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Heat transport in Weyl semimetals in the hydrodynamic regime
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We study heat transport in a Weyl semimetal with broken time-reversal symmetry in the hydrodynamic
regime. At the neutrality point, the longitudinal heat conductivity is governed by the momentum relaxation
(elastic) time, while the longitudinal electric conductivity is controlled by the inelastic scattering time. In the
hydrodynamic regime, this leads to a large longitudinal Lorenz ratio. As the chemical potential is tuned away
from the neutrality point, the longitudinal Lorenz ratio decreases because of suppression of the heat conductivity
by the Seebeck effect. The Seebeck effect (thermopower) and the open circuit heat conductivity are intertwined
with the electric conductivity. The magnitude of the Seebeck tensor is parametrically enhanced, compared to
the noninteracting model, in a wide parameter range. While the longitudinal component of Seebeck response
decreases with increasing electric anomalous Hall conductivity σxy, the transverse component depends on σxy

in a nonmonotonous way. Via its effect on the Seebeck response, large σxy enhances the longitudinal Lorenz
ratio at a finite chemical potential. At the neutrality point, the transverse heat conductivity is determined by
the Wiedemann-Franz law. Increasing the distance from the neutrality point, the transverse heat conductivity is
enhanced by the transverse Seebeck effect and follows its nonmonotonous dependence on σxy.

DOI: 10.1103/PhysRevB.107.235102

I. INTRODUCTION

When electron-electron collisions are the fastest scattering
mechanism, a metal enters the hydrodynamic regime. In this
regime, electrons reach a local thermal equilibrium and flow
in a collective manner, described by slowly varying degrees
of freedom. This gives rise to a variety of effects known in
the context of classical fluids. Electron flow in this regime is
controlled by viscosity and characterized by the emergence
of large scale patterns [1]. While the idea of hydrodynamic
electrons was conceptualized decades ago [2], advances in
fabrication technology have enabled experimental realization
in a variety of systems in recent years [3–10], sparking a large
interest in the field.

Thermal transport is another phenomenon where the dif-
ference between noninteracting metals and metals in the
hydrodynamic regime is dramatic. In a noninteracting metal,
the thermal conductivity and electric conductivity are re-
lated via the Wiedemann-Franz (WF) law, stating that
their ratio divided by the temperature, the Lorenz ratio
Lαβ ≡ T −1καβ/σαβ , is given by L0 = π2/(3e2). An anal-
ogous relation between the electric conductivity and ther-
mopower (Seebeck coefficient) is known as the Mott relation
[11]. In the presence of interactions, inelastic collisions be-
tween the electrons lead to a separation of the electric and
thermal degrees of freedom, breaking the relation between
thermal and electric conductivity.

In graphene exhibiting hydrodynamic transport, for ex-
ample, the Lorenz ratio greatly exceeds the WF result at
the charge neutrality point, while going below it at higher
carrier densities [5]. Similarly, the thermopower in graphene
is also enhanced [3], exceeding the value predicted by the
Mott relation. Besides fundamental interest, enhancement of

thermopower may be favorable for applications such as ther-
moelectric energy harvesting [12,13].

There are several ways to describe thermal transport. To de-
fine thermal conductivity in a meaningful way, it is important
to specify the experimental setup in which thermal currents
are measured. The standard choices correspond to either a
zero electric current (open circuit boundary condition) or a
zero electric field. Due to the cross electric-thermal responses,
these two setups lead to different thermal conductivities.
While for noninteracting metals the difference is typically
negligible due to the smallness of the Seebeck effect [11],
in the hydrodynamic regime they can be drastically different
[14]. As we will describe in this work, a combination of a
strong Seebeck effect in the hydrodynamic regime together
with transverse anomalous Hall transport will have important
consequences on the open circuit heat conductivity.

In this work, we will focus on the thermal transport in
Weyl semimetals (WSMs). WSMs are 3D materials with
topologically protected band-crossing points known as Weyl
nodes [15,16]. In the vicinity of the Weyl nodes, the density
of states is vanishing and the dispersion is linear. The Weyl
nodes are sources of Berry curvature, and hence cannot be
gapped out without two pairing nodes merging into one Dirac
node. Due to the Berry curvature, electrons acquire an anoma-
lous velocity perpendicular to an applied electric field [17].
In time-reversal symmetry (TRS) breaking WSMs, the total
Berry curvature of filled bands does not vanish, giving rise to
the anomalous Hall effect (AHE), which is proportional to the
distance between pairing Weyl nodes [18].

The Berry curvature also gives rise to anomalous thermo-
electric transport, manifested in the anomalous thermal Hall
and Nernst effects [19,20]. In the anomalous thermal Hall
effect, a temperature gradient induces thermal current in the
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transverse direction, and in the anomalous Nernst effect, a
transverse electric field emerges due to a temperature gradi-
ent. Remarkably, even though these anomalous effects have a
topological origin, the thermoelectric transport coefficients in
zero temperature noninteracting WSMs obey the same rela-
tions as in normal metals, namely the WF law and the Mott
relation [19,21,22].

The distinct properties of WSMs have implications for the
behavior in the hydrodynamic regime. In particular, for scales
where mixing between different Weyl nodes can be neglected,
the system is made of chiral fluids. Each fluid is made of the
electronic states corresponding to a given node and inherits
the chirality of the node. This gives rise to unique effects, such
as collective anomalous Hall waves [23] and thermal mag-
netoresistance, manifesting the axial-gravitational anomaly
[24]. Importantly, the semimetallic nature of WSMs may be
beneficial for establishing the hydrodynamic regime, since the
absence of a Fermi surface makes the screening of Coulomb
interactions much weaker than in a normal metal [25]. Indeed,
one of the successful realizations of the hydrodynamic regime
was done for the WSM tungsten diphosphide (WP2), where an
exceptionally low value of the Lorenz ratio was achieved [6].

In this work, we investigate the thermoelectric transport
in a TRS-breaking WSM in the hydrodynamic regime, at the
vicinity of the Weyl nodes. We calculate the thermoelectric
conductivities using the Boltzmann equation formalism. We
find that electric and heat conductivity are differently af-
fected by inelastic scattering. While the anomalous electric
Hall conductivity in the hydrodynamic regime is the same as
for noninteracting electrons, the longitudinal and transverse
heat conductivities are parametrically different in these two
regimes.

We stress that these results are derived for the standard def-
inition of the heat conductivity, i.e., for the open circuit setup.
In this case, imposing a temperature gradient gives rise to an
electric field required to maintain a zero electric current. The
magnitude of the electric field response is controlled by the
electric resistivity tensor. Therefore the value of the anoma-
lous electric Hall conductivity affects both the longitudinal
and transverse heat conductivities. Additionally, we find that
the Seebeck coefficients (both longitudinal and transversal)
are enhanced in the hydrodynamic regime, compared to the
noninteracting one, and are nearly equal to the entropy per
electric charge in a wide range of parameters.

It is worth mentioning that due to the Dirac-like spec-
trum, the electronic hydrodynamics in WSMs possess Lorentz
invariance (rather than Galilean), and belong to the class of
relativistic fluids [26]. As such, they share a lot with other
materials in this family, particularly with graphene [14,27,28].
One may ask, what is the difference between a TRS-breaking
WSM and graphene in an external magnetic field? As will be
clear from this work, the key distinction is due the origin of
the transverse currents.

In a graphene-like system, the effects of an external mag-
netic field are captured by adding the Lorentz force to the
hydrodynamic equations. It gives rise to cyclotron motion
of the fluid, and finite Hall thermoelectric conductivities
[29–31]. This is to be contrasted with transverse transport due
to Berry curvature in WSMs. The Berry curvature induces
an anomalous channel of transverse conductivity, which is

not accounted for by the boost velocity field. The anomalous
currents do not affect the longitudinal electric and ther-
moelectric conductivities, and modify the longitudinal heat
conductivity and Seebeck coefficient only via the resistivity
tensor. This gives rise to a qualitatively different behavior of
the thermoelectric responses in TRS-breaking WSMs in the
hydrodynamic regime compared to the relativistic magneto-
hydrodynamics.

II. MODEL, BOLTZMANN AND HYDRODYNAMIC
EQUATIONS, RESPONSE COEFFICIENTS

A. Model

We focus on a minimal model for TRS-breaking,
inversion-symmetric Weyl semimetal, containing two nodes at
k = ±ẑ�k/2. The magnitude of the momentum separation
between the Weyl nodes �k determines the anomalous Hall
conductivity. Focusing on the low-energy part of the spectrum,
the noninteracting part of the Hamiltonian near each Weyl
node reads (h̄ = kB = 1):

Hη = ηvF σ ·
(

k − η
�k

2

)
, (1)

where η = ±1 corresponds to the chirality of the node. In the
vicinity of the nodes, there are two bands b = ± with the
spectrum εηbk = bvF |k − η�k

2 |. We use the index l = (η, b)
as a short notation for the node and the band. The Dirac cones
described by the Hamiltonian (1) are without tilt. In a more
general model, the Dirac cones may be tilted along a specific
axis in momentum space. This is modeled by adding the term
ηut · (k − η�k

2 ) to the Hamiltonian [16]. Here, ut is a tilt
vector with dimensions of velocity. In our analysis we focus
on the simplest, but already interesting case of untilted Dirac
cones.

The electrons scatter off each other by Coulomb inter-
actions with typical lifetime τ e-e, which is assumed to be
the shortest scattering time in the system. Additionally, we
include disorder, which is diagonal in node and pseudospin
space and is described by a Gaussian correlator,

〈V (r)V (r′)〉disorder avg. = γ δ(r − r′). (2)

Throughout this paper, we assume that the quasiparticle
description is valid. We also disregard many-body renormal-
ization effects.

B. Derivation of hydrodynamic equations

First, we briefly describe the derivation of hydrodynamic
equations for the electron fluid. The derivation is similar to the
one done for graphene, which also exhibits Dirac spectrum but
in two dimensions. For the recent reviews on graphene in the
hydrodynamic regime see Refs. [14,28]. The hydrodynamic
equations can be derived from the Boltzmann equation, which
is given by

∂ f

∂t
+ ṙ · ∇r f + k̇ · ∇k f = Ie-e[ f ] + Ie-imp[ f ], (3)

where Ie-e, Ie-imp are the collision integrals for electron-
electron and electron-impurity scattering, correspondingly. If
the electron-electron scattering time is the shortest timescale
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in the system, the e-e collision integral projects the electron
distribution function to a local near-equilibrium distribution

flk = nF (xlk ) + δ flk, (4)

where

xlk = εlk − μ(r, t ) − u(r, t ) · k
T (r, t )

. (5)

The Fermi-Dirac part nF (x) ≡ (1 + exp(x))−1 describes the
zero modes of the e-e collision integral, with the quantities
μ, u, T corresponding to the slowly changing modes of par-
ticle, momentum and energy densities. The second term in
Eq. (4), δ flk, accounts for the dissipative part of the distri-
bution function, corresponding to the finite modes which are
relaxed by the electron-electron scatterings. We note that by
assuming only three zero modes, we are neglecting long-lived
(but not strictly conserved) modes. One such mode is the im-
balance mode, corresponding to different chemical potentials
for the electron and hole bands [14,32]. This mode would
give rise to finite-size corrections for the conductivities and
is beyond the scope of this work. Additionally, one may study
the chiral imbalance mode, where the two Weyl nodes have
different chemical potential. This mode can be excited by
having parallel magnetic and electric fields, producing chiral
charge [23,33].

The hydrodynamic equations describe the variation of the
zero modes on the longer scale, perturbatively in the ex-
ternal forces and gradients. The conservation equations for
charge, momentum and energy densities (x = n, π, nε) are
then obtained by multiplying the Boltzmann equation with
ylk = 1, k, εlk, integrating with respect to momentum and
summing over the bands and nodes.

From the momentum and energy conservation equations,
we obtain the Euler equation for the boost velocity u
(Appendix A),(

∂

∂t
+ u · ∇r

)
u + v2

F

w
[n(−eE + ∇rμ) + s∇rT ]

+ u
w

[
n

(
eE · Jn + ∂μ

∂t

)
+ s

∂T

∂t

]

= 1

w

∑
l

∫
(dk)kIe−imp[ fl ]. (6)

Here s is the entropy density, w ≡ μn + T s is the enthalpy
density and Jn is the particle current. The RHS of the equa-
tion yields momentum relaxation due to the disorder collision
integral. To linear order in u, the RHS equals −u/τ̄ el

‖ , where
1/τ̄ el

‖ describes the transport elastic scattering rate off the
impurities. The calculation of the elastic transport time τ̄ el

‖ in
terms of the microscopic parameters of our model is outlined
in Appendix B. Note that in Eq. (6), the electrochemical
field E − ∇μ/e couples to the charge density n while the
temperature gradient couples to the entropy density s. At
the charge neutrality point, the charge density is zero while
the entropy density is finite, making the zero-mode couple
effectively to the temperature gradient, but not to the electric
field. We note that in this work we do not consider viscosity,
which would add a term proportional to ∇2

r u to Eq. (6) and
turn it to the Navier-Stokes equation. Viscosity establishes a

Poiseuille flow profile near the boundary of the sample, up to

a distance in the scale of the Gurzhi length lG ≡
√

η0τ̄
el
‖ v2

F /w,

with η0 being the viscosity of the electron fluid [14]. Our
approximation is thus valid when the sample width is much
larger than the Gurzhi length.

C. Thermoelectric linear response coefficients

Next, we will derive the linear thermoelectric conductivi-
ties. The total electric and energy currents are given by

Jc =
∑

l

∫
(dk)λc

lk flkvlk + Jc
anomalous, (7)

where we denote c = e, Q for electric and thermal charges,
with λe

lk = e, λQ
lk = εlk − μ, and vlk ≡ ∂εlk/∂k is the regular

part of the velocity operator. While the first term in Eq. (7) will
have contributions only from the Fermi surface, the anoma-
lous part includes Fermi sea contributions and corresponds
to the Berry curvature and magnetization currents [19,34],
leading to transverse transport. As we will argue, in the limit
of linear dispersion and no tilt, transverse transport will come
solely from the anomalous term. We will first discuss the
regular part, and derive the longitudinal response coefficients.

We separate the regular part of the currents into ideal and
dissipative parts, writing∑

l

∫
(dk)λc

lk flkvlk = Jc
ideal + Jc

diss.. (8)

These two parts correspond to the contributions from the
local equilibrium and the dissipative parts of the distribution
function:

Jc
ideal ≡

∑
l

∫
(dk)λc

lknF (xlk )vlk, (9)

Jc
diss. ≡

∑
l

∫
(dk)λc

lkδ flkvlk. (10)

The ideal part of the currents comes directly from the boost
velocity. For the electric current, one finds

Je
ideal = enu, (11)

and for the heat current,

JQ
ideal = T su. (12)

The ideal currents describe the uniform motion of the electron
fluid, and they are limited only by the momentum relaxation
mechanism, which in our case is set by the disorder. By
solving the Euler equation [Eq. (6), leading to the last equation
in Appendix A] and using Eqs. (11) and (12), we find the ideal
parts of the currents in the presence of an electric field and a
temperature gradient.

The dissipative parts of the currents come from the part
of the distribution function that is not in local equilibrium.
We calculate these by projecting the electron-electron colli-
sion integral on the subspace orthogonal to the zero modes
and approximating it to have one electron-electron scattering
timescale τ e-e (see Appendix E for details of the calculation).
Importantly, the energy current JE = JQ + μ

e Je has no dis-
sipative part. This is due to the linear dispersion relation,
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which implies that the energy current is proportional to the
momentum density and thus is a conserved quantity of the
electron-electron collision integral [conversely, in the case
of parabolic dispersion, εk = k2/(2m), the particle current is
conserved and has no dissipative part].

The linear thermoelectric response coefficients are defined
by [11]

Je
α = L11

αβ

(
Eβ − ∇βμ

e

)
+ L12

αβ (−∇βT ), (13)

JQ
α = L21

αβ

(
Eβ − ∇βμ

e

)
+ L22

αβ (−∇βT ). (14)

It is clear that L11
αβ ≡ σαβ is the electric conductivity. Com-

bining the ideal part of electric current [Eq. (11)] with the
dissipative part [Eqs. (E10) and (E13) in Appendix], we find
the longitudinal electric conductivity to be given by

L11
xx = σxx = σ ideal

xx + σ diss.
xx , (15)

σ ideal
xx = e2v2

F

n2

w
τ̄ el
‖ , (16)

σ diss.
xx = e2v2

F

(
1

3

∂n

∂μ
− n2

w

)
τ e-e, (17)

where we denoted the contributions from the ideal and dis-
sipative parts of the current by σ ideal

xx and σ diss.
xx , respectively.

Since the condition for the hydrodynamic regime is τ e-e �
τ̄ el
‖ , the ideal part of the conductivity is much larger than the

dissipative part, except when the chemical potential is in the
very near vicinity of the charge neutrality point, |μ/T | �√

τ e-e/τ̄ el
‖ . In the limit |μ/T | 	 1, the longitudinal conduc-

tivity recovers the noninteracting value, which for the model
of short-ranged impurities is given by [35]1

σ∞
xx ≡ σxx

(∣∣∣μ
T

∣∣∣ 	 1
)

=
[

e2 ∂n

∂μ
v2

F τ̄ el
‖ /3

]
= e2v2

F

πγ
. (18)

Similarly, we find for the rest of the longitudinal thermoelec-
tric response coefficients

L21
xx = T L12

xx = T

e

[ s

n
σ ideal

xx − μ

T
σ diss.

xx

]
, (19)

L22
xx = T

e2

[( s

n

)2
σ ideal

xx +
(μ

T

)2
σ diss.

xx

]
. (20)

in a WSM, the Fermi surface parts of the currents can give
additional contributions to the transverse response coeffi-
cients, via processes such as skew scattering and side jumps
[36,37]. In the Boltzmann equation formalism, the velocity
operator and collision integral acquire corrections, yielding
contributions to the anomalous Hall conductivities from the
first term in Eq. (7). However, since we are considering
the vicinity of the Weyl nodes and in the absence of a tilt,

1The right most expression in Eq. (18) has a factor two (the num-
ber of Weyl nodes) compared to the single node result, due to the
assumption of no internode scattering by the disorder. Therefore the
inverse of τ̄ el

‖ scales as the density of states of a single node, while
∂n/∂μ in the expression for σxx gives the total density of states.

the low-energy Hamiltonian for each node [Eq. (1)] is time-
reversal symmetric and the Fermi surface contributions to the
anomalous Hall conductivities vanish. Therefore the problem
is simplified, and the transverse response will be solely from
Fermi sea terms, making up the terms Jc

anomalous which we
will describe now. Alternatively, the anomalous currents can
be viewed as contributions from the Fermi arc surface states
in a finite sample. Due to their Fermi sea nature, the trans-
verse conductivities will not be affected by the presence of
electron-electron collisions, and will be equivalent to the non-
interacting intrinsic anomalous Hall conductivities [17,19].

When electrons with Berry curvature are accelerated, the
velocity operator acquires an anomalous contribution,

ṙ = ∂εlk

∂k
+ k̇ × �lk. (21)

Here �lk denotes the Berry curvature. This Berry curvature
contribution gives rise to the anomalous Hall conductivity,

L11
xy = σxy = e2

∑
l

∫
(d3k) f 0

lk(�lk )z, (22)

where f 0
lk = nF [(εlk − μ)/T ] is the unperturbed (global)

equilibrium distribution function. Additionally, due to magne-
tization currents, the presence of the electrochemical potential
and temperature gradients gives rise to contributions to the
transverse electric and thermal currents [34]. With these con-
tributions, the transverse electro-thermal and thermal-thermal
responses can be written in the following form [38], which
ensures the validity of the Mott relations and the Wiedemann-
Franz law in the low temperature limit:

L21
xy = T L12

xy = T

e

∫
dε

ε − μ

T
σxy(ε)

(
−∂ f 0

∂ε

)
, (23)

L22
xy = T

e2

∫
dε

(ε − μ)2

T 2
σxy(ε)

(
−∂ f 0

∂ε

)
. (24)

Here, σxy(ε) is the anomalous Hall conductivity at zero
temperature and chemical potential μ = ε. At the charge neu-
trality point, the anomalous Hall conductivity [Eq. (22)] is
proportional to the distance between the Weyl nodes [18],

σxy(ε = 0) = e2

4π2
�k . (25)

In a Weyl semimetal, σxy(ε) varies over an energy scale
of order ε ∼ �kvF , the energy in which the two separate
Fermi surfaces surrounding each node merge through Lifshitz
transition [39]. Consistently with the assumption of being
near the Weyl nodes, we take the AHE conductivity to be
constant, σxy(ε) = σxy(ε = 0), neglecting subleading terms in
μ/(�kvF ) and T/(�kvF ). Then, the rest of the transverse
response coefficients are implied by Eqs. (23) and (24) to be
given by

L21
xy = T L12

xy = 0, (26)

L22
xy = π2T

3e2
σxy. (27)

We emphasize that the above formulas hold in the vicin-
ity of Weyl nodes (|μ|, T � �kvF ) where the dispersion is
linear and in the absence of a tilt. Relaxing either of these
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assumptions breaks the TRS of the single-node Hamiltonian.
Breaking the TRS of a single node introduces Fermi surface
contributions to the Hall conductivities. In the vicinity of the
Weyl nodes, these Fermi surface contributions to the electric
and thermal Hall conductivities are expected to be subleading
in max[|μ|, T ]/(�kvF ) compared to the intrinsic contribu-
tions given in Eqs. (25) and (27) [39]. The Fermi surface
contributions should include contributions due to electron-
electron scattering [40,41], as well as the electron-impurity
scattering contributions known for noninteracting systems
[36,37,42,43]. The presence of a tilt would give finite con-
tributions to the thermoelectric coefficients L12

xy , L21
xy due to

the breaking of particle-hole symmetry [44,45], even close to
the Weyl nodes. The above discussion excludes the case of
a strong tilt, ut/vF > 1 (leading to a type-II WSM [16]), in
which the value of σxy at the neutrality point is also modified
[46]. The quantitative analysis of these regimes is outside the
scope of our work.

To summarize, the thermoelectric responses are composed
of three different modes of transport: momentum density
zero mode, relaxed by disorder; dissipative mode, relaxed
by electron-electron interactions; and anomalous Hall part
stemming from the topological band structure. Next, we will
explore the interplay of these three mechanisms on the See-
beck response and heat conductivity.

D. Seebeck tensor and Heat conductivity

The current responses in an experimental setup depend
on the boundary conditions. The response coefficients Li j

αβ

defined in Eqs. (13) and (14) correspond to applying either an
electric field or a temperature gradient while keeping the other
zero. For thermal conductivity, often the experimental setup is
an open circuit, where the electric field is not controlled but
rather the electric current is forced to be zero. In this setup,
one measures the Seebeck response, the electrochemical po-
tential response to a temperature gradient, defined by

Sαβ ≡
[

Eα − ∇α
μ

e

∇βT

]
Je=0

(28)

and the open circuit heat conductivity,

καβ ≡
[
− Jq

α

∇βT

]
Je=0

. (29)

By using the responses in Eqs. (13) and (14) and setting
Je = 0, one obtains

Sαβ = ραγ L12
γ β, (30)

καβ = L22
αβ − L21

αγ Sγ β, (31)

where ραβ ≡ (σ−1)αβ is the resistivity (note that this in-
volves inverting a matrix in x − y space). In the hydrodynamic
regime, the ideal part of the thermoelectric response [first term
in Eq. (19)] dominates by a factor of τ el/τ e-e, and we get

Sxx = s

en

σxxσ
ideal
xx

σ 2
xx + σ 2

xy

, (32)

Sxy = − s

en

σxyσ
ideal
xx

σ 2
xx + σ 2

xy

, (33)

for the Seebeck tensor, and the following expressions for the
heat conductivity:

κxx = T

e2
(
σ 2

xx + σ 2
xy

){
σ diss.

xx

[( s

n
+ μ

T

)2
σxxσ

ideal
xx

+
(μ

T

)2
(σxy)2

]
+

( s

n

)2
σ ideal

xx (σxy)2

}
, (34)

κxy = T

e2
(
σ 2

xx + σ 2
xy

)σxy

[
π2

3

(
σ 2

xx + σ 2
xy

)

+
( s

n
σ ideal

xx − μ

T
σ diss.

xx

)2
]
. (35)

III. DISCUSSION OF THE RESULTS

Now we discuss the results Eqs. (32)–(35) and their
asymptotic behavior. Specifically, we will consider the be-
havior as a function of the anomalous Hall angle (AHA) tan
�H = σxy/σ

∞
xx . Let us first elaborate on the AHA in our model

and in possible physical systems. In our model, σxy and σ∞
xx

[Eqs. (25) and (18)] can be tuned independently, the first being
controlled by the distance between the Weyl nodes �k and
the latter by the disorder transport time τ̄ el

‖ . Experimentally,
while typical values of the AHA are of a few percent, recent
advances have allowed to achieve AHA values of 0.21 at room
temperature and 0.33 at T = 2 K in WSM candidates [47,48].
Foreseeing further development, we include in our analysis
also the possibility of AHA values greater than one.

A. Seebeck coefficients

The Seebeck coefficients [Eqs. (32) and (33)] quantify the
ratio between the thermoelectric response coefficients L12

αβ and
the electric conductivities. When the electric conductivity is
also dominated by the local equilibrium part, the longitudinal
Seebeck coefficient Sxx reaches the hydrodynamic limit of
entropy per electric charge, s/(ne) [14]. Let us note that the
limit of entropy per electric charge is universal for various
types of metals in the limit |μ/T | 	 1 [49], giving a small
Seebeck response for normal metals. In the hydrodynamic
case, this limit persists in the entropy-dominated Dirac-fluid
regime (|μ/T | � 1) in which s/(ne) 	 1, allowing a large
Seebeck response (see Appendix F for comparison with the
noninteracting case).

In the absence of the AHE, Sxx goes below the hydrody-
namic limit only for very small carrier density, where the
dissipative part of the electric conductivity dominates. With
a finite anomalous Hall conductivity, ρxx is increased and Sxx

is suppressed at larger range of carrier densities (Fig. 1, top).
On the other hand, the AHE enables a transverse Seebeck
effect (the anomalous Nernst effect) via the combination of
transverse resistivity and the longitudinal thermoelectric re-
sponse (Fig. 1, bottom). Interestingly, for small values of σxy,
the longitudinal and transverse Seebeck coefficients reach the
same maximum value, which we find to be

(Sxx )max = (|Sxy|)max =
[σxy/σ

∞
xx �1]

7π

20

√
21

31 · 31/2

√
σ∞

xx

σxy

1

e
.

(36)
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FIG. 1. Longitudinal (top) and transverse (bottom) Seebeck co-
efficients for varying chemical potential and tan �H = σxy/σ

∞
xx

values. Inset shows a zoomed out view of the longitudinal Seebeck
coefficient. For tan �H = 0, Sxx � √

σ∞
xx /σ diss.

xx /e ∼ 1/
√

T near the
neutrality point.

These maxima are reached at chemical potential values where
σxx � σxy. This resembles the maximum power transfer the-
orem in electric circuits, stating that maximum power is
delivered to a load when the resistances of the load and the
power source are equal [50]. The increase in the maximum of
Sxy as the AHE is becoming weaker (i.e., as we decrease the
distance between the Weyl nodes) is limited to the point where
the anomalous Hall conductivity becomes comparable with
the dissipative part of the conductivity, σxy � σ diss.

xx . Lowering
σxy further eliminates the transverse Seebeck response, as
expected when time-reversal symmetry is restored, and brings
the maximal value for Sxx to be given by Eq. (36) with the
replacement σxy → σ diss.

xx /3.

B. Longitudinal heat conductivity

Next, we analyze the result for the longitudinal heat con-
ductivity, Eq. (34). In the Dirac fluid regime, the entropy terms
dominate the heat conductivity and we find

κxx(|μ/T | � 1) = T

e2

( s

n

)2
σ ideal

xx

[
1 − ρxxσ

ideal
xx

]
. (37)

The most efficient energy transport is via the momentum
density zero mode. At the charge neutrality point, this mode
transports energy but no electric current. The electron-electron

collisions are unable to relax the energy current, and the heat
conductivity behaves similarly as in a noninteracting system
with the same disorder. In the limit μ/T → 0, we find the
value κxx → 343π2

2325
T
e2 σ

∞
xx , similar to the result in 2D graphene

[14]. This can be written by a Drude-like formula,

κxx(μ/T = 0) = cv

v2
F τ̄ el

‖
3

, (38)

with cv = T ∂s/∂T being the heat capacity per volume.
We note that in the model of short-ranged disorder, the
electron-electron collisions do affect κxx(μ/T = 0) indirectly
by modifying the effective elastic scattering time. Due to the
e-e collisions, the elastic scattering rate 1/τ el

‖ (ε) is averaged
over an energy window with the width of the temperature,
causing κxx(μ/T = 0) to be larger by a numerical factor
(≈30) compared to the noninteracting result (see Appendix
B). More dramatically, as the electron-electron collisions
cause σxx to be governed by the smaller timescale τ e-e, they
greatly enhance the Lorenz ratio Lxx ≡ κxx/(T σxx ) [which for
noninteracting electrons is given by L0 = π2/(3e2)] near the
charge neutrality point. At the charge neutrality point, the
Lorenz ratio is given by

Lxx(μ/T = 0) = 7π2

5e2

τ̄ el
‖

τ e-e
. (39)

At charge neutrality, the longitudinal heat conductivity is
unaffected by the AHE. This differs when the chemical po-
tential is increased. Then, the momentum density zero mode
begins to carry also particle current as well as energy current,
ultimately rendering it unable to transfer heat without convec-
tion. This corresponds to a cancellation by the longitudinal
Seebeck response Sxx, which is the second term in Eq. (37).
However, a finite Hall conductivity decreases Sxx and thus
broadens the range in which κxx is not small, as can be seen in
Fig. 2. In the limit of σxy 	 σ∞

xx , this leads to a second peak
in κxx at the region between the Dirac fluid and Fermi liquid
regimes, which is slightly higher than the value at the charge
neutrality point, κxx(|μ/T | ≈ 2.93) ≈ 1.467 T

e2 σ
∞
xx .

Eventually, for |μ/T | 	 1 (we remind that throughout
this work, we limit ourselves to being far from the Lifshitz
transition, |μ| � vF �k), the thermal conductivity becomes
dominated by the dissipative part of the current, decaying to
κxx(|μ/T | 	 1) = μ

e2
μ

T σ diss.
xx . This can be written as

κxx(|μ/T | 	 1) = cv

v2
F τ e-e

3
. (40)

This gives a parameterically small Lorenz ratio,

Lxx = L0
τ e-e

τ̄ el
‖

, (41)

reflecting that charge and thermal transport are limited by
two different scattering rates [51]. Suppression of the Lorenz
ratio has been observed in ultraclean samples of WP2 and
Sb [6,7,9], both materials being in the degenerate regime.
Nonetheless, this suppression does not necessarily arise
from the materials being in the hydrodynamic regime; see
Appendix C for further discussion.
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FIG. 2. Longitudinal heat conductivity κxx (top) and devia-
tion of the transverse heat conductivity from the WF value
�κxy ≡ κxy − L0T σxy (bottom), for varying chemical potential and
tan �H = σxy/σ

∞
xx values.

C. Transverse heat conductivity

We now turn to analyze the transverse heat conductivity,
Eq. (35). Keeping the leading terms, we find

κxy = π2T

3e2
σxy − T s

en
σ ideal

xx Sxy. (42)

The first term corresponds to the Wiedemann-Franz result
in the noninteracting regime, for which the Lorenz ratio is
Lxy = L0. The second term accounts for heat transfer by
the momentum density zero mode, which acquires a trans-
verse component due to the transverse Seebeck response.
Following the behavior of the transverse Seebeck coefficient
Sxy, this additional term �κxy ≡ κxy − L0T σxy is apprecia-
ble for small Hall-to-longitudinal conductivity ratios σxy/σ

∞
xx

(Fig. 2, bottom). In the limit σxy/σ
∞
xx � 1 (but σxy 	 σ diss.

xx ),
the deviation from Wiedemann-Franz law �κxy reaches a
maximum

(�κxy)max =
[σxy/σ

∞
xx �1]

343π2

4650

T

e2
σ∞

xx , (43)

which occurs at the carrier density for which σ ideal
xx =

σxy. Note that this peak is much higher than κxy(μ/T =
0) in this limit, leading to a large Lorenz ratio Lxy =
κxy/(T σxy) � L0σ

∞
xx /σxy. For large σxy/σ

∞
xx ratios, the trans-

verse Seebeck response is suppressed, and deviation from the
Wiedemann-Franz law reaches a maximal value of

�κxy(|μ/T | ≈ 6.34) =
[σxy/σ

∞
xx 	1]

0.654
T

e2

(
σ∞

xx

)2

σxy

. (44)

Going further into the Fermi liquid regime |μ/T | 	 1,
the transverse Seebeck response diminishes and the trans-
verse thermal conductivity decays back to the noninteracting
Wiedemann-Franz result.

IV. CONCLUSIONS AND OUTLOOK

We considered a pair of TRS-breaking Weyl nodes with
strong electron-electron scattering. We derived the hydrody-
namic equations and computed the thermoelectric response
coefficients. The electric and thermal currents are carried
via three mechanisms: long-lived hydrodynamic zero mode
limited by disorder, dissipative modes relaxed by electron-
electron collisions, and transverse transport due to the Berry
curvature and magnetization currents.

We computed the effect of time-reversal symmetry break-
ing on the Seebeck response and heat conductivities. The
anomalous Hall conductivity suppresses the longitudinal See-
beck response, which otherwise reaches the hydrodynamic
limit of entropy per electric charge, but enables a transverse
Seebeck response. The transverse Seebeck response is maxi-
mal when the anomalous Hall conductivity is of intermediate
strength, smaller than the noninteracting limit of the longitu-
dinal conductivity σ∞

xx , but larger than the electron-electron
collisions limited conductivity σ diss.

xx .
Due to its effect on the Seebeck response, the anomalous

Hall conductivity enhances the longitudinal thermal conduc-
tivity κxx. In the TRS case, the longitudinal heat conductivity
in the limiting cases |μ/T | � 1 and |μ/T | 	 1 can be writ-
ten with a Drude-like formula, κxx = cvv

2
F τ/3, with τ = τ̄ el

‖
for |μ/T | � 1 and τ = τ e-e for |μ/T | 	 1, describing heat
transport via the momentum density zero mode and dissipa-
tive modes, respectively. Breaking TRS, the anomalous Hall
conductivity enables the longer lived zero mode to conduct
heat up until the range of |μ/T | ∼ 1, enhancing κxx.

The transverse heat conductivity κxy behaves according
to the Wiedemann-Franz law at the charge neutrality point.
Away from the neutrality point, the Wiedemann-Franz law
is violated due to the large Seebeck effect. This violation is
maximal for intermediate TRS-breaking, where the anoma-
lous Hall conductivity σxy is between the two limits of the
longitudinal conductivity, σ diss.

xx and σ∞
xx .

In our work, we assumed τ e-e to be the shortest scatter-
ing rate in the system. This imposes a specific temperature
window, where electron-phonon scattering can be neglected,
as well as requiring sufficient purity of the sample. Although
this parameter range is plausible, in current experiments
a clear separation of scales is not yet fully achieved. In
Appendix C, we briefly review the typical scales for scattering
mechanisms in materials that are in (or close to) the hydro-
dynamic regime. In this work, we focused on TRS-breaking
WSMs. These materials are typically more disordered, and
experimental realizations do not yet reach the required purity
for hydrodynamics. A viable path towards the hydrodynamic
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regime in TRS-breaking WSMs is likely to be via thin films.
Such films have been produced recently and have less disorder
and consequently smaller residual resistivity compared to bulk
samples [52].

Finally, we compare the heat transport in a TRS-breaking
WSM with that of a relativistic fluid in an external magnetic
field [29–31] and stress the main differences. The anomalous
Hall currents which flow in a WSM are additive to the hy-
drodynamic flow, and do not affect the longitudinal electric
and thermoelectric responses. This is in contrast to the case
of a magnetic field, which rotates the boost velocity, lowering
the longitudinal thermoelectric conductivities Li j

xx while giving
rise to ideal contributions to the transverse conductivities Li j

xy.
This difference has several implications.

The longitudinal thermal conductivity κxx in a WSM is en-
hanced with the increase of the anomalous Hall conductivity
σxy. Conversely, an external magnetic field can only decrease
the longitudinal thermal conductivity. The transverse Lorenz
ratio in WSM in the regime of intermediate AHE strength,
σ diss.

xx � σxy � σ∞
xx , reaches a maximum of Lxy ∼ σ∞

xx /σxy.
For graphene in a weak magnetic field, the transverse Lorenz
ratio can reach a maximum of Lxy ∼ τ̄ el

‖ /τ e-e. As we see, the
transverse Lorenz ratios at the maxima in these two systems
are parametrically different.

We end this section with a brief discussion of future di-
rections. In this work, we have limited our study to a WSM
in the vicinity of the neutrality point. As one deviates from
the neutrality point, the Dirac cones acquire curvature and
the roles played by the various zero modes change. In ad-
dition, a finite Fermi surface contribution to the transverse
thermoelectric response coefficients Li j

xy appears. In particu-
lar, electron-electron scattering induces side jumps and skew
scattering [40,41], similar to the disorder-induced processes
which contribute to the noninteracting anomalous Hall con-
ductivity [36,37]. It is interesting to see how such processes
affect thermoelectric transport in the hydrodynamic regime.
We plan to address these questions in future work.
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APPENDIX A: DERIVATION OF THE EULER EQUATION

Here we present a derivation of the hydrodynamic equa-
tions for linearly dispersing Weyl nodes, leading to the Euler
equation. Starting from the Boltzmann equation [Eq. (3)], one
derives conservation equations by multiplying by conserved
quantities of the electron-electron collision integral and inte-
grating over all states. Here, these conserved quantities are the
number, momentum and energy densities. In this three-mode
treatment, we are summing over both Weyl nodes, utilizing
our assumption that the nodes are related by inversion symme-
try. Multiplying the Boltzmann equation by the corresponding

charges λc
lk ∈ {1, k, εlk} and integrating over all states,

we find
∂n

∂t
+ ∇r · Jn = 0, (A1)

∂π i

∂t
+ ∂�

i j
E

∂r j
− eEin =

∑
l

∫
(d3k)kiIimp[ fl (t, r, k)], (A2)

∂nE

∂t
+ ∇r · JE − eE · Jn = 0, (A3)

where the number, momentum, and energy densities nc ∈
{n, π, nE } are given by

nc(r, t ) =
∑

l

∫
(d3k)λc

lk flk(r, t ), (A4)

�
i j
E = ∑

l

∫
(d3k)kiv

j
lk flk is the momentum-flux tensor and

Jn, JE are the particle and energy currents. The densities
n, π, nε correspond to their conjugate potentials (chemical
potential, boost velocity and temperature) which parametrize
the zero-mode distribution function. In the equation for mo-
mentum conservation, Eq. (A2), we assumed equal chemical
potential for pairing Weyl nodes, due to the absence of a
magnetic field. If we relax this assumption and introduce
chiral charge, Eq. (A2) acquires a term due originating from
the anomalous velocity [23].

Calculation of the momentum density, energy current den-
sity, and momentum-flux tensor yields

π = w

v2
F

u, (A5)

JE = wu, (A6)

�
i j
E = pδi j + w

uiu j

v2
F

+ δ�
i j
E . (A7)

Here p is the pressure and w = nε + p is the enthalpy density.
δ�

i j
E is a dissipative correction to the momentum-flux tensor

which corresponds to viscosity, and is proportional to the
gradients of u [28]. It will not be important for transport
in a macroscopic sample [14]. The energy current density
is proportional to the momentum density JE = v2

F π due to
the linear dispersion relation of the WSM. Substituting the
above expressions in Eq. (A2), using the energy conserva-
tion Eq. (A3) and neglecting viscosity, we obtain the Euler
equation

w

(
∂

∂t
+ u · ∇r

)
u + v2

F ∇r p + u
∂ p

∂t
− v2

F enE + e(E · Jn)u

=
∑

l

∫
(d3k)kIe−imp[ fl (t, r, k)]. (A8)

The RHS describes momentum relaxation by disordered
impurities, and it is given by∑

l

∫
(d3k)kIe−imp[ fl (t, r, k)] = − u

τ̄ el
‖

w

v2
F

, (A9)

where the effective elastic transport time τ̄ el
‖ is calculated in

the next section. Finally, using the thermodynamic relation
d p = ndμ + sdT we obtain the form of the Euler equation
written in the main text, Eq. (6). For the calculation of DC
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conductivities done in the main text, the time derivative term
is set to zero. We then find the boost velocity, to linear order
in the fields, to be given by

u = v2
F τ̄ el

‖
w

[n(eE + ∇rμ) − s∇rT ]. (A10)

We note that here, the boost velocity is limited only by the
disorder. In a different setup, the boost velocity may be limited
by other scales, such as a finite frequency of the fields. In this
case, one should replace τ̄ el

‖ → τ̄ el
‖ /(1 − iωτ̄ el

‖ ) in the above
equation. If the sample size is smaller than the elastic transport
length, it should be used as a cutoff for the momentum density
zero mode.

APPENDIX B: ELASTIC TRANSPORT SCATTERING TIME

The disorder collision integral is given by (omitting node
and band indices as the scattering is elastic and we assumed
no internode scattering by the disorder2)

Ie−imp[ fk] = −
∫

(d3k′)( fk − fk′ )wkk′ , (B1)

where wkk′ = 2π |Vkk′ |2δ(εk − εk′ ) is the scattering rate, given
by Fermi’s golden rule. The elastic transport time at a given
energy is given by taking fk ∝ k̂,

k̂

τ el
‖ (ε)

= −
∫

(d3k′)(k̂ − k̂′)wkk′ = 2πγ ν(ε)

3
k̂, (B2)

where ν(ε) is the density of states of the single Weyl node at
energy ε and γ is the amplitude of the short-ranged disorder
potential correlator [Eq. (2)]. Note that due to the spinor
structure, low-angle scattering is favored (the matrix element
Vkk′ contains the product of the Bloch eigenfunctions at k, k′),
making the transport time larger than the elastic lifetime by a
factor of 3/2.

In the derivation of the Euler equation [Eq. (A8)], the
elastic transport rate 1/τ el

‖ (ε) is thermally averaged:

∑
l

∫
(d3k)kIe−imp[ fl (t, r, k)]

= −u
∑

l

∫
(d3k)

(
−∂ f 0(εlk )

∂ε

)
k2

3τ el
‖ (εlk )

, (B3)

where we linearized f in the boost velocity, f ≈ f0 − ∂ f0

∂ε

u · k. We write the above expression by defining a thermally
averaged transport rate 1/τ̄ el

‖ :

∑
l

∫
(d3k)kIe−imp[ fl (t, r, k)]

= − u
τ̄ el
‖

∑
l

∫
(d3k)

(
−∂ f 0(εlk )

∂ε

)
k2

3
= − u

τ̄ el
‖

w

v2
F

,

(B4)

2Note that electron-electron internode scattering exists and is as-
sumed to be much faster than the disorder scattering rate. Therefore
the assumption of no internode scattering by the disorder is not
crucial, and relaxing it only modifies τ el

‖ by a numerical factor.

where the averaged transport rate can be seen to be given by

1

τ̄ el
‖

=
∑

l

∫
(d3k)

( − ∂ f 0(εlk )
∂ε

)
k2

τ el
‖ (εlk )∑

l

∫
(d3k)

( − ∂ f 0(εlk )
∂ε

)
k2

. (B5)

Explicit calculation yields

1

τ̄ el
‖

= 1

τ el
‖ (ε = T )

(βμ)6 + 5π2(βμ)4 + 7π4(βμ)2 + 31π6

21

(βμ)4 + 2π2(βμ)2 + 7π4

15

≈
{

155π2

49 1/τ el
‖ (ε = T ) μ � T,

1/τ el
‖ (ε = μ) μ 	 T .

(B6)

Interestingly, for low temperatures (τ̄ el
‖ )−1 is greatly en-

hanced (factor of ∼30) compared to the naive estimation
(τ̄ el

‖ )−1 ≈ (τ el
‖ (ε = T ))−1; the high-energy electrons, which

scatter faster, are given a higher weight in the momentum
relaxation integral.

APPENDIX C: EXPERIMENTAL REALIZATIONS OF
ELECTRON HYDRODYNAMICS IN SEMIMETALS

Here we review some experimental properties of semimet-
als exhibiting (or being close to) the hydrodynamic regime.
In particular, we discuss the scales of the different scat-
tering mechanisms and their compatibility with our simple
model, which neglects electron-phonon scattering and as-
sumes electron-electron scattering time to be the shortest.

Signatures of the hydrodynamic regime have been reported
in the type-II, time-reversal symmetric WSM WP2 [6,7], and
in the closely related but non-Weyl phase of WTe2 [8,10]. We
summarize the values of scattering lengths based on recent
experiments and ab-initio calculations in Table I.

It is worth mentioning that ab initio calculations [8,53]
for both materials show that the bare Coulomb interaction is
strongly screened by the free carriers. The effective electron-
electron interaction emerges due to the exchange of virtual
phonons. We emphasize that this virtual phonon-mediated
interaction strictly conserves the energy and momentum
of the electronic system, as opposed to a real phonon
absorption/emission process (the latter corresponds to �e-ph

in Table I). Since the microscopic origins of the electron-
electron interaction are not consequential for our analysis, this
mechanism still leads to hydrodynamics of the same type as
we consider. The only influence of the microscopic origin of
the electron-electron interaction is incorporated in the depen-
dence of τ e-e on the temperature and chemical potential. Such
an analysis in the case of phonon-mediated electron-electron
interaction has recently been done in Ref. [54]. By analyzing
the experimental data summarized in Table I one concludes
that though the hydrodynamic regime (le−e < l imp < le−ph)
can be achieved, the separation between the scattering scales
is not large. Therefore the majority of experiments up to date
are on the verge of the formation of the hydrodynamic regime.
Both electron-impurity and electron-phonon scattering can
mask the hydrodynamic effects.
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TABLE I. Scattering lengths for different materials, collected from other works. Data from Ref. [8] are ab initio calculations taken from
Fig. 4. Data from Ref. [53] are taken from Fig. 2, with vF = 1.4 × 105 m/s to convert from scattering times to lengths. For Sb, the lengths
�e-e are the Principi-Vignale formula fitted values of Fig. 6 in Ref. [9]. In both calculations for WP2 and WTe2, the dominant electron-electron
scattering is due to the phonon-mediated interaction.

Material References T (K) �e-e (µm) �e-ph (µm) �e-imp (µm)

WTe2 Experimental realizations in Refs. [8,10], ab initio calculations in Ref. [8] a 5 25 150 1.8
10 2.5 7.5
15 1 2
50 0.1 0.1

WP2 Experimental realizations in Refs. [6,7], ab initio calculations in Ref. [53] 5 200 30 100 [6]
10 9 5
15 1.5 1.5
50 0.03 0.04

Sb Experimental and fitted parameters from Ref. [9] 3.5 1000 200
b (cleanest sample)

7.5 300

aCalculations in Ref. [10] suggest that �e-e in WTe2 may be smaller due to enhanced Coulomb scattering.
bRef. [9] argues negligible e-ph in Sb at the measured temperatures. The argument is expecting a Bloch-Grüneisen contribution to the resistivity
of ρBG ∼ T 5 from phonons, while the data show a negligible ∼T 5 term compared to the constant and ∼T 2 parts of the resistivity.

Among the effects that fit into the hydrodynamic pic-
ture are the experiments in WP2 that have reported a low
Lorentz ratio [6,7], in agreement with the hydrodynamic re-
sult [Eq. (41)] at the degenerate regime (|μ/T | 	 1). Similar
behavior has been also shown in antimony (Sb) [9]. However,
in the antimony experiment, the impurity scattering length
was comparable with the electron-electron scattering length.
Therefore the comparison with formula Eq. (41) should be
performed using its modified form, the Principi-Vignale re-
sult, replacing τ e-e/τ̄ el

‖ → τ e-e/(τ e-e + τ̄ el
‖ ) [51].

It should be noted that a low Lorenz ratio can also result
from other mechanisms. Particularly, due to different relax-
ation rates for the electric and energy currents [7]. Small-angle
inelastic momentum-relaxing scattering (i.e., electron-phonon
or umklapp electron-electron) relaxes the energy current much
faster than the electric current (in the degenerate regime,
where the electric current is nearly equivalent to the total
momentum [51]).

It is worth mentioning that electron-electron umklapp scat-
tering mechanism may be relevant for WP2. This is due
to electron and hole Fermi pockets separated in momen-
tum space, enhancing electron-electron umklapp scattering
[7]. In this case, one has to distinguish between the normal
(momentum-conserving) and umklapp (momentum-relaxing)
electron-electron scattering rates. In our model, τ e-e denotes
only the normal part of the e-e collisions. Significant umklapp
scatterings would contribute to the relaxation of the momen-
tum density as well as the electric and heat currents.

It is also worth to mention that the dominant mechanism
of phonon decay over a wide temperature range in WP2 is via
phonon-electron scattering, rather than phonon-phonon scat-
tering [55]. This implies that the electron and phonon degrees
of freedom in this material are strongly coupled. In this case,
the energy and momentum of the coupled electron-phonon
fluid are conserved [55,56]. This regime is outside the scope
of our work.

APPENDIX D: THERMODYNAMIC QUANTITIES

Here we present some results for thermodynamics quan-
tities for an isolated Weyl node with 3D linear spectrum
H = vF σ · k.

The grand potential of the system is given by [57]

�(T,V, μ) = − 1

β

∑
b

∏
k

[1 + exp (β(μ − εbk ))]

= − 1

β

∑
bk

ln [1 + exp (β(μ − εbk ))]

= V

π2β4v3
F

[Li4(−eβμ) + Li4(−e−βμ)], (D1)

where

Lis(−z) = − 1

(s − 1)!

∫ ∞

0

t s−1

z−1et + 1
dt (D2)

is the polylogarithm function. From the grand potential, one
can derive the thermodynamic quantities:

p = −�

V
, (D3)

N = −∂�

∂μ
= − V

π2β3v3
F

[Li3(−eβμ) − Li3(−e−βμ)], (D4)

S = −∂�

∂T
= β(4pV − μN ). (D5)

In terms of densities, we find

w = 1

6π2β4v3
F

[
(βμ)4 + 2π2(βμ)2 + 7π4

15

]
, (D6)

s = 1

6β3v3
F

[
(βμ)2 + 7π2

15

]
, (D7)

n = 1

6π2β3v3
F

βμ[(βμ)2 + π2]. (D8)
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In the system we consider, assuming |μ|, T � (�kvF ), we
extend the momentum integration for each Weyl node to
infinity and get that the extensive quantities are simply the
above results multiplied by the number of nodes NW = 2.
However, there is a subtlety here if the boost velocity is finite.
Since the boost velocity u of the whole system couples to the
quasimomentum k, one has to consistently choose the same
origin in k space for both nodes. This effectively leads to
the two nodes equilibrating to different chemical potentials,
μη = μ + ηu · �k/2. Therefore an external field along the
node separation axis causes a charge drift between the nodes.
For the quantities we consider, the effect can be disregarded
on the linear response level.

The density of states of a single Weyl node is given by

ν(ε) = ε2

2π2v3
F

. (D9)

In the above calculations, we used the following useful iden-
tities for the polylogarithms functions [58]:

Li2(−ex ) + Li2(−e−x ) = −x2

2
− π2

6
, (D10)

Li3(−ex ) − Li3(−e−x ) = −x3

6
− π2

6
x, (D11)

Li4(−ex ) + Li4(−e−x ) = − 1

24
x4 − π2

12
x2 − 7π4

360
, (D12)

Li6(−ex ) + Li6(−e−x )

= − 1

6!

(
x6 + 5π2x4 + 7π4x2 + 31π6

21

)
. (D13)

APPENDIX E: CALCULATION OF DISSIPATIVE LINEAR
RESPONSE COEFFICIENTS

In this part, we calculate the dissipative response co-
efficients by approximately solving the electron-electron
collision integral. To the leading order in τ̄ el

‖ /τ e-e, the disorder
collision integral can be neglected, and from hereon we take
I[ f ] ≈ Ie-e[ f ].

We write the distribution function as f = f FD + δ f , where
f FD is a local equilibrium Fermi-Dirac distribution and δ f is
the nonequilibrium dissipative correction. Let us parametrize
this correction by

δ fl (k) = g(εlk )hl (k), (E1)

where h(k) is any function and

g(ε) =
√

− 1

β

∂ f 0

∂ε
= 1

2 cosh
(

ε−μ

2T

) . (E2)

The linearized Boltzmann equation reads

− βg2(εlk )

[
vlk · (eE − ∇μ) − vlk(εlk − μ)

T
· ∇T

]

= I[δ fl (k)]. (E3)

In order to solve the Boltzmann equation, one has to in-
vert the collision integral. However, the e-e collision integral
has zero modes, and so first we must project the Boltzmann
equation to the subspace orthogonal to these zero modes.
The zeromodes correspond to the conserved quantities of the

collision integral: charge, momentum and energy densities,
and are given by

λ
(1)
l (k) = 1, λ

(2)
l (k) = k, λ

(3)
l (k) = εlk. (E4)

We linearize the collision integral, and define the inner prod-
uct space

〈ψ |φ〉 ≡
∑

l

∫
(dk)ψl (k)g2(εlk )φl (k). (E5)

We symmetrize the collision integral in this inner product
space by defining

Ilk,l ′k′ ≡ 1

g(εlk )
Ilk,l ′k′g(εl ′k′ ). (E6)

Substituting the symmetrized collision operator in the
Boltzmann equation, we can invert it in the subspace
orthogonal to the zero modes and find

hl (k) = − β
∑

l ′

∫ (
dk′)I−1

lk,l ′k′g(εl ′k′ )

×
[

vl ′k′ · (eE − ∇μ) − vl ′k′ (εl ′k′ − μ)

T
∇T

]
. (E7)

At this stage, we approximate the inverse e-e collision
integral to be simply given by I−1

lk,l ′k′ = −τ e-eδ(k − k′)δll ′ .
We then find the dissipative corrections to the currents,

Ji
diss. ≡

∑
l

∫
(dk)ji

lkδ flk

= βτ e-e

〈
ji|v ·

[
eE − ∇μ − (ε − μ)

T
∇T

]〉
, (E8)

where i = 1, 2 indicate the electric and thermal currents, with
their operators given by

j1 = evlk, j2 = (εlk − μ)vlk. (E9)

In the right-hand side of Eq. (E8), both vectors are pro-
jected to the subspace orthogonal to the zero modes. Eq. (E8)
can be written more compactly as

Ji
diss.,α = Li j

diss.,αβ
F j

β , (E10)

where Fi are generalized forces, Li j
diss. are the dissipative parts

of the total thermoelectric response tensors defined in the main
text [Eqs. (13) and (14)], and explicitly,

F1 = E − ∇μ

e
, F2 = −∇T, (E11)

Li j
diss.,αβ

= −β
〈
ji
α

∣∣Î−1 j j
β

〉
. (E12)

By computing Eq. (E12), we find

L11
diss.,xx = σ diss.

xx = e2v2
F

(
1

3

∂n

∂μ
− n2

w

)
τ e-e, (E13)

L21
diss.,xx = T L12

diss,xx = −μ

e
σ diss.

xx , (E14)

L22
diss.,xx = μ2

e2T
σ diss.

xx . (E15)

In our approximation for the electron-electron collision
integral, there are no contributions to the off-diagonal dissi-
pative response coefficients, Li j

diss.,xy = 0. Interestingly, σ diss.
xx
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can be written by a Drude-like formula in the two opposite
limits of μ/T :

σ diss.
xx ≈ e2v2

F

3
τ e-e ×

{
∂n
∂μ

|μ/T | � 1,

T
μ2 cv |μ/T | 	 1,

(E16)

with cv = T ∂s/∂T being the heat capacity. This result reflects
that the momentum zero mode is parallel to the thermal cur-
rent in the Dirac fluid regime, and to the particle current in
the Fermi liquid regime. Dissipation occurs via the orthogonal
channels, therefore σ diss.

xx is related to particle diffusion in the
Dirac fluid and heat diffusion in the Fermi liquid.

Lastly, we address the electron-electron scattering time
τ e-e. In Weyl semimetals, the electron-electron scattering
rate can be estimated by 1/τ e-e ∼ NW α2T min(1, T

μ
) [59,60],

where NW is the number of Weyl nodes and α is the effective
fine-structure constant, characterizing the ratio between the
typical Coulomb interaction energy scale and the typical ki-
netic energy scale. The condition τ e-e � τ̄ el

‖ gives a condition
for the maximal strength of the disorder,

γ � v3
F α2T 2

max(μ3, T 3)
. (E17)

APPENDIX F: SEEBECK COEFFICIENT FOR
NONINTERACTING ELECTRONS

Here, we calculate the temperature dependence of the See-
beck coefficient in a noninteracting system with particle-hole
symmetry. While the calculation is standard for the Fermi-
liquid regime (μ 	 T ) [11,49,61], for the Dirac fluid regime
(μ � T ) it is less commonly found in the literature, and so we
carry it here for comparison with the hydrodynamic regime.
For simplicity, we focus on an isotropical system and omit
the tensor structure (in space) of the response coefficients. For
noninteracting electrons, the thermoelectric response L12 can
be calculated from the Mott relation

L12 = 1

e

∫
dε

ε − μ

T
σ (ε)

(
−∂ f 0

∂ε

)
, (F1)

where

σ (ε) = e2
∫

(dk)δ(ε − εk )v2(k)τ (k) (F2)

is the electric conductivity at zero temperature. For an
isotropic system,

σ (ε) = e2v2
F (ε)ν(ε)

d
τ (ε), (F3)

where d is the number of dimensions. One can utilize the
Sommerfeld expansion∫ ∞

−∞
K (ε)

(
−∂ f

∂ε

)
dε

= K (μ) +
∞∑

n=1

an(T )2n d2n

dε2n
K (ε)|ε=μ, (F4)

where an are dimensionless coefficients, the first ones given
by a1 = π2/6, a2 = 7π4/360. Writing v2

F (ε)ν(ε) ∼ εα and
τ ∼ εβ (for example, in 3D metals with scattering due to
short-ranged impurities, α = 3/2, β = −1/2), one finds for
the Fermi-liquid regime, to leading order in εF /T ,

L11 = σ (εF ), (F5)

L12 = π2

3e
T

dσ

dε

∣∣∣∣
ε=εF

= π2

3e

T

εF
(α + β )σ (εF ), (F6)

leading to the Seebeck coefficient

S = L12

L11
= π2

3e

T

εF
(α + β ). (F7)

The thermopower of WSMs in the linear dispersion regime
was studied by Lundgren et al. [62]. In WSMs, α = 2. Focus-
ing on the leading order in εF /T , their results imply β = 2 for
scattering due to charged impurities and β = −2 for short-
ranged impurities. Plugging these values in Eq. (F7) gives
agreement with Ref. [62].

In the Dirac fluid regime, one can still perform the
Sommerfeld expansion as long as σ (ε) is a polynomial func-
tion of ε. Assuming particle-hole symmetry, σ (ε) is even in
energy. Denoting the highest power of ε in the expansion of
σ (ε) as 2γ , one finds, to the leading order in T/μ,

L11 = aγ (2γ )!

(
T

μ

)2γ

σ (μ), (F8)

L12 = 1

e
aγ (2γ )!

(
T

μ

)2γ−1

σ (μ), (F9)

leading to

S = 1

e

μ

T
. (F10)

We see that the Seebeck coefficient in the noninteracting Dirac
fluid regime scales as μ/T , in contrast to the hydrodynamic
regime where it scales as s/n � T/μ.
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