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We develop a framework for classifying locality preserving unitaries (LPUs) with internal, unitary symmetries
in d dimensions, based on (d − 1) dimensional “flux insertion operators” which are easily computed from the
unitary. Using this framework, we obtain formulas for topological invariants of LPUs that prepare, or entangle,
symmetry protected topological phases (SPTs). These formulas serve as edge invariants for Floquet topological
phases in (d + 1) dimensions that “pump” d-dimensional SPTs. For 1D SPT entanglers and certain higher
dimensional SPT entanglers, our formulas are completely closed-form.
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I. INTRODUCTION

In recent years, there has been much progress in not
only classifying topological quantum phases, but also in un-
derstanding methods for detection and preparation of such
phases. Methods for preparing, or “entangling,” a state in a
topological phase are deeply connected to the entanglement
properties of the phase [1]. For example, it was shown that a
state in a long-range entangled phase, such as a 2D topolog-
ical order, cannot be prepared by any finite depth quantum
circuit (FDQC). Instead, such a state can only be prepared
either by a circuit whose depth scales with the system size
[2–4] or by supplementing an FDQC with measurements and
feed-forward [5–9]. On the other hand, short-range entangled
phases such as symmetry-protected topological phases (SPTs)
can be prepared by FDQCs, but these circuits must contain
local gates that break the symmetry [1,10].

Interestingly, broad classes of SPT phases can be entan-
gled by FDQCs that, though containing gates that break the
symmetry, respect the symmetry as a whole [1,11–13]. Some-
times, an SPT cannot be entangled by an FDQC that respects
the symmetry as a whole, but can be entangled by a more
general locality preserving unitary (LPU) which respects the
symmetry [14–16]. When the locality is strict, without expo-
nentially decaying tails, these nontrivial LPUs are also known
as quantum cellular automata (QCA) [17–19].

LPUs have also recently received attention because they
describe the stroboscopic boundary dynamics of many-body
localized, periodically driven systems, also known as Floquet
systems [17,20,21]. LPUs with symmetry describe the bound-
ary dynamics of these kinds of Floquet systems when the
drive is constrained to respect the symmetry [22–25]. Non-
trivial G symmetric Floquet systems in d spatial dimensions
can “pump” (d − 1) dimensional G SPTs to the boundary
every period [22,23,26]. For these systems, the stroboscopic
boundary dynamics is described by a G symmetric (d − 1)
dimensional SPT entangler. These kinds of boundary unitaries
have been classified and studied in exactly solvable models
[23,24] and matrix product unitaries [27–31].

Although LPUs with various kinds of symmetry have
been classified, there exist very few explicit formulas for

topological invariants of these LPUs. For bosonic systems in
1D without any symmetry, there is an explicit formula that
takes as input an LPU and produces the GNVW index, that
classifies LPUs without any symmetry [17,20]. In this work,
we will provide similar formulas for topological invariants of
LPUs with symmetry. These formulas also serve as boundary
invariants for many-body localized Floquet systems with sym-
metry. For simplicity, we will consider only LPUs with strict
locality.

In general, nontrivial G symmetric strict LPUs fall into
two classes: those that entangle SPTs and those that do
not entangle SPTs. For example, all nontrivial strict LPUs
with discrete symmetries in 1D entangle SPTs [22], while
nontrivial strict LPUs with U(1) symmetry in 1D are not
related to SPTs [25]. In this work, we will obtain formulas
for topological invariants of G symmetric strict LPUs that
are SPT entanglers. To specify that we are restricting to this
particular subset of G symmetric strict LPUs, we will refer
to them as G symmetric SPT entanglers in the remainder of
this work. In particular, we will focus on symmetric entanglers
for bosonic “in-cohomology” SPTs. These SPTs are classified
by elements of Hd+1(G, U(1)), and we will show that for the
dimensions and symmetries we consider, the topological in-
variants computed from our formulas completely specify this
element. In short, in this work, we present formulas that take
as input a G symmetric SPT entangler and produce topological
invariants that completely specify the SPT phase it entangles.

We have two guiding principles. First, of course, our for-
mulas must produce the same result for two equivalent LPUs,
that entangle the same SPT phase. Roughly speaking, our
formulas must be insensitive to modification of the input
unitary by any strictly local, symmetric unitary. This means
that they will also be insensitive to G symmetric FDQCs,
which are FDQC constructed out of such symmetric local
unitaries. Second, we try to make our formulas as closed-form
as possible. This means that whenever possible, they only
involve the truncation of operators that are products of on-site
operators, such as on-site symmetry operators. In particular,
when G is unitary, we do not truncate the SPT entangler.

These two guiding principles, along with the fact that we
classify G symmetric SPT entanglers rather than SPT states,
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differentiate the work we present here from previous related
work. In particular, most work related to classifying SPTs
via their entanglers do not assume that the entanglers respect
the symmetry [32–37]. This extra assumption allows us to
make our invariants more explicit. Since broad classes of SPTs
can be entangled by symmetric entanglers, we do not lose
much generality in making this assumption. Reference [13]
also assumed that the SPT entangler is symmetric as a whole.
Using the SPT entangler truncated to a finite disk, they ob-
tained a corresponding “anomalous edge representation of the
symmetry.” They then showed how to get the cocycle labeling
the SPT phase from the anomalous edge representation of
the symmetry. We discuss the relation between our methods
and the anomalous representation of the symmetry on the
edge in Appendix C. Unlike Ref. [13], we do not truncate the
SPT entangler to compute our invariants, when the symmetry
is unitary. In some cases, when the entangler is actually a
nontrivial QCA (even in the absence of symmetry), it cannot
be truncated at all. Furthermore, our invariants are actually
gauge invariant quantities: unlike the cocycles computed in
Ref. [13], which are only defined up to a coboundary, our
invariants have no ambiguity.

The rest of this paper is organized as follows. We include in
this section a summary of our main results and an illustrative
example of an invariant for 1D SPT entanglers. In Sec. II,
we describe our general framework for classifying SPT en-
tanglers with flux insertion operators. We then apply this
framework to SPT entanglers related to 1D SPTs in Sec. III
and 2D SPTs with discrete, Abelian, unitary symmetries in
Sec. IV. We include some results regarding fermionic SPT
entanglers in Sec. V, before concluding with interesting open
questions in Sec. VI. We defer most of the proofs, including
the explicit derivations of relations between our invariants and
known SPT invariants, to the appendices.

A. Summary of results

Our main result is a framework for classifying LPUs with
symmetry, which can be applied to both SPT entanglers and
LPUs that are not related to SPTs. Using this framework,
we obtain topological invariants for various kinds of SPT
entanglers. These topological invariants can be divided into
two main groups.

Our first group of invariants apply to 1D SPT entanglers
with discrete symmetries. When the symmetry is unitary and
discrete, we obtain closed form formulas for topological in-
variants that take as input only a global SPT entangler U
and global symmetry operators. These formulas are given in
Eq. (28) for Abelian symmetries and (33) for non-Abelian
symmetries. We also have an invariant for time-reversal SPT
entanglers, written in Eq. (38), but it is not completely closed
form because it involves truncating the entangler. These in-
variants can be easily leveraged to obtain invariants of SPT
entanglers in higher dimensions described by decorating do-
main walls with 1D SPTs, written in Eq. (43).

Our second group of invariants apply to 2D SPT entanglers
with discrete, unitary, Abelian symmetries, beyond those with
domain walls decorated by 1D SPTs. The explicit formulas
for these invariants are given by Eqs. (47) and (54), and are
not completely closed form in that they involve truncation

of certain non-on-site operators. Again, these invariants can
be leveraged to obtain invariants of SPT entanglers in higher
dimensions described by decorating domain walls with 2D
SPTs.

We also obtain a closed form formula, given by Eq. (66),
for the Z2 invariant classifying SPT entanglers with only
fermion parity symmetry in 1D. Nontrivial SPT entanglers
in this case entangle the Kitaev wire, and differ from the
others considered in this work in that they are nontrivial QCAs
[4,21].

B. Example: Z2 × Z2 SPT entangler in 1D

To give a flavor of the kinds of formulas for topological
invariants studied in this work, we begin with a simple exam-
ple. In this example, we present a set of formulas that compute
topological invariants for SPT entanglers in 1D with Z2 × Z2

symmetry. The classification of 1D SPTs with this symmetry
is Z2: there is one trivial phase and one nontrivial phase.
We will show that our closed form formulas compute a set
of U(1) phases {c(g, h)} = {ω(g,h)

ω(h,g) }, where ω(g, h) ∈ H2(Z2 ×
Z2, U(1)) labels the SPT phase.1 The set of phases {c(g, h)}
for all g, h ∈ Z2 × Z2 completely defines the SPT phase.

The physical setup consists of a finite, periodic 1D chain
with an even number of spin-1/2’s. The two global Z2 sym-
metries, generated by unitary operators Ug1 and Ug2 , are spin
flips on all the even sites and all the odd sites, respectively:

Ug1 =
∏

r even

σ x
r Ug2 =

∏
r odd

σ x
r , (1)

where σ x
r is the Pauli x operator on site r. An example of a

symmetric, gapped Hamiltonian with a trivial ground state is
given by

H0 = −
∑

r

σ x
r . (2)

The ground state of H0 is the state with all the spin-1/2’s in
the +1 eigenstate of σ x

r . A Z2 × Z2 symmetric SPT entangler
is given by

U =
∏

r

e
iπ
4 (−1)rσ z

r σ z
r+1 . (3)

Notice that U is symmetric under both global Z2 symme-
tries, but its individual gates e

iπ
4 (−1)rσ z

r σ z
r+1 are not symmetric

under either symmetry. This is expected, because for U to be
a nontrivial SPT entangler, it must contain gates that break the
symmetry.

To confirm that U indeed entangles the Z2 × Z2 SPT,
notice that U transforms H0 into HSPT, whose ground state
is the well-known cluster state:

HSPT = U †H0U = −
∑

r

σ z
r−1σ

x
r σ z

r+1. (4)

Our formula for c(g, h) takes as input U and two restricted
symmetry operators UA,g and UB,h, where g, h ∈ Z2 × Z2.
UA,g and UB,h are restrictions of global symmetry operators Ug

and Uh to intervals A and B, respectively. Because each of the

1See Appendix A for a review of group cohomology.
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A

B

FIG. 1. c(g, h) in Eq. (6) is defined using symmetry operators for
sufficiently large, overlapping intervals A and B on a 1D lattice.

global symmetry operators is a product of on-site operators,
these restrictions can be done unambiguously. In particular,

UA,g1 =
∏
r∈A

r even

σ x
r UB,g2 =

∏
r∈B

r odd

σ x
r . (5)

It is important that we choose A and B to be sufficiently
overlapping intervals in 1D, as illustrated in Fig. 1. For con-
creteness, let A = [0, 2a] and B = [a, 3a] where a is an odd
integer and a � 1 (we will later precisely define the relevant
length scales). Then c(g, h) is given by

c(g, h) = Tr(U †UA,gUUB,hU †U †
A,gUU †

B,h), (6)

where Tr is a trace normalized by the dimension of the total
Hilbert space, so that Tr(1) = 1.

Let us check that Eq. (6) produces the correct c(g, h) for
U = 1 and for the SPT entangler in Eq. (3). It is easy to
see that, because UA,g and UB,h commute, c(g, h) = 1 for all
g, h ∈ Z2 × Z2 if U = 1. On the other hand, if U is the SPT
entangler defined in (3), then U attaches a σ z

r of the opposite
sublattice near the left and right endpoints of a restricted
symmetry operator. For example, U †UA,gU = σ z

−1UA,gσ
z
2a+1.

It follows that c(g1, g2) = −1 = c(g2, g1) and c(g, h) = 1
otherwise, which matches with the set {c(g, h)} defining the
1D Z2 × Z2 SPT.

Notice that Eq. (6) satisfies our two guiding principles.
First, it is insensitive to modifications of U by local, symmet-
ric unitaries. If U → UrU where Ur is fully supported in A or
A, then we can commute Ur through UA,g and U †

A,g
to cancel

with its inverse. If Ur is fully supported deep in B or B, then
we can use UrU = U (U †UrU ) and then commute U †UrU
through UB,h and U †

B,h. For sufficiently large and overlapping

A and B, any local unitary is supported deep inside A, A, B,

or B, so Eq. (6) is insensitive to U → UrU for any local, sym-
metry unitary. This ensures that Eq. (6) produces a topological
invariant. Second, it is completely closed form in that it only
takes as input the global SPT entangler U and restrictions of
Ug and Uh, which are products of on-site operators. Formulas
like Eq. (6) are the main result of this paper.

II. FRAMEWORK FOR CLASSIFYING LPUS
WITH SYMMETRY

In this section, we will present our framework for classi-
fying LPUs with symmetry. This framework is based on a set
of (d − 1) dimensional operators that we call flux insertion
operators, that form an anomalous representation of the sym-
metry. These operators are useful for our purposes because
they can be easily computed from the SPT entangler when the
symmetry is on-site, and completely classify the entangler.

x

t

A

FIG. 2. A depth 3 FDQC in 1D consists of three layers where
each layer is a product of commuting local unitary operators. Here,
the x axis is the spatial dimension and the y axis is time. Each black
circle represents a lattice site and each rectangle is a local unitary
operator. To restrict the FDQC to the region A, we simply delete all
the local unitaries with support outside of A. The restricted FDQC is
a product of all the colored rectangles.

A. Preliminaries: SPT phases and SPT entanglers

For the most part, we will consider only bosonic systems
in this work. Specifically, we consider a lattice of bosonic
spins on a general d dimensional lattice � with a symmetry
G, which may contain antiunitary elements such as time re-
versal. The action of G on the lattice spins is given by {UgKg},
where Kg is complex conjugation for antiunitary elements and
Kg = 1 for unitary elements.

To define SPT phases and SPT entanglers, it is useful to
first define what we mean by FDQC. An FDQC is a unitary U
that can be written as a finite product of layers Un, n ∈ [1, N],
where each layer Un is a product of commuting local unitary
operators (“gates”):

U = UNUN−1 · · ·U1 Un =
∏

r

Un,r . (7)

Here, each gate Un,r is strictly supported within a bounded
distance λ of the site r ∈ �. By definition, N must be finite, in
that it does not grow with the system size. The generic form
of a 1D FDQC is illustrated in Fig. 2. FDQCs can be used to
approximate, by Trotter decomposition, finite time evolution
by any local Hamiltonian.

An important property of FDQCs is that they can be re-
stricted. To restrict an FDQC to a region A, we simply remove
all the gates with support outside of A. For example, a restric-
tion of a 1D FDQC to an interval A is shown in Fig. 2.

A G-symmetric FDQC is an FDQC in which every local
gate Un,r is symmetric. In other words, every Un,r commutes
with every element of {UgKg}. They describe finite time evo-
lution with a local Hamiltonian that respects the symmetry at
all points in time.

One can also consider a more general unitary operator
which we call an LPU, that simply maps local operators to
nearby local operators. Recall that in this work we only con-
sider strict LPUs, which map strictly local operators to nearby
strictly local operators, without exponentially decaying tails.
We can associate with any LPU an “operator spreading
length” ξ , which is the maximum distance it can spread a local
operator. Specifically, for any operator Or supported on site r,
U †OrU is supported within a disk of radius ξ centered at r. It
is easy to see that for FDQCs, which form a subset of LPUs,
ξ = 2Nλ. A G-symmetric LPU respects the symmetry as a
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whole, but may not have a decomposition into an FDQC built
out of local, symmetric gates.

A G-symmetric strict LPU U is an SPT entangler if it
satisfies

U |ψ0〉 = |ψSPT〉, (8)

where |ψ0〉 is a symmetric product state of the form |ψ0,r〉⊗|�|,
satisfying UgKg|ψ0,r〉 = |ψ0,r〉 for all g ∈ G. Here, |ψSPT〉 is a
(possibly trivial) SPT state. By definition, |ψSPT〉 is a symmet-
ric state that can be connected to |ψ0〉 by an FDQC [1]. When
|ψ0〉 realizes a nontrivial SPT phase, this FDQC must contain
gates that break the symmetry explicitly. In this paper, we
consider symmetric entanglers. In many cases, the entangler
can be written as an FDQC that contains symmetry-breaking
gates, but respects the symmetry as an entire unitary operator.
However, for some SPTs, one must use a QCA to obtain an
entangler that is symmetric as a whole [14–16].

We define two SPT entanglers as equivalent if they differ
by a G symmetric FDQC:

U ′ ∼ U : U ′ = G FDQC · U . (9)

This means that the SPT states they entangle are equivalent,
because

|ψ ′
SPT〉 = G FDQC · |ψSPT〉, (10)

which is the usual definition of equivalence for SPT states
[1]. Note that the converse does not necessarily hold: two
equivalent SPT states, that differ by a G symmetric FDQC,
may have inequivalent entanglers.

1. Flux insertion

One way to detect the anomaly of an SPT is by inserting
symmetry flux and measuring the degrees of freedom bound
to the flux. For example, in an integer quantum Hall state, the
Hall conductance is computed from the quantized U(1) charge
bound to 2π flux insertion [38].

When G is a unitary, on-site symmetry, we can insert flux
using flux insertion operators. A “closed” flux insertion oper-
ator W U

A,g is defined as follows. For any region A ⊂ � deep in
the bulk of the SPT, W U

A,g is a (d − 1) dimensional operator
supported near the boundary of A that has the same action on
the SPT state as UA,g = ∏

r∈A Ur,g, where Ur,g is the on-site
representation of the symmetry:

W U
A,g|ψSPT〉 = UA,g|ψSPT〉. (11)

A closed flux insertion operator does not insert any sym-
metry flux, but is useful for defining an open flux insertion
operator, which does insert symmetry flux. Assuming that
W U

A,g is a FDQC, we can restrict W U
A,g to a region A ⊂ ∂A,

where ∂A is the support of W U
A,g. The resulting operator, which

we denote by W U
A,g, is strictly supported on a (d − 1) di-

mensional manifold A. We can also define W U
A,g

= W U
A,gW

U†
A,g,

which is roughly supported on A = ∂A \ A.2 Using these
definitions, we have

W U
A,g|ψSPT〉 = W U†

A,g
UA,g|ψSPT〉. (12)

2Strictly speaking, W U
A,g

is supported on a slightly larger region and
overlaps slightly with A.

WU
A,g

UA,g

UA,g

WU
A,g

∼

∼

(a)

(b)

WU†
Ā,g

FIG. 3. For illustration purposes, we specialize here to 2D. (a) A
closed flux insertion operator W U

A,g (pink annulus) acts, on the SPT
state |ψSPT〉 = U |ψ0〉, as the symmetry transformation restricted to
a 2D patch A (grey disk). (b) When W U

A,g is an FDQC, we can
restrict it to W U

A,g, which is supported on an open 1D interval A. This
operator inserts symmetry flux at the boundary of A (black crosses)
and has the same action on |ψSPT〉 as the symmetry defect operator
DU

A,g = W U†
A,g

UA,g. DU
A,g is a symmetry defect operator because it acts

like the symmetry transformation near the top boundary of A (which
we denote by A), but leaves |ψSPT〉 invariant near the lower boundary
of A (which we denote by A).

Here, DU
A,g = W U†

A,g
UA,g is a symmetry defect operator: it acts

as UA,g near A and the interior of A, and W U†
A,g

dresses the

operator so that it leaves the ground state invariant near A.
W U

A,g inserts symmetry flux through the boundaries of the
restriction, as illustrated in Fig. 3. For example, in Fig. 3, W U

A,g
still acts like UA,g on |ψSPT〉 near the upper boundary of A, but
it leaves the ground state unchanged in the lower boundary of
A. This means that it creates an extrinsic defect line along the
upper boundary of A, which terminates at symmetry fluxes.

B. Flux insertion operators from LPUs

We will now introduce our main tool for studying SPT
entanglers, which is a particular choice of flux insertion op-
erators. Note that in the study of SPT phases, any W U

A,g that
has the action defined by (11) on the SPT ground state is
a valid flux insertion operator. However, we can define a
particular W U

A,g that satisfies (11) that is easy to compute using
the SPT entangler. This definition uses the SPT entangler U ,
the symmetry operator UA,g, and a slightly smaller symmetry
operator UAin,g , as follows:

W U
A,g = UA,gUU †

Ain,g
U †. (13)

As shown in Fig. 4, Ain is a subset of A containing
all the points lying deeper than ξ within A: Ain = {r ∈ A :
dist(r, A) > ξ}. Since U is G-symmetric and locality preserv-
ing, it can only modify UAin,g within ξ of the boundary of Ain,
which is a strip of width 2ξ inside A. Denoting this strip by
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A
∂AAin

FIG. 4. W U
A,g is defined using Ug restricted to two regions A (large

disk) and Ain (middle disk), which contains points deeper than ξ

inside A. W U
A,g is fully supported on ∂A, which is a strip of width

2ξ inside A.

∂A, we have

UUAin,gU
† = UAin,gU∂A,g, (14)

where U∂A,g is an operator fully supported in ∂A.
Let us now check that W U

A,g is a (closed) flux insertion
operator. It is easy to see that W U

A,g is supported near the
boundary of A, in ∂A. To check that W U

A,g has the same action
on the SPT state as UA,g, note that

W U
A,g|ψSPT〉 = UA,gUU †

Ain,g
|ψ0〉

= UA,gU |ψ0〉
= UA,g|ψSPT〉. (15)

To get the second line, we used the fact that |ψ0〉 is invari-
ant under U †

Ain,g
.

1. Properties of {WU
A,g}

The set of operators {W U
A,g} is easy to compute because

it only involves restricting the global symmetry operator Ug,
which can be done unambiguously for unitary, on-site sym-
metries. It has several important properties:

(1) every element in {W U
A,g} is a (d − 1) dimensional strict

LPU;
(2) {W U

A,g} forms a representation of G;
(3) W U

A,g satisfies

U †
h W U

A,gUh = W U
A,h−1gh; (16)

(4) U ′ ∼ U according to Eq. (9)3 if and only if {W U ′
A,g} ∼

{W U
A,g} for any A ⊂ �, where{

W U ′
A,g

} ∼ {
W U

A,g

}
: W U ′

A,g = V †W U
A,gV (17)

3Strictly speaking, we will only prove that U ′ ∼ U up to multi-
plication by lower dimensional G symmetric QCA. However, we
conjecture that this stronger statement holds, as we discuss in Ap-
pendix B.

for every g ∈ G, where V is a G symmetric FDQC fully
supported within ξ of the boundary of Ain.

The first three properties help us classify different possible
{W U

A,g} while the fourth property justifies using {W U
A,g} to clas-

sify SPT entanglers and, more generally, G symmetric LPUs.
We will now prove each of the four properties.
Proof of property 1. We will first show that W U

A,g is sup-
ported on a (d − 1) dimensional manifold, matching the
description of a flux insertion operator in Sec. II A 1. This
follows directly from the definition of W U

A,g in (11) together
with (14). Note that (14) relies on U being G-symmetric and
locality preserving. Next, W U

A,g is a strict LPU because it is the
product of four strict LPUs: UA,g and UAin,g are obviously strict
LPUs, and U is also a strict LPU. UA,g and UAin,g both have
operator spreading length zero because they are products of
on-site operators, while U and U † both have operator spread-
ing length ξ . Therefore W U

A,g is a strict LPU with operator
spreading length 2ξ .

Proof of property 2. For {W U
A,g} to form a representation of

G, {W U
A,g} must satisfy W U

A,gW
U
A,h = W U

A,gh. By definition,

W U
A,gW

U
A,h = UA,gUU †

Ain,g
U †UA,hUU †

Ain,h
U †. (18)

Notice that U only modifies UA,h by an operator U∂A′,h sup-
ported within ξ of the boundary of A: U †UA,hU = UA,hU∂A′,g.
Since U∂A′,h is supported outside of Ain, U †UA,hU acts as Uh

within Ain. Therefore, to pull it through U †
Ain,g

, we conjugate g
by h:

W U
A,gW

U
A,h = UA,gUU †UA,hUU †

Ain,h−1ghU
†
Ain,h

U †

= UA,gUA,hUU †
Ain,h−1ghU

†
Ain,h

U †. (19)

Simplifying further, we get

W U
A,gW

U
A,h = UA,ghUU †

Ain,ghU †

= W U
A,gh. (20)

One important implication of property 2 is that, in order
for {W U

A,g} to form a representation of a finite group G, it must
have finite order: (W U

A,g)|g| = 1. The only nontrivial bosonic
QCA in the absence of symmetry in 1D and 2D are trans-
lations [17,18], which have order proportional to the system
size. This means that for systems of spatial dimension up to
three, {W U

A,g} must all be FDQCs (if we ignore symmetry).
When this is the case, we can always truncate W U

A,g to insert
symmetry flux.

Proof of property 3. We use the fact that U commutes with
global symmetry operators Uh to obtain

U †
h W U

A,gUh = U †
h UA,gUhUU †

h U †
Ain,g

Uh

= UA,h−1ghUU †
Ain,h−1ghU

†

= W U
A,h−1gh. (21)

In particular, if G is Abelian, then W U
A,g commutes with all

global symmetry operators.
Proof of property 4. We will sketch the idea of the “only

if” direction here; the precise version and the proof for the “if”
direction are more complicated so we defer them to Appendix.
B. Note that the “only if” direction is sufficient for using
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{W U
A,g} to classify LPUs with symmetry, in that if {W U ′

A,g} is not
equivalent to {W U

A,g}, then U ′ is not equivalent to U . The other
direction ensures that {W U

A,g} completely classifies symmetric
LPUs.

The rough idea of the “only if” direction is that if we
modify U ′ = YU , where Y is a G symmetric FDQC, then by
definition, W U ′

A,g is given by

W U ′
A,g = UA,gYUU †

Ain,g
U †Y †. (22)

Because Y is a G symmetric FDQC, we can commute
the gates fully supported deep inside Ain and far outside Ain

through UU †
Ain,g

U †. Let us denote the product of the remaining

gates by Ỹ , so that W U ′
A,g = UA,gỸUU †

Ain,g
U †Ỹ †. In Appendix B,

we show that Ỹ is guaranteed to be fully supported within ξ

of the boundary of Ain. This means that we can commute it
through UA,g:

W U ′
A,g = ỸW U

A,gỸ
†, (23)

where Ỹ is, as desired, a G symmetric FDQC fully supported
within ξ of the boundary of Ain.

2. Using {WU
A,g} to classify LPUs

We showed that {W U
A,g} forms a (d − 1) dimensional

representation of G. However, this representation may be
anomalous, in that there may be an obstruction to making
{W U

A,g} equivalent, according to property 4, to {W 1
A,g}. Our

framework for obtaining topological invariants for LPUs with
symmetry is computing {W U

A,g} and then detecting these dif-
ferent kinds of obstructions. Some kinds of obstructions are
not related to SPT invariants; these are related to G symmetric
LPUs that are not SPT entanglers. We will focus on the ob-
structions that can be directly related to known SPT invariants.

In fact, as we show in Appendix C, {W U
A,g} carries the

same anomaly as the boundary representation of the symmetry
described in Ref. [13]. We use {W U

A,g} rather than the boundary
representation because it is more explicit, and can be obtained
without truncating the SPT entangler. Moreover, anomalies
are sometimes easier to detect using {W U

A,g} rather than the
boundary representation because {W U

A,g} satisfies additional
properties described in Sec. II B 1. In particular, properties
3 and 4 do not apply to the boundary representation of the
symmetry.

With the above approach in mind, we will now derive
formulas for topological invariants for G symmetric SPT
entanglers in various dimensions. We begin with 1D SPT
entanglers.

III. 1D SPT ENTANGLERS

In this section, we will present formulas for topological
invariants for 1D bosonic SPT entanglers with discrete sym-
metries. We will first focus on Abelian, unitary symmetries,
and present the simple generalization to non-Abelian sym-
metries in Sec. III C. Our invariants for SPT entanglers with
antiunitary time-reversal symmetry is less closed form; we
present it in Sec. III D. The topological invariants, in the
Abelian case, simply compute {c(g, h)} = {ω(g,h)

ω(h,g) }.

A. 1D SPT entanglers with Abelian symmetries

Consider a 1D bosonic spin chain, where A is a finite
1D interval. The boundary of A consists of two disconnected
points, so W U

A,g is a product of two local operators:

W U
A,g = UA,gUU †

Ain,g
U †

= LU
A,g ⊗ RU

A,g. (24)

Since G is Abelian, property 3 says that W U
A,g commutes

with the global symmetry operator Uh for every h ∈ G. Notice
that if W U

A,g = V †W 1
A,gV , where V satisfies the definition in

property 4, then LU
A,g = V †L1

A,gV and RU
A,g = V †R1

A,gV would
both commute with Uh. Therefore, if LU

A,g and RU
A,g fail to

individually commute with Uh, then {W U
A,g} is not equivalent

to {W 1
A,g}, so there must be an obstruction to making U an

G-symmetric FDQC.
Physically, this means that nontrivial SPT entanglers “dec-

orate” the endpoints of a symmetry operator with charge
of other global symmetries. Because LU

A,g and RU
A,g are far

separated, in order for LU
A,g ⊗ RU

A,g to commute with Uh, the
commutator of RU

A,g with Uh must be a phase and the commuta-
tor of LU

A,g with Uh must be the opposite phase. To measure the

phase, we can compute Tr(RU
A,gUhRU†

A,gU
†
h ), but this involves

the extra step of truncating W U
A,g to isolate RU

A,g. Instead, we
compute the commutator of W U

A,g with UB,h, where B is an
interval that includes the support of RU

A,g, but not the support
of LU

A,g. This gives

c(g, h) = Tr
(
W U

A,gUB,hW U†
A,gU †

B,h

)
, (25)

where Tr refers to a trace that is normalized such that
Tr(1) = 1.

Equation (25) is already completely closed form, but we
can simplify it even further by using the explicit form of
W U

A,g from (13). To generalize more easily to non-Abelian
symmetries, it is convenient to use a different representation
{WU

A,g}, given by

WU
A,g = U †W U

A,gU = U †
Ain,g

U †UA,gU . (26)

This representation carries the same anomaly as {W U
A,g}

because it is obtained from {W U
A,g} by conjugation by an

LPU. Furthermore, defining WU
A,g = LU

A,g ⊗ RU
A,g, we see that

RU
A,g = U †RU

A,gU has the same commutator with Uh as RU
A,g,

because U commutes with Uh. RU
A,g is fully supported to the

right of Ain, and since B only needs to contain the full support
of RU

A,g, we can choose Ain and B to be adjacent and disjoint.
Replacing W U

A,g in (25) by WU
A,g, we get

c(g, h) = Tr
(
U †

Ain,g
U †UA,gUUB,hU †U †

A,gUUAin,gU
†
B,h

)
. (27)

Since we chose UAin,g and UB,h to have disjoint support, we
can commute UAin,g through UB,h to obtain

c(g, h) = Tr(U †UA,gUUB,hU †U †
A,gUU †

B,h). (28)

Equation (28) is the main result of this section, and the
generalization of (6) to general Abelian groups. Notice that
when G is Abelian, we can always commute UAin,g through
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UB,h, regardless of their support. However, when G is non-
Abelian, we can only do this if the two operators are supported
on disjoint intervals, as they are here.

To check that the invariant given by Eq. (28) is invariant
under modification of U by any G symmetric FDQC, we can
simply check that c(g, h) is invariant under U → UUr or U →
UrU where Ur is a local, G symmetric unitary anywhere in the
system. We already checked this in Sec. I B. Since an FDQC
is built out of such Ur operators, this means that c(g, h) is
invariant under modification of U by any G symmetric FDQC,
as long as A and B are sufficiently large.

The proof follows the same line of argument as the proof
of Theorem 1.1 from Ref. [39]. We sketch the proof again
here. Suppose that U = YU where Y = ∏N

n=1 Un is a G-
symmetric FDQC, with Un = ∏

r Un,r a product of disjoint
G-symmetric local unitaries. We can first remove all the gates
U1,r in U1 fully supported deep in A or A by commuting
(
∏N

n=2 Un)†U1,r (
∏N

n=2 Un) through UA,g and all the gates U1,r′

in U1 fully supported deep in B or B (i.e., the rest of the
gates in U1) by commuting U †U1,r′U through UB,h. This is
possible as long the endpoints of (overlapping) A and B are all
separated by distances greater than max(ξ + 2λ, 2Nλ), where
ξ is the operator spreading length of U and λ is the radius of a
single gate in Y . These length scales ensure that all operators
(
∏N

n=2 Un)†U1,r (
∏N

n=2 Un) and U †U1,r′U are fully supported
in A, A, B, or B. Assuming that A and B are sufficiently
large and overlapping, we can proceed in the same way to
remove all the gates in U2, then U3, up to UN . This completely
removes Y .

This concludes the proof that c(g, h) defined in (28) is a
topological invariant. Specifically, it is invariant under U →
YU for any G-symmetric FDQC Y , as long as A and B are
sufficiently large and overlapping.

B. Relation to SPT invariants

The obstruction to making the left and right parts of W U
A,g

individually commute with Uh is directly related to the projec-
tive representation defining the 1D SPT phase entangled by U ,
when G is Abelian. More generally, not restricting to Abelian
groups, W U

A,g = LU
A,g ⊗ RU

A,g forms a linear representation of G
while LU

A,g and RU
A,g individually can form opposite projective

representations of G:

LU
A,gLU

A,h = ω(g, h)−1LU
A,gh,

RU
A,gRU

A,h = ω(g, h)RU
A,gh. (29)

The function ω(g, h) : G × G → U(1) has an ambiguity in
that we can attach a phase β(g) to each RU

A,g and β−1(g) to
each LU

A,g, which changes ω(g, h) by a coboundary: ω(g, h) →
ω(g, h)β(g)β(h)β−1(gh). When G is Abelian, RU

A,gh = RU
A,hg,

so we can define ω(g, h) by a set of gauge-invariant phases
{c(g, h)}, given by

c(g, h) = ω(g, h)

ω(h, g)
= Tr

(
RU

A,gRU
A,hRU†

A,gRU†
A,h

)
. (30)

c(g, h) is clearly gauge invariant because any phase attached
to RU

A,g or RU
A,h is canceled by the opposite phase attached

to RU†
A,g or RU†

A,h. Using the fact that LU
A,g ⊗ RU

A,g is an ordi-

nary representation of G, it is easy to show that LU
A,g has the

opposite set of phases: LU
A,gLU

A,hLU†
A,gLU†

A,h = c(g, h)−1. The set
of phases {c(g, h)} for every pair of group elements g, h ∈ G
completely defines the projective representation of RU

A,g when
G is Abelian, and therefore completely classifies 1D bosonic
entanglers with unitary, discrete, Abelian on-site symmetries.

It is not obvious that the invariant defined in (28) is c(g, h)
defined in (30). We prove that these two quantities are equal
in Appendix D.

C. 1D SPT entanglers with discrete, non-Abelian symmetries

SPTs with non-Abelian, unitary, on-site symmetries are
also classified by projective representations. In this section,
we will show how specify the projective representation from
quatntities computed using the SPT entangler, using formulas
similar to (28).

According to Schur’s theorem, 1D projective representa-
tions (also known as Schur multipliers) of on-site symmetries
are completely specified by all the gauge-invariant phases
{eiφ(γn )} [40]. To obtain these gauge-invariant phases, we con-
sider all products of commutators γn, of the form

γn =
∏

i

gihig
−1
i h−1

i , (31)

satisfying the property that multiplying the elements on the
right-hand side in the group gives the identity. Notice that
this is a natural generalization of the Abelian case, where we
consider elements of the form ghg−1h−1 which multiply to
identity in the group. The fact that multiplication in the group
gives identity means that, if instead we multiply the projective
representations, we get a phase

eiφ(γn ) = Tr

[∏
i

(
RU

A,gi
RU

A,hi
RU†

A,gi
RU†

A,hi

)]
. (32)

Phases of this form are gauge invariant because every
group element on the right-hand side appears an equal number
of times as its inverse. Therefore any phase attached to RU

A,gi

is canceled by the opposite phase attached to RU†
A,gi

. Phases
of the form (32) naturally generalize {c(g, h)} to non-Abelian
symmetries. We show in Appendix D 2 that we can write
eiφ(γn ) as

eiφ(γn ) = Tr

[∏
i

(
U †UA,giUUB,hiU

†U †
A,gi

UU †
B,hi

)]
, (33)

where A and B are overlapping intervals as in Eq. (28).

D. 1D SPT entanglers with time-reversal symmetry

Time reversal symmetry is different from the unitary, on-
site symmetries discussed in the previous sections because
it cannot be restricted. This is because it is an antiunitary
symmetry, taking the form T = UT K , where K is complex
conjugation. While UT is a unitary operator that can be
restricted, K acts everywhere; there is no way to restrict com-
plex conjugation.

However, we can restrict the SPT entangler U . In 1D,
there is a Z2 classification of SPTs with time-reversal sym-
metry. We will now show how to compute the corresponding
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Z2-valued invariant from the SPT entangler. Our invariant is
closely related to the state-based concept of “local Kramers
degeneracy” described in Ref. [41].

First, we note that for an SPT entangler to be time-reversal
symmetric, it must satisfy

T −1U †T = U † → T −1U †TU = 1. (34)

Now suppose that we truncate U to UA, which is fully
supported in the interval A. Then

T −1U †
A TUA = OU

A = LU
A,T ⊗ RU

A,T , (35)

where LU
A,T and RU

A,T are local operators at the left and right
endpoints of A. Conjugating OU

A by T gives

T −1(T −1U †
A TUA)T = T −2U †

A T −1T 2UAT . (36)

Now using T 2 = T −2 = ±1, we get

T −1(T −1U †
A TUA)T = U †

A T −1UAT = OU†
A . (37)

This means that T −1OU
A T OU

A = 1. However, it may not
be true that T −1LU

A,T T LU
A,T = 1 and T −1RU

A,T T RU
A,T = 1 in-

dividually. We claim that the following topological invariant
classifies time-reversal invariant SPT entanglers:

η = Tr
(
T −1RU

A,T T RU
A,T

)
. (38)

In particular, η = 1 for time-reversal invariant FDQCs and
η = −1 for a nontrivial time-reversal SPT entangler.

We will now show that η is a topological invariant in that
it is invariant under modification of U → UrU or U → UUr ,
where Ur is any time-reversal symmetric local unitary. It is
clear that if U → UrU and Ur is fully supported in A or A, then
Ur commutes through T so OU

A is left unchanged: OU
A = OUrU

A .
Similarly, if U → UUr where Ur is fully supported deeper
than ξ within A or A, then UUrU † commutes through T and
OU

A is also left unchanged. Therefore the only modifications
of U that might change η are those near the endpoints of A.
However, if we modify U → U ′ near the right endpoint of A
and then restrict, the resulting operator OU

A must still satisfy
T −1OU ′

A T OU ′
A = 1, so(
T −1LU ′

A,T T LU ′
A,T

)(
T −1RU ′

A,T T RU ′
A,T

) = 1. (39)

Since a modification near the right endpoint of A does not
change the first factor in (39), it cannot change the second
factor and therefore cannot change η. A similar argument
shows that η is invariant under modifications of U near the
left endpoint of A, so η is in fact invariant under U → UrU
or UUr , where Ur is a time-reversal symmetric local unitary
anywhere in the system. This confirms that η is a topological
invariant for time-reversal symmetric SPT entanglers.

We can also show that η = ±1, using the fact that T RU
A,T is

an antiunitary operator and η is a scalar with unit norm. To do
this, we compute (T RU

A,T )3 and use associativity:(
T RU

A,T

)3 = ηT 2T RU
A,T = T RU

A,T T 2η∗. (40)

Here, η is complex conjugated in the last term because it
appears to the right of T , which is antiunitary. Canceling the
T 2 = ±1 in Eq. (40), we see that η to be real. Combined with
the fact that η is a scalar with unit norm, this means that η

must equal ±1.

A B

C

A AR

A
B

(a)

(b)

(c)

FIG. 5. Setup for calculation of 2D topological invariants de-
scribed in Sec. IV. (a) To compute eiθgi , we use W U

A,gi
, which is

supported on A is a subset of the 1D boundary of a 2D region A.
AR ⊂ A is the right half of A, and W U

A,gi
and W U

AR,gi
are restricted in

the same way on the right endpoint. (b) To compute eiθgi ,g j , we use
W U

A,gi
and UB,g j , where B is a region that includes the right endpoint

of A but not the left endpoint. (c) To compute eiθgi ,g j ,gk , we use W U
A,gi

and symmetry operators for two other overlapping regions B and C.

A simple example of an SPT entangler with time-reversal
symmetry is the same LPU we used for Z2 × Z2, written in
Eq. (3). We take time reversal to act as

T =
(∏

r∈�

σ x
r

)
K. (41)

Truncating U defined in (3) to UA = ∏R−1
r=L e

iπ
4 (−1)rσ z

r σ z
r+1

gives OU
A = U 2

A = σ z
Lσ z

R. Therefore RU
A,T = σ z

R. In this case, it
is easy to compute η = −1.

E. Higher dimensional SPT entanglers with 1D decorated
domain walls

We can use our invariants for 1D SPT entanglers to obtain
closed form formulas for topological invariants of certain
kinds of higher dimensional SPT entanglers. These SPT en-
tanglers entangle SPTs of a symmetry group that is a product
of two groups G × H (here, we assume that G and H are
both unitary), where the anomaly corresponds to “decorated
domain walls.” This means that the domain walls of one
symmetry, say G, carry SPTs of another symmetry, say H .
Physically, the action of the SPT entangler can be thought of
as depositing H SPTs onto G domain walls.

More specifically, consider a 2D system with symmetry
group G × H , with three overlapping disks A, B, and C as
illustrated in Fig. 5(c). Let k be the generator of the G sym-
metry and define W U

C,k as usual:

W U
C,k = UC,kUU †

Cin,k
U †. (42)

Any W U
C,k equivalent to W 1

C,k would be an H symmetric
FDQC of order |k|. Our topological invariants in this case de-
scribe obstructions to making W U

C,k an H-symmetric FDQC of
order |k|. W U

C,k is supported near the 1D boundary of C, and the
only constraints on W U

C,k are that it is a G × H symmetric LPU
and has order |k|. If W U

C,k entangles an SPT of the symmetry
H , then by definition, it cannot be an H symmetric FDQC, and
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is therefore an anomalous representation of the symmetry. If
H is Abelian, we can simply plug in W U

C,k in (28) in place
of U :

c(g, h; k) = Tr
(
W U†

C,k UA,gW
U

C,kUB,hW U†
C,k U †

A,gW
U

C,kU
†
B,h

)
, (43)

where g, h,∈ H . Notice that from Fig. 5(c), the overlap of
A and B with the support of W U

C,k naturally gives two over-
lapping 1D intervals. We can write UA,g = UA∂C ,gUA∂C ,g and
UB,h = UB∂C ,hUB∂C ,h, where A∂C and B∂C are the overlaps of
A and B respectively with the support of W U

C,k . The trace in
(43) then splits into a product of two traces: one over the
support of W U

C,k and one over the rest of the Hilbert space of
the (finite) 2D lattice. The former trace evaluates to c(g, h)
while the latter trace evaluates to

Tr
(
UA∂C ,gUB∂C ,hU †

A∂C ,gU
†
B∂C ,h

) = 1, (44)

because H is Abelian.
Equation (43) gives a completely closed form formula for a

topological invariant c(g, h; k) labeling the G × H-symmetric
SPT entangler. If H is non-Abelian, then we can similarly plug
in W U

C,k in place of U to compute the characters {eiφ(γ )} defined
in (33).

It is easy to check that c(g, h; k) is invariant under mod-
ification of U by any G × H-symmetric local unitary. It is
invariant under modification of U by G × H symmetric lo-
cal unitaries deep in C or C because these do not change
W U

C,k . Any other local, symmetric unitary changes W U
C,k →

U †
r W U

C,kUr , where Ur is a symmetric local unitary supported
near the boundary of C. But according to the arguments in
Sec. III A, Ur can be removed by commuting it through UA,g

or UB,h, because it is supported either deep in A or A, or deep
in B or B.

This procedure can be easily generalized to higher dimen-
sions by using (d + 1) overlapping d-balls, and continuing
to substitute flux insertion operators for SPT entanglers. This
gives completely closed form formulas for topological invari-
ants of SPT entanglers related to decoration with 1D SPTs.

IV. 2D SPT ENTANGLERS WITH DISCRETE, ABELIAN,
UNITARY, ON-SITE SYMMETRIES

We now consider SPT entanglers in 2D. Like in 1D, we can
also expect that topological invariants of 2D SPT entanglers
correspond to gauge invariant quantities. For entanglers of
in-cohomology SPTs, these gauge invariant quantities should
completely specify ω(g, h, k) ∈ H3(G, U(1)). For a general
cocycle, such a set of gauge invariant quantities may be com-
plicated. However, there is a rather simple set of such gauge
invariant quantities when G is a discrete, Abelian, unitary, on-
site symmetry, i.e., a product of cyclic groups: G = ∏M

i=1 ZNi .
When G is of this form, all of the anomalies are encoded in
the generators of the cyclic groups.

Let us denote the generators of G by g1, g2, · · · gM . There
are three different kinds of invariants eiθgi , eiθgi ,g j , and eiθgi ,g j ,gk

associated with these generators, that completely specify
ω(g, h, k) ∈ H3(G, U(1)). These three kinds of invariants
specify anomalies of type I, type II, and type III cocycles,
respectively [42–46]. Since SPTs described by type III co-
cycles are just particular examples of decorated domain wall

SPTs, the topological invariant for these kinds of entanglers
can be identified with Eq. (43): eiθgi ,g j ,gk = c(gi, g j ; gk ). The
three invariants describe three different obstructions to mak-
ing {W U

A,g} ∼ {W 1
A,g}:

(1) eiθgi is an obstruction to making the restricted flux
insertion operator W U

A,gi
on an open interval an FDQC of

order Ni;
(2) eiθgi ,g j is an obstruction to making W U

A,gi
a ZNj symmet-

ric FDQC of order Ni j , where Ni j is the least common multiple
of Ni and Nj ;

(3) eiθgi ,g j ,gk is an obstruction to making W U
A,gk

a ZNi × ZNj

symmetric FDQC. This is a special case of the decorated
domain wall invariants described in Sec. III E.

We will now derive Eqs. (47) and (54), which compute eiθgi

and eiθgi ,g j from the SPT entangler. Since eiθgi ,g j ,gk is a decorated
domain wall invariant, we will not repeat the derivation here.

Notice that a nonanomalous representation {W 1
A,gi

} would
not have any of the above obstructions. In this section, we
will derive the invariants from the perspective of the above ob-
structions. We will directly connect these invariants to gauge
invariant combinations of cocycles in Appendix F.

A. Type I invariant: eiθgi

The type I invariant, eiθgi , involves only a single cyclic
group, generated by gi. A prototypical example of an SPT
labeled a nontrivial eiθgi is the Levin-Gu Z2 SPT [47]. We will
discuss this example in more detail in Sec. IV C. Note that this
invariant is closely related to results from Ref. [13], as evident
in Appendix F 1.

Since {W U
A,g} forms a representation of the cyclic group ZNi ,

(W U
A,gi

)Ni = 1. This means that W U
A,gi

is a 1D FDQC of order
Ni. Although W U

A,gi
has order Ni, the restricted flux insertion

operator W U
A,gi

on an open 1D interval A does not necessarily
have order Ni. In general, W U

A,gi
satisfies

(
W U

A,gi

)Ni = LU
A,gi

⊗ RU
A,gi

, (45)

where LU
A,gi

and RU
A,gi

are local operators supported near the
left and right endpoints of A respectively (note that these
operators are not related to LU

A,g and RU
A,g discussed in Sec. III).

While W U
A,gi

is a 1D representation of ZNi , it may not be
possible to make the restricted operator W U

A,gi
into a repre-

sentation of ZNi , satisfying (W U
A,gi

)Ni = 1, for any choice of
restriction of W U

A,gi
. In particular, there do not exist any local

unitary operators OL and OR near the left and right endpoints
of A such that (W U

A,gi
OLOR)N1 = 1.

This presents an obstruction to W U
A,gi

being equivalent
to the trivial representation. Specifically, we cannot have
W U

A,gi
= V †W 1

A,gi
V where V is a G symmetric FDQC, because

V †W 1
A,gi

V † can always be truncated as VAW 1
A,gi

V †
A . This satis-

fies (VAW 1
A,gi

V †
A )Ni = 1 because (W 1

A,gi
)Ni = 1.

The obstruction to making W U
A,gi

a representation of ZNi is
encoded in eiθgi , which is given by

eiθgi = Tr
(
W U†

A,gi
RU

A,gi
W U

A,gi
RU†

A,gi

)
. (46)
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An alternative way to write eiθgi , without restricting
(W U

A,gi
)Ni to RU

A,gi
is given by

eiθgi = Tr
[
W U†

AR,gi

(
W U

A,gi

)NiW U
AR,gi

(
W U†

A,gi

)N1
]
, (47)

where AR ⊂ A is the right half of A, as shown in Fig. 5(a). It
is important that W U

AR,gi
has the same truncation as W U

A,gi
near

the right endpoint of AR, and that AR does not contain the
support of LU

A,gi
. The latter point ensures that W U

AR,gi
commutes

with LU
A,gi

.
We now confirm that eiθgi defined above is invariant under

modification of U by any local, symmetric unitary. Since
RU

A,gi
is only sensitive to modifications of U near the right

endpoint of A, we only need to check that eiθgi is invariant
under modification of U near the right endpoint of A. This
fact comes from the observation that the commutator of W U

A,gi

and LU
A,gi

⊗ RU
A,gi

must vanish, because W U
A,gi

commutes with
itself. This means that

Tr
(
W U†

A,gi
RU

A,gi
W U

A,gi
RU†

A,gi

) = Tr
(
W U†

A,gi
LU

A,gi
W U

A,gi
LU†

A,gi

)∗
. (48)

Due to this constraint, eiθgi is insensitive to modifications of
U by local, symmetric unitaries fully supported near only the
left endpoint or the right endpoint of A.

B. Type II invariant: eiθgi,g j

The second invariant, eiθgi ,g j involves two cyclic groups ZNi

and ZNj , with generators gi and g j respectively.4 It detects
when the symmetries have a mixed anomaly. Physically, this
means that in the edge theory, domain walls of one symmetry
carry fractional charge of the other symmetry and vice versa
[45]. In the 2D bulk, flux of one symmetry binds fractional
charge of the other symmetry and vice versa [43,44].

W U
A,gi

again gives a representation of ZNi , and hence is a
FDQC of order Ni. However, now W U

A,gi
has an additional con-

straint. Since gi and g j commute, W U
A,gi

must commute with
the global symmetry operator for gj according to property 3:[

W U
A,gi

,Ugj

] = 0. (49)

In fact, as we show in Appendix H, W U
A,gi

can always be
written as a ZNi × ZNj symmetric FDQC. Therefore W U

A,gi
is a

1D ZNi × ZNj symmetric FDQC of order Ni on a closed loop.
Again, we detect the anomaly using the restricted flux

insertion operator W U
A,gi

. In order to apply our invariant, we
require that this restriction satisfies [W U

A,gi
,Ugj ] = 0. This

symmetric restriction is always possible because, as men-
tioned in the previous paragraph, W U

A,gi
can always be written

as a ZNi × ZNj symmetric FDQC. Naively, we can consider
the operator (W U

A,gi
)Ni as we did in the last section, which

would be a product of local operators at the left and right
endpoints of A. While (W U

A,gi
)Ni commutes with Ugj , the oper-

ators on the left and right endpoints of A may not individually
commute with Ugj .

However, there is an important subtlety in that the restric-
tion is ambiguous in the following way: we can choose a

4We can also compute eiθgi ,gi , but this is equal to e2iθgi , so it is not
an independent invariant.

different restriction that differs from W U
A,gi

by opposite charges
under Ugi or Ugj at the endpoints of A, and this new restricted
flux insertion operator would still commute with Ugj . More
precisely,

W U
A,gi

∼ W U
A,gi

OlOr, (50)

where

U †
gi

OrUgi = Ore2π ini/Ni ,

U †
g j

OrUgj = Ore2π in j/Nj , (51)

where ni, n j ∈ Z. As long as Ugi and Ugj commute with the
product OlOr , W U

A,gi
and W U

A,gi
OlOr are both equally valid

restrictions.
Alternatively, we can think of OlOr as arising from trun-

cating an equivalent W U
A,gi

, of the form

W U ′
A,gi

= V †W U
A,gi

V = W U
A,gi

Uni,n j , (52)

where Uni,n j is a 1D FDQC (or more specifically, a 1D Floquet
unitary [22]) that, when restricted to A, pumps ni units of ZNi

charge and n j units of ZNj charge (which are 0D SPTs) to the
right endpoint of A and opposite charge to the left endpoint of
A.

To remove this ambiguity, we instead consider the operator
(W U

A,gi
)Ni j , where Ni j is the least common multiple of Ni and

Nj . This operator is insensitive to the choice of restriction,
because charges added to the endpoints of W U

A,gi
from a par-

ticular choice of restriction are neutralized upon taking W U
A,gi

to the power of Ni j . Physically, while the restriction causes
an ambiguity of “integer” charge, eiθgi ,g j measures “fractional”
charge attached to the endpoints of W U

A,gi
.

In general, (W U
A,gi

)Ni j is a product of operators near the left
and right endpoints of A:(

W U
A,gi

)Ni j = (
LU

A,gi

)Ni j/Ni ⊗ (
RU

A,gi

)Ni j/Ni
, (53)

where LU
A,gi

and RU
A,gi

are defined in (45). While (LU
A,gi

)Ni j/Ni ⊗
(RU

A,gi
)Ni j/Ni commutes with Ugj because W U

A,gi
is a ZNj sym-

metric FDQC, each operator individually may not commute
with Ugj , for any choice of restriction. In other words, there
does not exist any local, symmetric unitary operators OL

and OR near the left and right endpoints of A such that
(W U

A,gi
OLOR)Ni j is a product of two symmetric operators on the

left and right endpoints of A. Again, one can check that this
presents an obstruction to W U

A,gi
being of the form V †W 1

A,gi
V ,

where V is a G symmetric FDQC supported near the boundary
of A. The obstruction is given explicitly by

eiθgi ,g j = Tr
[
U †

B,g j

(
W U†

A,gi

)Ni jUB,g j

(
W U

A,gi

)Ni j
]
, (54)

where B is a disk that encloses the support of RU
A,gi

but not the
support of LA,gi , as shown in Fig. 5(b).

To check that eiθgi ,g j given in (54) is invariant under modi-
fication of U by local, symmetric (under ZNi × ZNj ) unitaries
anywhere in �, we can use a similar argument as in the previ-
ous section. First, RU

A,gi
is again only sensitive to modification

of U by local unitaries near the right endpoint of A. Further-
more, since Ugj commutes with (LU

A,gi
)Ni j/Ni ⊗ (RU

A,gi
)Ni j/Ni ,

eiθgi ,g j cannot be affected by modifications of U near the right
endpoint of A, which are far away from the support of LU

A,gi
.
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In Appendix F, we review how to show that e2iθgi = eiθgi ,gi .
This relation allows us to compute e2iθgi in a somewhat more
closed-form way than in Eq. (47). According to Eq. (54),

e2iθgi = Tr
[
U †

B,gi

(
W U†

A,gi

)NiUB,gi

(
W U

A,gi

)Ni
]

(55)

where, as in Eq. (54), B is a disk that contains the full support
of RU

A,gi
but not the support of LU

A,gi
. Notice that (55) com-

pletely specifies eiθgi when Ni is odd, but does not completely
specify eiθgi when Ni is even. In particular, it does not distin-
guish between eiθgi = ±1.

C. Example of a 2D SPT entangler with Z2 symmetry

In this section, we present a more in-depth discussion of an
example of a 2D SPT entangler with Z2 symmetry. This SPT
entangler has a nontrivial eiθgi , and entangles the Levin-Gu
SPT [47].

We consider a 2D triangular lattice, with a spin-1/2 on each
vertex r. The original on-site symmetry is given by

Ug1 =
∏

r

σ x
r . (56)

An example of a symmetric, gapped Hamiltonian with a
symmetric ground state is given, as in Sec. I B, by H0 =
−∑

r σ x
r . The ground state of H0 is simply a product state,

with each spin-1/2 in the +1 eigenstate of σ x
r . A Z2 symmet-

ric SPT entangler is given by

U =
∏
〈pqr〉

e
iπ
24 (3σ z

pσ
z
q σ z

r −σ z
p−σ z

q −σ z
r ), (57)

where the product runs over all triangles 〈pqr〉. One can check
that

U †

(∑
r

σ x
r

)
U = −

∑
p

Bp, (58)

where

Bp = −σ x
r

∏
〈pq〉∈�r

i(1−σ z
pσ

z
q )/2, (59)

where p, q are neighboring sites on the 6 links of the hexagon
surrounding r, as illustrated in Fig. 6(a). This is precisely the
Hamiltonian in Ref. [47] for the Levin-Gu SPT.

We will now evaluate eiθgi for this SPT entangler. The first
step is to compute W U

A,g1
. The action of U on UAin,g1 is given

by

UU †
Ain,g1

U † =
∏

r∈Ain

Uσ x
r U †

= (−1)|Ain|
∏

r∈Ain

⎡
⎣σ x

r

∏
〈pq〉∈�r

(−i)(1−σ z
pσ

z
q )/2

⎤
⎦.

(60)

In the bulk of Ain, all links have two factors of
(−i)(1−σ z

pσ
z
q )/2, which multiply to σ z

pσ
z
q . This means that all

vertices have a factor of (σ z
p )6 = 1, so as expected, U leaves

UAin,g1 invariant deep in the bulk of Ain. Let us bring all the σ x
r

operators to the left in Eq. (60). For r near the boundary of

= σx
r

= i(1−σz
pσz

q )/2

= i(1+σz
pσz

q )/2

p q

p q

r

(a)

(b)

A

2

σz
L,I

σz
L,O

σz
R,I

σz
R,O

=

(c)

FIG. 6. (a) The SPT entangler U for the Levin-Gu SPT trans-
forms σ x

r for a single site into a plaquette operator Bp supported on
seven sites. (b) The operator W U

A,g1
is a product of σ x

r operators and
link operators, as illustrated. A is the upper region extending down to
the bottom pink links and Ain is the upper region extending down to
the top pink links. (c) Truncating W U

A,g1
to W U

A,g1
and squaring it gives

a product of four σ z operators as indicated.

Ain, we need to be careful about commuting the σ x
r operators

through the (−i)(1−σ z
pσ

z
q )/2 operators. Let us assume that |Ain|

is even. Then

UU †
Ain,g1

U †

=
∏

r∈Ain

σ x
r

∏
〈pq〉∈pink

(−i)(1−σ z
pσ

z
q )/2

∏
〈pq〉∈blue

(−i)(1+σ z
pσ

z
q )/2,

(61)

where the pink links and blue links lie in ∂A and are indicated
in Fig. 6(b). Specifically, the pink links include horizontal
links and diagonal links of orientation “/”, while the blue links
are diagonal links of orientation “\”. We now easily obtain

UA,g1UU †
Ain,g1

U †

=
∏

r∈A\Ain

σ x
r

∏
〈pq〉∈pink

(−i)(1−σ z
pσ

z
q )/2

∏
〈pq〉∈blue

(−i)(1+σ z
pσ

z
q )/2.

(62)

We can choose the restriction illustrated in Fig. 6(c). It is
easy to check that(

W U
A,g1

)2 = σ z
L,Iσ

z
L,Oσ z

R,Iσ
z
R,O, (63)

where σ z
L,I , σ

z
L,O, σ z

R,I , and σ z
R,O are indicated in Fig. 6(c). It

follows that RU
A,g1

= σ z
R,Iσ

z
R,O where σ z

R,I acts inside Ain and
σ z

R,O acts outside Ain. RU
A,g1

anticommutes with W U
A,g1

, so from
(47) eiθg1 = −1. While we evaluated eiθg1 using a particular
restriction, the same answer holds for any restriction.
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D. Higher dimensional SPT entanglers with 2D decorated
domain walls

Like in Sec. III E, we can leverage our invariants for 2D
SPT entanglers to obtain invariants for higher dimensional
SPT entanglers that entangle SPTs with decorated domain
walls. In fact, all 3D SPT entanglers with discrete, Abelian,
on-site symmetries are of this form [42,48], so we can com-
pletely classify 3D SPT entanglers with such symmetries
using our 2D invariants.

Specifically, SPT phases in 3D are classified by
ω(g, h, k, l ) ∈ H4(G, U(1)). For discrete, Abelian, on-site
symmetries, of the form

∏
i ZNi , the gauge invariant quan-

tities defining ω(g, h, k, l ) was given in Ref. [42]. Like in
2D, there are three kinds of gauge invariant quantities: eiθgi ;gl ,
eiθgi ,g j ;gl , and eiθgi ,g j ,gk ;gl , where gi, g j, gk, and gl are genera-
tors of different cyclic groups. These invariants are related
to decorating domain walls of the ZNl symmetry with 2D
SPTs with ZNi , ZNi × ZNj , and ZNi × ZNj × ZNk symmetries,
respectively [42].

This means that we can obtain formulas for eiθgi ;gl , eiθgi ,g j ;gl ,
and eiθgi ,g j ,gk ;gl by simply replacing U in the formulas for
eiθgi , eiθgi ,g j , and eiθgi ,g j ,gk by a flux insertion operator W U

D,gl
,

as we did in Sec. III E for 2D decorated domain wall SPT
entanglers.

We must also specify the geometry of the regions. In 3D,
A, B, C, and D are overlapping balls, which we choose to be
centered at the corners of a tetrahedron. This geometry can be
thought of as extending three overlapping disks in Fig. 5(c)
into 3D overlapping balls. There are two points at which the
boundaries of A, B, and C all intersect. We then add a fourth
ball D that overlaps with all three balls and contains only one
of these two points. The closed flux insertion operator W U

D,gl
is

supported near the closed 2D surface of D.
These three 3D invariants are also related to different ob-

structions to making W U
D,gl

∼ W 1
D,gl

. For example, eiθgi ;gl is an
obstruction to making W U

D,gl
a ZNi symmetric FDQC of order

Nl . It is not hard to check that all three are insensitive to
modifications of U by any symmetric, local unitaries, and
therefore are invariant under composition of U by any G
symmetric FDQC.

V. FERMIONIC SYSTEMS

We expect that it would not be difficult to generalize our
framework to obtain topological invariants for broad classes of
fermionic SPT entanglers. Here we will present some results
about two particularly interesting fermionic systems: the Ki-
taev wire and the generator of the 2D Z2 × Z f

2 SPT. The latter
phase is characterized by the property that the Z2 domain
walls are decorated by Kitaev wires.

First, it is well-known that the Kitaev wire is entangled by
a QCA rather than an FDQC [4,21]. Since our definition of
W U

A,g in Eq. (11) does not require us to truncate the entangler,
we can also compute {W U

A,g} when U is a QCA, and use it
to obtain a Z2-valued topological invariant for the Kitaev
wire entangler. Second, a symmetric FDQC that entangles the
generator of the 2D Z2 × Z f

2 SPT has not yet been found
[11,49]. Even if this phase cannot be entangled by an FDQC,
it might be entangled by a symmetric QCA. We will show

that this phase actually cannot be entangled by any symmetric
QCA.

A. SPT entangler for the Kitaev wire

In this section, we present a formula that gives a Z2 index
ζ that completely classifies 1D fermionic QCA with no other
symmetry besides fermion parity (modulo bosonic transla-
tions). Nontrivial QCA of this kind entangle the Kitaev wire
[21].

First, we note that for systems that include fermionic de-
grees of freedom, U must conserve fermion parity in order
to maintain locality. This means that U commutes with the
total fermion parity operator � = ∏

r∈� �r . �r is the fermion
parity operator of site r, with eigenvalues ±1 describing the
fermion parity of the states in the local Hilbert space on r. �

can be restricted to �A, which measures the fermion parity in
region A.

U is classified by W U
A,� , which is defined in the usual way:

W U
A,� = �AU�AinU

† = LU
A,� ⊗ RU

A,�, (64)

where we used �
†
Ain

= �Ain . While LU
A,� ⊗ RU

A,� is fermion par-
ity even, LU

A,� and RU
A,� may not individually be fermion parity

even. When LU
A,� and RU

A,� are fermion parity odd, W U
A,� is not

equivalent to W 1
A,� . This means that U is a nontrivial fermionic

QCA and ζ = −1. Therefore, to obtain a formula for ζ , we
simply compute the fermion parity of RU

A,� . To do this without
restricting W U

A,� to RU
A,� , we use �B, which includes the full

support of RU
A,� but does not contain the support of LU

A,�:

ζ = Tr
(
�BW U

A,��BW U
A,�

)
, (65)

where we used the fact that �B and W U
A,� are both Hermitian.

Like in Sec. III, we can simplify Eq. (65) using the explicit
expression for W U

A,� in (64). Further simplifying using the
hermiticity of �A and �B, we get

ζ = Tr[(�BU�AU †)2]. (66)

It is easy to check that an FDQC composed of gates that
are all fermion parity even gives ζ (U ) = 1. On the other hand,
the Kitaev wire entangler gives ζ = −1. To check this, we can
compute ζ for the Majorana translation, which entangles the
Kitaev wire. To define the Majorana translation, we consider a
chain with a single spinless fermion on each site and we define
each physical fermion in terms of two Majorana fermions in
the usual way:

an = 1
2 (γ2n−1 + iγ2n),

a†
n = 1

2 (γ2n−1 − iγ2n). (67)

Let A = [al , ar] and B = [bl , br], with al < bl < ar < br .
The fermion parity operators �A is given by

�A = (iγ2al −1γ2al )(iγ2al +1γ2al +2) · · · (iγ2ar−1γ2ar )

= iar−al +1γ2al −1 · · · γ2ar . (68)

�B is defined in a similar way. A Majorana translation taking
γr → γr+1 gives

U�AU † = iar−al +1γ2al · · · γ2ar+1. (69)
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Evaluating �BU�AU †, we get

�BU�AU †

= ibr−bl +ar−al +2(γ2al · · · γ2bl −2) · (γ2ar+2 · · · γ2br ). (70)

The two Hermitian factors on the right side of (70) are both
fermion parity odd, so they anticommute. It follows that ζ =
−1 as expected.

B. No symmetric entangler for the 2D Z2 × Z f
2 SPT

While symmetric entanglers have been obtained for many
fermionic SPTs [11], entanglers for beyond supercohomology
phases are still lacking. One example of such a beyond super-
cohomology phase is the generator of the 2D Z2 × Z f

2 SPT
[49]. Even if the entangler is not an FDQC, one may ask if
there exists a 2D symmetric QCA that entangles the phase. In
this section, we will present a simple argument for why there
cannot exist a symmetric QCA that entangles this particular
SPT.

This SPT phase is characterized by a domain-wall decora-
tion structure: domain walls of the Z2 symmetry are decorated
with Kitaev wires. This means that W U

A,g1
, where g1 is the gen-

erator of the Z2 symmetry, is a Kitaev wire entangler. Because
{W U

A,g} forms a representation of Z2 × Z f
2 , W U

A,g1
must satisfy

(W U
A,g1

)2. On the other hand, according to the well-established
classification of 1D fermionic QCA [21], there does not exist
any QCA that entangles the Kitaev wire and has order two.
In particular, in order for W U

A,g1
to entangle the Kitaev wire,

it must have order ∼|∂A|. Therefore there does not exist any
QCA that entangles the aforementioned 2D SPT.

VI. DISCUSSION

In this work, we presented a general framework for clas-
sifying (strict) LPUs with symmetry, based on anomalies
computed from explicit flux insertion operators {W U

A,g} defined
in Eq. (13). We then applied this framework to obtain explicit
formulas for topological invariants for various kinds of SPT
entanglers. We conclude by highlighting interesting directions
for extending our results and some relations between insights
related to this framework and other topics of research.

First, we expect our framework to generalize naturally
to broad classes of fermionic SPT phases, namely those
classified by cohomology and supercohomology. Symmet-
ric entanglers have already been obtained for these phases
[11,12], and we expect that studying trivialization obstruc-
tions to {W U

A,g} obtained by these entanglers can be used to
obtain topological invariants like the ones presented here. We
also expect similar ideas to apply to entanglers of higher form
SPTs, which also have symmetric entanglers [50].

Another direction for future work is making our invariants
for entanglers of SPTs with anti-unitary symmetries more ex-
plicit. This is difficult because anti-unitary symmetries cannot
be truncated, as explained in Sec. III D, so we cannot study
how the entangler transforms restricted symmetry operators.
Along similar lines, it would be interesting to see if our invari-
ants for entanglers of higher dimensional SPTs (beyond those
described by decorated 1D domain walls) can be made more
explicit. For example, our formulas for eiθgi (47) and eiθgi ,g j

(54) are not completely closed form because they involve
truncating the flux insertion operators. It may be possible to
obtain more explicit formulas for these quantities, that only
require restriction of the original global symmetry operators.
If this is not possible, it would be interesting to understand
more precisely why it is not possible.

In 2D and 3D, we only obtained gauge invariant topo-
logical invariants for symmetries of the form G = ∏M

i=1 ZNi

by studying different obstructions to making {W U
A,g} ∼ {W 1

A,g}.
We show that these gauge invariant quantities correspond to
known quantities defining the cocycle labeling the SPT phase
in Appendixes F and G. For non-Abelian symmetries, anal-
ogous gauge invariant topological invariants are not known;
there is no easy generalization of the method used for 1D SPTs
with non-Abelian symmetries discussed in Sec. III C. While
the particular kinds of obstructions we studied are for Abelian
groups, the framework of studying anomalous representations
of G given by {W U

A,g} is applicable to any group. Specifically,
property 3 applies for non-Abelian groups as well. It may
be possible to obtain topological invariants for SPT entan-
glers with non-Abelian symmetries in higher dimensions by
considering more general obstructions to making {W U

A,g} a
nonanomalous representation of G.

One particularly difficult entangler to study, with which
we cannot apply our framework, is the QCA that entangles
the beyond-cohomology bosonic SPT in 3D protected by
time-reversal symmetry [14–16]. 1D SPTs with time-reversal
symmetry can be entangled by FDQCs, so even though we
cannot restrict time-reversal symmetry to compute W U

A,T , we
can still restrict the SPT entangler and obtain a topological
invariant using the restricted entangler. The 3D time-reversal
SPT, however, can only be entangled by a QCA. In this case,
we cannot restrict the symmetry (which is related to comput-
ing flux insertion operators) or the entangler (which is related
to computing the boundary representation of the symmetry).
It would be interesting to see if the framework presented here
can be extended to obtain an invariant for this SPT entangler.
One interesting direction to pursue would be to consider the
higher form SPT formulation of these phases, and use our
framework to detect anomalies of the flux insertion operators
for these higher form symmetries [51,52].

As mentioned in the introduction, although the obstruc-
tions that we discuss in this work are all related to SPT
invariants, not all nontrivial symmetric LPUs are SPT entan-
glers. There are also obstructions that are not related to SPT
invariants, such as the obstruction classifying U(1) symmetric
LPUs in 1D characterized by chiral charge transport [25]. It
would be interesting to study more generally what differenti-
ates SPT obstructions for other kinds of obstructions.

Interestingly, our framework adds a different perspective
to the classification of certain kinds of Floquet systems. An
MBL Floquet system is described by a path of unitaries
parameterized by t ∈ [0, T ), with the constraint that U (T )
satisfies the MBL condition: U (T ) = ∏

r Ur , where {Ur} are
mutually commuting local unitaries (possibly with exponen-
tially decaying tails) [20]. Another interesting kind of Floquet
circuit is one where U (T ) does not satisfy the MBL condition,
but U (NT ) = U (T )N does, where N is a finite integer. For
example, in the “radical” Floquet circuit studied in Ref. [53],
U (T ) does not satisfy the MBL condition, but U (T )2 does.
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These kinds of circuits are related to {W U
A,g}, because for fi-

nite groups, (W U
A,g)|g| = 1 on a closed manifold, so (W U

A,g)|g|
satisfies the MBL condition. Therefore the study of different
anomalous representations {W U

A,g} is related to the study of
circuits that, roughly speaking, are the |g|th root of an MBL
Floquet system. For example, there may be a Z2 symmetric
LPU in 3D with W U

A,g (where g generates the Z2 symmetry)
equivalent to the radical Floquet circuit. Such an LPU would
not be an SPT entangler, because the classification of Z2-
symmetric bosonic SPTs in 3D is trivial.
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APPENDIX A: GROUP COHOMOLOGY

Many of the SPTs entanglers we discuss are related to
bosonic in-cohomology SPTs. Here, we will briefly review
the aspects of group cohomology relevant to the study of these
SPTs.

An n-cochain ω(g1, · · · gn) is a map from n group elements
to U(1):

ω(g1, · · · gn) : G × G × · · · × G → U(1), (A1)

where G is repeated n times. The collection of n-cochains
forms an Abelian group Cn with group multiplication given
by

(ω1 · ω2)(g1, . . . , gn) = ω1(g1, . . . , gn) · ω2(g1, . . . , gn).

(A2)

The coboundary operator δ is a map Cn → Cn+1, defined
by

δω(g1, . . . , gn+1) = ω(g2, . . . , gn+1)ω(g1, . . . , gn)(−1)n+1

×
n∏

i=1

[ω(g1, . . . , gigi+1, . . . , gn+1)](−1)i
.

(A3)

One can check that δ(ω1 · ω2) = δω1 · δω2 and δ2 = 1. The
coboundary operator allows us to define n-cocycles and n-
coboundaries, which are particular kinds of n-cochains. An
n-cocycle is an n-cochain that satisfies δω = 1. For example,
from Eq. (A3), 3-cocycles satisfy

ω(g2, g3, g4)ω(g1, g2g3, g4)ω(g1, g2, g3)

ω(g1g2, g3, g4)ω(g1, g2, g3g4)
= 1, (A4)

and 4-cocycles satisfy

ω(g2, g3, g4, g4)ω(g1, g2g3, g4, g5)ω(g1, g2, g3, g4g5)

ω(g1g2, g3, g4, g5)ω(g1, g2, g3g4, g5)ω(g1, g2, g3, g4)
= 1.

(A5)

An n-coboundary is an n-cocycle that can be written as
ν = δω where ω ∈ Cn−1. Because δ2 = 1, an n-coboundary
must be an n-cocycle. We call two n-cocycles equivalent if
they differ by a n-coboundary:

ω1 ∼ ω2 : ω1 = ω2 · δω, (A6)

where ω ∈ Cn−1. The equivalence classes of n-cocycles form
an Abelian group Hn(G, U(1)), which classify many bosonic
SPTs.

APPENDIX B: PROOF THAT {WU ′
A,g} ∼ {WU

A,g} IF U ′ ∼ U

In this Appendix, we provide the more precise version of
the “only if” direction of property 4 in Sec. C, as well as a
proof of the “if” direction.

To prove the “only if” direction, we will show that if U =
YU where Y is a G symmetric FDQC, then W U ′

A,g = V †W U
A,gV

for every g ∈ G, where V is as defined earlier. By definition,
W U ′

A,g is given by

W U ′
A,g = UA,gYUU †

Ain,g
U †Y †. (B1)

Here, U has an operator spreading length ξ , so U ′ has
an operator spreading length ξ ′ = ξ + 2nλ. Let us write Y =
YNYN−1 · · ·Y1, where Yn = ∏

r Yn,r for every n ∈ [1, N]. Be-
cause Y is a G symmetric FDQC, every local gate Yn,r is
symmetric. U only modifies U †

Ain,g
within ξ of the boundary

of Ain, so we can remove all the gates in Y1 fully supported
outside of ∂ξ Ain by commuting them through UU †

Ain,g
U †. Let

us denote the remaining gates in Y1 by Ỹ1. We can then remove
all the gates in Y2 fully supported outside of ∂ξ+2λAin by com-
muting them through Ỹ1UUAin,gU

†Ỹ †
1 . Continuing in this way,

we get Ỹ = ỸNỸN+1 · · · Ỹ1. This operator is fully supported
within ξ + 2nλ = ξ ′ of the boundary of Ain. Because it is fully
supported inside A and contains only G symmetric gates, it
commutes with UA,g. Therefore we have

W U ′
A,g = ỸUA,gUU †

Ain,g
U †Ỹ †. (B2)

Identifying Ỹ = V †, we obtain the desired result.
We will now prove the “if” direction. Our proof in 1D uses

methods similar to those in Sec. VII C of Ref. [25], and our
proof for higher dimensions is a generalization of the same
line of argument.

Because our invariants are multiplicative under stacking
and composition, we only need to consider the case where
U = 1. Relabeling U ′ → U , we will show that if {W U

A,g} =
{V †W 1

A,gV }, where V is a G symmetric FDQC supported
within ξ of the boundary of Ain, then U is a G symmetric
FDQC (up to products of (d − 1) dimensional G symmetric
LPUs). We will first prove this in 1D, and then we generalize
to higher dimensions. Our strategy is the following: we will
show that if {W U

A,g} = {V †W 1
A,gV }, and we assume that U is an

FDQC, then we can modify the individual gates in U (without
changing U as a whole) so that each gate is symmetric. Note
that since, by this method, we can already find a symmetric
FDQC giving {W U

A,g}, we do not need to consider if U is a
QCA.

We begin with the proof in 1D. Without loss of generality,
we can cluster the sites in a 1D bosonic spin chain into

235104-14



TOPOLOGICAL INVARIANTS FOR SYMMETRY- … PHYSICAL REVIEW B 107, 235104 (2023)

“supersites” so that U takes the form of a depth two FDQC
where each layer consists of disjoint gates supported over two
supersites [17]. In terms of supersites, λ = 1 and ξ = 2. Let
us write U = U2U1, where

U1 =
∏

r

U2r,2r+1 U2 =
∏

r

U2r−1,2r . (B3)

U is G-symmetric, but U2 and U1 are not necessarily indi-
vidually G-symmetric. Since ξ = 2, we choose Ain = [−1, 2]
and A = [−3, 4]. This gives

W 1
A,g = U−3,gU−2,gU3,gU4,g. (B4)

A 0D FDQC is simply a local unitary operator. We can
write V = VLVR where VL is supported on [−3, 0] and VR is
supported on [1,4]. Then we have, as our assumption,

W U
A,g = V †

L (U−3,gU−2,g)VL ⊗ V †
R (U3,gU4,g)VR. (B5)

Now we substitute W U
A,g = UA,gUU †

Ain,g
U † on the left-hand

side. Because VL and VR are both G-symmetric, we can multi-
ply both sides by U †

A,g to obtain

UU †
Ain,g

U † = V †
L (U †

−1,gU
†
0,g)VL ⊗ V †

R (U †
1,gU

†
2,g)VR. (B6)

Using the explicit form of U , and conjugating both sides by
U †

2 , we get

U−2,−1U0,1U2,3U
†
Ain,g

U †
2,3U

†
0,1U

†
−2,1

= Ṽ †
L (U †

−1,gU
†
0,g)ṼL ⊗ Ṽ †

R (U †
1,gU

†
2,g)ṼR, (B7)

where ṼL = VLU−3,−2U−1,0 and ṼR = VRU1,2U3,4.
Notice that the first line of (B7) is fully supported on

[−2, 3] and breaks into a tensor product of three disjointly
supported operators:

U−2,−1U0,1U2,3U
†
Ain,g

U †
2,3U

†
0,1U

†
−2,1

= U †
[−2,−1],g ⊗ U †

[0,1],g ⊗ U †
[2,3],g. (B8)

On the other hand, the second line of (B7) can be written
as a tensor product of two disjointly supported operators.
In order for it to have the same support as the first line of
(B7), Ṽ †

L (U−1,gU0,g)ṼL must be fully supported on [−2, 0]
and Ṽ †

R (U1,gU2,g)ṼR must be fully supported on [1,3]. Because
(B8) is a product of disjoint operators on [−2, 1], [0, 1], and
[2,3], we must have

Ṽ †
L (U †

−1,gU
†
0,g)ṼL = U †

[−2,−1],g ⊗ Ũ †
0,g,

Ṽ †
R (U †

1,gU
†
2,g)ṼR = Ũ †

1,g ⊗ U †
[2,3],g, (B9)

and U[0,1],g = Ũ0,g ⊗ Ũ1,g. Since the spectrum of U[−2,−1].g

matches that of U−1,g from (B8), the spectrum of Ũ0,g and Ũ1,g

must match those of U0,g and U1,g respectively. This means
that there exists on-site operators Rr such that

R0Ũ
†
0,gR†

0 = U †
0,g, R1Ũ

†
1,gR†

1 = U †
1,g. (B10)

We can repeat the exercise with other choices of Ain in
order to get all the on-site operators {Rr}. Using these on-
site operators, we can define Ũ1 = ∏

r Ũ2r−1,2r and Ũ2 =

∏
r Ũ2r,2r+1, where

Ũ2r−1,2r = R2r−1R2rU2r−1,2r,

Ũ2r,2r+1 = U2r,2r+1R†
2rR†

2r+1. (B11)

It is easy to check that Ũ2Ũ1 = U2U1 = U and Ũ2 and Ũ1

consist of gates that are all G-symmetric. This concludes the
proof for 1D systems.

Now we proceed to higher dimensions. In higher dimen-
sions, WLOG we can write any FDQC U as U = U2U1 where
U1 and U2 each consist of commuting (d − 1) dimensional
FDQCs. In other words, we replace the local two-site unitaries
in Eq. (B3) by (d − 1) dimensional FDQC. For example, in
2D, we can divide the plane into vertical strips, with a 1D
vertical FDQC for each two-site interval in x̂. In this case,
U2r,2r+1 is not a local unitary, but rather a 1D FDQC. We now
consider A and Ain to be infinite strips, with finite extent in x̂.
Using the notation Ux=r,g = ∏

y U(r,y),g, we have

W 1
A,g = Ux=−3,gUx=−2,gUx=3,gUx=4,g. (B12)

Proceeding in the same way as for 1D, we have

U−2,−1U0,1U2,3U
†
Ain,g

U †
2,3U

†
0,1U

†
−2,1

= Ṽ †
L (U †

x=−1,gU
†
x=0,g)ṼL ⊗ Ṽ †

R (U †
x=1,gU

†
x=2,g)ṼR, (B13)

where ṼL = VLU−3,−2U−1,0 and ṼR = VRU1,2U3,4. Here, VL is
a 1D FDQC supported on x ∈ [−3, 0] and VR is a 1D FDQC
supported on x ∈ [1, 4]. From the same arguments as for 1D,
we can write

Ṽ †
L (U †

x=−1,gU
†
x=0,g)ṼL = U †

x=[−2,−1],g ⊗ Ũ †
x=0,g,

Ṽ †
R (U †

x=1,gU
†
x=2,g)ṼR = Ũ †

x=1,g ⊗ U †
x=[2,3],g, (B14)

where Ux=[−2,−1],g, Ux=[0,1],g, and Ux=[1,2],g are defined simi-
larly to how they are in (B8) and Ux=[0,1],g = Ũ †

x=0,g ⊗ Ũ †
x=1,g.

From the same arguments as for 1D, Ũx=0,g and Ũx=1,g must
have the same spectra as Ux=0,g and Ux=1,g, respectively. This
means that there exist 1D FDQCs (that are not necessarily
G-symmetric) Rx=0 and Rx=1 rotating these operators into
each other:

Rx=0Ũ
†
x=0,gR†

x=0 = U †
x=0,g,

Rx=1Ũ
†
x=1,gR†

x=1 = U †
x=1,g. (B15)

We can again repeat the exercise for other choices of Ain

to obtain a set of 1D FDQCs {Rx=r}. Using this set, we can
again define Ũ1 and Ũ2 as in (B11). Ũ2Ũ1 = U2U1 = U , and
each consist of 1D FDQCs Ũr,r+1, which are individually G-
symmetric.

This means that U can only differ from 1 by, at most, a
product of (d − 1) dimensional G symmetric LPUs along ŷ.
However, by the same method with A and Ain chosen to be
infinite strips with finite extent along ŷ, we can show that U ∼
1 up to a product of (d − 1) dimensional G-symmetric LPUs
along x̂. We conjecture that this means that U can be written
as a G symmetric FDQC, because it cannot be a product of
G-symmetric LPUs along x̂ or ŷ. The same method of proof
applies to higher dimensions.

Notice that in 1D, {Rr} were simply on-site unitary opera-
tors. In 2D, we must specify that {Rr} are 1D FDQCs, not 1D
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QCAs. This ensures that {Rr} provides a smooth map from U1

and U2 to Ũ1 and Ũ2. The fact that V is an FDQC guarantees
that {Rr} are FDQCs.

APPENDIX C: RELATION BETWEEN {WU
A,g} AND

BOUNDARY REPRESENTATION OF THE SYMMETRY

An SPT in d dimensions can also characterized by how the
symmetry is realized anomalously on the (d − 1)-dimensional
boundary. On the lattice, we say that the representation on
the boundary cannot be made “on-site.” In this Appendix, we
will review the method described in Ref. [13] for computing
the boundary representation of the symmetry {W̃ U

A,g} using a
symmetric SPT entangler. We will show in this Appendix that
{W̃ U

A,g} and {W U
A,g} are representations of G that carry the same

anomaly. Physically, this recovers the fact that boundary do-
main walls and bulk symmetry fluxes have the same fusion
properties (i.e., same F symbol).

A system with a boundary to the vacuum has a bound-
ary Hilbert space spanned by all the states with excitations
within ξ of the boundary. Specifically, consider a state of
the form |ψi〉 = |ψi,Abd 〉 ⊗ |ψ0,(�\Abd )〉, where |ψ0,(�\Abd )〉 is a
symmetric product state. The state |ψi〉 has an excitation in
Abd = A \ Ain, which is a strip of width ξ . The set of all such
states {|ψi〉} spans the boundary Hilbert space of a system
supported within A. If U is an FDQC, we can truncate U to
UA, which is fully supported in A. Then {UA|ψi〉} describe a set
of states that look like the SPT deep inside of A but remain in
the trivial product state outside of A. The action of the global
symmetry operator Ug on the SPT state UA|ψi〉 is given by the
boundary representation of the symmetry on the edge Hilbert
space W̃ U

A,g:

Ug(UA|ψi〉) = UAW̃ U
A,g|ψi〉. (C1)

Note that |ψ0,(�\Abd )〉 is invariant under the action of Ug, so
|ψi〉 = U(�\Abd ),g|ψi〉. This means that

Ug(UA|ψi〉) = UAW̃ U
A,gU(�\Abd ),g|ψi〉. (C2)

Putting together (C1) and (C2), we see that one explicit defi-
nition of W̃ U

A,g is given by

W̃ U
A,g = U †

AUgUAU †
(�\Abd ),g. (C3)

Truncating W̃ U
A,g to an open (d − 1) dimensional manifold

gives a boundary domain wall operator, which creates domain
walls in a symmetry broken boundary theory. These are the
boundary analogues of the bulk symmetry fluxes, and their
fusion properties encode the anomaly of the SPT.

To relate W̃ U
A,g to W U

A,g, we begin by writing U(A\Abd ),g as
U(A\Abd ),g = U(�\A),g ⊗ UAin,g. The first factor commutes with
UA because it is supported outside of A, so we have

W̃ U
A,g = U †

AUA,gUAU †
Ain,g

. (C4)

Comparing this with (13) and using UAU †
Ain,g

U †
A = UU †

Ain,g
U †,

we see that

W U
A,g = UAW̃ U

A,gU
†
A . (C5)

The fact that the two (d − 1) dimensional representations
differ by conjugation by a QCA means that they carry the
same anomaly. In particular, if we compute a cocycle from

restrictions of {W U
A,g} using the method presented in Ref. [13],

it would match with the cocycle computed using {W̃ U
A,g}, if

we simply define the restriction of W U
A,g as W U

A,g = UAW̃ U
A,gU

†
A .

Note that since {W̃ U
A,g} is defined differently from {W U

A,g}, it
does not necessarily have to satisfy (17) in order to carry the
same anomaly as {W U

A,g}.

APPENDIX D: RELATION BETWEEN 1D INVARIANTS
AND ω(g, h)

We will prove that our invariants for 1D SPT entan-
glers correspond to gauge invariant quantities that completely
define the cocycle ω(g, h) ∈ H2(G, U(1)) labeling the SPT
entangled by U . We will first prove this for when G is Abelian.
The generalization to non-Abelian groups is straightforward.

1. Abelian symmetries

Our invariant for 1D SPT entanglers with Abelian, unitary,
discrete symmetries is given by

c(g, h) = Tr(U †UA,gUUB,hU †U †
A,gUU †

B,h). (D1)

We must show that the right-hand side indeed computes
c(g, h) = ω(g,h)

ω(h,g) , which defines the SPT entangled by U .
Specifically, c(g, h) is given by

c(g, h) = Tr
(
RU

A,gRU
A.hRU†

A,gRU†
A,h

)
= Tr

(
LU

A,gLU
A,hLU†

A,gLU†
A,h

)∗
, (D2)

where LU
A,g ⊗ RU

A,g = W U
A,g. LU

A,g and RU
A,g form opposite pro-

jective representations of G, localized near the left and right
endpoints of A. As mentioned in Sec. III A, it will be con-
venient to use instead an equivalent representation {WU

A,g},
defined by

WU
A,g = LU

A,g ⊗ RU
A,g = U †W U

A,gU

= U †
Ain,g

U †UA,gU, (D3)

where in the last line we inserted the definition of W U
A,g

and used the fact that U †
Ain,g

commutes with U †UA,gU . Since
{WU

A,g} forms an equivalent representation as {W U
A,g}, RU

A,g

forms the same projective representation as RU
A,g. We therefore

have

c(g, h) = Tr
(
RU

A,gRU
A.hRU†

A,gR
U†
A,h

)
= Tr

(
LU

A,gLU
A,hLU†

A,gL
U†
A,h

)∗
. (D4)

Let us specify A = [al , ar] and B = [bl , br]; these are over-
lapping intervals in the 1D chain, as shown in Fig. 1. We will
prove (D1) by first considering a slightly different setup, with
an interval B′ = [al , br] that aligns with the left endpoint of A
and the right endpoint of B, as illustrated in Fig. 7. Assuming
that G is Abelian, we have

(U †UA,gU )(U †UB′,hU )(U †U †
A,hU )(U †U †

B′,hU ) = 1. (D5)

We will show that the left-hand side of the above equa-
tion splits into two contributions. One contribution is localized
near al , and corresponds to LU

g LU
h LU†

g LU†
h = c(g, h)−11. The

other contribution is precisely the operator inside the trace
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A

B′

al ar brbl

FIG. 7. The setup for proving (D1). Regions A = [al , ar] and
B′ = [al , br] are aligned at the left endpoint only, and we define B
in (D1) to be [bl , br]. The distances between labeled points in the
figure must all be greater than or equal to 2ξ .

in the right-hand side of Eq. (D1). Since these two factors
multiply to 1, this proves Eq. (D1).

The first step is to use

U †UA,gU = UAin,gLU
A,gRU

A,g

= (
UAin,L,gLU

A,g

)(
UAin,R,gRU

A,g

)
, (D6)

where Ain,L and Ain,R are the left and right halves of
Ain = [al + ξ, ar − ξ ]. Specifically, Ain,L = [al + ξ, bl − 1]
and Ain,R = [bl , ar − ξ ]. Similarly,

U †UB′,hU = (
UB′

in,L,hLU
B′,h

)
UB′

in,M ,h

(
UB′

in,R,hRU
B′,h

)
, (D7)

where B′
in,L = Ain,L, B′

in,M = [bl , ar − 1], and B′
in,R =

[ar, br − ξ ].
The purpose for making the above partitions is to split the

regions of the chain into a “left” region [al − ξ, bl − 1] ⊃
Ain,L = B′

in,L, a “middle” region B′
in,M ⊃ Ain,R, and a “right”

region [ar, br + ξ ] ⊃ B′
in,L. Expanding out Eq. (D5) using

(D6) and (D7), we can commute all the operators fully sup-
ported on the left region past the operators fully supported in
the other two regions. Using the fact that all the operators fully
supported on Ain,L commute with LU

A,g and LU
A,h, since they are

supported on disjoint spaces, we get(
LU

A,gLU
A,hLU†

A,gL
U†
A,h

)(
UAin,R,gRU

A,g

)(
UB′

in,M ,hUB′
in,R,hRU

B′,h
)

× (
UAin,R,gRU

A,g

)†(
UB′

in,M ,hUB′
in,R,hRU

B′,h
)† = 1, (D8)

where we used LU
A,h = LU

B′,h and UAin,L,gUB′
in,L,hU

†
Ain,L,gU

†
B′

in,L,h =
1. We can identify the first term with c(g, h). Since RU

B′,h
is supported far away from UAin,R,gRU

A,g, we can commute it

through (UAin,R,gRU
A,g)† to cancel with RU†

B′,h. Then replacing
B′

in,M ∪ B′
in,R by B, we get(

UAin,R,gRU
A,g

)
UB,h

(
UAin,R,gRU

A,g

)†
U †

B,h = c(g, h)1. (D9)

Finally, we can multiply the left-hand side by
(UAin,L,gLU

A,g)(UAin,L,gLU
A,g)†. Commuting (UAin,L,gLU

A,g)†

through UB,h and then using Eq. (D6), we get

U †UA,gUUB,hU †U †
A,gUU †

B,h = c(g, h)1. (D10)

After taking the normalized trace of both sides, we obtain
(D1).

2. Non-Abelian symmetries

Our proof for the non-Abelian invariant (33) follows the
same steps as our proof for the Abelian invariant. For non-
Abelian symmetries, as with Abelian symmetries, we must
compute all the gauge invariant phases in order to determine

the projective representation. However in this case, the set of
gauge invariant phases is not given by {c(g, h)}, but rather
{eiφ(γn )} (see Sec. III C). Consider γn given by

γn = g1h1g−1
1 h−1

1 g2h2g−1
2 h−1

2 . (D11)

By definition, multiplying the elements on the right-hand
side in the group gives identity:

UA,g1UB′,h1U
−1
A,g1

U −1
B′,h1

UA,g2UB′,h2U
−1
A,g2

U −1
B′,h2

= 1, (D12)

where A and B′ have the same definition as in Sec. D 1. We can
conjugate each element on the left-hand side by U , to obtain
an equation like (D5). Crucially, all the conjugated symmetry
operators U †UA,g1U, U †UB′,h1U, U †UA,g2U , and U †UA,h2U
all again separate into operators supported in the left region,
the middle region, and the right region, just as in the Abelian
case. Using the same steps as in Sec. D 1 to rearrange the
operators by commuting them appropriately, we get

LU
A,g1

LU
A,h1

LU†
A,g1

LU†
A,h1

LU
A,g2

LU
A,h2

LU†
A,g2

LU†
A,h2

× (
UB′

M ,g1RU
A,g1

)(
UB′

in,M ,h1UB′
in,R,h1RU

B′,h1

)
× (

UB′
M ,g1RU

A,g1

)†(
UB′

in,M ,h1UB′
in,R,h1RU

B′,h1

)†

× (
UB′

M ,g2RU
A,g2

)(
UB′

in,M ,h2UB′
in,R,h2RU

B′,h2

)
× (

UB′
M ,g2RU

A,g2

)†(
UB′

in,M ,h2UB′
in,R,h2RU

B′,h2

)† = 1. (D13)

The first line gives eiφ(γn ), and we can then use the
same steps as in Sec. D 1 to (1) remove RU

B′,h1
and

RU
B′,h2

, (2) replace B′
in,M ∪ B′

in,R → B, and (3) multi-
ply by (UAin,L,g1LU

A,g1
)(UAin,L,g1LU

A,g1
)†(UAin,L,g2LU

A,g2
) ×

(UAin,L,g2LU
A,g2

)†. This gives

eiφ(γn )1 =U †UA,g1UUB,h1U
†U †

A,g1
UU †

B,h1

× U †UA,g2UUB,h2U
†U †

B,g2
UU †

B,h2
. (D14)

We can obtain all other gauge invariant phases by a similar
construction. In general, we have

eiφ(γn ) = Tr

[∏
i

(
RU

A,gi
RU

A,hi
RU†

A,gi
RU†

A,hi

)]

= Tr

[∏
i

(
U †UA,giUUB,hiU

†U †
A,gi

UUB,hi

)]
. (D15)

APPENDIX E: MANIPULATING SYMMETRY FLUXES

In order to relate our 2D SPT entangler invariants to ex-
pressions in terms of cocycles (see Appendix F), we need to
first review various manipulations of symmetry fluxes in 2D
SPT phases. In 2D, W U

A,g is supported on a closed loop. As
we showed Sec. II A 1, the restricted flux insertion operators
W U

A,g insert symmetry flux at the endpoints of the interval
A. Here, we will first describe the more general framework
of fusing, braiding, and sliding symmetry fluxes. Then, we
will show how to perform these manipulations using concrete
operators. This allows us to relate topological invariants in
terms of various symmetry flux processes to our invariants
for {W U

A,g}.
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= R(g, h) = F (g, h, k)

= Uk(g, h) = ηk(g, h)

g g g g

ggg g

h h h h

h h h h
k k k k

kk
(a) (b)

(c)
gh gh

gh gh gh gh

ghk ghk

FIG. 8. Symmetry fluxes of a discrete, unitary, Abelian group G
are described by the following processes. (a) Braiding two symmetry
fluxes g and h produces a U(1) phase R(g, h). (b) Fusing symmetry
fluxes in two different ways produces a U(1) phase F (g, h, k). (c)
Sliding a symmetry flux line over a fusion vertex produces a U(1)
phase Uk (g, h), while sliding it under a fusion vertex produces a U(1)
phase ηk (g, h).

A 2D bosonic SPT with symmetry G can be understood
as a G-crossed braided tensor category, where the original
braided tensor category enriched by the G symmetry is simply
the trivial category, containing only trivial bosonic excitations
[54]. Because the original category is trivial, we will not need
much of the more complex structures in G-crossed braided
tensor categories; we simply describe it in this way in order
to more easily relate fusion, braiding, and “sliding.” Enrich-
ing the trivial category with G symmetry results a G-crossed
braided tensor category C×

G , which contains elements labeled
by group elements g ∈ G, with fusion given by group multi-
plication: g × h = gh.

The SPT corresponding to a given C×
G is defined by its

fluxes (labeled by group elements) and their fusion, braiding,
and sliding. In the following, we will use symmetry flux,
symmetry defect, and group element interchangeably. Fusion
of symmetry fluxes is described by the F symbol, braiding of
fluxes is described by the R symbol, and sliding is described
by U and η. These three processes are illustrated in Fig. 8. In
general, these quantities are all tensors, but because the fusion
of the symmetry fluxes is just group multiplication, which is
Abelian, they are all U(1) phases.

The F symbol takes as input three group elements g, h,

and k, and produces a U(1) phase describing the difference
between fusing three domain walls or symmetry fluxes in two
different ways, as illustrated in Fig. 8(a). It can be computed in
the bulk or the boundary of the SPT. For 2D bosonic SPTs, we
can always choose a gauge in which F (g, h, k) = ω(g, h, k) ∈
H3(G, U(1)).

In the bulk, symmetry fluxes can also be braided. The R
symbol R(g, h) takes as input symmetry fluxes for g, h ∈ G
and describes the transformation associated with exchanging
g and h, as illustrated in Fig. 8(b). Therefore R(g, h)R(h, g)
describes a full braid. Since we only consider Abelian fusion,
we will label the R symbol by only two indices g and h; their
product gh is fully determined by g and h.

Finally, in order for fusion and braiding to be compatible,
we must add “sliding,” which is shown in Fig. 8(c). Uk (g, h)
is the phase picked up from sliding a k flux insertion line
over a g, h fusion vertex, while ηk (g, h) is the phase picked

R
F

U
F F

R

R

g h k g h k g h k

g h k g h k

g h k g h k

FIG. 9. The heptagon equations ensure consistency of symmetry
flux fusion (F ), braiding (R), and sliding (U and η). Here, we specify
to the case where the underlying topological order is trivial. In this
case, fusion is simply given by group multiplication, so the label for
bottom leg of each of the diagrams above is ghk. We only illustrate
one of the heptagon equations here; the other (which involves η)
takes a similar form [54].

up from sliding a k flux insertion line under a g, h fusion
vertex.

Fusion, braiding, and sliding satisfy two consistency equa-
tions, known as the heptagon equations. We will only need to
use the first heptagon equation, which is illustrated in Fig. 9.
This equation tells us that

R(g, k)F (g, k, h)R(h, k)

= F (k, g, h)Uk (g, h)R(gh, k)F (g, h, k). (E1)

Rearranging (E1), we obtain

F (k, g, h)F (g, h, k)

F (g, k, h)
= R(g, k)R(h, k)

R(gh, k)
Uk (g, h)−1. (E2)

Using F (g, h, k) = ω(g, h, k), we get

ω(k, g, h)ω(g, h, k)

ω(g, k, h)
= R(g, k)R(h, k)

R(gh, k)
Uk (g, h)−1. (E3)

We will see that for SPTs described by type I and type
II cocycles (with nontrivial eiθgi or eiθgi ,g j ), we can always
choose either Uk (g, h) = 1 or ηk (g, h) = 1 (but not both). For
SPTs with III cocycles, which have a nontrivial eiθgi ,g j ,gk , we
cannot choose Uk (g, h) = 1 or ηk (g, h) = 1. In Appendix F,
we will show that eiθgi , eiθgi ,g j , and eiθgi ,g j ,gk can each be written
as a product of F symbols, which describes a fusion process.
We will then use (E1) to translate these fusion processes into
braiding and sliding processes.

We will now describe how to fuse and braid symmetry
fluxes using concrete operators acting on an SPT state. We
will not need to use sliding for this work, because we can
instead prove our equation for eiθgi ,g j ,gk using dimensional re-
duction.

1. Symmetry flux fusion

Reference [13] describes how ω(g, h, k) defines an
anomaly related to domain wall fusion. We showed in Ap-
pendix C that boundary symmetry representations and flux
insertion operators carry the same anomaly, so ω(g, h, k) also
defines an anomaly related to symmetry flux fusion. In par-
ticular, we can compute ω(g, h, k) using restricted boundary
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representations of the symmetry {W̃ U
A,g}, and we can also com-

pute it using restricted flux insertion operators {W U
A,g}.

The method for extracting ω(g, h, k) from {W U
A,g} was ex-

plained in Ref. [13]; we will briefly review it here. The first
step is to notice that restricted flux insertion operators com-
pose up to local operators near the boundary of the restriction:

W U
A,gW

U
A,h = �(g, h)W U

A,gh. (E4)

In particular, in two spatial dimensions, W U
A,g is supported

on an open 1D interval, which has a boundary consisting of
two points. Therefore �(g, h) = �l (g, h) ⊗ �r (g, h) where
�l (g, h) and �r (g, h) are supported near the left and right
endpoints of A, respectively. �(g, h) is ambiguous in that it
depends on the particular truncation. However, the expression
for ω(g, h, k) does not depend on the choice of truncation.

To obtain ω(g, h, k), we use the fact that multiplication of
W U

A,g is associative. By considering the product W U
A,gW

U
A,hW U

A,k
and comparing the result from multiplying the first two oper-
ators first or multiplying the latter two operators first, we get

�(g, h)�(gh, k) = W U
A,g�(h, k)W U†

A,g�(g, hk). (E5)

However, the left and right endpoints of the restriction only
need to be associative up to a phase. This phase is precisely
ω(g, h, k):

�r (g, h)�r (gh, k)

= ω(g, h, k)W U
A,g�r (h, k)W U†

A,g�r (g, hk)

= F (g, h, k)W U
A,g�r (h, k)W U†

A,g�r (g, hk). (E6)

2. Symmetry flux braiding

We can braid symmetry fluxes by using flux insertion oper-
ators to move symmetry fluxes around, but we must take care
to only apply flux insertion operators on the SPT state. Here,
as an example, we will demonstrate how to obtain an operator
that braids symmetry fluxes g and h once. We will study more
complex braiding processes later.

Braiding the symmetry flux h around g consists of several
steps, which are illustrated in Fig. 10. The first step is to create
opposite g and h fluxes by applying W U

A,g and W U
B,h

on |ψSPT〉.
Notice that applying a restricted flux insertion operator W U

A,g
modifies the state by a gauge transformation near A. One
way to see this is to recall that W U

A,g acts as the symmetry
defect operator DU

A,g on |ψSPT〉. In order to move the h flux
around the g flux, we must undo the gauge transformation
near A, by applying U †

A,g. We can then apply W U
B,h to move

the h flux completely around the g flux. Finally, we undo
the gauge transformation in B by applying U †

B,h. The phase
difference between the above process and first moving the h
flux in a loop and then moving a g flux into the loop is given
by R(h, g)R(g, h):

U †
B,hW U

B,hU
†
A,gW

U
B,h

W U
A,g|ψSPT〉

= R(h, g)R(g, h)U †
A,gW

U
A,gU

†
B,hW U

B,hW
U
B,h

|ψSPT〉. (E7)

We can simplify the above expression by using the fact that
W U

A,g commutes with W U
B,h (since they have disjoint support).

WU
A,g

WU
B,h

WU
B,h

U†
A,g

(a) (b)

(c) (d)

U†
B,h

FIG. 10. The braiding phase R(h, g)R(g, h) can be computed by
comparing the above process, where we first create g and h fluxes
and then move an h flux around a g flux, to the process where we
first create an h flux and move it in a loop and then create a g flux.
(a) We first create opposite g fluxes and h fluxes. (b) In order to
move the h flux around the g flux at the right endpoint of A, we must
first undo the symmetry transformation near W U

A,g by applying U †
A,g.

(c) We can now apply W U
B,h in the local ground state, which moves

the h flux around the g flux. (d) To finish, we undo the symmetry
transformation in the h flux loop by applying U †

B,h.

Then, recalling the definition DU
A,g

= W U†
A,gUA,g:

W U†
B,h

DU
B,h

DU
A,g

DU†
B,h

DU†
A,g

W U
B,h

|ψSPT〉 = R(h, g)R(g, h)|ψSPT〉.
(E8)

Notice that if g = gi and h = g j are generators of ZNi and
ZNj respectively, then as we show in Appendix H, we can
always choose W U

A,gi
and W U

A,g j
to be ZNi × ZNj symmetric

FDQC. For this particular termination, DU
B,h

DU
A,g

DU†
B,h

DU†
A,g

as

an operator is a pure phase. This is because DU
A,g

and DU
B,h

can only fail to commute near the intersection A and B (see
Fig. 10). However, modifying DU

A,g
→ W U†

A,g
DU

A,g
= UUAin,gU

†

and DU
B,h

similarly make these two operators commute, and
these modifications are far away from the intersection of A
and B. This means that DU

A,g
and DU

B,h
can only fail to commute

up to a phase. As a result, we can write

R(g j, gi )R(gi, g j ) = Tr
(
DU

B,g j
DU

A,gi
DU†

B,g j
DU†

A,gi

)
. (E9)

Note that (E9) only holds for symmetric terminations of flux
insertion operators.

APPENDIX F: RELATION BETWEEN 2D INVARIANTS
AND ω(g, h, k)

Bosonic SPTs in 2D with discrete, Abelian, unitary, on-
site symmetries are classified by 3-cocycles ω(g, h, k) ∈
H3(G, U(1)). In this section, we will show that our topolog-
ical invariants for 2D SPT entanglers correspond to gauge
invariant quantities that completely specify the 3-cocycle.

It is convenient to first define an operation called the slant
product χ , which takes a group element g together with an
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(d + 1)-cocycle and produces an d-cocycle. Explicitly,

χg(h1, . . . , hd ) =
d+1∏
i=1

ω
(−1)d+1+i

d+1 (h1, . . . , hi−1, g, hi, . . . , hd ).

(F1)

The physical interpretation of the slant product is that
it describes an SPT in d dimensions compactified in one
spatial dimension over a circle, with g flux inserted [42,46].
It therefore corresponds to a dimensional reduction process,
mapping an SPT in d spatial dimensions to one in (d − 1)
spatial dimensions. For example, for d = 2, it describes taking
a 2D SPT on a long cylinder, with g flux inserted through the
cylinder. In this particular case, the slant product takes the
form

χg(h, k) = ω(g, h, k)ω(h, k, g)

ω(h, g, k)
. (F2)

The three invariants eiθgi , eiθgi ,g j , and eiθgi ,g j ,gk are defined in
terms of slant products by [42]5

eiθgi =
Ni−1∏
n=0

χgi

(
gi, gn

i

)
,

eiθgi ,g j =
Ni j−1∏
n=0

χgi

(
g j, gn

j

)
χg j

(
gi, gn

i

)
,

eiθgi ,g j ,gk = χgk (gi, g j )

χgk (g j, gi )
. (F3)

One can check that for Abelian groups, all of the above
quantities are gauge invariant, meaning they are invariant
under changing ω(g, h, k) by a 3-coboundary. They were
discussed in depth in Ref. [42] in the context of the Dijkgraaf-
Witten theories that one obtains from gauging the SPTs we
study here. In the Dijkgraaf-Witten theory, the above invari-
ants correspond to various anyon braiding processes. As we
will show, in the SPT, these expressions describe certain
symmetry flux fusion, braiding, and sliding processes. Our
expression for eiθgi in Eq. (47) can be directly related to a
symmetry flux fusion process, because it is written entirely
in terms of restricted flux insertion operators. However, our
expressions for eiθgi ,g j and eiθgi ,g j ,gk = c(gi, g j ; gk ) in Eqs. (54)
and (43) also contain restricted global symmetry operators
such as UB,h. Using the heptagon equations, we will show that
these expressions are actually related to braiding and sliding
processes, respectively.

1. Relation between eiθgi and symmetry flux fusion

To show how Eq. (47) produces the quantity eiθgi defined in
Eq. (F3), we use (F2) to obtain

χgi

(
gi, gn

i

) = ω
(
gi, gn

i , gi
)
. (F4)

5Here we define eiθgi ,g j ,gk as the inverse of the quantity labeled ei�i jk

in Ref. [42].

Plugging this into Eq. (F3) gives

eiθgi =
Ni−1∏
n=0

ω
(
gi, gn

i , gi
)
. (F5)

From Appendix E 1, we have

�r
(
gi, gn

i

)
�r

(
gn+1

i , gi
)

= ω
(
gi, gn

i , gi
)
W U

A,gi
�r

(
gn

i , gi
)
W U†

A,gi
�r

(
gi, gn+1

i

)
. (F6)

We will now turn back to our expression for eiθgi in Eq. (47).
We will use (F6) to get from (47) to (F5).

Our expression for eiθgi uses the operator (W U
A,gi

)Ni . Notice
that we can write this as

(
W U

A,gi

)Ni =
Ni−1∏
n=0

W U
A,gn

i
W U

A,gi
W U†

A,gn+1
i

=
Ni−1∏
n=0

�
(
gn

i , gi
)
. (F7)

It follows that RU
A,gi

= ∏Ni−1
n=0 �r (gn

i , gi ), and our expression
for eiθgi can be written as

eiθgi = Tr

⎡
⎣W U†

A,gi

(
Ni−1∏
n=0

�r
(
gn

i , gi
))

W U
A,gi

(
Ni−1∏
n=0

�r
(
gn

i , gi
))†

⎤
⎦.

(F8)

If we replace the first two factors in (
∏Ni−1

n=0 �r (gn
i , gi )) by

the second line of (F6) with n = 0, we get

eiθgi = ω
(
gi, g0

i , gi
) × Tr

[
W U†

A,gi
�r (gi, gi )

(
Ni−1∏
n=2

�r
(
gn

i , gi
))

× W U
A,gi

(
Ni−1∏
n=1

�r
(
gn

i , gi
))†]

. (F9)

Again replacing �r (gi, gi )�r (g2
i , gi ) with the second line

of (F6), and cyclically permuting �r (gi, gi ) to cancel with
�r (gi, gi )† on the right side of the trace, we get

eiθgi = ω
(
gi, g0

i , gi
)
ω(gi, gi, gi ) × Tr

[
W U†

A,gi
�r

(
g2

i , gi
)

×
(

Ni−1∏
n=3

�r
(
gn

i , gi
))

W U
A,gi

(
Ni−1∏
n=2

�r
(
gn

i , gi
))†]

.

(F10)

Continuing in this way, we eventually remove all the
�r (gn

i , gi ) factors, and obtain (F5). This completes the proof
that our invariant in Eq. (47) is the gauge invariant quantity
given in Eq. (F3).

2. Relation between eiθgi and eiθgi,g j to symmetry flux braiding

We will not need the braiding formulation of eiθgi , but will
present it here for completeness. Plugging g = gi = k and h =
gn

i into Eq. (E3) and choosing a gauge with Ugi (g
n
i , gi ) = 1, we
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have

χgi

(
gi, gn

i

) = R(gi, gi )R
(
gn

i , gi
)

R
(
gn+1

i , gi
) . (F11)

Using this in the equation for eiθgi in Eq. (F3), we obtain

eiθgi =
Ni−1∏
n=0

R(gi, gi )R
(
gn

i , gi
)

R
(
gn+1

i , gi
)

= [R(gi, gi )]
Ni . (F12)

This means that eiθgi is the phase from exchanging two gi

symmetry defects Ni times, or braiding them around each
other Ni/2 times.

Similarly, plugging g = g j, h = gn
j, and k = gi into

Eq. (E3) with Ugi (g
n
j, g j ) = 1, we get

χgi

(
g j, gn

j

) = R(g j, gi )R
(
gn

j, gi
)

R
(
gn+1

j , gi
) . (F13)

Plugging this into Eq. (F3) gives

eiθgi ,g j =
Ni j−1∏
n=0

R(g j, gi )R
(
gn

j, gi
)

R
(
gn+1

j , gi
) R(gi, g j )R

(
gn

i , g j
)

R
(
gn+1

i , g j
)

= [R(g j, gi )R(gi, g j )]
Ni j . (F14)

This means that eiθgi ,g j is the phase from braiding gi and g j

fluxes around each other Ni j times. As we will show, our ex-
pression for eiθgi ,g j in Eq. (54) describes precisely this process.

Using our braiding result in Eq. (E9) and cyclically per-
muting within the trace, we have

[R(g j, gi )R(gi, g j )]
Ni j = Tr

[(
DU

A,gi
DU†

B,g j
DU†

A,gi
DU

B,g j

)Ni j
]
.

(F15)

Notice that DU†
B,g j

DU†
A,gi

DU
B,g j

is just a pure phase

(R(g j, gi )R(gi, g j )) times DU†
A,gi

, so it commutes with DU
A,gi

.

Suppose that Ni j = 2. Then we have

eiθgi ,g j = Tr
(
DU

A,gi
DU†

B,g j
DU†

A,gi
DU

B,g j
DU

A,gi
DU†

B,g j
DU†

A,gi
DU

B,g j

)
= Tr

[(
DU

A,gi

)2
DU†

B,g j

(
DU†

A,gi

)2
DU

B,g j

]
. (F16)

In the same way, we can simplify Eq. (F15) for general Ni j ,
by pulling all the DU

A,gi
operators together by commuting them

through DU†
B,g j

DU†
A,gi

DU
B,g j

. For general Ni j , we have

eiθgi ,g j = Tr
[(

DU
A,gi

)Ni j DU†
B,g j

(
DU†

A,gi

)Ni j DU
B,g j

]
. (F17)

We can further simplify this expression by using the definition
of DU

A,gi
:

(
DU

A,gi

)Ni j = (
W U†

A,gi
UA,g

)Ni j = (
W U†

A,gi

)Ni j
, (F18)

where we used the fact that W U†
A,gi

commutes with UA,g and

U
Ni j

A,g = 1. Finally, since (W U†
A,gi

)Ni j is supported only at the end-
points of A, it commutes with W U

B,g j
. Putting this all together,

=

=

2D SPT
WU

C,gk

1D SPT

gk flux

FIG. 11. Dimensional reduction from 2D to 1D: χgk (gi, gj ) cor-
responds to taking the 2D SPT described by ω(gi, gj, gk ) and
wrapping it into a cylinder by compactifying one dimension, and
threading through a gk flux. This is implemented by applying the
flux insertion operator W U

C,gk
along the length of the cylinder. The

resulting system describes a 1D system with cocycle χgk (gi, gj ). This
means that W U

C,gk
must be a 1D SPT entangler for the SPT described

by χgk (gi, gj ).

we have

eiθgi ,g j = Tr
[(

W U†
A,gi

)Ni jU †
B,g j

(
W U

A,gi

)Ni jUB,g j

]
, (F19)

which matches precisely with Eq. (54). By the same deriva-
tion, we obtain

e2iθgi = Tr
[(

W U†
A,gi

)NiU †
B,gi

(
W U

A,gi

)NiUB,gi

]
, (F20)

which matches with Eq. (55).

3. Relation between eiθgi,g j ,gk and symmetry flux sliding

We can already identify eiθgi ,g j ,gk with our formula in
Eq. (43) by dimensional reduction. This is because χgk (gi, g j )
describes a 2-cocycle ω(gi, g j ) corresponding to a 1D SPT
obtained from placing the 2D SPT on a cylinder with gk flux
inserted (see Fig. 11). This means that a 2D cylinder with a gk

flux insertion line W U
A,gk

along the length describes a 1D SPT.
Then clearly, WA,gk must be the SPT entangler of the 1D SPT,
which is precisely what is detected by Eq. (43).

Note that we can also derive our formula for eiθgi ,g j ,gk in
Eq. (43) using the heptagon equation, as we did with eiθgi ,g j .
We do not do this here because it is not necessary, as the
dimensional reduction argument above already proves our
desired result. However, we will sketch the heptagon equa-
tion method for completeness. In this case, Eq. (E3) says
that

χgk (gi, g j )

χgk (g j, gi )
= R(gi, gk )R(g j, gk )

R(gig j, gk )

R(g jgi, gk )

R(g j, gk )R(gi, gk )

× Ugk (g j, gi )

Ugk (gi, g j )
. (F21)

The R symbols cancel because gkg j = g jgk , so in this case,
if we choose F (gi, g j, gk ) = ω(gi, g j, gk ), we cannot choose
Ugk (g j, gi ) = 1. In fact, eiθgi ,g j ,gk is given entirely by two
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=

2D SPT
=

WU
D,gl

3D SPT

gl flux

FIG. 12. Dimensional reduction from 3D to 2D. Here, we take a
3D SPT labeled by ω(g, h, k, gl ) on a thick slab, and wrap it into a
thick cylinder with gl flux inserted. This is implemented by apply the
flux insertion operator W U

D,gl
on a plane along the length of the thick

cylinder. The resulting system is a 2D SPT with cocycle χgl (g, h, k),
so W U

D,gl
must entangle a 2D SPT described by χgl (g, h, k).

sliding moves Ugk (g j, gi ) and Ugk (gi, g j ).

eiθgi ,g j ,gk = Ugk (g j, gi )

Ugk (gi, g j )
. (F22)

APPENDIX G: RELATION BETWEEN 3D INVARIANTS
AND ω(g, h, k, l )

Bosonic SPTs in 3D with discrete, Abelian, unitary, on-
site symmetries are classified by ω(g, h, k, l ) ∈ H4(G, U(1)).
Each of the invariants we presented in Sec. IV D again
corresponds to a different kind of gauge invariant quantity
specifying ω(g, h, k, l ). It can be shown that the three invari-
ants eiθgi ;gl , eiθgi ,g j ;gl , and eiθgi ,g j ,gk ;gl all dimensionally reduce to
2D invariants, like how eiθgi ,g j ,gk reduces to a 2-cocycle which
is a 1D SPT invariant. This means that, writing the symmetry
group as G × H , they can all be thought of as obtained from
decorating G domain walls with H SPTs.

Specifically, we can write eiθgi ;gl , eiθgi ,g j ;gl , and eiθgi ,g j ,gk ;gl in
therms of slant products χg(h, k, l ) which produce a 3-cocycle
from 4-cocycles as given in (F1) as

χg(h, k, l ) = ω(h, g, k, l )ω(h, k, l, g)

ω(g, h, k, l )ω(h, k, g, l )
. (G1)

Like in the 2D case, χg(h, k, l ) describes the 2D SPT
resulting from taking a 3D SPT labeled by ω(h, g, k, l ) on
a thick slab, then wrapping it into a thick cylinder by com-
pactifying one dimension, and threading through the thick
cylinder a g flux. This is illustrated in Fig. 12. To relate our
3D invariants more explicitly to our 2D invariants, we also
define the 2-cocycle from these 3-cocycles as in (F2):

χg,h(k, l ) = χg(h, k, l )χg(k, l, h)

χg(k, h, l )
. (G2)

The three invariants are defined as

eiθgi ,gl =
Ni−1∏
n=0

χgl ,gi

(
gi, gn

i

)
,

eiθgi ,g j ;gl =
Ni j−1∏
n=0

χgl ,gi

(
g j, gn

j

)
χgl ,g j

(
gi, gn

i

)
,

eiθgi ,g j ,gk ;gl = χgl ,gk (gi, g j )

χgl ,gk (g j, gi )
. (G3)

Since each of the invariants above can be written entirely as
products of 3-cocycles χgl indexed by gl , all the invariants
above correspond to 2D SPT invariants computed in a system
with W U

D,gl
applied in a plane as in Fig. 12. This means that

they all correspond to 2D SPTs entangled by W U
D,gl

. This
justifies computing these three invariants by plugging in W U

C,gl

in place of the SPT entangler in the equations for the 2D
invariants.

APPENDIX H: PROPERTIES OF eiθgi , eiθgi,g j , AND eiθgi,g j ,gk

The invariants in Eqs. (F3) and (G3) satisfy various prop-
erties. These include the following [42]

e2iθgi = eiθgi ,gi ,

eiθgi ,g j = eiθg j ,gi ,

eiθgi ,g j ,gl = eisgn( p̂)θ p̂(gi ,g j ,gk ) , (H1)

where p̂(gi, g j, gk ) is a permutation of (gi, g j, gk ) and
sgn( p̂) = 1 if the permutation is cyclic and −1 otherwise. The
third property in the list will be useful for showing some as-
pects of the flux insertion operators relevant for our invariants.
These properties are the following.

(1) We can always choose W U
A,gi

to be a ZNi symmetric
FDQC. This ensures that we can always restrict W U

A,gi
to W U

A,gi

such that W U
A,gi

commutes with Ugi . This kind of restriction is
necessary to compute eiθgi ,gi = e2iθgi using Eq. (55).

(2) We can always choose W U
A,gi

and W U
B,g j

to be ZNi × ZNj

symmetric FDQCs. This ensures that we can always restrict
W U

A,gi
to W U

A,gi
and W U

B,g j
to W U

B,g j
such that W U

A,gi
and W U

B,g j

commute with Ugi and Ugj .
The first statement is a result of the observation that

eiθgi ,gi ,gi = 1, so there is no obstruction to making W U
A,gi

a ZNi

symmetric FDQC. Similarly, the second statement follows
from the observation that eiθgi ,g j ,gk = 1 if any pair of indices
are the same.

As a side note, while we simply quote (H1) from previous
work, it is actually possible to derive some of these prop-
erties using the explicit forms of these invariants in terms
of operators. For example, it is easy to see that c(g, h) =
c(h, g)∗ when c(g, h) is defined explicitly in Eq. (D1).
This is because c(h, g) is equal to c(g, h) with U replaced
by U †, and c(g, h) is multiplicative under composition of
unitaries.
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