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Impact of random impurities on the anomalous Hall effect in chiral superconductors
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The anomalous Hall effect and the closely related polar Kerr effect are among the most direct evidence of
chiral Cooper pairing in some superconductors. While it has been known that disorder or multiband pairing
is typically needed for these effects to manifest, there is a lack of direct real-space investigation with regard
to how disorder impacts the Hall response in both single-band and multiband chiral superconductors. On the
basis of chiral superconducting models often adopted for Sr2RuO4, we study in this work the anomalous Hall
effect in the presence of random nonmagnetic impurities on real-space lattices. The single-band chiral p-wave
(px + ipy) calculation qualitatively reproduces the Hall conductivity obtained in previous skew-scattering-type
diagrammatic analyses, along with some quantitative difference originating primarily from contributions involv-
ing impurity-induced in-gap states. The non-p-wave chiral states, such as dx2−y2 + idxy, generically exhibit finite
Hall response in the presence of random impurities, in contrast to a conclusion drawn from the aforementioned
diagrammatic study. In particular, while pointlike impurities appear to induce minuscule Hall conductivity in
non-self-consistent calculations, self-consistency and finite-range impurity potentials can both lead to substantial
Hall conductivity. However, the intrinsic Hall conductivity in multiband chiral superconductors, which is related
to interband transitions, decreases parametrically as disorder suppresses the superconducting order parameter. In
addition, we check that random impurities do not induce anomalous Hall effect in nonchiral but time-reversal
symmetry breaking superconducting states the likes of s + idx2−y2 and dx2−y2 + igxy(x2−y2 ). We briefly remark on
the implications of our results for Kerr effect measurements.
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I. INTRODUCTION

Chiral superconductivity is characterized by a time-
reversal-symmetry-breaking (TRSB) Cooper pairing that
develops a spontaneous orbital angular momentum, such as
p + ip and d + id pairing [1]. In analogy to what Landau
levels do in quantum Hall insulators, such Cooper pair con-
densate may support Hall-like transport in the absence of
external magnetic field [2], i.e., an anomalous Hall effect.
The corresponding Hall conductivity [3], however, is ab-
sent in clean single-band chiral superconductors due to the
Galilean invariance principle, which states that the center-of-
mass motion of a Cooper pair under an external electric field is
oblivious to the relative motion between the two paired elec-
trons [4]. From a semiclassical standpoint [5,6], the absence of
Hall effect may be related to the vanishing of the anomalous
velocity the Bogoliubov quasiparticles acquire when subject
to an electric field.

The Galilean invariance is no longer preserved if the un-
derlying translational symmetry is broken [7–9], or, if the
Cooper pairing takes places in a system with multiple Bloch
bands [10,11]. These two scenarios provide, respectively, ex-
trinsic and intrinsic mechanisms to entangle the relative and
center-of-mass motion of a Cooper pair. Both mechanisms
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may generate finite ac anomalous Hall conductivity in chiral
superconductors, which can then be probed in optical po-
lar Kerr measurements [12]. Finite Kerr rotation below the
superconducting transition have been reported in a number
of putative chiral superconductors, including Sr2RuO4 [13],
UPt3 [14], URu2Si2 [15], and UTe2 [16].

Sr2RuO4in particular has been in a state of much contro-
versy. Despite multiple early observations pointing to chiral
px + ipy pairing [17–20], this superconducting order has
faced increasing scrutiny [21–24]. The polar Kerr effect, be-
sides indicating TRSB, also places other stringent constraints
on the nature of the superconducting state. Specifically, it was
argued that, for Sr2RuO4, only chiral Cooper pairings and
two nonunitary mixed-helical-p-wave pairings may exhibit
anomalous Hall effect and hence the Kerr effect [25–27].
Other TRSB states, such as s + idx2−y2 [28] and dx2−y2 +
igxy(x2−y2 ) [29,30], do not support anomalous Hall response
in the clean limit. Nonetheless, impurities, dislocations or
other forms of disorder may incur local symmetry breakings
favorable for the Hall effect to arise. In this work, we study
the impact of random nonmagnetic impurities on the Hall
response in various TRSB superconductors, with a focus on
the chiral superconducting states.

The effect of nonmagnetic impurity scatterings in single-
band chiral superconductors has in fact been studied by means
of diagrammatic analyses [7,8,31]. An interesting observation
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following from Goryo’s analysis on the skew-scattering-type
processes, is the vanishing of Hall conductivity in all higher
angular momentum chiral states (non-p-wave, such as chi-
ral dx2−y2 + idxy) in continuum models [7]. These analyses,
however, have only considered s-wave scattering off point-
like impurities, and they did not include the contribution
from the possible subgap quasiparticle states formed around
impurities [32,33]. In a separate study of impurity-induced
thermal Hall effect, Ngampruetikorn and Sauls [34] found that
nonpointlike impurities with finite-range impurity potential
can induce finite thermal Hall response in non-p-wave states.
However, Li et al. [35] studied the low-energy theories emerg-
ing from superlattices of pointlike impurities embedded in
both p-wave and non-p-wave chiral states, and found that the
resultant impurity bands are also able to support anomalous
Hall effect. Furthermore, none of the aforementioned studies
has taken into account the superconducting order parameter
inhomogeneity in the presence of impurities. A goal of the
present study is to examine, through real-space simulations of
two-dimensional (2D) lattice models, how random impurities,
both pointlike and nonpointlike, impact the (electric) Hall
response. It is also worth noting that such real-space calcula-
tions by default account for higher order scattering diagrams
not included in previous studies in Refs. [7,8,31].

Our calculations of single-band models on a square lattice
will corroborate the previous diagramatic analyses, while also
offer the following new results: (1) Due to the influence of
impurity-induced subgap states, the p-wave Hall conductivity
around ω = 2� exhibits quantitative difference from previ-
ous results [8]. (2) In contrast with Goryo’s conclusion [7]
but consistent with Li et al. [35], pointlike impurities does
induce finite Hall conductivity in the dx2−y2 + idxy state. The
conductivity is minuscule if the spatial variations of the super-
conducting order parameters around impurities are neglected
(i.e., non-self-consistent calculations), but it becomes substan-
tial with self-consistency. Therefore, to correctly understand
the Hall response in chiral d wave, it is important to ac-
count for the real-space superconducting inhomogeneity. (3)
In agreement with Ngampruetikorn and Sauls [34], nonpoint-
like finite-range impurities readily generate substantial Hall
conductivity in the dx2−y2 + idxy state. The latter two can be
generalized to higher angular momentum chiral states where
they apply. In addition, we also check that Hall conductivity
vanishes in disordered nonchiral but TRSB states such as
s + idx2−y2 and dx2−y2 + igxy(x2−y2 ).

The intrinsic anomalous Hall effect in multiband (multior-
bital) chiral superconductors is generated by virtual interband
optical transitions [10,36]. Hence, the corresponding Hall
conductivity emerges at frequency windows matching cer-
tain band separation energies—scales that are typically much
larger than the superconducting gap. This intrinsic mechanism
was proposed [10,11] to explained the Kerr rotation in very
clean samples of Sr2RuO4 [13] and UPt3 [14]. However,
the fate of this intrinsic Hall response against disorder is
an interesting question not yet explored. This will constitute
another theme of our study. Through self-consistent real-space
modeling of a two-band chiral p-wave model with random
impurities, we shall find that the intrinsic Hall conductivity
follows the parametric disorder-suppression of the supercon-
ducting order parameters. This contrasts with the behavior of

the intrinsic longitudinal conductivity, which originates from
similar interband optical transitions but is independent of the
superconducting pairing.

The remaining of the paper is organized as follows.
Section II introduces the formalism for evaluating Hall con-
ductivity in real-space lattice models. Sections III and IV
present our numerical results and analyses for single-band and
two-band models, respectively. For the single-band model, we
show results of models separately with pointlike and non-
pointlike impurities, and without and with order parameter
self-consistency. The two-band results are obtained from self-
consistent calculations, unless otherwise specified. Section V
summarizes our main results and remarks on the implication
for Kerr effect measurements.

II. HALL CONDUCTIVITY IN REAL-SPACE
CALCULATIONS

For notational simplicity, we set h̄ = c = e = kB = 1
throughout the study. According to standard linear re-
sponse theory, the ac conductivity in the clean limit and
at zero-external wave vector is given by the Kubo for-
mula and is related to the current-current correlation func-
tion [10]: πμν (iνm) = T/

∑
k,ωn

tr [V̂μ,kG(k, ωn)V̂ν,kG(k, ωn +
νm)]. In this expression, T stands for the temperature, k labels
the crystal momentum, νm is the bosonic Matsubara frequency
νm = 2mπT with integer m, ωn is the fermionic Matsubara
frequency ωn = (2n + 1)πT with integer n, V̂μ,k is the veloc-
ity (current) operator, and G is the Matsubara Green’s function
associated with the (Bogoliubov-de Gennes) Hamiltonian Ĥ ,
expressed by a resolvent G(k, ωn) = [iωn − Ĥ (k)]−1. The
Hall conductivity is defined by the antisymmetric part of
the tensor: σH (ω) = i

2ω
[πxy(ω) − πyx(ω)]. For computational

convenience, one may express the Green’s function in the
spectral representation:

G(k, ωn) =
∑

m

|m, k〉 〈m, k|
iωn − εm,k

, (1)

where |m, k〉 is the mth eigenstate of Ĥ (k) with energy εm,k.
Sum over the Matsubara frequency and apply analytic contin-
uation iωn → ω + iη, we arrive at the ac Hall conductivity:

σH (ω) = i

4Nω

∑
k,m,n

f (εn,k) − f (εm,k)

ω + iη − εm,k + εn,k

× [
V mn

x,k V nm
y,k − (x ↔ y)

]
, (2)

where V mn
μ,k = 〈m, k| V̂μ,k |n, k〉 is the matrix element of the

velocity operator V̂μ,k, f (ε) denotes the Fermi-Dirac function,
and N is the number of sites in the system.

In a real-space formulation, the above momentum space
construction is no longer applicable. The conductivity is now
derived from the correlations of the velocity operators associ-
ated with the real-space Hamiltonian V̂μ. It can be shown to
acquire the following form:

σH (ω) = i

4Nω

∑
m,n

f (εn) − f (εm)

ω + iη − εm + εn

× [
V mn

x V nm
y − (x ↔ y)

]
, (3)
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TABLE I. Superconducting gap functions considered in our calculations for single-band models of Sr2RuO4.

Superconductivity Representation Basis function

s wave A1g 1
gxy(x2−y2 ) A2g sin kx sin ky(cos kx − cos ky )
dx2−y2 B1g cos kx − cos ky

dxy B2g sin kx sin ky

px + ipy Eu (sin kx, sin ky )

where V mn
μ = 〈m| V̂μ |n〉 with |m〉 denoting the eigenstate

wave function, and εm is the eigen-energy of the correspond-
ing Hamiltonian.

For illustration, we hereby derive the velocity opera-
tor for a single-orbital tight-binding model on a square
lattice with only nearest neighbor hoppings. The correspond-
ing Hamiltonian is giving by ĤTB = −μ

∑
i ĉ†

i ĉi + t
∑

〈i, j〉
(ĉ†

i ĉ j + H.c.), where μ is the chemical potential, i = (ix, iy)
is the two-dimensional position index. The spin indices are
suppressed here as we do not consider spin-orbit coupling.
Following the standard Peierls substitution, in the presence of
a vector potential A(r), the hopping integral ti j between any

pairs of sites i and j is replaced by ti jei
∫ r j

ri A(r′ )dr′
[37]. The

current operator ĵ0 for the normal state is then obtained by
taking a partial derivative with respect to A(r) and then set
A(r) ≡ 0,

ĵ0 =
∑
〈i, j〉

Ri j (it ĉ†
i ĉ j + H.c.), Ri j ≡ ri − r j . (4)

The velocity operator is thus V̂ 0 = ĵ0/e = ĵ0, with its compo-
nent along the μ-direction denoted by V̂0,μ. Specific to super-
conducting models, the velocity operator in the Nambu spinor

basis 	 = (ĉ(1,1), · · · , ĉ(Nx,Ny ), ĉ†
(1,1), · · · , ĉ†

(Nx,Ny ) )
t

reads as
follows:

Vμ =
(

V0,μ 0

0 V0,μ

)
. (5)

In our study, we model disorder on the square lattice by
assigning a pointlike potential Vimp = u much larger than
the bandwidth to certain fraction of randomly chosen sites,
Ĥimp = ∑

i uĉ†
i ĉi. At times, we add additional potentials to the

neighboring sites of each impurity, to simulate the effect of
finite-range (nonpointlike) impurities. For any given impurity
concentration nimp, the Hall conductivity is given by the aver-
age over an ensemble of impurity configurations σH = 〈σ 〉imp.
The above procedures can be generalized to multiorbital
models with ease.

Below, we present the results and analyses for both
single-band and two-band models of Sr2RuO4, although the
conclusions shall be applicable to other TRSB superconduc-
tors. The superconductivity in Sr2RuO4is typically described
on the basis of a square lattice model. For TRSB pairings we
consider the following four that frequently appear in litera-
ture: px + ipy, dx2−y2 + idxy, s + idx2−y2 , dx2−y2 + igxy(x2−y2 ).
In conjunction with the this compound’s D4h point group
symmetry, the chiral p-wave belongs to the Eu irreducible rep-
resentation, while the latter three are referred to as B1g + iB2g,
A1g + iB1g and B1g + iA2g states.

III. SINGLE-BAND MODELS

A. Non-self-consistent calculations

As a starting point, let us consider non-self-consistent cal-
culations in which we neglect the spatial variation of the
superconducting order parameters around local impurities.
For illustrative purpose, we adopt simple gap functions whose
momentum-space forms are given in Table I. In real-space
lattice realization, we have �̂ = ∑

i, j (�i j,σ σ̄ ĉ†
iσ ĉ†

j,σ̄ + H.c.),
where σ denotes the spin and σ̄ = −σ , and for the aforemen-
tioned various irreducible representations,

A1g : �ii,σ σ̄ = �, (6)

A2g : �i,i+2x̂±ŷ,σ σ̄ = ∓�

2
, �i,i+x̂±2ŷ,σ σ̄ = ±�

2
,

�i,i−2x̂±ŷ,σ σ̄ = ±�

2
, �i,i−x̂±2ŷ,σ σ̄ = ∓�

2
, (7)

B1g : �i,i±x̂,σ σ̄ = −�i,i±ŷ,σ σ̄ = �

2
, (8)

B2g : �i,i+x̂±ŷ,σ σ̄ = ∓�

4
, �i,i−x̂±ŷ = ±�

4
, (9)

Eu : �i,i±x̂,σ σ̄ = ±�

2
, �i,i±ŷ,σ σ̄ = ∓i

�

2
. (10)

Calculations were performed on lattices of size 80 × 80
with periodic boundary condition in both directions, and at
least 30 samples were used for impurity ensemble average.
The pairing amplitude is typically chosen to be of order
0.2t to avoid finite-size effects. We set μ = t , which gives a
Fermi level density of states N0 ∼ 0.3/t per spin species. The
electron scattering rate, i.e., the inverse electron lifetime, is
given by 
 = τ−1 ∼ nimp/πN0. For the level of impurity con-
centration employed in most of our calculations, nimp � 4%,
the normal state remains a good metal with EF τ ∼ tτ 
 1.
The choice of parameters also ensures that the system lies near
the limit � 
 
, where superconductivity is expected to re-
main robust. This will also be confirmed in our self-consistent
calculations, in the latter part of this section.

Representative numerical results for the zero-temperature
ac Hall conductivity in the presence of pointlike impurities are
shown in Fig. 1. It can be seen that the Hall response varies
drastically among the four superconducting states. Overall,
the Hall conductivity is finite in the chiral states and vanishes
in nonchiral states. At finite temperatures, the conductivity
tracks the amplitude of the pairing gap and roughly follows
as |�(T )|2 [8,38], which is not a qualitative change and will
thus not be discussed in detail.
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FIG. 1. The zero-temperature Hall conductivity and the respec-
tive density of states for various single-band superconductors in 2D
square lattices with randomly distributed pointlike impurities with
concentration nimp = 1.56%. Through our calculations, t = μ = 1,
u = 1000 and η = 10−3. In (a) and (b), �0 is the quasiparticle ex-
citation gap extracted respectively from the clean-limit DoS data in
(c) and (d), with �0 = 0.17t and �0 = 0.18t respectively. The small
upturn of Im(σH ) near zero frequency in (a) is a numerical artifact
that can be eliminated by choosing sufficiently small η. The inset
of (a) displays the imaginary part of the conductivity of the px + ipy

state with different impurity concentrations. The set of data in (b) was
obtained from an average over 90 random samples. The error bars
reflect the scatter of data of different impurity configurations. For
clarity, the error bars will be dropped in other figures.

1. px + ipy

The px + ipy state exhibits the strongest Hall effect.
Our simulation roughly reproduces the general frequency-
dependence of the Hall conductivity originally obtained in
diagrammatic analyses [8], with peaks around ω = 2�0

where �0 is the excitation gap extracted from the clean-
limit density of states (DoS) distribution [Fig. 1(c)]. However,
some distinct features are new to us. As can be seen
in Fig. 1(a), the conductivity peaks are broadened. In
particular, Im(σH ) displays finite spectral intensity below
ω = 2�0, unlike the diagrammatic result which is cut off
from below at this frequency. Since [V mn

x V nm
y − (x ↔ y)] =

2i Im(V mn
x,k V nm

y,k ) is purely imaginary, it is easy to check from
Eq. (3) that Im(σH ) is associated with the quasiparticle excita-
tion spectrum. Hence, the finite intensity below ω = 2�0 can
only be attributed to additional quasiparticle excitations below
the superconducting gap, which were not captured in previ-
ous diagrammatic studies but naturally emerge in real-space
simulations. Indeed, Fig. 1(c) shows substantial gap-filling for
samples with random impurities. Meanwhile, the softening of
the coherence peak contributes in part to the broadening of
the conductivity peaks. Additionally, the diagrammatic analy-
ses revealed that the conductivity grows linearly with weak
impurity concentration [7,8]. Our calculation, as is shown
in the inset of Fig. 1(a), roughly reproduces this trend in

the low concentration regime, although a deviation from this
behavior at larger impurity concentration is also clearly ob-
served. We finally note that similar behavior is anticipated for
the two mixed helical nonunitary p-wave states proposed in
Ref. [26]—which may be viewed as composites of px + ipy

and px − ipy subsectors.

2. dx2−y2 + idxy

Compared to px + ipy, the dx2−y2 + idxy state in the pres-
ence of pointlike impurities appears to exhibit substantially
smaller Hall conductivity, which reveals itself only after
a statistical average over multiple impurity configurations
[Fig. 1(b)]. Notably, as we show in the Appendix, with in-
creasing sample size, the error bars shrink, the curve of the
sample average becomes smoother and its overall lineshape
remains unchanged for any given impurity concentration.
However, due to the limits in our computation resource, we
cannot perform calculations with sufficiently large system size
to bring the error bars to negligible levels. Hence, future work
is needed to unambiguously confirm the lineshape. Mean-
while, unlike in the p-wave case, the majority of the weak
conductivity spectrum lies below ω = 2�0, suggesting a dom-
inant contribution involving impurity-induced subgap states
[Fig. 1(d)]. This appears to agree with the finding in Li et al.
[35], which demonstrated anomalous Hall effect associated
with the impurity bands formed by impurity superlattices em-
bedded in any 2D chiral superconductor. Nonetheless, Li et al.
[35] did not contain sufficient information about the relative
strength of the Hall effect between p-wave and non-p-wave
states.

The strong suppression in chiral d wave also roughly
agrees with Goryo [7], where all non-p-wave chiral states dis-
playing continuous symmetry were shown to have vanishing
Hall conductivity at the level of pointlike skew-scattering di-
agrammatic analysis. The criterion is related to the azimuthal
integral of U 3

0 sin θkp sin lzθkp [7], where a constant U0 de-
scribes the s-wave scattering matrix associated with pointlike
scatterers, and lz is the z projection of the Cooper pair or-
bital angular momentum and θkp denotes the angle between
wave vectors k and p. For the px + ipy state, lz = 1, and
the integral is finite. For the dx2−y2 + idxy state, lz = 2, and
the integral vanishes. Note that, by simple extension, Goryo’s
conclusion shall also apply to the present chiral d-wave state
on a square lattice. However, according to Ref. [34], non-
pointlike impurities (or, finite-range impurities) can induce
substantially enhanced Hall response in non-p-wave chiral
states. The underlying physics can be understood as follows.
While pointlike impurities induces only s-wave scatterings,
nonpointlike impurities are able to generate higher angular
momentum scatterings. Hence, the constant U0 is replaced by
a generic impurity scattering matrix

Ukp =
∑

l

Ul cos lθkp, (11)

where Ul denotes the strength of the scattering in the angular
momentum l channel. Following the skew-scattering analyses,
the above expression for azimuthal integration is now replaced
by

Ukk1Uk1 pUpk sin θkp sin lzθkp, (12)
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FIG. 2. The imaginary part of the zero-temperature Hall con-
ductivity of (a) px + ipy and (b) dxy + idx2−y2 states at ni = 1.56%
and with different impurity potential profiles as determined by the
potential u′ assigned to the four nearest neighbors of each impurity
site.

where k1 is an intermediate wave vector which must also
be summed over. One can always find skew-scattering pro-
cesses which ensure that the above expression integrates to
a finite value, thereby ensuring finite Hall conductivity. One
simple example is when the first two scattering events occur
in the l = 0 (s-wave) channel and the third one in the l=lz−
1 channel. Then the expression becomes U 2

0 Ulz−1 cos(lz −
1)θkp sin θkp sin lzθkp, whose azimuthal integral is nonzero.

In fact, the same argument also explains the finite al-
beit minuscule Hall conductivity in our chiral d-wave model
with pointlike impurities. The key is to view clusters of
nearby pointlike impurities as effective finite-radius impuri-
ties. This is thus a distinct effect only observable in real-space
calculations, absent in momentum-space analyses [7,8,34].
Understandably, this effect is weak in the case of dilute im-
purities. Below, we turn to the scenario where the individual
impurities are nonpointlike.

As a simple simulation of nonpointlike impurities with
finite range potential profile, we add extra potential u′ to each
point-impurity’s four neighboring sites. The results for both
p-wave and d-wave states are shown in Fig. 2 for comparison.
As one can see, while the magnitude of the p-wave Hall
conductivity does not change qualitatively with varying u′, the
d-wave conductivity readily gains magnitude similar to that of
the p-wave state once a finite u′ is turned on. This confirms
our expectation and is consistent with Ref. [34]. Note that
the considerable change of the conductivity lineshape with
different u′ is related to the variation of the subgap state energy
spectrum.

3. Nonchiral states

Finally, in agreement with Goryo [7], our calculations did
not reveal any finite Hall conductivity in neither s + idx2−y2

nor dx2−y2 + igxy(x2−y2 ) state. Nonetheless, both conductivity
exhibits clear statistical fluctuations around zero (the Hall
conductivity of the former is shown in Fig. 6 in the Appendix,
while that of the latter is not shown). This can be ascribed to
the existence of scattering events that contribute with opposite
signs to the Hall conductivity. We expect the same conclusion
to hold for other mixed-representation nonchiral states, such
as s + idxy.

B. Self-consistent calculations

The above non-self-consistent calculations did not account
for the impurity-induced local order parameter variations.

FIG. 3. The imaginary part of the zero-temperature Hall con-
ductivity of (a) px + ipy and (b) dxy + idx2−y2 states for pointlike
impurities at the impurity concentration nimp � 1.5% after self-
consistency. Parameters are the same as in Fig. 1. The dash curves
are the same as the Im[σH ] in Figs. 1(a) and 1(b). The abbreviations
in the legend NSC and SC denote non-self-consistent calculation and
self-consistent calculation, respectively. The inset in panel (a) shows
the drop of the spatial average of the pairing order parameter as a
function of the impurity concentration. The error bars in the self-
consistent data in panel (b) are to demonstrate the robustness of the
lineshape.

This in part resembles the scenario in the momentum-space
analyses [7,8,31,34] where the disorder effects on the order
parameters can at best be treated in an average manner. How-
ever, even with pointlike impurities, the spatial variation of
the order parameters typically spans over a coherence length
and may therefore enhance non-s-wave scatterings. This could
have significant implications for the Hall effect in non-p-
wave chiral states, as we verify below through self-consistent
calculations.

The superconducting order parameters on the lattice bonds
(or sites) are self-consistently determined by

�i j = Ũi j 〈ĉiĉ j〉 , (13)

where the spin indices is omitted, Ũi j is the effective interac-
tion to create Cooper pairs between electrons at the ith and the
jth sites, and 〈· · ·〉 denotes the expectation value of the ground
state. To obtain a target order parameter amplitude �0,i j = �

in the clean limit, we first determine the corresponding inter-
action strength via Ũi j = �/ 〈ĉiĉ j〉, where 〈ĉiĉ j〉 is evaluated
based on the BdG Hamiltonian with initial pairing �. In the
presence of random impurities, using an initial gap amplitude
�0,i j and the interaction Ũi j , we diagonalize the full BdG
Hamiltonian ĤBdG = ĤTB + �̂ + Ĥimp and the Eq. (13) will
give new gap amplitude at each bond. Using the new gap
amplitude, we diagonalize the full BdG Hamiltonian and plug
all parameters into Eq. (13) again. With the initial gap am-
plitude �0 ∼ 0.1t , we repeat this process until the change of
gap amplitude between two successive iterations is smaller
than 10−3t . The results below are based on self-consistent
calculations of models with lattice size 50 × 50.

To characterize the disorder-induced suppression of
superconductivity, we evaluate the spatial average of
the pairing order parameters on certain lattice bonds,
〈�̄〉imp = 1

N

∑
i 〈�i+δ,i〉imp. The result for the px + ipy state

is shown in the inset of Fig. 3(a), where it can be seen that
superconductivity is robust up to the maximal impurity con-
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centration nimp = 4% employed here. The dx2−y2 + idxy state
exhibits similar dependence on the impurity concentration.

Figure 3 presents the imaginary part of the Hall conduc-
tivity for both px + ipy and dx2−y2 + idxy states, evaluated
using self-consistent order parameter profiles in lattices with
random pointlike impurities. The results of the corresponding
non-self-consistent calculations are also shown for compar-
ison. As one can see from Fig. 3(a), the p-wave state is
essentially unchanged upon order parameter self-consistency.
However, self-consistency drastically elevates the d-wave
Hall conductivity [Fig. 3(b)] to a magnitude comparable to
that in p-wave as well as to those induced by finite-radius
impurities [Fig. 2(b)]. This indicates much enhanced non-s-
wave scattering as a result of the spatially inhomogeneous
order parameters. Our result therefore highlights the im-
portance to take into account the order parameter spatial
variation—which cannot be captured in momentum-space
analyses—when studying the Hall effect of non-p-wave chiral
states. Finally, we also checked that nonchiral states cannot
generate finite Hall conductivity even with self-consistency.

IV. TWO-BAND MODELS

Multiband models possess additional intrinsic contribution
to the anomalous Hall conductivity, which is related to vir-
tual interband optical transitions, such as |m, k〉 → |n, k〉 →
|m, k〉 with εm,k < 0 < εn,k and |εm,k| �= |εn,k|. The aim of
this section is to investigate the fate of this intrinsic contri-
bution against random disorder. For illustration, we consider
the px + ipy state on a two-orbital (two-band) model with
dxz and dyz orbitals residing on each site of a square lattice.
The normal state of the model is described by the following
tight-binding Hamiltonian:

ĤTB = − μ
∑

i

â†
i âi − t

∑
i

(
â†

(ix,iy+1)âi + H.c.
)

− μ
∑

i

b̂†
i b̂i − t

∑
i

(
b̂†

(ix+1,iy )b̂i + H.c.
)

+ t ′ ∑
i

(
b̂†

(ix+1,iy+1)âi − b̂†
(ix−1,iy+1)âi + H.c.

)
, (14)

where â†/â and b̂†/b̂ are creation/annihilation operators for
dxz and dyz orbitals, respectively, and t ′ denotes the interor-
bital hybridization. Note that spin indices have been dropped
for simplicity. Without loss of generality, it is assumed that
the two orbitals feel equivalent impurity potential, so that
impurity Hamiltonian is given by Ĥimp = ∑

i u(â†
i âi + b̂†

i b̂i ).
The px + ipy pairing acquires the following momentum-space
form Ĥ� = ∑

k �0( sin kxâ†
k↑â†

−k↓ + i sin kyb̂†
k↑b̂†

−k↓ + H.c.).
The above model has often been used in the ef-

fective description of the multiband superconductivity in
Sr2RuO4driven by its Ru dxz and dyz orbitals [10,39]. In the
present study, we intentionally choose a large t ′ to ensure
a sizable band separation at generic momenta, which then
allows us to differentiate between the conductivity arising
respectively from interband and intraband processes. To be
more specific, while the intraband transitions dominate the
imaginary part of the Hall conductivity around ω = 2�0 as
we already saw in the previous section (except for some subtle
multiband effects here), the interband conductivity emerges

FIG. 4. (a) The imaginary part of Hall conductivity in the two-
band model. The results for finite impurity concentration scenarios
are obtained after order parameter self-consistency. The inset shows
the drop of the average order parameter potential with varying im-
purity concentration. (b) Zoom-in view of part of the high frequency
Hall conductivity. The solid curves plot the clean-limit Hall conduc-
tivity evaluated using the pairing amplitude � = �0 as indicated for
each curve. The filled circles and squares depicted the conductivity
of disordered samples in non-self-consistent (NSC) calculations with
uniform input pairing amplitude �0 = 0.2t . The open circles and
squares plot the conductivity obtained in self-consistent (SC) calcu-
lations, which use an interaction that produces a pairing amplitude
of �0 = 0.2t in the clean limit. These calculations employed the
parameter set (t ′, μ) = (0.5, 1)t .

above ω ∼ �ε + �0, where �ε is the band separation energy
at the Fermi wave vector and is determined by t ′. The numer-
ical calculations were done for lattices of size 60 × 60 and
we take at least 30 samples for impurity ensemble average.
Figure 4(a) presents some representative results obtained from
our self-consistent calculation under the influence of random
disorder (real part of σH not shown). The inset of Fig. 4(a)
shows a the drop of the order parameter as a function of
the impurity concentration, which exhibits suppressed but still
robust superconductivity up to nimp = 4%.

Let us focused on the high frequency conductivity arising
from interband contributions. The dashed curve in Fig. 4(a)
plots the clean-limit intrinsic Hall conductivity. For compar-
ison, the dashed curve in Fig. 5(b) shows the clean-limit
intrinsic longitudinal conductivity σxx(w) generated by sim-
ilar interband transitions, evaluated according to the formula

σxx(ω) = i

2Nω

∑
k,m,n

∣∣V mn
x,k

∣∣2
[ f (Em,k) − f (En,k)]

ω + iη − En,k + Em,k
. (15)

And following the same method in the Sec. II, the longi-
tudinal conductivity for disordered system is now evaluated
according to the real-space current-current correlation similar
to Eq. (3), except that the form of V mn

x V nm
y − (x ↔ y) there is

now replaced by |V mn
x |2 and the factor 1/4 is now corrected

by 1/2 due to the definition of longitudinal conductivity. Both
conductivities are cut off at a similar frequency well above
ω = 2�0.

Upon the introduction of impurities, the intrinsic Hall
conductivity across a wide interband frequency window is
noticeably suppressed, with increasing suppression as the im-
purity concentration increases [Fig. 4(a)]. Since the Hall effect
originates from the chiral Cooper pairing, such level of sup-
pression is ascribable to the parametric disorder-suppression
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FIG. 5. The real part of longitudinal conductivity σxx for the two-
band px + ipy model in clean and disordered systems. The results
for disordered systems are obtained from the same models as in
Fig. 4. The clean-limit conductivity (blue dashed curve) was eval-
uated using the momentum-space formulation provided in the text.
The Drude peak in σxx is suppressed by superconductivity. Note that
the oscillatory high-frequency conductivity is a numerical artifact of
our finite-size modeling. It is more severe in smaller system size
calculations and at lower impurity concentrations, where the energy
distribution of the limited number of high-energy quasiparticle states
is not yet sufficiently spread out in statistical sense.

of superconductivity. On the one hand, away from the peaks
between the frequency interval 7.5�0 ∼ 15�0, the non-self-
consistent Hall conductivity [the filled circles and squares in
Fig. 4(b)] is barely influenced by varying degree of disorder.
On the other hand, the self-consistent Hall conductivity can
be seen to roughly track the clean-limit results obtained by
using uniform order parameters the same magnitude as the
corresponding 〈�̄i j〉imp [Fig. 4(b)]. Such strong parametric
dependence of the self-consistent Hall response on 〈�̄i j〉imp
also agrees with expectation that the intrinsic Hall conduc-
tivity shall be proportional to �2 [10,38]. By contrast, the
intrinsic longitudinal conductivity is almost unaffected by the
same degree of disorder (Fig. 5), as it does not rely on having
superconducting pairing.

Note that intrinsic Hall effect has also been demonstrated
for multiband superconductors with higher angular momen-
tum chiral pairing, such as chiral d wave and chiral f wave
[25,40,41]. We expect similar strong disorder suppression of
interband Hall conductivity in those scenarios.

V. SUMMARY AND FINAL REMARKS

We have studied the effects of impurity scatterings on
the anomalous Hall effect in a number of TRSB super-
conducting states, on the basis of real-space simulations of
lattice models with random impurities. Our calculations of
the single-band chiral p-wave model reproduce the qualitative
behavior previously obtained in diagrammatic studies, but
also show some quantitative difference due to the presence
of impurity-induced subgap quasiparticle excitations not con-
sidered previously. Further, in contrast to the diagrammatic
analysis, we demonstrated anomalous Hall response in non-p-
wave chiral states, which is minuscule in non-self-consistent
calculations of models with pointlike impurities but readily

becomes substantial with finite-range impurities or with self-
consistently resolved inhomogeneous superconducting order
parameter. In addition, we verified that random impurities do
not induce Hall effect in nonchiral TRSB superconductors.
Our study highlights the importance of taking into account
the order parameter inhomogeneity when studying the Hall
response of chiral superconductors.

In the two-band chiral superconducting model, the high-
frequency intrinsic Hall conductivity originating from inter-
band optical transitions was found to depend strongly on
the impurity scatterings, roughly following the parametric
disorder-suppression of the superconductivity. By contrast,
the longitudinal conductivity of similar interband origin re-
mains robust against the same degree of disorder.

Finally, our results may have some meaningful implication
for the polar Kerr measurement and the differentiation of var-
ious chiral superconducting states. Particularly relevant is the
recognizably different impurity-concentration dependence of
the low-frequency (i.e., around ω ∼ 2�) and high-frequency
(i.e., ω ∼ band separation energy scales) Hall conductivity. By
controlling the impurity concentration in the sample material,
the impurity effects on the Kerr rotation angle could thus be
analyzed with some level of confidence if the probing photon
energy lies within certain frequency range. Meanwhile, our
study also shows that Kerr effect is absent in nonchiral but
TRSB superconducting states even in the presence of random
impurities. This would cast some doubt on the recent pro-
posals of s + id and d + ig pairings in Sr2RuO4, such as in
Refs. [28–30]. Finally, while our study has been conducted
with Sr2RuO4at hand, our conclusions shall also hold for
general TRSB superconductors.

FIG. 6. Comparison of the Hall conductivity obtained from cal-
culations with respective system size of 40 × 40 and 80 × 80 in
the presence of the same concentration of random pointlike impuri-
ties, for the single-band chiral d-wave (upper panel) and s + idx2−y2

(lower panel) states. Except for the different system size, all other
parameters are the same as in Fig. 1(b) for the chiral d-wave model,
and �0 = 0.09t for the s + idx2−y2 model. All data sets are obtained
by averaging over 90 different impurity samples.
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APPENDIX

In this Appendix, we compare the results of some single-
band calculations with two different system sizes but with

the same concentration of random pointlike impurities. For
the single-band chiral d-wave state, as one can see from
Figs. 6(a) and 6(b), the scatter of the data (measured by
the size of the error bars) decreases noticeably with in-
creasing system size, and the overall lineshape of the two
curves appears to become smoother. However, we are un-
able to perform calculations with sufficiently large system
size that could reduce the error bars to negligible levels.
Hence, further calculation is needed to unambiguously con-
firm the d-wave Hall conductivity lineshape in the case of
pointlike impurities. Also shown in Fig. 6 are the results of
the single-band s + idx2−y2 model. In contrast to the chiral
d-wave state, the s + idx2−y2 conductivity revolves around
zero and does not exhibit any stable lineshape as the system
size is varied. This indicates vanishing Hall response in this
state.
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