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Superconducting diode effect in quasi-one-dimensional systems
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The recent observations of the superconducting diode effect pose the challenge to fully understand the
necessary ingredients for nonreciprocal phenomena in superconductors. In this theoretical work, we focus on the
nonreciprocity of the critical current in a quasi-one-dimensional superconductor. We define the critical current
as the value of the supercurrent at which the quasiparticle excitation gap closes (depairing). Once the critical
current is exceeded, the quasiparticles can exchange energy with the superconducting condensate, giving rise
to dissipation. Our minimal model can be microscopically derived as a low-energy limit of a Rashba spin-orbit
coupled superconductor in a Zeeman field. Within the proposed model, we explore the nature of the nonreciprocal
effects of the critical current both analytically and numerically. Our results quantify how system parameters such
as spin-orbit coupling and quantum confinement affect the strength of the superconducting diode effect. Our
theory provides a complementary description to Ginzburg-Landau theories of the effect.
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I. INTRODUCTION

Since their discovery, diodes have played an important
role in the development of new technologies. Recently, the
observation of nonreciprocity in the critical current of su-
perconductors, known as the superconducting diode effect
(SDE) [1–3], has brought attention to this phenomenon for its
potential to achieve dissipationless electronics. Following the
initial observations, extensive work has been done to show the
signature of SDE in different bulk materials [4–8]. This diode
effect was also observed and thoroughly studied in Josephson
junctions [9–16] (first in the context of the anomalous Joseph-
son effect [17–22]) and even in the absence of an applied
magnetic field [23–27].

In general, nonreciprocity of the critical current occurs due
to a broken inversion symmetry, which can be accomplished
by an extrinsic or intrinsic mechanism. The first refers to
the geometry of the system, the canonical example being an
asymmetric superconducting ring threaded by a magnetic flux
[7,28]. The SDE can also occur due to an intrinsic mechanism,
for example, when one breaks the inversion of symmetry with
spin-orbit coupling (SOC) [29–34]. However, experimentally
it can be a challenge to determine whether the nonreciprocity
comes strictly from the intrinsic features of the system [7].
Even theoretically, the exact minimal requirements for an in-
trinsic SDE remain unclear [35,36]. Most previous theoretical
studies of intrinsic SDE have focused on using phenomeno-
logical Ginzburg-Landau theory (GL) [29,32,37–39], which
is valid near the critical temperature T ≈ Tc. While micro-
scopic studies of the phenomenon have been conducted on
two- and three-dimensional (2D and 3D) systems [29–34,38],
a description of one-dimensional (1D) or quasi-1D systems
has received less attention. The relative simplicity of 1D sys-
tems allows us to develop an analytical understanding of the
problem.

In this paper, we present a Bogoliubov–de Gennes model
that describes the main mechanisms to achieve the intrin-
sic diode effect in uniform 1D superconductors. In the 1D
single-band regime, time-reversal invariant electronic systems
can be generally described by a Hamiltonian of two heli-
cal bands with opposite helicities. We show that unequal
Fermi velocities of the two helical bands generically lead to
the SDE [see Fig. 1(a)]. Microscopically, we show that this
happens in Rashba systems under quantum confinement or
applied perpendicular magnetic field. Generally, an applied
supercurrent can be written as IS = ρsh̄q where ρs = en/2m
is the superfluid stiffness (in terms of the 1D superfluid den-
sity n and mass m) and h̄q is the Cooper pair momentum
[40,41]. At low temperatures, when the superfluid density
does not get appreciably modified by supercurrent, the study
of nonreciprocity of the critical current Ic = ρsqc can be
accomplished by calculating the critical momentum qc by
using the Cooper pair depairing condition [38,40–42] (we set
h̄ = kB = 1 hereon). Focusing here on s-wave pairing, each
helical band (labeled by i) can be treated independently and
has a superconducting gap �i at the Fermi level. Qualitatively,
Landau’s criteria [43] in the absence of magnetic field gives
qci = �i/vFi for the ith helical band; the critical momentum
of the system is then qc = mini{qci}. For two bands with
opposite helicities, applying a magnetic field Bz along the
spin quantization axis will lower one qci while increasing
the other [see Eq. (4)]. Even with equal gaps, �1 = �2, if
the two bands have unequal Fermi velocities vF1 �= vF2, their
critical momenta will become equal at a nonzero magnetic
field Bz = Bz,0, leading to nonreciprocity. This behavior is
shown in Figs. 1(b) and 1(c). For pairing �i = �, the non-
reciprocal behavior of the critical current, determined by the
critical momentum, is fully explained by the difference of
Fermi velocities, which carries information about inversion
symmetry breaking.
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FIG. 1. (a) Top: Linearized energy spectrum in the normal state,
showing two helical bands with unequal Fermi velocities and oppo-
site helicities. The linearized model captures the Fermi level physics
of quasi-1D and 1D Rashba models (bottom). In the quasi-1D case,
hybridization between the lower (solid) and upper (dashed) Rashba
bands leads to unequal Fermi velocities. In the purely 1D case the
same can be achieved by applying a magnetic field Bx along the
wire. (b) Phase diagram of the superconducting (SC) and normal
(N) state determined by the critical momentum qc as a function of
the magnetic field Bz. The values of the magnetic field Bz,0 and
Bz,1 delimit three different regions of the phase diagram. (c) Quality
factor δ vs magnetic field Bz for the phase diagram shown in (b). The
three regions of the phase diagram result in three different behaviors
for the quality factor function.

II. LOW-ENERGY MODEL

To investigate the mechanisms responsible for the appear-
ance of an intrinsic nonreciprocal behavior of the critical
current, we investigate a low-energy minimal model. We pro-
pose a Hamiltonian of two helical bands,

H = 1

2

∑
k

C†
kHBdGCk, (1)

where Ck is an eight-component Nambu spinor de-
fined by Ck = (Ck1 Ck2)T with Cki = (ck+qi↑ ck+qi↓ c†

−k+qi↓
− c†

−k+qi↑)T . In this representation, ↑,↓ are spins (or pseu-
dospins) of our system and the subscript i is the label for each
helical band. The Bogoliubov–de Gennes (BdG) Hamiltonian
is given by HBdG = diag(Hk1,Hk2) with [χi = −(−1)i] and

Hki = vFi(χikσz − kFi )τz + χivFiqσz + �iτx + giμB

2
�B · �σ .

(2)

In this effective model, each helical band is allowed to have in
general an independent Fermi velocity vFi, Fermi momentum
kFi, s-wave (intraband) pairing gap �i, and g factor gi, while
experiencing the same applied magnetic field �B (μB denotes
the Bohr magneton). We have linearized the dispersion, fo-
cusing on low energies near the Fermi surface [see Fig. 1(a)].
The Pauli matrices σx,y,z and τx,y,z act on the spin and particle-
hole spaces, respectively. The parameter q is the Cooper pair

momentum of the superconductor and determined by the ex-
ternally applied supercurrent. Considering proximity-induced
superconductivity at low temperatures, we are able to relate
the Cooper pair momentum q to the applied supercurrent
as q ∝ IS in the first approximation. The analysis of nonre-
ciprocity of the critical current can be performed by studying
the behavior of the critical Cooper pair momentum qc as
a function of applied magnetic field. Although the beyond-
mean-field description of a 1D system would typically involve
fluctuations that can alter the behavior of physical properties,
we consider here the case of proximity-induced pairing from
a high-symmetry 3D superconductor which effectively sup-
presses these fluctuations.

From the above Hamiltonian (2), we find the energy cost
Eσ i(k) to create an excited above-gap quasiparticle of spin
σ = ↑,↓ = +,− and momentum k in the band i. For an
applied magnetic field �B = Bzẑ, this energy becomes

Eσ i(k) = σ
(giμB

2
Bz + χiqvFi

)
+

√
�2

i + (k − χiσkFi )
2v2

Fi.

(3)

Assuming for the moment Bz and q such that this energy
cost is positive, the excitation energy of a quasiparticle will be
the smallest at the Fermi momentum kFi. This energy cost can
increase or decrease by tuning the applied magnetic field Bz

and momentum q.
The critical momentum qc of the system is the specific

momentum for which Eσ i(k = χiσkFi ) = 0, i.e., there is no
energy cost to create a quasiparticle excitation [42–44]. For
an applied current larger than the critical one, we expect the
system to be in the normal phase (N) instead of the super-
conducting one (SC). Therefore, we focus our description
for q � qc. From the dispersion (3) we find that the critical
momentum for each helical band is a linear function of the
magnetic field

q±
ci = −χi

1
2 giμBBz ± �i

vFi
, (4)

where the superscript ± labels the direction of the applied
supercurrent. The critical momentum of the two-band system
is then q±

c = ± mini=1,2 |q±
ci |.

The nonreciprocal behavior occurs when, for a fixed mag-
netic field, the absolute value of the critical current is different
in the positive and negative directions. In terms of the critical
momentum the nonreciprocity condition translates to |q+

c | �=
|q−

c |. To better understand how the physical parameters con-
tribute to the superconducting diode effect, we can define a
quality factor of the critical current as

δ = |q+
c | − |q−

c |
|q+

c | + |q−
c | . (5)

The phase diagram in Fig. 1(b) shows the phase separation
between the normal and superconducting phase determined
by the four components of the critical momentum (4). We
define by Bz,0 (−Bz,0) the magnetic field in which the critical
momentum of different helical bands first cross, i.e., q+

c1 = q+
c2

(q−
c1 = q−

c2). Another characteristic value is the magnetic field
Bz,1 in which the critical momentum q−

ci changes sign. Without
loss of generality, we assume �2/vF2 < �1/vF1. For this
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choice of parameters, the explicit forms of Bz,0 and Bz,1 are
found to be

Bz,0 = �̄1v̄F2 − �̄2v̄F1

v̄F1 + v̄F2
, Bz,1 = min{�̄1, �̄2}, (6)

where we define v̄Fi = vFi/( 1
2 giμB), �̄i = �i/( 1

2 giμB). In
Fig. 1(c) we show the behavior of the quality factor as a
function of the magnetic field when 0 < Bz,0 < Bz,1. In gen-
eral, we have a linear increase in the quality factor for small
magnetic field, i.e., δ = Bz/Bz,1 for |Bz| < |Bz,0|. For a larger
magnetic field, the behavior of the quality factor is dependent
on the particular choice of parameters. For the particular case
shown in Fig. 1(c), where Bz,0/Bz,1 � 1, the quality factor can
be approximated by

δ ≈ Bz

|Bz|
Bz,0

−|Bz| + Bz,0 + Bz,1
(Bz,0 < |Bz| < Bz,1), (7)

reaching its maximum value 1 at Bz,1 when |q−
c | = 0. The

critical current becomes reciprocal and the diode effect dis-
appears in the limit Bz,0 → 0. In this limit, the quality factor
(5) becomes ill defined at the critical field Bz = Bz,1, but for
any Bz < Bz,1 such that |Bz,1 − Bz| 
 Bz,0, Eq. (7) yields a
quality factor that vanishes as δ ∝ Bz,0 in the reciprocal limit.
The ratio Bz,0/Bz,1, when small, is a characteristic measure for
a weak diode effect.

III. SELF-CONSISTENT GAP

So far we focused the analysis of the transition between
the superconducting to normal phase only on the critical
Cooper pair momentum qc. One could argue that |q| > |qc|
is not a sufficient condition to ensure that the system is in
the normal phase, i.e., that superconductivity could survive
even in a gapless system. To study the practicability of such
gapless superconductivity, we calculate the pairing potential
self-consistently [45]. We note that in a self-consistent study
of the proximity between a wire and a 3D superconductor,
fluctuations have a negligible impact, which justifies the BdG
approach to our system. This calculation also allows us to
extend the low-energy model described to finite temperature.
For one helical band, i.e., choosing subsystem i of (2), the
self-consistency consists of solving for �i ≡ �i(q, T ) the
equation

1 = Vi

∫ kD

−kD

dk

2π

1 − f [E↑i(k)] − f [E↓i(−k)]

2
√

�2
i (q, T ) + (k − χikFi )2v2

Fi

, (8)

where f [Eσ i(k)] is the Fermi-Dirac distribution, Eσ i(k) is the
dispersion (3) calculated at Bz = 0, Vi/vFi is the dimension-
less pairing interaction strength, and kD is the Debye wave
vector, providing a UV cutoff.

In Fig. 2 we show �(q, T ) versus the Cooper pair momen-
tum q plot for different values of temperature, obtained by
solving Eq. (8) numerically. For T = 0 we find that �(q, 0) is
constant for the Cooper pair momentum q below the critical
one. For q > qc, Eq. (8) has no solution, showing that the
critical momentum found, Eq. (4), is the correct threshold to
determine the SC to N transition in our 1D helical model. A
nonzero Bz will only shift qci linearly, as described by Eqs. (3)
and (4).

FIG. 2. Self-consistently calculated gap �(q, T ) [in units of
�(0, T )] vs Cooper pair momentum q [in units of �(0, T )/vF ].
Inset: The critical Cooper pair momentum qc(T ) vs the temperature
T normalized by Tc = �(0, 0)/(1.76kB ). Here, qc(T ) is defined as
the smallest q such that �(q, T ) = 0. This shows that at nonzero
temperature, Eq. (4) can be approximately used with a temperature-
dependent gap �(T ) multiplied by a weakly temperature-dependent
coefficient qc(T )/�(0, T ). The shown results are with Bz = 0; a
nonzero Bz adds linearly to q [see Eq. (4)].

IV. MICROSCOPIC MODELS

Up to now, we have described an effective low-energy
model that shows nonreciprocal phenomena and the mech-
anisms that allow the existence of the SDE. To complete
our discussion, it is important to understand microscopically
how to achieve unequal Fermi velocities between two heli-
cal bands. Here, we describe two Rashba systems that, in
the low-energy limit, can be well described by our minimal
model [46].

A. Quasi-1D Rashba wire

We start by considering a quasi-1D Rashba nanowire in
the presence of a Zeeman field, described by the normal-state
Hamiltonian [47],

H =
∫

dx	̂†(x)(H0 + HR + HZ )	̂(x), (9)

with H0 = − 1
2m ∂2

x − μ + E0�z and

HR = −iα∂xσz + ησx�y, HZ = 1
2 gμB �B · �σ , (10)

where 	̂(x) = [ψ̂1↑(x) ψ̂1↓(x) ψ̂2↑(x) ψ̂2↓(x)]T and
�x,y,z are Pauli matrices that act on the transverse degree of
freedom. Here, we consider the two lowest-energy transverse
modes labeled by i = 1, 2. The Hamiltonian H0 describes
the kinetic energy and confinement gap 2E0 ∝ 1/W 2 between
transverse bands. The Rashba Hamiltonian HR is written in
terms of α and η ∝ 1/W denoting the spin-orbit couplings
respectively along and perpendicular to the wire. The param-
eters η and E0 depend on the width W of the wire and the
specific confining potential (see Ref. [48]). Our analysis, how-
ever, is completely independent regarding the specific forms
of these parameters.
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We first analyze H0 + HR for the range of energy where
only the lowest-energy transverse channel is occupied. This
Hamiltonian commutes with the pseudospin operator σz�z,
therefore it is convenient to label the energies with σz�z

eigenvalues ±1. The dispersion of the lowest transverse mode
is given by

ε±(k) = k2

2m
− μ −

√
(E0 ± αk)2 + η2. (11)

From the dispersion, we find two positive Fermi momenta,
kF1,2, where kFi obeys ε±(kFi ) = 0. We also find the Fermi
velocities

vFi = kFi

m
− α(αkFi ± E0)√

(αkFi ± E0)2 + η2
, (12)

around kF1 (−) and kF2 (+).
In order to study the effects of weak magnetic field

and proximity-induced superconductivity near the Fermi mo-
menta, we linearize the dispersion by writing the field operator
	̂(x) as a superposition of left and right movers for each
pseudospin subband,

	̂(x) = [ψ̂R↑(x)σxeikF1x + ψ̂L↓(x)e−ikF1x]φ1

+ [ψ̂R↓(x)eikF2x + ψ̂L↑(x)σxe−ikF2x]φ2, (13)

where φi = (i sin θi
2 0 0 cos θi

2 )T and θi = arccos[±α−1(vFi −
kFi/m)] with +,− for i = 1, 2, respectively. We apply (13) to
the Hamiltonian (9) for �B = Bzẑ to obtain an effective model
for the quasi-1D nanowire in a perpendicular magnetic field.
To obtain the low-energy description near the Fermi points,
we assume that the components ψR(L)σ (x) vary slowly in
space allowing us to neglect terms ∂2

x ψR(L)σ (x). Likewise, fast
oscillating terms ∝e±i(kFi+kF j )x are also neglected [49]. We find
the linearized dispersion of the nanowire in the normal phase,

εσ i(k) = σvFi(k − σχikFi ) + σ
giμB

2
Bz, (14)

where gi = gcos θi. Finally, we include proximity-
induced superconductivity with intrachannel pairing
�e−2iqx

∑2
i=1 ψ̂i↑ψ̂i↓ with Cooper pair momentum q.

Linearizing the pairing term by substituting (13) into it,
we are able to write the quasi-1D Rashba system using our
minimal model Hamiltonian (2). Here, we find induced gaps
�1 = �2 = � at the two Fermi momenta kF1,2, respectively.

To understand the behavior of the quality factor δ in the
quasi-1D case, we consider the limit E0 
 α2m, η, μ. In this
regime, the energy difference between transverse bands is
large, so the upper bands are unoccupied, but the hybridization
η of the bands will change the Fermi velocities vF1,2 by a
small factor. To show the effects of small transverse coupling
we expand the velocities vFi and g factor gi in powers of η.
Plugging this expansion into the expression for Bz,0 given by
Eq. (6), we find Bz,0 ≈ 2(mα2η2/E3

0 )(α/vF )Bz,1 and Bz,1 ≈
�/( 1

2 gμB), where vF = √
2E0/m. Thus, nonreciprocity arises

in high order in spin-orbit coupling, stemming from weak
hybridization of the transverse modes [46].

B. Purely 1D Rashba wire with Bx

As seen above, in the purely 1D model (W → 0, E0 →
∞), the critical current becomes reciprocal (Bz,0 → 0).

However, even in this case we can induce nonreciprocity
by applying a transverse magnetic field which will lead to
unequal velocities of the inner and outer Rashba modes [see
Fig. 1(a)].

In the 1D limit the energy splitting E0 between transverse
bands is large and we can project the Hamiltonian Eq. (9)
to the states with �z = −1. Now the Hamiltonian commutes
with σz (eigenvalues σ = ±1) and the energy dispersion gives
equal Fermi velocities vF =

√
2μ/m + α2 for the inner and

outer Rashba modes [50]. In this case, there is no nonreciproc-
ity [51]. Next, we consider an additional component of the
magnetic field in Eq. (10) as Bxσx, that acts in a similar way
to the coupling η by breaking the conservation of spin [52].
To understand how the transverse magnetic field changes the
velocities of the helical bands, we will treat this term pertur-
batively in the superconducting phase. First, we note that in
the normal phase, the transverse magnetic field opens a gap
at k = 0, affecting the inner helical band with smaller Fermi
momentum [kF1 = (vF − α)m] while presenting a negligible
effect on the outer helical band with kF2, as long as 1

2 gμBBx �
mαvF . In the presence of proximity-induced superconduc-
tivity, the helical band around k = kF1 (and similarly for
k = −kF1) can be described as Hk1 = diag(hk↑, hk↓), where
hk↑ = Bz + qvF1 + �τx and hk↓ ≈ −2vF1kF1τz. By finding
the eigenstates in the proximity of the Fermi level ±kF1, we
can calculate the energy correction due to the applied pertur-
bation Bx. We find g1 = g + δg and vF1 = vF + δvF ,
where δvF

vF
= δg

g = −( 1
4

gμBBx

kF1vF
)2, resulting in vF2 > vF1, g2 >

g1, and �1 = �2, thus leading to nonreciprocal critical cur-
rent. In this case, we find Bz,0 ≈ 1

2 ( 1
4

gμBBx

kF1vF
)2Bz,1 while Bz,1 ≈

�/( 1
2 gμB), which implies the behavior of the quality factor as

seen in Fig. 1(c).

V. DISCUSSION

We showed that helical bands with a Fermi velocity dif-
ference δvF give rise to critical current nonreciprocity with
the size of the effect quantified by Bz,0/Bz,1 ≈ δvF /vF [see
below Eq. (7)]. This form shows that the intrinsic supercon-
ducting diode effect is generally small in ordinary metals:
The denominator is the Fermi velocity which increases with
electron density whereas the numerator is the difference of
Fermi velocities and typically (at most) of the order of the
spin-orbit velocity, independent of the density.

In a quasi-1D system of width W , we found that δvF ∼
αmα2η2/E3

0 arises from a transverse spin-orbit coupling η ∼
α/W . Since E0 ∼ 1/(m⊥W 2), we see that δvF ∝ (W/lα )4 in-
creases with the width of the system. Here, we introduced
the Rashba length lα = 1/(mα) and assumed an isotropic
effective mass m⊥ ≈ m. This quasi-1D result is valid in the
limit of small width, W � lα . The opposite limit of large
W/lα , is for general chemical potentials a complex prob-
lem due to multiple bands and Fermi points. Nevertheless,
in the low-density case μ � mα2 there are only two Fermi
points, and we obtain a simple result δvF ∼ αE0/(mα2) ∝
(lα/W )2 by treating E0 perturbatively. Thus, in low-density,
clean, Rashba wires the nonreciprocity is a nonmonotonic
function of the wire width, with a maximum at W of or-
der the Rashba spin-orbit length, estimated to be of order
100 nm [53–56]. We emphasize however that this simple
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consideration is only valid in the low-density single-band
regime and ignores disorder, Dresselhaus spin-orbit coupling,
and mass anisotropies. Recently, in Ref. [57] it was observed
that SDE is maximal at intermediate widths, although it is
unclear if the effect stems from the same mechanism as we
have outlined here.

In this paper we mostly focused on proximity-induced
superconductivity in a semiconductor nanowire with low elec-
tron density. As a result, the nanowire is expected to determine
the critical current of the entire system, allowing us to use an
effective single-component model. Future studies of coupled
systems could be performed using bosonization [58]. Addi-
tional research is needed to make quantitative predictions for
optimizing the strength of intrinsic nonreciprocity in Rashba
systems.
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Varambally, F. S. Bergeret, A. Kamra, L. Fu, P. A. Lee, and
J. S. Moodera, Ubiquitous superconducting diode effect in
superconductor thin films, arXiv:2205.09276.

[7] A. Sundaresh, J. Ilmari Vayrynen, Y. Lyanda-Geller, and L. P.
Rokhinson, Diamagnetic mechanism of critical current non-
reciprocity in multilayered superconductors, Nat. Commun. 14,
1628 (2023).

[8] L. Bauriedl, C. Bäuml, L. Fuchs, C. Baumgartner, N. Paulik,
J. M. Bauer, K.-Q. Lin, J. M. Lupton, T. Taniguchi, K. Watanabe
et al., Supercurrent diode effect and magnetochiral anisotropy
in few-layer NbSe2, Nat. Commun. 13, 4266 (2022).

[9] C.-Z. Chen, J. J. He, M. N. Ali, G.-H. Lee, K. C. Fong, and
K. T. Law, Asymmetric Josephson effect in inversion symmetry
breaking topological materials, Phys. Rev. B 98, 075430 (2018).

[10] J. Diez-Merida, A. Díez-Carlón, S. Y. Yang, Y.-M. Xie,
X.-J. Gao, K. Watanabe, T. Taniguchi, X. Lu, K. T. Law,
and D. K. Efetov, Magnetic Josephson junctions and super-
conducting diodes in magic angle twisted bilayer graphene,
arXiv:2110.01067.

[11] C. Baumgartner, L. Fuchs, A. Costa, S. Reinhardt, S. Gronin,
G. C. Gardner, T. Lindemann, M. J. Manfra, P. E. Faria Junior,
D. Kochan et al., Supercurrent rectification and magnetochiral
effects in symmetric Josephson junctions, Nat. Nanotechnol.
17, 39 (2022).

[12] G. P. Mazur, N. van Loo, D. van Driel, J. Y. Wang, G. Badawy,
S. Gazibegovic, E. P. A. M Bakkers, and L. P. Kouwenhoven,
The gate-tunable Josephson diode, arXiv:2211.14283.

[13] C. Baumgartner, L. Fuchs, A. Costa, J. Picó-Cortés, S.
Reinhardt, S. Gronin, G. C. Gardner, T. Lindemann, M. J.
Manfra, P. E. F. Junior et al., Effect of Rashba and Dresselhaus
spin-orbit coupling on supercurrent rectification and magne-
tochiral anisotropy of ballistic Josephson junctions, J. Phys.:
Condens. Matter 34, 154005 (2022).

[14] B. Lu, S. Ikegaya, P. Burset, Y. Tanaka, and N. Nagaosa,
Josephson diode effect on the surface of topological insulators,
arXiv:2211.10572.

[15] M. Davydova, S. Prembabu, and L. Fu, Universal Josephson
diode effect, Sci. Adv. 8, eabo0309 (2022).

[16] Y. Zhang, Y. Gu, P. Li, J. Hu, and K. Jiang, General Theory of
Josephson Diodes, Phys. Rev. X 12, 041013 (2022).

[17] T. Ojanen, Topological π Josephson junction in superconduct-
ing Rashba wires, Phys. Rev. B 87, 100506(R) (2013).

[18] F. Dolcini, M. Houzet, and J. S. Meyer, Topological Josephson
φ0 junctions, Phys. Rev. B 92, 035428 (2015).

[19] K. N. Nesterov, M. Houzet, and J. S. Meyer, Anomalous
Josephson effect in semiconducting nanowires as a signature
of the topologically nontrivial phase, Phys. Rev. B 93, 174502
(2016).

[20] M. Alidoust, C. Shen, and I. Žutić, Cubic spin-orbit coupling
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