupancy fluctuations are considerable at the
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(a) (b) (c)

FIG. 2. (a) Curie-Weiss temperature (�) as a function of density ( f ) for the triangular lattice Hubbard model with U/t = 20. The simula-
tions are compared to the experiments reported in Ref. [9], denoted by Cornell. (b) Specific heat (C/N) versus temperature of the T-15 cluster
for representative fillings f showing three regimes associated with magnetism, hopping, and Hubbard interactions. (c) Window-dependent
Curie-Weiss temperature (as defined in the text) versus temperature for the T-15 cluster for representative fillings f .

highest temperature probed in CE (T ≈ 6t) and used in the
CW fitting, which we comment on further in the next section.
Due to the presence of these three distinct energy scales in
the Hubbard model, the low-energy physics (T � t2/U ) is
dominated by magnetic interactions and we observe compe-
tition among different magnetic orders, the intermediate scale
(T ∼ t) is dominated by phenomena associated with kinetic
frustration [33], and high temperature (T � U ) by charge
fluctuations.

Since the CW theory is based on the properties of a
magnetic model in its high-temperature regime, the � ex-
tracted corresponds to the best mean-field fit which depends
sensitively on the window of temperature used in its de-
termination. To make these notions precise, we define the
“window-dependent” CW temperature, �w(T ), obtained by
extrapolating the inverse susceptibility at a given temperature
all the way to zero

�w(T ) ≡ T − χ−1

(
dχ−1

dT

)−1

. (4)

Figure 2(c) shows the variation of �w with temperature for
T � 6t . As expected, there is a big variation at low tem-
perature, however, even for T � t we find that �w is not
flat, as can be prominently seen for f = 0.33, 0.4 and 0.5. It
reveals that χ−1 is not perfectly linear with temperature and
thus the reported � reflects an average value in the specified
temperature window.

III. INSIGHTS FROM THE t-J MODEL

For T � �, the CW theory can be thought of as a series
expansion for χ in powers of 1/T [by Taylor expanding
1/(T − �)], which can be compared with high-temperature
series expansions. The term proportionate to 1/T gives the
paramagnetic susceptibility, while the next-order term gives
�. For T < U it is convenient to work within the framework
of the t-J model, the low-energy limit of the Hubbard model
for large U/t [34,35]. Its Hamiltonian is

H = −t
∑

〈i, j〉,σ
P
(
c†

i,σ c j,σ + c†
j,σ ci,σ

)
P + J

∑
〈i, j〉

(
Si · S j − 1

4
nin j

)
.

(5)

The first term is a “restricted hopping,” i.e., one which never
permits two holes to be on the same site. In other words, P
projects out states with one or more doubly occupied sites
for f � 1/2 and empty sites in the case of f � 1/2. The
second term corresponds to magnetic Heisenberg interactions
and density-density interactions arising from degenerate per-
turbations of the restricted manifold. |�| from the high-T
expansion of the t-J model is z

4 J f [36] where z is the coordi-
nation number (z = 4 and z = 6 for the square and triangular
lattice, respectively), i.e., it must decrease as one decreases f
from 1/2 [37], a result which is at complete odds with CE.

So how should one reconcile these apparently contradic-
tory findings? The resolution to this puzzle lies in the fact that
the high-temperature and intermediate-temperature regimes of
the t-J model are not the same, even qualitatively. (The high-
temperature regime is on a scale of U or larger and is thus not
of direct relevance to what is measured in CE.) We check our
assertion by exploring the CW temperature of the t-J model in
the experimentally relevant intermediate-temperature range;
Fig. 3(a) shows that the t-J model captures the same trends as
the Hubbard model and CE. (For more comparisons between
the two models see Appendix D.) In sharp contrast, and in per-
fect quantitative agreement with the high-T expansion result,
the inset of Fig. 3(a) shows the decrease in CW temperature of
the t-J model on reducing f from 1/2, captured by our FTLM
results by using the fitting range 20t � T � 30t .

This calls for a careful look at the temperature window-
dependence of the CW temperature for the t-J model. We plot
�w for the t-J model in the low-to-intermediate temperature
regime and in the intermediate-to-high temperature regime in
Figs. 3(b) and 3(c), respectively. We find enhancement of �w

on decreasing f for f < 1/2 in the intermediate-temperature
regime. This trend clearly changes on going to the high-
temperature regime—this crossover occurs at T ≈ 3.7t . For
f ≈ 0.73 we observe a positive �w at low temperature, which
at intermediate temperature crosses over to a negative value.
Also note that at extremely high temperature, �w is particle-
hole symmetric about half filling, see, for example, f = 0.33
and f = 0.67 in Fig. 3(c), even though the underlying trian-
gular lattice t-J Hamiltonian does not have that symmetry.
This is because at high temperatures, only on-site and nearest-
neighbor correlations dominate and thus information about
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(a) (b) (c)

FIG. 3. (a) Curie-Weiss temperature (�) for the T-15 cluster as a function of f for both the Hubbard and t-J models using U/t = 20
and J/t = 0.20, respectively. The susceptibility was fitted in the temperature range 0.8t � T � 5.5t . The inset shows � as a function of
filling for the t-J model, obtained by fitting the susceptibility data in the temperature range 20t � T � 30t and compared with the high-T
series expansion result (to the lowest two orders). Panels (b) and (c) show the window-dependent Curie-Weiss temperature [�w(T )] of the
triangular t-J model, with the same parameters as in (a), in (b) the low-to-intermediate temperature and (c) the intermediate-to-high temperature
regimes.

the underlying lattice structure (including loops) is greatly
suppressed.

As one cools the system, other correlations begin to con-
tribute to χ and the nature of the lattice (e.g., frustrated or
not) becomes important. The significance of frustration for
doped magnets was realized in the pioneering work by Haerter
and Shastry [38] who studied the thermodynamics of the t-J
model on the triangular lattice in the context of sodium cobal-
tate, which resulted in the theory of kinetic frustration [38,39].
This theory can be summarized as follows. Consider U → ∞
in the t-J model, which corresponds to J = 0. For f = 1/2
all magnetic orders are exactly degenerate since magnetism is
completely suppressed. When a single particle is removed or
added on a square lattice, the kinetic term (proportionate to
t) favors the hole or doublon to move in a FM background.
However, for the triangular lattice, which lacks particle-hole
symmetry the result is very different—removal of a particle
favors (120 degree) AFM and addition favors FM. Thus, even
in the absence of any magnetic interactions, the kinetic energy
prefers an AFM state, at least at low doping.

These arguments strictly hold at U → ∞ but should ap-
ply, with some modifications, to the case of large but finite
U . For finite U , i.e., nonzero J , the low-temperature regime
(T < J) is dominated by the competition between different
magnetic orders. At f = 1/2 and large U/t the 120◦ anti-
ferromagnetic state is selected, while close to f ≈ 0.75, an
itinerant Stoner ferromagnet is favored, see Fig. 4. Antifer-
romagnetic correlations, characterized by the strength of the
weight at the K points in the Brillouin zone, are expected
to weaken on lowering f from 1/2—this assertion will be
substantiated in the next section. However, at intermediate
temperatures (U > T > J) and f = 1/2 this competition be-
tween magnetic states is greatly suppressed, in this regime one
can think of all the competing magnetic states as essentially
degenerate with one another. The dominant scales in this
temperature regime are then only t and U � t (which can
be thought of as infinitely large) and it is in this regime that
the Haerter-Shastry arguments should apply, i.e., one should
expect the kinetic energy to enhance AFM in this temperature
range. This expectation is borne out in CE and our numerical
data.

IV. FINITE-TEMPERATURE REMNANTS
OF AFM TO FM TRANSITION

To further explore the enhancement of AFM correlations
we study, with FTLM, the thermal momentum-dependent
spin-structure factor (SSF)

Szz(q, T ) ≡ 1

N

∑
i, j

e−iq·(ri−rj )
〈
Sz

i Sz
j

〉
th, (6)

where ri represents the physical coordinate of site i. Note
that the SSF is equivalent to T χ (q, T ), χ [q = (0, 0), T ]
corresponds to the measured susceptibility. Though limited
by obvious finite-size effects, our calculations shed insights
on various competing orders especially at small correlation
lengths, i.e., higher temperature. We also address the small
positive � that signals FM, which is weak and possibly fragile
as suggested by the FTLM calculations (� > 0 is captured
only on the largest cluster we studied, 15 sites). A previ-
ous DMFT (dual-fermion) study in the low-temperature limit
(T = 0.1t) reported the presence of FM [24] up to U/t = 10,
here we focus on U/t = 20 and additionally explore the rela-
tionship between low and intermediate temperatures.

We subtract out the high-temperature correlations
Szz(q, T = 5t ) and plot the difference in Fig. 4 for the
T-15 cluster for U/t = 20 across different fillings at
T/t = 0.1, 0.5, and 1. The importance of subtracting out
the high-temperature data is clarified in Appendix E. The
T-15 cluster retains the prominent momentum points (and
their symmetry related partners): K = ( 4π

3 , 0) (that captures
the 120 degree Néel ordering) and � = (0, 0) (that captures
FM), but not M = (0, 2π√

3
). (Additional results are shown in

Appendix E for the T-12 cluster which does contain the M
point.) For a given filling, the subtracted SSF monitors the ten-
dency for formation of magnetic orders on cooling the high-
temperature state. Strictly speaking, there is no true
long-range order in two dimensions at any finite temperature
due to the Hohenberg-Mermin-Wagner theorem [40,41].

For f = 1/2 we see the development of weight at the K
points on cooling. Importantly, at low temperature [T � J =
0.2t , see, for example, T = 0.1t in Fig. 4(a)], AFM correla-
tions are weakened on doping (decreased redness at K points),
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FIG. 4. (a) Static structure factor with a high-temperature subtraction Szz(q, T ) − Szz(q, 5t ), for the triangular Hubbard model (U/t = 20)
across various fillings f for the T-15 cluster for T/t = 0.1, 0.5, 1. M = 150 Krylov vectors and R = 300 seeds were used for the FTLM.
The red hexagon in each panel marks the Brillouin zone boundary and prominent momentum points (�, K, M) are indicated. (b) DMRG
ground-state real-space spin-spin correlations 〈So · Sl〉 for every lattice site (l) with respect to a centrally chosen site (o) marked with black
cross for f = 1/3, 1/2 on a length 6 and f ≈ 0.833 on a length 12 XC-6 cylinder. The diameters of the circles are proportional to the amplitudes
of the spin-spin correlation and the colors indicate the sign of the correlations.

as one may intuitively expect. For f � 1/2, the weight at
the K points at low temperature is lost, eventually migrating
towards the � point signaling the onset of FM correlations.
(At low temperature, the overall weak scale of FM relative
to the AFM is apparent from the redness of the color at the
� versus K points.) Prominently, at intermediate temperature
(T = 0.5t and T = t) there is an enhancement of weight for
f = 0.433 at the � point relative to f = 1/2 (it gets bluer),
qualitatively consistent with the increase in the CW tempera-
ture reported by CE. There is also a mild enhancement at the
K points for T = 0.5t .

For the T = 0 case (where finite-size effects are most
prominent) we performed ground-state DMRG on XC-6
cylinders of length 6 and 12 (36 and 72 sites, respectively)
retaining up to 16 000 states. Figure 4(b) shows the results of
the real space spin-spin correlation functions with respect to a
centrally chosen site for f = 1/3, f = 1/2, and f ≈ 0.833.
The case of f = 1/3 exhibits extremely short-range AFM
nearest-neighbor correlations. For f = 1/2 and f ≈ 0.833,
the qualitative conclusion from FTLM holds: The correla-
tions are clearly AFM (longer-range) and FM, respectively.
The real-space pattern of spin-spin correlations for f = 1/2
closely resembles what was previously observed for the spin-
1/2 Heisenberg model [42]. The momentum dependent static
structure factor for the ground states at representative fillings
has been shown in Appendix F.

Due to the closeness of the FM to the van Hove singularity
at f = 0.75, its appearance is attributed to a Stoner instabil-
ity. We find a reduced magnetic moment, for example, for
U/t = 20 and f ≈ 0.833 we find the moment to be roughly
half of what would be expected for a fully polarized FM at
the same particle density. Due to the effectively low density of
spin carrying particles (doublons do not contribute to the mag-
netic moment) in this regime, and the reduced moment from
quantum fluctuations, the FM correlations are weak compared
to the corresponding AFM counterparts. This is at the heart of
the small � observed in CE. Note, however, that CE sees FM
at possibly lower f ∼ 0.6–0.7, but also reports a considerable

errorbar in f of 0.1. This requires a further review of both the
model and the experiments, in particular, it would be valuable
to precisely nail down the extent and location of FM in the
triangular Hubbard model. We leave the resolution of this and
related issues to future work.

V. CONCLUSION

In summary, we studied the intermediate-temperature
physics associated with the triangular lattice Hubbard model
and reproduced several aspects of the Cornell experiment
on the moiré superlattice formed by WS2 and WSe2 [9]. In
general, however, we expect the need for more refined mod-
els of moiré materials [43]. We emphasize that an increase
in |�| on lowering filling does not necessarily imply the
strengthening of magnetic correlations in the ground state.
We interpret the experimental and numerical results in the
intermediate temperature regime within the framework of
kinetic frustration, which has been shown to enhance anti-
ferromagnetism on doping [33,39]. We emphasize that there
are prominent differences between low, intermediate, and high
temperature behaviors; this was demonstrated in the context
of the t-J model. We showed that the high-temperature limit
of the t-J model gives a trend of CW temperatures with
particle density that is the opposite of the trend observed
in the intermediate temperature regime. We also studied the
momentum-dependent structure factor as a function of tem-
perature to clarify the trends in the susceptibility (associated
with the � point) and the 120 degree magnetic ordering (asso-
ciated with the K points).

Using a combination of FTLM and DMRG calculations,
we explored the possibility of FM in a regime of fillings
where � > 0 was observed in the Cornell experiment. We
found evidence in favor of a FM ground state that leaves its
signature at finite temperature, consistent with previous work
with complementary techniques [24,25]. (There appears to be
some disagreement on the precise extent and location of the
FM in existing phase diagrams [24,25], it would be desirable
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for future work to clarify this issue.) The weak spin-spin
correlations seen in our calculations offer an explanation of
the smallness of the observed CW temperature. Similar obser-
vations were also noted in the context of a recent cold atom
experiment [44], which realized a doped triangular Hubbard
model.

More generally, our work highlights the usefulness of com-
paring the results of many-body calculations with those of
analog simulators, in this case a moiré superlattice system
formed by WSe2 and WS2. These simulators give access to a
part of phase space, here intermediate temperatures, that may
not be accessible to conventional materials thereby revealing
new physics beyond the usual low-energy, low-temperature
regime.

Note added. At the time of submission of the first version of
this paper, we became aware of a parallel preprint [45] which
has addressed similar questions.
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APPENDIX A: FINITE CLUSTERS FOR THE EXACT
DIAGONALIZATION CALCULATIONS

In the main text and appendices we have presented results
of ED and FTLM calculations. The finite clusters are shown in
Fig. 5, they are frequently referred to as “S-” (square) or “T-”
(triangular) followed by the number of sites. For example,
S-10 is the 10 site square cluster, and T-15 is the 15 site
triangular cluster.

Periodic boundary conditions were chosen for all simula-
tions in this work. The momentum points (q) that are allowed
by translational symmetry are determined by setting eiq·R = 1
where R is the lattice vector associated with the periodicity
of the cluster. For example, for the T-12 cluster we have (in
units of the lattice constant) R1 = 2

√
3ŷ and R2 = 3x̂ − √

3ŷ,
which gives

qx = (2n + m)π

3
, (A1a)

qy = mπ√
3
, (A1b)

FIG. 5. Finite triangular and square clusters treated with ED or FTLM in the main text and appendices.
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FIG. 6. Curie-Weiss fits to the inverse susceptibility (using a temperature range similar to that studied in the Cornell experiment [9]) for
the T-12 cluster for various representative fillings.

where m, n are integers. For the T-15 cluster R1 = − 3
2 x̂ +

3
√

3
2 ŷ and R2 = 9

2 x̂ +
√

3
2 ŷ gives

qx = 2π

15
(3n − m), (A2a)

qy = 2π

5
√

3
(3m + n). (A2b)

It follows that the T-12 cluster has both K = ( 4π
3 , 0) and

M = (0, 2π√
3

) (and symmetry related) points whereas the T-15
cluster has only the K points but not the M points in its first
Brillouin zone. Both clusters have the � = (0, 0) point.

APPENDIX B: CURIE-WEISS FITS
FOR THE TRIANGULAR LATTICE

In Fig. 6 we show representative Curie-Weiss (CW) fits
to the inverse magnetic susceptibility (per site) for the T-12
cluster.

APPENDIX C: CURIE-WEISS TEMPERATURE
FOR THE SQUARE-LATTICE HUBBARD MODEL

In Sec. II we discussed the CW temperature � for the trian-
gular lattice Hubbard model with nearest-neighbor hoppings
as a function of (hole) filling. Interestingly, this simple model
admitted a positive CW temperature, corresponding to FM,
consistent with findings of CE [9]. To provide a comparative
check, we carried out numerical calculations for the square-
lattice case.

Figure 7 shows results for the CW temperature for S-8, S-
10, and S-16 with U/t = 20. The CW fits were performed in a
temperature range 0.8 � T/t � 5.5, similar to the range cho-
sen in CE. We find that � < 0 for all fillings, corresponding
to effective AFM interactions. The exception is 8 sites, where
� > 0 for two fillings (related by particle-hole symmetry of
the square-lattice Hubbard model); for larger system sizes,
this tendency goes away. Additionally, for our largest size
(S-16) the magnitude of the increase of the CW temperature
on going from half filling towards lower filling is smaller than
that observed in CE.

APPENDIX D: COMPARISON OF t-J
AND HUBBARD MODELS

In Sec. III we developed insights based on the t-J model.
Here we comment further on the relation between the Hubbard
and t-J models.

The overall susceptibility of the two models, see Fig. 8(a),
match in the intermediate and low temperature regimes, with
expected deviations at higher temperature (a scale which is
filling dependent). In Fig. 8(b) we identify this scale by
monitoring the temperature dependence of the on-site double
occupancy correlator 〈ni,↑ni,↓〉 (for an arbitrary site i), normal-
ized with respect to its expected value for the noninteracting
case ( f 2) to facilitate comparison between different densities.
At low temperatures, the double occupancy correlator is small
across all densities, however, there is a shallow (but promi-
nent) dip in its value as the temperature is increased. This
observation was recently made elsewhere as well, where it
was attributed to a Pomeranchuk effect associated with the
high entropy of states at intermediate temperatures [30].

On increasing the temperature further, the double occu-
pancy correlator becomes appreciably large at a temperature
that is a small fraction of U (i.e., well below 20t). This tem-
perature is strongly dependent on the filling: the susceptibility
for f = 1/2 deviates from the t-J model at lower T compared

FIG. 7. Curie-Weiss temperature (�) versus filling for the
square-lattice Hubbard model with U/t = 20 (for three finite sizes)
as compared to the Cornell experiment [9].
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FIG. 8. (a) Inverse susceptibility (1/χ ) versus temperature (T , in
units of t) for the T-15 cluster for representative f for both the Hub-
bard and t-J models using U/t = 20 and J/t = 0.20, respectively.
(b) Normalized on-site double occupancy correlator 〈ni,↑ni,↓〉 for the
T-12 Hubbard model using the same parameters as in (a).

to the f < 1/2 case. This is because at small f the increased
phase space for the motion of the holes of opposite spin types
means that they can more effectively avoid each other, thereby
circumventing the large Hubbard energy cost. This makes the
t-J approximation valid with respect to the Hubbard model for
a larger temperature range. Once doublon (spin-0) formation
becomes increasingly entropically favorable at intermediate
and high temperatures in the Hubbard model, it leads to a
reduction in magnetic susceptibility (i.e., an increase in 1/χ )
with respect to the t-J model.

APPENDIX E: FINITE-TEMPERATURE STATIC
SPIN-STRUCTURE FACTOR

In this Appendix we discuss some aspects of the SSF that
facilitate further interpretation of our observations.

For the � point, the SSF is Szz[q = (0, 0), T ] = 1
N 〈S2

z 〉th,
thus for a FM ground state the SSF scales as N . In the case
of a FM ground state, multiple Sz sectors are degenerate,
i.e., the ED spectrum shows a ground-state multiplet with
total spin S �= 0. Strictly speaking, long-range FM can occur
only at T = 0 since the Hohenberg-Mermin-Wagner theorem
rules out true long-range order at finite temperature in a two
(or lower) dimensional system with continuous symmetry
[40,41].

In Sec. IV we presented calculations for the SSF, after
subtracting out the high-temperature (T/t = 5) signal for the
nearest-neighbor Hubbard model with U/t = 20 on the trian-
gular T-15 cluster for various representative fillings. In Fig. 9
we show the analogous calculation for the T-12 cluster. Many
qualitative conclusions persist, including (1) the weakening of
correlations at the K points on doping (i.e., going to lower f
starting from f = 1/2) at low temperature and (2) the occur-
rence of FM in the high-density regime. Curiously though, a
FM ground state was seen at f = 1/3, which we address in
Appendix G.

We motivate the reason for plotting the subtracted SSF.
According to the Curie-Weiss theory, χ = C

T −�
. Assuming

this holds at two temperatures, one “low” (Tl ) and one “high”
(Th), and using χT = Szz(q = �, T ), we get

Szz(�, Tl )(1 − �/Tl ) = Szz(�, Th)(1 − �/Th). (E1)

Ignoring the �/Th term, a reasonable assumption for � � Th,
we get

� = Szz(�, Tl ) − Szz(�, Th)

Szz(�, Tl )/Tl
. (E2)

FIG. 9. Static structure factor with a high-temperature subtraction Szz(q, T ) − Szz(q, 5t ), for the triangular Hubbard model (U/t = 20)
across various fillings f for the T-12 cluster for T/t = 0.1, 0.5, 1. The red hexagon in each panel marks the Brillouin zone boundary and
prominent momentum points (�, K, M) are indicated. M = 150 Krylov vectors were used in the FTLM with R = 500 random seeds for
f = 0.417 and f = 0.5 and R = 1500 for the other fillings.
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FIG. 10. Static spin-structure factor from DMRG for the Sz = 0 ground state of the length 6 XC-6 cylinder (36 sites). The plots in (a) and
(b) show the sum Stot(q) over all three channels (xx, yy, zz, which are individually identical) and correspond to fillings (a) f = 1/3, 12 up and
12 down electrons and (b) f = 1/2, 18 up and 18 down electrons. (c) corresponds to the case of f ≈ 0.806, 29 up and 29 down electrons, and
where the zz and xx (yy) channels are shown separately. The yellow dashed hexagon in each panel marks the Brillouin zone boundary.

Thus the subtracted SSF at the � point, but divided by
Szz(�, Tl )/Tl , is precisely the CW temperature. However, it
must be noted, as was highlighted in the main text, � it-
self is temperature-dependent in the intermediate temperature
regime because 1/χ is not perfectly linear with T .

APPENDIX F: GROUND-STATE DMRG STATICE
SPIN-STRUCTURE FACTOR

Generalizing the SSF to other channels and taking the limit
of zero temperature, we have

Sαα (q) ≡ Sαα (q, T → 0) ≡ 1

N

∑
i, j

e−iq·(ri−rj )〈ψ0|Sα
i Sα

j |ψ0〉,

(F1)
where α = x, y, z and |ψ0〉 is the ground state of the system.
(For the case of degenerate states, one must sum over all
distinct ground states). For a rotationally symmetric (singlet)
ground state, which is the case for the triangular Hubbard
model for many (but not all) fillings, Szz(q) = Sxx(q) =
Syy(q). For degenerate ground states, as is the case for a FM,
choosing a single state from the degenerate multiplet and then
computing the expectation values with it does not satisfy this
condition.

In the main text we presented results of DMRG calcu-
lations on XC-6 cylinders (36 and 72 sites) using a bond
dimension of 16 000 targeting the ground state in the Sz = 0
sector and computed real-space spin-spin correlation func-
tions with respect to a reference chosen site. In Fig. 10, we
complement the real-space pictures by plotting the SSF for
representative cases on length 6 XC-6 cylinders. As expected,
for f = 1/2 the (Bragg) peaks are at the K points of the Bril-
louin zone, consistent with 120 degree spiral order [note that
the xx, yy, and zz channels are identical for the singlet ground
state and are summed to yield Stot(q)]. In comparison, the
weight at the K points is clearly diminished for f = 1/3. For
f ≈ 0.806, the xx(yy) and zz channels are clearly different.
For the xx(yy) channel there is a peak at q = �, consistent
with FM. In the zz channel there is no intensity associated
with the � point, this is a consequence of the sum rule corre-
sponding to total Sz = 0.

We check for finite-size effects to build further confidence
in our findings. For example, Fig. 11 shows our results for
the case of the FM at f ≈ 0.833 on length 6 and 12 XC-6
cylinders. The SSF is visually similar, however, on increasing
the size the weight at the � point is found to increase. For
length 6, 〈S2〉 associated with the ground state is found to be
≈20 (corresponding to S = 4) and for length 12 it is ≈56

FIG. 11. Static spin-structure factor from DMRG (for zz and xx channels) at filling f ≈ 0.833 on the XC-6 cylinder of (a) length 6 (36
sites) and (b) length 12 (72 sites).
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FIG. 12. Exact diagonalization spectra for the (a) T-9, (b) T-12, and (c) T-15 clusters for f = 1/3. The lower panels highlight the multiplet
structure of the ground state. Note the small scale of the energy gaps, which required further analysis on a bigger system with DMRG.

(corresponding to S = 7). This is consistent with a Bragg
peak, signaling long-ranged FM, although larger system sizes
would be required to establish this definitively.

APPENDIX G: GROUND STATE FOR f = 1/3

The T-12 and T-15 clusters have a FM ground state for
f = 1/3. Even the T-9 cluster shows a low-energy multiplet

in close competition with singlets in the spectrum. Figure 12
shows the gap of the FM to other states decreasing by a
factor of ≈8 on going from T-12 to T-15, revealing multi-
ple competing states. This required us to further investigate
larger clusters with DMRG. Our DMRG results suggest the
ground state is not a FM, but one which displays short-
range AFM correlations, which can be seen prominently in
Fig. 4(b).
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