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In this paper, we present a multiorbital form of the two-particle self-consistent approach (TPSC) where the
effective local and static irreducible interaction vertices are determined by means of the dynamical mean-field
theory (DMFT). This approach replaces the approximate ansatz equations for the double-occupations 〈nα,σ n

β,σ ′ 〉
by sampling them directly for the same model using DMFT. Compared to the usual Hartree-Fock-like ansatz, this
leads to more accurate local vertices in the weakly correlated regime and provides access to stronger correlated
systems that were previously out of reach. This approach is extended by replacing the local component of the
TPSC self-energy by the DMFT impurity self-energy, which results in an improved self-energy that incorporates
strong local correlations but retains a nontrivial momentum dependence. We find that this combination of
TPSC and DMFT provides a significant improvement over the multiorbital formulation of TPSC as it allows to
determine the components of the spin vertex without artificial symmetry assumptions and opens the possibility to
include the transversal particle-hole channel. The new approach is also able to remove unphysical divergences in
the charge vertices in TPSC. We find a general trend that lower temperatures can be accessed in the calculation.
Benchmarking single-particle quantities, such as the local spectral function with other many-body methods, we
find significant improvement in the more strongly correlated regime.

DOI: 10.1103/PhysRevB.107.235101

I. INTRODUCTION

The study of correlated electron physics in solid-state
systems poses many difficulties, of which the solutions are
expected to be key ingredients for understanding emergent
phenomena, such as unconventional superconductivity [1–10]
or spin liquid phases [11–17]. As solving the many-electron
problem exactly is impossible due to the large number of parti-
cles, effective low-energy lattice models have been developed,
such as the Hubbard model, to describe the physics of corre-
lated electrons in partially filled orbitals [18–20]. Even though
this model is a significant simplification of the original prob-
lem, in general, an exact solution is not available, which led to
the development of a large variety of approximate many-body
methods for the Hubbard model [21–24]. Among the different
approaches we focus here on the dynamical mean-field theory
(DMFT) [25–27] and the two-particle self-consistent (TPSC)
method [28–30].

The idea of DMFT is to map the original lattice problem
onto an effective local model, embedded in an effective en-
vironment that is determined self-consistently. This approach
restricts correlation effects to purely local but dynamical con-
tributions and, thus, results in a momentum-independent but
frequency-dependent self-energy �(ω). This approximation
becomes exact in the limit of infinite coordination number,
but it has been applied to great success in finite-dimensional
strongly correlated electron systems [27,31–35]. On the other
hand, DMFT cannot describe nonlocal correlation effects,
which are relevant, e.g., in low-dimensional systems and the
description of pseudogaps in the context of high-temperature

cuprate superconductors [36–39]. Nonlocal extensions to
DMFT that reintroduce a momentum dependence to the self-
energy have been and are actively developed, such as cluster
extensions [27,40–45] or different types of diagrammatic ex-
tensions, such as GW+DMFT [46–51], dynamical vertex
approximation [21,52–54], TRILEX [55–57], QUADRILEX
[58], D-TRILEX [59–62], dual fermion [63–65], and dual
boson techniques [66–69]. Most of them come at a significant
increase in computational cost, especially when multiorbital
systems are considered.

Another way to access nonlocal and dynamical correlation
effects is given by the TPSC approach [29,70]. Within TPSC,
the two-particle irreducible vertex �, which contains informa-
tion on two-particle scattering processes, is approximated to
be an effective local and static quantity [70]. This effective
interaction vertex � is determined by requiring the resulting
spin and charge susceptibilities to fulfill corresponding lo-
cal sum rules. The quasiparticle renormalization effects from
spin and charge fluctuations eventually lead to a nonlocal
and dynamical self-energy �(k, ω). In the case of weak- to
intermediate-coupling strengths, TPSC has proven to yield
accurate results [29,70], and it can be extended to multisite
[71–76] and multiorbital [30,77,78] systems. The multiorbital
TPSC formalism allowed for the investigation of possible
spin-fluctuation pairing scenarios in unconventional super-
conductors [77] and nonocal correlation effects in the spectral
properties of Fe-based superconductors [78,79] but still faces
certain limitations, which we aim to address in this article.

One of the limitations of the multiorbital TPSC scheme is
the occurrence of diverging negative charge vertices when one
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requires the corresponding sum rules to be satisfied exactly,
leading to unphysical negative spectral weight [30]. This issue
can be circumvented by restricting the charge vertex search
to non-negative values [30,77,78], at the expense of violating
the corresponding local sum rules. Moreover, the usual ansatz
equations do not allow for a determination of all double-
occupations and correspondingly do not provide enough sum
rules to determine all relevant elements of the spin vertex.
Symmetry relations that hold for the bare spin vertex can be
used to determine these elements but still pose an additional
approximation and do not allow for a straightforward inclu-
sion of the transversal particle-hole channel [30].

In this paper, we demonstrate that these limitations can be
resolved by replacing the ansatz equations for the double-
occupations with the double-occupations directly obtained
from a DMFT calculation. This leads to effective local spin
and charge vertices, which are consistent with the double-
occupations obtained by DMFT and do not rely on the
additional Hartree-Fock-like decoupling employed in the
original ansatz equations. Our results show that this approach
that we call 〈nn〉DMFT-TPSC, is able to improve or completely
resolve the shortcomings of the original formulation of mul-
tiorbital TPSC. The idea of using the double-occupation as
external parameter was already proposed in the original TPSC
formulation [28]. In an additional step, the local self-energy of
〈nn〉DMFT-TPSC can be replaced by the impurity self-energy
of DMFT, which we name 〈nn〉DMFT-TPSC+�DMFT. This
replacement is motivated by the nonperturbative nature of
the DMFT approximation, which has shown to be able to
obtain accurate results for local quantities, such as the local
self-energy and double-occupations [23,27,31]. The same ex-
tensions of TPSC but in the single-band case are presented
in Ref. [80]. The article is structured as follows. In Sec. II,
we present the multiorbital TPSC formalism from Ref. [30],
discuss the limitations and motivate the combination with
DMFT. In order to test our new approach, we perform calcu-
lations on a simple two-orbital Hubbard square lattice model
as in Ref. [30]. In Sec. III, the results of this benchmark are
presented and discussed, and Sec. IV contains a summary and
addresses open questions.

II. MODEL AND METHOD

In this paper, we consider the fermionic multiorbital
Hubbard-model, defined by the Hamiltonian,

H =
∑

α,β,i, j,σ

(
t

�Ri− �Rj

αβ − μδi, jδα,β

)
c†
α,σ ( �Ri )cβ,σ ( �Rj )

+ 1

2

∑

α,β,i,σ

Uαβnα,σ ( �Ri )nβ,−σ ( �Ri )

+ 1

2

∑

α,β,i,σ
α �=β

(Uαβ − Jαβ )nα,σ ( �Ri )nβ,σ ( �Ri )

− 1

2

∑

α,β,i,σ
α �=β

Jαβ [c†
α,σ ( �Ri )cα,−σ ( �Ri )c

†
β,−σ ( �Ri )cβ,σ ( �Ri )

+ c†
α,σ ( �Ri )cβ,−σ ( �Ri )c

†
α,−σ ( �Ri )cβ,σ ( �Ri )], (1)

where t
�Ri− �Rj

αβ are the hopping matrix elements between orbitals

α and β that are connected by lattice vectors �Ri − �Rj . Here, we
restrict ourselves to the paramagnetic phase. The Hubbard and
Hund’s coupling terms are denoted by Uαβ and Jαβ , respec-
tively. Throughout this paper we assume spherical symmetry
with Uαα = U , and Uαβ = U − 2J for α �= β. The operator

cα,σ ( �Ri ) destroys an electron with spin σ in the α orbital at
unit-cell position �Ri, and c†

β,σ ( �Rj ) creates an electron with

spin σ in the β orbital at unit-cell position �Rj . The density
operator is defined via nα,σ ( �Ri ) := c†

α,σ ( �Ri )cα,σ ( �Ri ), and μ is
the chemical potential.

In order to introduce the combined TPSC and DMFT ap-
proach to the multiorbital Hubbard model, we first start with
a short summary of the single-orbital and multiorbital TPSC
approach following Ref. [30].

A. Single-orbital TPSC

The two-particle self-consistent approach was originally
developed for the single-band Hubbard model [29,70] based
on an approximate expression for the Luttinger-Ward func-
tional [81], namely, 	[G] ≈ G�G, where G is the full Green’s
function and � is the two-particle irreducible vertex. Addi-
tionally, in TPSC, one approximates the irreducible vertex
� to be local and time-independent quantity. The reason-
ing behind both approximations lies on the observation that,
far away from phase transitions, higher-order correlation
functions only contribute through their averages, which are
assumed to be absorbed in an effective interaction vertex �. In
TPSC, this effective interaction vertex � appears as effective
constant spin and charge vertices �sp and �ch, respectively.

In order to determine the values of the effective vertices
�sp and �ch, TPSC relies on the enforcement of the local spin
and local charge sum rules,

χ sp( �R = 0, τ = 0) = 〈n〉 − 2〈n↑n↓〉, (2)

χ ch( �R = 0, τ = 0) = 〈n〉 + 2〈n↑n↓〉 − 〈n〉2, (3)

where χ sp/ch is the spin/charge susceptibility, τ denotes imag-
inary time, and n is the particle number operator. Although
the susceptibilities χ sp/ch are obtained from a Bethe-Salpeter
equation from the spin and charge vertices �sp/ch and the bare
susceptibility χ0 = G0 � G0 (and the noninteracting Green’s
function G0), the double-occupation 〈n↑n↓〉 entering Eqs. (2)
and (3) is a priori unknown. In the multiorbital TPSC ap-
proach relate the spin vertex �sp to the double-occupation
〈n↑n↓〉 by means of the ansatz,

�sp = U
〈n↑n↓〉

〈n↑〉〈n↓〉 , (4)

which corresponds to a Hartree-Fock-like decoupling as mo-
tivated in Ref. [82]. This relation is used to solve the local
spin sum rule [Eq. (2)] for the double-occupation. This ansatz
allows for a fully self-contained TPSC formulation, and it was
demonstrated that the self-consistently determined double-
occupations are in good agreement with quantum Monte
Carlo results at temperatures above the renormalized classical
regime. Although, for lower temperatures in the moderately
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correlated regime, this ansatz was found to significantly un-
derestimate the double-occupations [70,83–85].

Another option is to consider the double-occupation as an
external parameter, which can be obtained by other many-
body methods with higher precision, such as DMFT, which
is one of the main goals of this article.

B. Multiorbital TPSC

Following the same line of arguments as in the single-
orbital TPSC approach, one can extend the formalism to
multiorbital Hubbard models. A detailed derivation and dis-
cussion can be found in Ref. [30]. Here, we focus on the
main equations to motivate the idea of combining TPSC with
DMFT.

The Bethe-Salpeter equation evaluates to the following
expressions for the spin and charge susceptibilities:

χ sp/ch(q, iqn) = 2[1 ∓ χ0(q, iqn)�sp/ch]−1χ0(q, iqn), (5)

where q is a reciprocal lattice vector, qn is the nth bosonic
Matsubara frequency, and χ0 = G0 � G0 is the noninteracting
irreducible susceptibility given as a convolution (�) of two
noninteraction Green’s functions G0. The Hartree-Fock-like
decoupling, which leads to Eq. (4) can be also applied to the
multiorbital case [86], which results in

�sp
αααα = Aσ

α ,

�
sp
ααββ = B↑,↓

αβ − B↓,↓
αβ ,

(6)

where

Aσ
α = Uαα

〈nασ nα,−σ 〉
〈nα,σ 〉 〈nα,−σ 〉 , (7)

Bσ,σ
αβ = (Uαβ − Jαβ )

〈nα,σ nβ,σ 〉
〈nα,σ 〉 〈nβ,σ 〉 , α �= β, (8)

Bσ,−σ
αβ = Uαβ

〈nα,σ nβ,−σ 〉
〈nα,σ 〉 〈nβ,−σ 〉 , α �= β. (9)

These ansatz equations provide no expression to determine the
spin-vertex elements for the orbital combinations αβαβ and
αββα. A possible solution is to assume a symmetric form of
the spin vertex, namely,

�
sp
αββα = �

sp
αβαβ = �

sp
ααββ, (10)

that is motivated from the bare �sp,0, which obeys this sym-
metry in the longitudinal particle-hole channel [30]. The bare
and dressed spin/charge vertices then enter the multiorbital
TPSC self-energy expression [30],

�αδ,σ = [�chχ ch�ch,0 + �spχ sp�sp,0]δβ̄αγ̄ � G0
γ̄ β̄

. (11)

The ansatz equations (6) and (10) together with the local
spin and charge sum rules for the orbital index combinations
for αααα, ααββ, and αβαβ form a system of determined
equations that can be solved to obtain the elements of the
effective spin/charge vertices.

The shortcomings of the ansatz equations for the double-
occupation observed in the single-orbital case become visible

when approaching the renormalized classical regime or at
large interaction strength [70]. These also seem to transfer
to the multiorbital case where a qualitatively different behav-
ior as a function of interaction strength was found for the
equal-spin double-occupation 〈nα,σ nβ,σ 〉 in TPSC compared
to DMFT [30]. Furthermore, the TPSC double-occupations
can result in negative diverging charge vertices �ch

ααββ , leading
to unphysical negative spectral weight. These unphysical solu-
tions can be avoided by restricting the charge vertex �ch

ααββ to
non-negative values, at the cost of violating the corresponding
local charge sum rules [30].

These shortcomings of the ansatz equations for the double-
occupations pose a significant limitation of the multiorbital
formulation of TPSC especially in the moderately to stronger
correlated regime. In the following, we will show how these
limitations can be overcome by the combination of DMFT-
derived double-occupations with TPSC, which we refer to as
〈nn〉DMFT-TPSC.

C. 〈nn〉DMFT-TPSC

In the multiorbital formulation of TPSC, there are not
enough ansatz equations to determine the elements �

sp
αβαβ

and �
sp
αββα and double-occupations self-consistently without

further assumptions or approximations. For this reason, we
propose to use the double-occupations obtained from a differ-
ent many-body method for the same model, such as DMFT.
Together with the local spin and charge sum rules for the sus-
ceptibilities χ

sp/ch
αααα , χ sp/ch

ααββ , and χ
sp/ch
αβαβ the corresponding vertex

elements �
sp/ch
αααα , �

sp/ch
ααββ , and �

sp/ch
αβαβ can be determined without

the need for additional approximations or symmetry assump-
tions. Only for the remaining elements �

sp/ch
αββα for which the

sum rules do not result in density-density correlation terms,
we retain the symmetry relation,

�
sp/ch
αββα = �

sp/ch
αβαβ. (12)

Furthermore, this approach allows for restoring crossing
symmetry in the multiorbital TPSC formalism [87] by aver-
aging the self-energy expressions from the longitudinal and
transversal particle-hole channel [29,85], which yields for the
nonzero elements of the spin vertex,

�sp,0
αααα = 3Uαα/2,

�
sp,0
ααββ = 2Jαβ − Uαβ/2,

�
sp,0
αβαβ = Jαβ/2 + Uαβ,

�
sp,0
αββα = 3Jαβ/2,

(13)

and charge vertex,

�ch,0
αααα = Uαα/2,

�ch,0
ααββ = 3Uαβ/2 − Jαβ, (14)

�ch,0
αβαβ = �ch,0

αββα = Jαβ/2

for the vertices in the self-energy expression Eq. (11). This
variant of the multiorbital formulation of TPSC that deter-
mines the effective charge and spin vertices consistent with
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another many-body method we call 〈nn〉X -TPSC, where X
can, in principle, be any method that obtains accurate esti-
mates of the double-occupations.

In this paper, we focus on double-occupations that are ex-
tracted from DMFT, which has been shown to obtain reliable
estimates for local quantities as long as nonlocal correlations
are not too strong [27,31].

D. 〈nn〉DMFT-TPSC+�DMFT

As an additional step, we propose a scheme where the
impurity self-energy obtained from DMFT is combined with
the nonlocal part of the TPSC self-energy, which can be seen
as an approximation to a fully self-consistent TPSC+DMFT
calculation. This scheme would correspond to a situation
where the nonlocal correlation effects are relevant but not
strong enough to have a significant feedback on the local
correlation effects obtained within DMFT. It improves upon
the local and static interaction vertex included in TPSC, which
cannot consistently describe low- and high-energy features si-
multaneously due to its static nature. For example, the vertices
do not recover their bare values at large frequencies as they are
renormalized by low-energy spin and charge fluctuations.

In this scheme, the effective momentum-dependent dynam-
ical self-energy is given as the local DMFT self-energy �DMFT

combined with the nonlocal TPSC self-energy, namely,

�(k, iωn) = �TPSC(k, iωn) − 1

N

∑

k′
�TPSC(k′, iωn)

+ �DMFT(iωn), (15)

where k is a reciprocal lattice vector in the first Brillouin
zone, ωn is the nth fermionic Matsubara frequency, and N is
the number of k points. The idea of Eq. (15) was previously
developed for a different many-body approach [23].

III. RESULTS

We consider the two-orbital Hubbard model given by
Eq. (1) to facilitate comparison with the multiorbital TPSC
formalism presented in Ref. [30]. The hopping terms are
restricted to only nearest-neighbor hopping and to be orbital-
diagonal tαβ = tααδαβ . The only coupling between the orbitals
is via the interaction terms given by U and J . We con-
sider the half-filled case with one electron per orbital per
site. In the first part, we will discuss the effect of the
DMFT-derived double-occupations on the TPSC two-particle
quantities within 〈nn〉DMFT-TPSC. These results apply in the
same way to 〈nn〉DMFT-TPSC+�DMFT as there is no feed-
back from the local DMFT self-energy on TPSC besides
the inclusion of the DMFT double-occupations. The DMFT
calculations are based on the ALPSCore continuous-time
quantum Monte Carlo impurity solver in the hybridization
expansion [88,89].

A. Double-occupations

In Table I, we show the double-occupations obtained
from multiorbital TPSC compared to DMFT for U/t = 3,
for moderate (J = U/5), and large (J = U/3) values of the
Hund’s coupling at different temperatures T/t . We find the

TABLE I. Double occupations as obtained from TPSC and
DMFT at U/t = 3 for different Hund’s coupling J and temperatures
T . Missing data points correspond to parameters where no TPSC
convergence could be achieved.

U/J = 5 〈nα,↑nα,↓〉 〈nα,↑nβ,↓〉 〈nα,↑nβ,↑〉
T/t DMFT TPSC DMFT TPSC DMFT TPSC

0.5 0.1734 0.1571 0.2183 0.2361 0.2518 0.2692
0.4 0.1759 0.1562 0.2193 0.2367 0.2517 0.2714
0.3 0.1786 0.1541 0.2207 0.2376 0.2513 0.2759
0.25 0.1796 0.1502 0.2205 0.2387 0.2507 0.2826

U/J = 3 〈nα,↑nα,↓〉 〈nα,↑nβ,↓〉 〈nα,↑nβ,↑〉
T/t DMFT TPSC DMFT TPSC DMFT TPSC

0.5 0.1595 0.1477 0.2197 0.213 0.2697 0.2832
0.4 0.1614 0.1437 0.22204 0.213 0.2691 0.2899
0.3 0.1646 0.2213 0.2685
0.25 0.1663 0.2220 0.2676

general trend that the TPSC equal-orbital double-occupations
are about 5–15% smaller than the ones obtained from DMFT
indicating stronger local correlation effects in TPSC similar
to the single-orbital case [23]. Furthermore, TPSC shows a
monotonous increase as a function of temperature as it does
not capture the reduction of the double-occupation induced
by favoring localization to increase spin entropy [23,84,90].
We attribute this behavior in TPSC to the mean-field-like
ansatz equation (6). Although this effect is observed in TPSC
for weakly correlated systems [23], it is not captured in
strongly correlated systems [28], such as in this case. Al-
though DMFT obtains this reduction qualitatively, it is known
to overestimate this effect [91]. For the same reason, we
also observe a reversed temperature trend between TPSC
and DMFT for 〈nα,↑nβ,↑〉. The remaining double-occupations
follow qualitatively the same temperature dependence with
TPSC double-occupations being, in general, 5–10% larger.
Compared to moderate values of the Hund’s coupling U/J =
5, we observe for larger values U/J = 3 the same trends, but
the root search for determining the values of the spin vertex
becomes increasingly unstable, which did not allow us to
obtain converged results for temperatures below T/t < 0.35.
Especially in such cases, a more reliable way of obtaining the
double-occupations as input for the TPSC calculation, such as
from a DMFT calculation is promising and will be explored
in the next section.

B. Spin and charge vertices

As the effective local vertices in TPSC are determined
by imposing local sum rules that depend on the double-
occupations, the DMFT-derived double-occupations have a
direct influence on the effective interaction vertices �sp/ch

in 〈nn〉DMFT-TPSC. In Fig. 1, we show the spin vertex �sp

as a function of interaction strength U/t for different val-
ues of U/J . In contrast to all the intra- and interorbital
double-occupations, which show substantial differences be-
tween TPSC and DMFT, we observe a selective effect on
the different elements of the spin vertex. Overall, the same
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FIG. 1. Spin vertex components (a) �sp
αααα , (b) �

sp
ααββ , and (c) �

sp
αβαβ as a function of U/t for U/J = 3 (full lines) and U/J = 5 (dashed

lines) within TPSC and 〈nn〉DMFT-TPSC. Although both methods show a similar dependence on U , we find a nontrivial effect of the DMFT
double-occupations when included in TPSC: The off-diagonal vertex elements are increased for small Hund’s coupling J but are reduced for
large J with significant modification of the �

sp
αβαβ element. This element is determined by its own sum rule in 〈nn〉DMFT-TPSC, in contrast to

TPSC where it is set equal to �
sp
ααββ . The remaining nonzero element �

sp
αββα is equal to �

sp
αβαβ . TPSC data taken from Ref. [30].

functional dependence of �sp on U/t as in TPSC is retained
with Kanamori-Brueckner screening at larger interaction val-
ues. Although the diagonal elements �

sp
αααα stay almost

unchanged, the off-diagonal elements differ significantly, and
the changes are sensitive to Hund’s coupling J . For small
J , the inclusion of the DMFT double-occupation leads to an
increase in the effective spin vertex element, whereas, for
large J , they are reduced compared to the TPSC value. The
increase is especially pronounced in the αβαβ element for
small J . We attribute this to the mean-field-like decoupling
in the TPSC ansatz, which seems to perform better for larger
values of J where, on average, the bare interaction elements
are reduced. Most importantly, we observe that the �

sp
αβαβ

element, which in 〈nn〉DMFT-TPSC is now determined by
its own sum rule, can differ up to a factor of 2 from the
�

sp
ααββ element. This indicates that the ansatz �

sp
αβαβ = �

sp
ααββ

in multiorbital TPSC due to a lack of sum rules constitutes
a significant approximation and is not able to capture the
renormalization of the off-diagonal spin vertex elements. In

Fig. 2, we show the charge vertex �ch obtained from TPSC
and 〈nn〉DMFT-TPSC. Although the diagonal elements �ch

αααα

[Fig. 2(a)] monotonously increase as a function of U and
show only minor differences between the two approaches, we
find the most significant improvement in the �ch

ααββ elements
[Fig. 2(b)]: The large negative values for the charge vertices
�ch

ααββ observed in TPSC are absent in 〈nn〉DMFT-TPSC, which
resolves the problem of unphysical negative spectral weight
contributions to the self-energy at larger values of U/t [30].
The �ch

αβαβ element [Fig. 2(c)], on the other hand, is reduced
compared to TPSC, which is likely due to a previous com-
pensation effect with the smaller or negative �ch

ααββ in order
to fulfill the corresponding sum rule, which required larger
values of �ch

αβαβ . Still, we observe small negative values of
�ch

αβαβ at weak interaction, but they are negligible due to their
small relative magnitude |�ch

αβαβ |/U ≈ 10−2.
These results suggest that the DMFT double-occupations

can provide a significant improvement over the multiorbital
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FIG. 2. Charge vertex components (a) �ch
αααα , (b) �ch

ααββ , and (c) �ch
αβαβ as a function of U/t for U/J = 3 (dashed lines) and U/J = 5 (full

lines) within TPSC (blue) and 〈nn〉DMFT-TPSC (red). Although the inclusion of the DMFT double-occupations only leads to a small increase
in the diagonal vertex elements, the �ch

ααββ elements, which in TPSC are negative and lead to unphysical solutions, become strictly positive.
The �ch

αβαβ elements are reduced significantly in 〈nn〉DMFT-TPSC with negligible negative values at small interactions. TPSC results are taken
from Ref. [30].
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FIG. 3. Antiferromagnetic spin-correlation length ξ 2
sp as a func-

tion of temperature T/t at U/t = 3,U/J = 5. Although TPSC
fulfills the Mermin-Wagner theorem with the divergence at T = 0,
it overestimates the spin-correlation length. 〈nn〉DMFT-TPSC obtains
a reduced correlation length for all temperatures considered.

TPSC ansatz equations in the multiorbital case as they result
in physical vertices, in contrast to the multiorbital TPSC ap-
proach. Although, in general, we cannot exclude the existence
of certain scenarios where the vertex elements can become
negative and large (as likely might be the case where the
approximation of a static vertex is not appropriate), we expect
this to be a general result for many systems of interest, and that
〈nn〉DMFT-TPSC provides access to more strongly correlated
systems that were previously out of reach within multiorbital
TPSC.

C. Antiferromagnetic spin fluctuations

In order to assess the effect of the DMFT-derived double-
occupations on the spin fluctuations in TPSC, we define the
antiferromagnetic spin-correlation length as the ratio of the
spin and bare susceptibility at the M point,

ξ 2
sp := χ

sp
αααα[�q = (π, π ), ω = 0]

χ0[�q = (π, π ), ω = 0]
. (16)

Figure 3 shows ξ 2
sp at U/t = 3 and U/J = 5 as a function

of temperature. The spin-correlation length increases upon
lowering the temperature, representing the increasing anti-
ferromagnetic fluctuations in the two-dimensional Hubbard
model [23,82] but only diverges at T = 0 as TPSC obeys the
Mermin-Wagner theorem. We observe that the spin correla-
tion length in 〈nn〉DMFT-TPSC is smaller than in multiorbital
TPSC at the same temperature up to more than an order of
magnitude at lower temperatures. This is indicative for the
overestimation of the strength of spin fluctuations in TPSC
[23,29], which is significantly improved when deriving the
spin vertex from the DMFT double-occupations (see Table I).
In fact, 〈nn〉DMFT-TPSC can also be seen as an effective way of
mimicking frequency-dependent vertex corrections in TPSC
via the double-occupations. A similar improvement can be
seen in TPSC+ [23,92], which includes effective dynamical
vertex corrections by a feedback of the self-energy into the
propagators. We note that this behavior is dependent on the
model parameters as we find that for a given temperature
〈nn〉DMFT-TPSC can lead both to a reduction of the anti-
ferromagnetic correlations at small values of U and to an

enhancement at larger values of U as will be shown in the
next section.

D. Susceptibilities

In the following sections, we will perform a benchmark
of the 〈nn〉DMFT-TPSC and 〈nn〉DMFT-TPSC+�DMFT approach
on a two-orbital Hubbard model and compare our results to
the D-TRILEX approach [59]. D-TRILEX is an approxima-
tion to the dual boson method and has recently been extended
to multiorbital systems [62]. It treats charge and spin fluc-
tuations on the same footing, and by the inclusion of the
dynamical but local three-point vertex, is able to describe non-
local correlation and screening effects in strongly interacting
systems. This makes it a reasonable reference method for our
improved TPSC schemes, which work with a simplified static
and local two-point vertex.

In the following, we consider the half-filled two-orbital
Hubbard square lattice at temperature T/t = 0.5 with an
orbital-dependent nearest-neighbor hopping,

t00 = 1.0, t11 = 0.75, (17)

where the bandwidth of the second orbital is reduced by 25%.
In Fig. 4, we show the momentum-resolved summed spin and
charge susceptibilities,

χ ch/sp
sum (q, 0) :=

∑

α,β

χ
ch/sp
ααββ (q, 0) (18)

for U/t = 2, 4, 6 and U/J = 4 obtained within multiorbital
TPSC and 〈nn〉DMFT-TPSC, and compare them to the D-
TRILEX results from Ref. [62]. In general, we find good qual-
itative and quantitative agreement among the three methods
for small interactions in both the charge and spin suscepti-
bilities [Figs. 4(a) and 4(d)]. They exhibit pronounced peaks
at the M = (π, π ) point, corresponding to spin and charge
fluctuations with wave-vector �q = (π, π ) with the dominat-
ing spin fluctuations indicating antiferromagnetic order as the
main instability of the system. All methods show a reduction
of the charge susceptibility and increase in the spin suscepti-
bility for increasing interaction U/t = 2 · · · 6. Although the
differences at U/t = 2 between TPSC and 〈nn〉DMFT-TPSC
are small, one clearly observes a shift towards the D-TRILEX
result when using the DMFT-derived double-occupations,
bringing the spin susceptibility of 〈nn〉DMFT-TPSC in almost
perfect agreement with D-TRILEX. At stronger interactions,
we observe that multiorbital TPSC significantly overestimates
the charge susceptibility but underestimates the spin suscepti-
bility, and increasingly starts to deviate from the D-TRILEX
result. On the other hand, 〈nn〉DMFT-TPSC always shows the
tendency to correct the difference to D-TRILEX but over-
estimates the reduction of the charge susceptibility and the
enhancement of the spin susceptibility for larger interactions
[Figs. 4(b), 4(c) and 4(f)]. Although multiorbital TPSC is
not able to capture the Mott transition in either orbital and
also obtains a charge susceptibility that is significantly too
large at U/t = 6, the DMFT double-occupations effectively
encode the insulating nature of the system in 〈nn〉DMFT-TPSC,
which shows an almost vanishing charge susceptibility at this
interaction value.
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FIG. 4. Summed charge (upper panels) and spin (lower panels) susceptibilities
∑

α,β χ
sp/ch
ααββ (q, 0) along �-X -M-� for (a), (d) U/t = 2,

(b) and (e) U/t = 4, (c) and (f) U/t = 6 and U/J = 4 obtained from TPSC, 〈nn〉DMFT-TPSC, and D-TRILEX. In both cases, we observe the
suppression/enhancement of charge/spin fluctuations with increasing U/t . Although TPSC underestimates this trend, inclusion of the DMFT
double-occupations within 〈nn〉DMFT-TPSC+�DMFT lead to an improved agreement with D-TRILEX at moderate interaction values. For strong
interactions, the suppression/enhancement of charge/spin fluctuations is overestimated in 〈nn〉DMFT-TPSC+�DMFT. D-TRILEX results are
taken from Ref. [62].

E. Spectral function

So far, we have only discussed quantities, such as the
double-occupation, effective vertices or susceptibilities within
〈nn〉DMFT-TPSC. As these quantities only depend on the
noninteracting Green’s function, bare interaction and DMFT
double-occupations, they are not affected by a replacement
of the local TPSC self-energy with the DMFT impurity self-
energy as proposed for 〈nn〉DMFT-TPSC+�DMFT. On the other
hand, the single-particle local spectral function,

A(ω) = −1

πN

∑

k

Im[ω + i0+ − H0(k) − �(k, ω)]−1 (19)

will be affected by the replacement as it directly depends on
the final self-energy. For the same two-orbital Hubbard model
as in the previous section, we compare the two different meth-
ods with TPSC and D-TRILEX [62] at different interactions
for U/J = 4 in Fig. 5. Analytic continuation from the imag-
inary to the real frequency axis has been performed by using
the maximum entropy formalism [88,93,94]. In agreement
with D-TRILEX we find the orbital with the larger bandwidth
to be less correlated than the one with the narrow bandwidth
(see Fig. 5), and we observe an overall increase in correla-
tion effects as the interaction is increased. All TPSC-related
methods differ considerably from each other: We obtain that
multiorbital TPSC underestimates the correlation strength the
most and, thus, shows the largest difference to the D-TRILEX
results for all interaction values in both orbitals. The approach
is also not able to capture the large reduction of spectral
weight at the Fermi level in the first orbital and a Mott
transition in the second orbital at U/t = 7 [Figs. 5(e) and
5(f)]. 〈nn〉DMFT-TPSC, on the other hand, provides a con-
siderable improvement over TPSC, capturing the reduction

of spectral weight qualitatively but still underestimates the
correlation strength. The best agreement with the D-TRILEX
benchmark is found for 〈nn〉DMFT-TPSC+�DMFT, which is
able to capture the Mott transition and shows close agreement
for all parameters considered, albeit a remaining underesti-
mation of the correlation strength. These results show that
the incorporation of more accurate double-occupations within
the 〈nn〉DMFT-TPSC approach already leads to a notable im-
provement over TPSC. Still, for strongly correlated systems,
the static TPSC vertex entering the self-energy remains a
major limitation as expected. This limitation can be drastically
improved by a combination with the DMFT impurity self-
energy in 〈nn〉DMFT-TPSC+�DMFT, providing access to the
Mott-insulating phase, which was previously not accessible
in TPSC.

IV. CONCLUSION

In this paper, we have presented two extensions of the mul-
tiorbital TPSC approach [30] that are based on incorporating
local quantities, which can be obtained with higher precision
from a DMFT calculation in the TPSC formalism. The first ex-
tension, called 〈nn〉DMFT-TPSC, consists in replacing the usual
ansatz equations for the double-occupations in TPSC by the
double-occupations sampled in a DMFT calculation for the
same system. As the TPSC ansatz is based on a Hartree-Fock-
like decoupling, this avoids additional approximations in the
determination of the double-occupations, which are needed
for the determination of the effective spin and charge vertices
in TPSC. We found this approach to be highly successful
specifically for the multiorbital form of TPSC as it removed
the negative divergences of the charge vertex �ch observed
in the multorbital TPSC approach [30]. Additionally, certain
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FIG. 5. The local spectral function A(ω) obtained for the two-orbital Hubbard model (see the main text) from TPSC (blue), 〈nn〉DMFT-TPSC
(red), 〈nn〉DMFT-TPSC+�DMFT (green), and D-TRILEX (black) for interaction values (a) and (b) U/t = 4, (c) and (d) U/t = 5, and (e) and (f)
U/t = 7. TPSC underestimates the correlation strength for all parameters considered and is not able to obtain the reduction of spectral weight
at the Fermi level for stronger interactions. Incorporating the DMFT double-occupations in 〈nn〉DMFT-TPSC provides a notable improvement
over TPSC, whereas only 〈nn〉DMFT-TPSC+�DMFT is able to access the Mott-insulating phase in the second orbital and obtains a qualitative
agreement with the D-TRILEX result. D-TRILEX results are taken from Ref. [62].

interorbital elements of the effective spin vertex, which previ-
ously were determined by symmetries only valid for the bare
interaction vertex, can be determined explicitly, and indeed
show an expected deviation from the bare interaction case.
This extension also provides access to lower temperatures that
were previously inaccessible in TPSC as divergences in the
spin vertex are shifted to lower temperatures. Furthermore,
it allows for the inclusion of the transversal particle-hole
channel, which restores crossing symmetry in the vertex func-
tions. Nevertheless, we note that the double-occupations are
influenced by nonlocal correlations, which are not taken into
account in DMFT, in particular, in regions where strong order
parameter fluctuations prevail [95,96]. See Appendix A for
further discussion on the double-occupations and Appendix B
for a discussion on the internal consistency between single-
and two-particle objects.

In the second proposed extension, we replace the local part
of the the TPSC self-energy by the impurity self-energy of
DMFT, called 〈nn〉DMFT-TPSC+�DMFT. This approach im-
proves upon the static vertex included in TPSC by effectively
incorporating a dynamical DMFT vertex in the local self-
energy, whereas retaining nontrivial momentum-dependent
correlation effects from TPSC at low computational costs.
We found this approach to provide further improved agree-
ment with other many-body methods especially for local
one-particle quantities, such as the local spectral function.
This approach also extends the applicability of TPSC to
systems with strong correlations as it is able to access the
Mott-insulating phase, previously inaccessible in multiorbital
TPSC. We note here that by replacing the local part of the

self-energy, we still have contributions from nonlocal correla-
tion effects. From the diagrammatic point of view our quantity
is, therefore, only semilocal. An alternative approach can be
constructed by means of the local Dyson equation where the
local Green’s function is used to obtain the local self-energy,
which allow us to subtract all nonlocal correlation effects, but,
on the other hand, does not yield the exact DMFT result in the
limit of infinite connectivity.

These results show the potential of combining TPSC with
DMFT for both local and nonocal quantities and opens
up the door towards further developments, such as fully
self-consistent TPSC+DMFT calculations and further appli-
cations to real materials.
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APPENDIX A: DOUBLE-OCCUPATIONS

In order to compare the resulting values for the double-
occupations for the different approaches and the influence
of nonlocal correlations, we show the double-occupations
from TPSC, DMFT, and D-TRILEX in Fig. 6. As dis-
cussed in the main text, the deviation between the TPSC
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FIG. 6. Comparison of the double-occupations for the model
described in Sec. III D. We observe a small difference between all
methods at low interaction strength (U < 3t) but larger differences
at higher interaction strength where nonlocal correlations become
significant. In general, the DMFT-derived double-occupations show
a closer agreement with the D-TRILEX result than TPSC except for
the high-spin interorbital configuration, indicating that the DMFT
result can serve as a possible improved starting point for the determi-
nation of the effective TPSC vertices. The results for the D-TRILEX
double-occupancies have been provided by the authors of Ref. [62].

and the DMFT double-occupations is small at weak inter-
action strength (U/t < 3) but becomes larger for stronger
interactions, as TPSC is not able to capture the Mott-insulator
phase. In general, the deviation between the DMFT and the D-
TRILEX double-occupations is smaller, indicating that indeed
the DMFT double-occupations are a better starting point than
the TPSC-derived ones. When nonlocal correlations become
strong at larger interaction values, the DMFT and D-TRILEX
results also start to differ, with the general trend that D-
TRILEX obtains a larger correlation strength, i.e., reduced
low-spin double-occupations and enhanced high-spin config-
urations.

APPENDIX B: INTERNAL CONSISTENCY CHECK

In the original TPSC formulation [70] the tr(�G) sum rule,

tr(�G)β,σ

=
∑

α

Uαβ〈nα,−σ nβ,σ 〉 +
∑

α
α �=β

(Uαβ − Jαβ )〈nα,σ nβ,σ 〉

−
∑

α
α �=β

Jαβ (〈nα,σ nβ,σ 〉 − 〈nα,−σ nβ,σ 〉)

− 1

β̃N�q

∑

q,α
α �=β

Jαβ

2

[
χ

sp
βααβ (q) − χ ch

βααβ (q)
]

(B1)

is used as a mean of consistency check between single-particle
and two-particle objects. The same relation can also be

TABLE II. Relative error in the tr(�G)-sum rule obtained from
TPSC, 〈nn〉DMFT-TPSC, 〈nn〉DMFT-TPSC+�DMFT. Although the error
increases when using only the DMFT double-occupations, we ob-
serve that this is again compensated when also including the DMFT
self-energy, leading to a reduction of the error.

U/t TPSC 〈nn〉DMFT-TPSC 〈nn〉DMFT-TPSC+�DMFT

Orbital 0

4 6.129×10−2 1.015×10−1 3.142×10−2

5 9.658×10−2 2.240×10−1 8.675×10−3

7 2.364×10−1 6.230×10−1 2.408×10−1

Orbital 1

4 9.854×10−2 1.666×10−1 2.3988×10−2

5 1.467×10−1 3.460×10−1 2.9320×10−2

7 3.089×10−1 7.865×10−1 2.2499×10−1

established in the multiorbital case [30]. Here, we investigate
how this consistency changes between the different TPSC
extensions. The comparison is again performed for the model
presented in Sec. III D, where we show the results in Table II.

We observe an increase in the relative error between the
left-hand and right-hand side of the tr(�G)-sum rule when
using 〈nn〉DMFT-TPSC instead of TPSC. This effect can be
reversed when the DMFT self-energy is also included. We
attribute this observation to an additional inconsistency when
using the DMFT double-occupations without inclusion of the
DMFT self-energy. Only when all the correlation effects that
are accounted for in DMFT are present on both sides of the
sum rule, namely, the double-occupations and the self-energy,
the error decreases again.

APPENDIX C: NODAL/ANTINODAL
SPECTRAL FUNCTION

To demonstrate the resulting effect of the combined
TPSC and DMFT scheme on the Fermi surface and possible
emergence of a pseudogap via a the momentum-dependent
self-energy, we show the analytically continued spectral func-
tion at the nodal (π/2, π/2) and antinodal (π, 0) points in
Fig. 7 for a fixed value of the interaction U/t = 5. We observe
a larger suppression of spectral weight at the antinodal point
compared to the nodal point, which originates from the larger
imaginary part of the momentum-dependent self-energy at the
antinodal point, indicative of a tendency to form a pseudogap.
The relative suppression is similar in all schemes, i.e., we
find that the momentum separation of the correlation effects at
the nodal and antinodal points is not significantly affected by
using the DMFT double-occupancies in the DMFT scheme.
The replacement of the local TPSC self-energy by the DMFT
self-energy does not modify the overall relative momentum
dependence, therefore, in all schemes the momentum depen-
dence of the self-energy is mostly governed by the original
pure TPSC result.
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FIG. 7. Spectral function at the nodal (π/2, π/2) and antinodal (π, 0) points, calculated using the three approaches TPSC, 〈nn〉DMFT-TPSC
and 〈nn〉DMFT-TPSC+�DMFT, for interaction strength U/t = 5 and temperature T/t = 0.5. The spectral function at the antinodal point shows
a greater suppression of spectral weight than at the nodal point, representative of the tendency to form a pseudogap. Due to a rather high
temperature, the momentum dependence is not very pronounced.
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[57] T. Ayral, J. Vučičević, and O. Parcollet, Fierz Convergence Cri-
terion: A Controlled Approach to Strongly Interacting Systems
with Small Embedded Clusters, Phys. Rev. Lett. 119, 166401
(2017).

[58] T. Ayral and O. Parcollet, Mott physics and collective modes:
An atomic approximation of the four-particle irreducible func-
tional, Phys. Rev. B 94, 075159 (2016).

[59] E. A. Stepanov, V. Harkov, and A. I. Lichtenstein, Consistent
partial bosonization of the extended Hubbard model, Phys. Rev.
B 100, 205115 (2019).

235101-11

https://doi.org/10.1103/PhysRevX.11.011058
https://doi.org/10.1146/annurev-conmatphys-090921-033948
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.55.3870
https://doi.org/10.1002/andp.202000399
https://doi.org/10.1063/1.1712502
https://doi.org/10.1103/PhysRevLett.94.026404
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1038/32366
https://doi.org/10.1126/science.282.5396.2067
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1063/1.4919371
https://doi.org/10.1103/PhysRevB.58.R7475
https://doi.org/10.1103/PhysRevB.61.12739
https://doi.org/10.1007/s100510050077
https://doi.org/10.1103/PhysRevLett.87.186401
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/PhysRevLett.101.186403
https://doi.org/10.1103/PhysRevLett.90.086402
https://doi.org/10.1103/PhysRevLett.92.196402
https://doi.org/10.1103/PhysRevLett.109.226401
https://doi.org/10.1088/0953-8984/26/17/173202
https://doi.org/10.1103/PhysRevB.94.201106
https://doi.org/10.1103/PhysRevB.105.245115
https://doi.org/10.1103/PhysRevB.75.045118
https://doi.org/10.1143/PTPS.176.117
https://doi.org/10.7566/JPSJ.87.041004
https://doi.org/10.1103/PhysRevB.92.115109
https://doi.org/10.1103/PhysRevB.93.235124
https://doi.org/10.1103/PhysRevLett.119.166401
https://doi.org/10.1103/PhysRevB.94.075159
https://doi.org/10.1103/PhysRevB.100.205115


KARIM ZANTOUT et al. PHYSICAL REVIEW B 107, 235101 (2023)

[60] E. A. Stepanov, Y. Nomura, A. I. Lichtenstein, and S. Biermann,
Orbital Isotropy of Magnetic Fluctuations in Correlated Elec-
tron Materials Induced by Hund’s Exchange Coupling, Phys.
Rev. Lett. 127, 207205 (2021).

[61] V. Harkov, M. Vandelli, S. Brener, A. I. Lichtenstein, and E. A.
Stepanov, Impact of partially bosonized collective fluctuations
on electronic degrees of freedom, Phys. Rev. B 103, 245123
(2021).

[62] M. Vandelli, J. Kaufmann, M. El-Nabulsi, V. Harkov, A. I.
Lichtenstein, and E. A. Stepanov, Multi-band D-TRILEX ap-
proach to materials with strong electronic correlations, SciPost
Phys. 13, 036 (2022).

[63] A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein, and A.
Georges, Dual fermion approach to the two-dimensional Hub-
bard model: Antiferromagnetic fluctuations and fermi arcs,
Phys. Rev. B 79, 045133 (2009).

[64] H. Hafermann, G. Li, A. N. Rubtsov, M. I. Katsnelson, A. I.
Lichtenstein, and H. Monien, Efficient Perturbation Theory
for Quantum Lattice Models, Phys. Rev. Lett. 102, 206401
(2009).

[65] S. Brener, E. A. Stepanov, A. N. Rubtsov, M. I. Katsnelson,
and A. I. Lichtenstein, Dual fermion method as a prototype
of generic reference-system approach for correlated fermions,
Ann. Phys. (NY) 422, 168310 (2020).

[66] A. Rubtsov, M. Katsnelson, and A. Lichtenstein, Dual boson
approach to collective excitations in correlated fermionic sys-
tems, Ann. Phys. (NY) 327, 1320 (2012).

[67] E. G. C. P. van Loon, A. I. Lichtenstein, M. I. Katsnelson,
O. Parcollet, and H. Hafermann, Beyond extended dynamical
mean-field theory: Dual boson approach to the two-dimensional
extended Hubbard model, Phys. Rev. B 90, 235135 (2014).

[68] E. A. Stepanov, E. G. C. P. van Loon, A. A. Katanin, A. I.
Lichtenstein, M. I. Katsnelson, and A. N. Rubtsov, Self-
consistent dual boson approach to single-particle and collective
excitations in correlated systems, Phys. Rev. B 93, 045107
(2016).

[69] E. A. Stepanov, A. Huber, E. G. C. P. van Loon, A. I.
Lichtenstein, and M. I. Katsnelson, From local to nonlocal cor-
relations: The dual boson perspective, Phys. Rev. B 94, 205110
(2016).

[70] Y. M. Vilk and A.-M. S. Tremblay, Non-perturbative many-
body approach to the Hubbard model and single-particle
pseudogap, J. Phys. I 7, 1309 (1997).

[71] H. Aizawa, K. Kuroki, and J.-i. Yamada, Enhancement of elec-
tron correlation due to the molecular dimerization in organic su-
perconductors β − (BDA − TTP)2x(x = i3, sbf6), Phys. Rev.
B 92, 155108 (2015).

[72] S. Arya, P. V. Sriluckshmy, S. R. Hassan, and A.-M. S.
Tremblay, Antiferromagnetism in the Hubbard model on the
honeycomb lattice: A two-particle self-consistent study, Phys.
Rev. B 92, 045111 (2015).

[73] D. Ogura and K. Kuroki, Asymmetry of superconductivity in
hole- and electron-doped cuprates: Explanation within two-
particle self-consistent analysis for the three-band model, Phys.
Rev. B 92, 144511 (2015).

[74] K. Zantout, M. Altmeyer, S. Backes, and R. Valentí, Supercon-
ductivity in correlated bedt-ttf molecular conductors: Critical
temperatures and gap symmetries, Phys. Rev. B 97, 014530
(2018).

[75] T. Mertz, K. Zantout, and R. Valentí, Statistical analysis of the
chern number in the interacting Haldane-Hubbard model, Phys.
Rev. B 100, 125111 (2019).

[76] J. M. Pizarro, S. Adler, K. Zantout, T. Mertz, P. Barone, R.
Valentí, G. Sangiovanni, and T. O. Wehling, Deconfinement of
mott localized electrons into topological and spin–orbit-coupled
Dirac fermions, npj Quantum Mater. 5, 79 (2020).

[77] H. Miyahara, R. Arita, and H. Ikeda, Development of a two-
particle self-consistent method for multiorbital systems and its
application to unconventional superconductors, Phys. Rev. B
87, 045113 (2013).

[78] K. Zantout, S. Backes, and R. Valentí, Effect of Nonlocal Cor-
relations on the Electronic Structure of LiFeAs, Phys. Rev. Lett.
123, 256401 (2019).

[79] S. Bhattacharyya, K. Björnson, K. Zantout, D. Steffensen, L.
Fanfarillo, A. Kreisel, R. Valentí, B. M. Andersen, and P. J.
Hirschfeld, Nonlocal correlations in iron pnictides and chalco-
genides, Phys. Rev. B 102, 035109 (2020).

[80] N. Martin, C. Gauvin-Ndiaye, and A.-M. S. Tremblay, Non-
local corrections to dynamical mean-field theory from the
two-particle self-consistent method, Phys. Rev. B 107, 075158
(2023).

[81] The Luttinger-Ward functional is a central functional in
the Kadanoff-Baym formalism and defined as sum of all
closed two-particle irreducible skeleton diagrams that can be
constructed from the Green’s function G and the Hubbard inter-
action U .

[82] Y. M. Vilk, L. Chen, and A.-M. S. Tremblay, Theory of spin
and charge fluctuations in the Hubbard model, Phys. Rev. B 49,
13267 (1994).

[83] J. P. F. LeBlanc and E. Gull, Equation of state of the fermionic
two-dimensional Hubbard model, Phys. Rev. B 88, 155108
(2013).

[84] J. P. F. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik,
GarnetKin-Lic Chan, C.-M. Chung, Y. Deng, M. Ferrero, T. M.
Henderson, C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J.
Millis, N. V. Prokof’ev, M. Qin, G. E. Scuseria, H. Shi, B. V.
Svistunov, L. F. Tocchio, I. S. Tupitsyn et al. (Simons Col-
laboration on the Many-Electron Problem), Solutions of the
Two-Dimensional Hubbard Model: Benchmarks and Results
from a Wide Range of Numerical Algorithms, Phys. Rev. X 5,
041041 (2015).

[85] K. Zantout, The two-particle self-consistent approach and its
application to real materials, Ph.D. thesis, Universitätsbiblio-
thek Johann Christian Senckenberg (2021).

[86] Note that this ansatz breaks particle-hole symmetry, which is
restored by averaging this expression with the particle-hole
transformed expression as explained in Ref. [30]. In the follow-
ing, we use the particle-hole symmetrized expression.

[87] The enforcement of crossing symmetry is, in principle, also
in the pure multiorbital TPSC approach possible, but it was
not performed in Refs. [30,78,85] as the symmetry �

sp,0
ααββ =

�
sp,0
αβαβ is only valid in the longitudinal particle-hole channel,

and this relation is used to argue for the symmetrization in Eq.
(10). Keeping the symmetrization in the spin vertex whereas
including the transversal particle-hole channel leads to an in-
consistency in the argumentation.

[88] A. Gaenko, A. Antipov, G. Carcassi, T. Chen, X. Chen, Q.
Dong, L. Gamper, J. Gukelberger, R. Igarashi, S. Iskakov, M.

235101-12

https://doi.org/10.1103/PhysRevLett.127.207205
https://doi.org/10.1103/PhysRevB.103.245123
https://doi.org/10.21468/SciPostPhys.13.2.036
https://doi.org/10.1103/PhysRevB.79.045133
https://doi.org/10.1103/PhysRevLett.102.206401
https://doi.org/10.1016/j.aop.2020.168310
https://doi.org/10.1016/j.aop.2012.01.002
https://doi.org/10.1103/PhysRevB.90.235135
https://doi.org/10.1103/PhysRevB.93.045107
https://doi.org/10.1103/PhysRevB.94.205110
https://doi.org/10.1051/jp1:1997135
https://doi.org/10.1103/PhysRevB.92.155108
https://doi.org/10.1103/PhysRevB.92.045111
https://doi.org/10.1103/PhysRevB.92.144511
https://doi.org/10.1103/PhysRevB.97.014530
https://doi.org/10.1103/PhysRevB.100.125111
https://doi.org/10.1038/s41535-020-00277-3
https://doi.org/10.1103/PhysRevB.87.045113
https://doi.org/10.1103/PhysRevLett.123.256401
https://doi.org/10.1103/PhysRevB.102.035109
https://doi.org/10.1103/PhysRevB.107.075158
https://doi.org/10.1103/PhysRevB.49.13267
https://doi.org/10.1103/PhysRevB.88.155108
https://doi.org/10.1103/PhysRevX.5.041041


IMPROVED EFFECTIVE VERTICES IN THE … PHYSICAL REVIEW B 107, 235101 (2023)

Könz, J. LeBlanc, R. Levy, P. Ma, J. Paki, H. Shinaoka, S.
Todo, M. Troyer, and E. Gull, Updated core libraries of the alps
project, Comput. Phys. Commun. 213, 235 (2017).

[89] H. Shinaoka, E. Gull, and P. Werner, Continuous-time hy-
bridization expansion quantum impurity solver for multi-orbital
systems with complex hybridizations, Comput. Phys. Commun.
215, 128 (2017).

[90] A. Sushchyev and S. Wessel, Thermodynamics of the metal-
insulator transition in the extended hubbard model from
determinantal quantum monte carlo, Phys. Rev. B 106, 155121
(2022).

[91] A.-M. Daré, L. Raymond, G. Albinet, and A.-M. S. Tremblay,
Interaction-induced adiabatic cooling for antiferromagnetism in
optical lattices, Phys. Rev. B 76, 064402 (2007).

[92] C. Gauvin-Ndiaye, C. Lahaie, Y. Vilk, and A.-M. S. Tremblay
(unpublished).

[93] M. Jarrell and J. Gubernatis, Bayesian inference and the ana-
lytic continuation of imaginary-time quantum monte carlo data,
Phys. Rep. 269, 133 (1996).

[94] R. Levy, J. LeBlanc, and E. Gull, Implementation of the maxi-
mum entropy method for analytic continuation, Comput. Phys.
Commun. 215, 149 (2017).

[95] G. Rohringer and A. Toschi, Impact of nonlocal correlations
over different energy scales: A dynamical vertex approximation
study, Phys. Rev. B 94, 125144 (2016).

[96] J. Stobbe and G. Rohringer, Consistency of potential energy in
the dynamical vertex approximation, Phys. Rev. B 106, 205101
(2022).

235101-13

https://doi.org/10.1016/j.cpc.2016.12.009
https://doi.org/10.1016/j.cpc.2017.01.003
https://doi.org/10.1103/PhysRevB.106.155121
https://doi.org/10.1103/PhysRevB.76.064402
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/j.cpc.2017.01.018
https://doi.org/10.1103/PhysRevB.94.125144
https://doi.org/10.1103/PhysRevB.106.205101

