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Weak-coupling theory of pair density wave instabilities in transition metal dichalcogenides
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The possibility of realizing pair density wave (PDW) phases, in which Cooper pairs have a finite momentum,
presents an interesting challenge that has been studied in a wide variety of systems. In conventional super-
conductors, this is only possible when external fields lift the spin degeneracy of the Fermi surface, leading to
pair formation at an incommensurate momentum. Here, we study a second possibility, potentially relevant to
transition metal dichalcogenides, in which the Fermi surface consists of a pair of pockets centered at the ±K
points of the Brillouin zone as well as a central pocket at the � point. In the limit where these three pockets
are identical, the pairing susceptibility has a logarithmic divergence at the nonzero wave vectors ±K, allowing
for a weak-coupling analysis of the PDW instability. We find that repulsive electronic interactions combine to
yield effective attractive interactions in the singlet and triplet PDW channels, as long as the � pocket is present.
Because these PDW channels decouple from the uniform superconducting channel, they can become the leading
unconventional pairing instability of the system. Upon solving the linearized gap equations, we find that the
PDW instability is robust against small trigonal warping of the ±K pockets and small detuning between the
� and ±K pockets, which affect the PDW transition in a similar way as the Zeeman magnetic field affects the
uniform superconducting transition. We also derive the Ginzburg-Landau free energy for the PDW gaps with
momenta ±K, analyzing the conditions for and consequences of the emergence of FF-type and LO-type PDW
ground states. Our classification of the induced orders in each ground state reveals unusual phases, including an
odd-frequency charge-2e superconductor in the LO-type PDW.

DOI: 10.1103/PhysRevB.107.224516

I. INTRODUCTION

A pair density wave (PDW) is an exotic quantum state
of matter in which the amplitude and/or phase of the super-
conducting (SC) gap function display real-space periodicity
[1–13]—in other words, the Cooper pairs have finite mo-
mentum (for a recent review, see Ref. [14]). Experimentally,
signatures consistent with a PDW order have been reported
in cuprates [15,16], NbSe2 [17], iron-based superconduc-
tors [18], kagome superconductors [19], and UTe2 [20,21].
Theoretically, it is well established that a Pauli-limited BCS-
like superconductor can acquire a nonzero modulation upon
application of a sufficiently large magnetic field [1,2]. In non-
centrosymmetric crystals, a small field applied along certain
directions is enough to induce such a modulation [22,23].
A secondary periodic gap also emerges when a uniform SC
state microscopically coexists with another ordered state that
breaks the translational symmetry of the lattice, such as spin
or charge density waves [5,24–27].

In all these cases, however, the pairing instability of the
system is towards a uniform SC state, i.e., the pairing sus-
ceptibility χSC(Q) diverges for Q = 0. It is the breaking of
another symmetry of the system (time-reversal, inversion, or
translational) by other degrees of freedom that induces a finite
modulation in the gap function. In contrast, models in which
the leading pairing instability is towards a PDW phase are
much rarer [14]. From a weak-coupling perspective, the issue
stems from the fact that the noninteracting pairing susceptibil-
ity does not generally display a logarithmic divergence except
for Q = 0. To overcome this difficulty, several microscopic

models with moderate or strong interactions have been pro-
posed to stabilize a PDW ground state [28–39]. A PDW phase
was also reported to emerge within a spin-fermion model [40]
and an Amperean pairing model [10]. Moreover, extensive
numerical simulations have shown that the doped Hubbard
model also displays PDW-like correlations [41].

Another class of systems that can potentially support
a PDW state are those whose band dispersions ε(p) dis-
play particle-particle nesting for a finite wave vector Q,
i.e., ε(−p) = ε(p + Q) (this is not to be confused with the
particle-hole nesting condition ε(−p) = −ε(p + Q), which
is relevant for spin density waves). In this case, the pair-
ing susceptibility has a logarithmic divergence also at the
nesting wave vector, which opens up the possibility of a weak-
coupling PDW instability. Physically, the nesting condition is
satisfied, for example, if two circular Fermi pockets are cen-
tered at ±Q/2 and Q is not a reciprocal lattice vector. Such a
situation can occur, for instance, in doped Weyl semimetals—
although time-reversal and inversion symmetries are often
explicitly broken in these systems [42,43]. Interestingly, a
metal in the electronic nematic spin-triplet state also has a
pairing susceptibility peaked at finite momentum [44]. Other
proposals for the realization of weak-coupling PDW insta-
bilities include certain 1D systems [45], and more recently
in moiré systems [46,47], Kondo lattices [48], as well as the
π -flux lattice [49].

Nearly identical Fermi pockets can also emerge in the hon-
eycomb or triangular lattices at the ±K points of the Brillouin
zone—for instance, in doped graphene [50]. As discussed
in Ref. [51], the band structures of several doped transition
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FIG. 1. Fermi surfaces and the Brillouin zone of systems con-
sidered in this work without (a) and with (b) a Fermi pocket at the
� point. All pockets are assumed to be hole pockets, although the
results in this work apply also for systems with all electron pockets.

metal dichalcogenides (TMDs), such as MoS2 and NbSe2,
display Fermi pockets at ±K (see Fig. 1), making these ma-
terials potential candidates for a PDW instability—see also
Refs. [52,53]. More broadly, superconducting TMDs, particu-
larly in monolayer form, have been widely investigated in the
past decade due to the unique interplay between pairing and
the Ising spin-orbit coupling that emerges from the breaking
of the inversion symmetry by the monolayer [54–70].

While the presence of nearly circular ±K Fermi pockets
ensures a peak of the pairing susceptibility at the wave vectors
±K, a PDW instability requires interactions that are attrac-
tive in the PDW channel. While phonons generate attractive
pairing interactions, they are expected to favor conventional
uniform SC. On the other hand, electronic interactions can
promote effective attractive interactions in unconventional
pairing channels. Ref. [51] showed that, in the case of a mono-
layer TMD with fully spin-valley-polarized Fermi pockets at
the ±K points, attraction in the PDW channel only emerges
via a Kohn-Luttinger-like mechanism that is third order in
the Hubbard interaction, thus implying a very small transition
temperature within a weak-coupling approach.

In this paper, motivated by the band structure of TMDs and
by these previous results, we revisit the problem of a weak-
coupling PDW instability in a triangular/honeycomb lattice
with Fermi pockets at ±K and at �. By considering all eight
symmetry-allowed spin-independent repulsive electronic in-
teractions involving the low-energy electronic states, we find
that the presence of the � pocket is essential to stabilize a
PDW instability that can outcompete the uniform SC insta-
bility. Interestingly, the � pocket is present in several TMDs,
such as NbSe2 and sufficiently hole-doped MoS2 [71–73].

Our analysis reveals several qualitative properties of the
PDW instability and of the PDW ordered state. First, when
the three pockets centered at ±K and � are circular and
perfectly nested, the PDW and SC channels decouple at the
mean-field level, with four interaction terms contributing to
the uniform SC gap equations (as previously shown by us and
Kang in Ref. [66]) and the other four terms contributing to
the PDW gap equations. As a result, whether PDW or SC is
the dominant instability is a matter of the relative strength
between the microscopic interactions. In particular, we find
that attraction in the PDW channel requires sufficiently large
interpocket exchange and Umklapp interactions between the
� and ±K pockets, with the former (latter) favoring a triplet
(singlet) PDW state.

Perfect nesting, however, is not a realistic property of TMD
compounds. To account for this, we consider the effects of
both trigonal warping at the ±K pockets, as well as of differ-
ent Fermi momenta at ±K and �. Both of these perturbations
tune the system away from the perfect nesting condition of
three identical circular Fermi pockets. We find that when
PDW is the dominant instability at perfect nesting, it remains
robust over a finite range of these detuning parameters, which
impact the PDW state in the same way that a Zeeman field
impacts a uniform s-wave SC state.

In our linearized gap equations, we find that two dis-
tinct PDW gaps can condense, with inequivalent wave
vectors K and −K. To elucidate whether only one of them
condenses, resulting in a time-reversal symmetry-breaking
FF-type (Fulde-Farrell) PDW, or whether both condense with
the same gap amplitude, implying a time-reversal symmetry
preserving LO-type (Larkin-Ovchinikov) PDW, we derive and
analyze the Ginzburg-Landau free energy up to sixth-order
terms. We find that both types of PDW phases are possible in
our model. We further show that each of these types of PDW
is associated with a distinct set of induced orders, similarly to
the previously studied cases of a PDW on the square lattice
and of a PDW on the honeycomb lattice with wave vector M
[6,8,40,74,75]. Specifically, while the LO-type PDW induces
a charge density wave as well as charge-2e, charge-4e, and
charge-6e superconductivity, the FF-type PDW induces loop
current order and charge-6e superconductivity. Interestingly,
we find that, depending on the sign of the sixth-order term
of the free energy, the induced charge-2e state corresponds
to either even-frequency or odd-frequency uniform supercon-
ductivity. Finally, we briefly discuss the impact to our results
of the Ising SOC present in monolayer TMDs.

The remainder of this paper is structured as follows. In
Sec. II, we present our model of the Fermi surface and discuss
the generic pairing interactions between low-energy electrons.
In Sec. III, we analyze the linearized mean-field gap equa-
tion of our model, determining when a PDW instability can
occur. In Sec. IV, we derive and analyze the Ginzburg-Landau
free energy of the PDW, which is required to fully determine
the symmetry of the PDW state, and to identify possible
induced orders. Finally, in Sec. V, we summarize our results
and briefly discuss possible effects due to spin-orbit coupling,
including topological PDW phases.

II. INTERACTING MICROSCOPIC MODEL

A. Single-Body Hamiltonian and Fermi surfaces

Our starting point is a simple model to describe layered
TMDs [61,66,71,72,76] consisting of three hole Fermi pock-
ets: a � pocket at the Brillouin zone center, and two K pockets
centered at the distinct zone corners ±K (our results also
apply if all pockets are electron pockets). The single-body
Hamiltonian that describes these Fermi surfaces is

H =
∑
ηpα

εη(p)d†
pηαdpηα. (1)

Here η = �,±K is a a pocket index, and p denotes the (small)
momentum as measured from the pocket center. Thus the
annihilation operator dpηα annihilates an electron with spin α

and momentum p measured relative to the pocket center η.
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FIG. 2. Interaction channels gn involving low-energy states near the Fermi pockets shown in the Brillouin zone. The arrows indicate
which pocket the fermions start and end on before and after interacting, with the arrow’s head representing an electron creation operator at
a momentum k (relative to the pocket center), and the arrow’s end representing an electron annihilation operator at a different momentum
p (relative to the pocket center).

εη(p) is the dispersion about the pocket η, which we take to
be independent of the electron’s spin. As discussed in [66],
this approximation is sufficient to determine the nature of the
dominant Fermi surface instability.

Figures 1(a) and 1(b) show two types of Fermi surfaces
relevant to certain TMDs without spin-orbit coupling. For
instance, while the central hole pocket is absent in MoS2, it is
present in NbSe2 [71,72,76]. As we discuss later, the presence
of the � pocket has important consequences for the emer-
gence of a PDW state. Both dispersions are obtained from a
simplified tight-binding model summarized in Appendix A.
Note that in either case, the Fermi surfaces are not perfectly
circular, exhibiting hexagonal and trigonal warping at � and
±K points. In addition, generically the Fermi momenta of the
� and K pockets are not equal.

We will argue in the next section that the hexagonal warp-
ing of the central pocket does not qualitatively affect the
pairing instabilities. However, both the trigonal warping at K
points and the Fermi momentum mismatch between � and K
do significantly suppress the PDW instability. We therefore
take the dispersions to be

ε� (p) = − p2

2m�

− μ� (2)

and

ε±K (p) = − p2

2mK
− μK ± w cos 3θ, (3)

where θ is the angle made by p from the px axis and w

parametrizes trigonal warping. Note that the chemical po-
tential of the system is given by μ = (μ� + μK )/2 whereas
|μ� − μK |/2 gives the mismatch between the bottom of the
central and corner bands. Inserting this expression into Eq. (1)

gives the minimal model needed to discuss the stability of
PDW phases in generic 1H TMD systems.

B. Interactions near the Fermi surfaces

To study the pairing instabilities at weak coupling, we
consider generic symmetry allowed spin- and momentum-
conserving interactions that are uniform along the Fermi
surface, i.e., independent of the momentum p. Here we will
assume that the microscopic interactions are repulsive, as is
the case if they arise, for example, from density-density inter-
actions. A similar approach was previously used in different
contexts, such as iron-based superconductors (for a review
on the latter, see Ref. [77]). Near the Fermi surface, these
interactions can be decomposed into eight channels, which
we parametrize by eight momentum-independent coupling
constants g1, . . . , g8. Figure 2 shows the scattering process
associated with each of these channels. Four of them, pa-
rameterized by the couplings g1, . . . g4, mediate interactions
between Cooper pairs of electrons with zero total momentum,
and therefore lead to a uniform superconducting instability.
These are intrapocket density-density g1 at �, interpocket
density-density g2 at ±K , exchange g3 between ±K , and
pair-hopping g4 between � and ±K . The role of these interac-
tions in promoting unconventional superconducting states was
previously studied in Ref. [66].

The other four interactions, parameterized by g5, . . . g8,
mediate pairing interactions between Cooper pairs with a
total momentum ±2K = ∓K : intrapocket density-density g5

at ±K , interpocket density-density g6 between � and ±K ,
exchange g7 between � and ±K , and scattering g8 from a
pair at � and ±K to a pair at ∓K . The latter process is
allowed by umklapp because 3K = 0. The Feynman diagrams
representing these eight processes are shown in Fig. 3.

224516-3



SHAFFER, BURNELL, AND FERNANDES PHYSICAL REVIEW B 107, 224516 (2023)

FIG. 3. Feynman diagrams corresponding to the eight interaction processes in Fig. 2. Green, blue and red colors correspond to �, K , and
−K pockets, respectively, and the spin is conserved at each vertex. For each diagram involving a K-pocket fermion, there is a corresponding
diagram with a fermion at −K ; we have suppressed some of these diagrams for brevity.

The resulting interaction Hamiltonian has the form

HInt = 1

2

∑
αβ,pk

(g1d†
k�α

d†
−k�β

dp�βd−p�α + g2d†
kKα

d†
−k−Kβ

dp−Kβd−pKα + g3d†
kKα

d†
−k−Kβ

dpKβd−p−Kα

+ g4d†
k�αd†

−k�βdpKβd−p−Kα + g5d†
kKαd†

−kKβdpKβd−pKα + g6d†
k�αd†

−k−Kβdp−Kβd−p�α + g7d†
k�αd†

−k−Kβdp�βd−p−Kα

+ g8d†
kKαd†

−kKβdp�βd−p−Kα + H.c. + K ↔ −K, (4)

where α and β are spin indices. Because the microscopic
interactions are repulsive, all coupling constants are positive.

It is convenient to express the interactions (4) in terms
of their spin-singlet and spin-triplet components. In the
PDW-channel, the interactions associated with g5 and g8 are
symmetric under exchange of the pocket indices; these lead
to singlet channel interactions. The remaining two terms, as-
sociated with g6 and g7, are related by exchanging the pocket
indices of the two annihilation operators; thus the symmetric
(antisymmetric) combination of these two leads to a singlet
(triplet) channel instability. A similar situation holds in the
uniform superconducting channel [66].

To make this decomposition explicit, we express the inter-
action Hamiltonian in the form:

HInt = 1

2

∑
p,k

η,η′,ζ ,ζ ′

∑
αβα′β ′

(
[V s]η

′ζ ′;α′β ′
ηζ ;αβ + [V t ]η

′ζ ′;α′β ′
ηζ ;αβ

)
× d†

kη′α′d
†
−kζ ′β ′d−pζβdpηα. (5)

The PDW channel interactions are then given by

[V s]KK ;α′β ′
KK ;αβ = g5(iσ y)αβ (iσ y)α

′β ′
,

[V s]KK ;α′β ′
�,−K ;αβ = g8(iσ y)αβ (iσ y)α

′β ′
,

[V s]�,−K ;α′β ′
�,−K ;αβ = 1

2
(g6 + g7)(iσ y)αβ (iσ y)α

′β ′
,

[V t ]�,−K ;α′β ′
�,−K ;αβ = 1

2
(g6 − g7)

∑
j=x,y,z

(σ j iσ y)∗αβ (σ j iσ y)α
′β ′

. (6)

The expressions in the uniform SC channel are analogous,
with gk → gk−4, as previously shown in Ref. [66].

As we will argue later, we must also include the following
weak momentum dependent interactions in the triplet chan-
nels g5 and g8 in order to fully determine the gap functions in

our PDW phases (similarly, triplet g1 and g4 interactions need
to be added to determine the uniform SC gap functions; we
show them for completeness though they are not the focus of
this work):

[V t (p; k)]��;α′β ′
��;αβ =gt

1 cos(3θk ) cos(3θp)(σ j iσ y)∗αβ (σ j iσ y)α
′β ′

,

[V t (p; k)]��;α′β ′
K,−K ;αβ=

√
2gt

4 cos(3θk )(σ j iσ y)∗αβ (σ j iσ y)α
′β ′

,

[V t (p; k)]KK ;α′β ′
KK ;αβ =gt

5 cos(3θk ) cos(3θp)(σ j iσ y)∗αβ (σ j iσ y)α
′β ′

,

[V t (p; k)]KK ;α′β ′
�,−K ;αβ=

√
2gt

8 cos(3θk )(σ j iσ y)∗αβ (σ j iσ y)α
′β ′

. (7)

Analogously to the case of uniform SC discussed in Ref. [66],
these interactions are not needed to drive the instabilities that
we describe below. Without them, however, some symmetry-
allowed components of the gap functions vanish. In this work,
we will consider gt

5 and gt
8 small corrections compared to the

interactions that drive the superconducting instabilities of the
system.

Note that although we do not explicitly include them
in our model, isotropic spin fluctuations are expected to
mainly change the values of the coupling constants in the
singlet/triplet channels. Moreover, anisotropic spin fluctua-
tions, which naturally emerge in the presence of spin-orbit
coupling [78], can lift the degeneracy between the three direc-
tions of the triplet order parameter. We neglect these effects in
our calculations.

III. PDW INSTABILITY: LINEARIZED ANALYSIS

The interactions in Eq. (4) can lead to three types of
particle-particle instabilities: a uniform superconducting in-
stability (SC), and two pair density wave (PDW) instabilities,
whose Cooper pairs have a total momentum of ∓2K =
±K , which we refer to as PDW±K , respectively. Uniform
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TABLE I. SC and PDW order parameters. In the right two
columns, the two subscripts indicate which pockets are involved in
the pairing, according to the definition in Eq. (8). In the first column,
the subscript denotes the total momentum of the Cooper pair. Thus
�̂(K ) denotes a gap function matrix with only nonzero elements being
�̂�K , �̂−K,−K , and �̂K� and similarly for �̂(−K ) and �̂(0).

SC(�̂(0)) �̂�� �̂K,−K , �̂−KK

PDWK (�̂(K )) �̂−K−K �̂�K , �̂K�

PDW−K (�̂(−K )) �̂KK �̂�,−K , �̂−K�

superconductivity has been analyzed in some detail in
Ref. [66], so here we focus on the PDW orders.

The ordered phases are described by a pairing Hamiltonian
(obtained from HInt in Eq. (4) by a Hubbard-Stratonovich
transformation)

H� =
∑

pηζαβ

[�̂ηζ (p)]αβ d†
pηαd†

−pζβ + H.c., (8)

where the order parameters �̂ηζ (p) are gap function matrices
in spin indices corresponding to uniform SC when ζ + η = 0,
and to PDW±K for η + ζ = ±K . In the mean-field treatment,
the gap functions satisfy the self-consistency condition

[�̂ηζ (p)]αβ = 1

2

∑
kα′β ′η′ζ ′

V η′ζ ′;α′β ′
ηζ ;αβ (p; k)〈dkη′α′d−kζ ′β ′ 〉 (9)

with V = V s + V t . In particular, a nonvanishing �̂ηζ in-
dicates the formation of a condensate of pairs with total
momentum η + ζ (since the interactions conserve momen-
tum). Thus �̂�� , �̂K,−K and �̂−K,K are uniform SC gaps,
while �̂±K,±K , �̂�,∓K and �̂∓K,� are PDW gaps with
pair momentum ±2K = ∓K, respectively, as summarized in
Table I and Fig. 4. The gap functions �̂ηζ , each a 2 × 2 matrix
in spin indices, make up elements of the 6 × 6 (counting
spin indices) full gap function matrix �̂. For convenience,

FIG. 4. SC and PDW order parameters shown in the Brillouin
zone. Green and blue are uniform SC, red is PDW−K , orange is
PDWK .

we decompose the full matrix as �̂ = �̂(0) + �̂(K ) + �̂(−K ),
where �̂(K ) (�̂(−K )) only have elements corresponding to
PDWK (PDW−K ) gap functions, and �̂(0) only has elements
corresponding to uniform superconducting gaps (see Table I).

As we will see below, both spin-singlet �̂ηζ (p) ∝ iσ y and
spin-triplet �̂ηζ (p) ∝ σ j iσ y ( j = x, y, z) orders are possible
instabilities. The gaps satisfy particle-hole symmetry (PHS):

�̂ηζ (p) = −�̂T
ζη(−p). (10)

In the spin-singlet case, this implies �̂ηζ (p) = �̂ζη(−p),
while in the spin-triplet case, �̂ηζ (p) = −�̂ζη(−p). In
particular, for momentum-independent gap functions, the
spin-triplet gap necessarily involves pairing between different
Fermi pockets (i.e., η �= ζ ).

A. Symmetries of the PDW states

The pairing gaps identified above lead to a number of
possible superconducting phases, which can be distinguished
based on which symmetries are spontaneously broken. While
uniform SC pairing preserves translational symmetry, PDW
breaks it: in real space on a triangular lattice, taking the
inverse Fourier transform of Eq. (8) shows that the real
space order parameters are proportional to eiQ·r, where r is
the position in real space, and Q is the total momentum of
the Cooper pairs, which is 0 for SC and ±K for PDW±K

(see Appendix A). From the symmetry point of view, the
PDW±K phases are therefore similar to the Fulde-Ferrell-
Larkin-Ovchinikov (FFLO) phase [1,2] and both break a
translational symmetry as well as the U(1) symmetry that
is spontaneously broken by Cooper pair formation. Unlike
FFLO, however, PDW emerges spontaneously in a mate-
rial with no external fields breaking time reversal symmetry
(TRS).

Consequently, the pairing Hamiltonian (8) can have time-
reversal symmetry (TRS), which acts as T = iσ yK, where K
is complex conjugation. Moreover, by combining TRS with
a global U(1) transformation d† → eiφd†, a whole family of
antiunitary symmetries T (φ) = eiφT can be generated; all of
these square to −1. In the normal state, where the U(1) charge
symmetry is unbroken, T (φ) is a symmetry for every value of
φ. In the uniform SC state, where U(1) is broken down to Z2,
T (φ) is a symmetry for only two choices of φ, whose specific
values depend on the choice of phase of the order parameter.

For the PDW states of interest here, the situation is slightly
more involved. Under T (φ), the pairing gaps transform as

�̂(±K )(p)
T (φ)−−→ e2iφσ y�̂(∓K )∗(−p)σ y. (11)

A similar formula also applies to uniform SC gaps. TRS thus
associates a PDW with pair momentum η + ζ = ±K with a
PDW with opposite pair momentum ∓K .

When Cooper pairs with only one center-of-mass momen-
tum Q are present—or more generally, whenever |�̂(K )| �=
|�̂(−K )|—the resulting state spontaneously breaks TRS, since
there is no value of φ for which Eq. (11) leaves the pairing
state invariant. These PDW states also spontaneously break
inversion symmetry, and expand the unit cell by a factor
of three in real space (since 3K = 0), thereby reducing the
translation symmetry as well. Given the similarity with the
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state considered by Fulde and Ferrell [1], we therefore follow
Ref. [14] and denote this as a FF-type PDW phase. Since
inversion symmetry is broken in this state, mixing between
spin-singlet and spin-triplet orders is in principle symmetry-
allowed in this case [7], though we neglect this mixing below.

When Copper pairs with both momenta K and −K are
present, i.e., |�̂(K )| = |�̂(−K )|, time-reversal symmetry is pre-
served, since φ can be taken to be half the relative phase
between �̂(K ) and �̂(−K ). The resulting pairing states also pre-
serve inversion symmetry, and the real space order parameter
is be proportional to cos(Q · r + φ). This form is similar to the
state considered by Larkin and Ovchinikov [2]; we therefore
follow the notation of Ref. [14] and refer to this as the LO-type
PDW phase.

At first sight, one might expect the existence of a second
U(1) symmetry related to the relative phase between the two
gap functions �̂(K ) and �̂(−K ). However, as we will show
below, this U(1) symmetry is broken down to Z3 by nonlinear
terms in the gap equations. We can understand this residual
Z3 symmetry by examining translations within the extended
unit cell. Under a translation Ta j by a lattice basis vector a j

with a1 = (a, 0) and a2 = a
2 (1,

√
3), noting that K = ( 4π

3a , 0),
the PDW order parameters transform as [14]

�̂(±K )(p)
Ta1−→ e±ia1·K�̂(±K )(p) = e∓ 2π i

3 �̂(±K )(p),

�̂(±K )(p)
Ta2−→ e±ia2·K�̂(±K )(p) = e± 2π i

3 �̂(±K )(p). (12)

Importantly, under translations the relative phase between
�̂(K ) and �̂(−K ) shifts by ±4π/3 = ∓2π/3, consistent with
the fact that Ta j are broken while T3a j are not. Thus the resid-
ual Z3 symmetry associated with the relative phase between
�̂(−K ) and �̂(K ) simply reflects the fact that Ta j is a symmetry
of the Hamiltonian. The resulting three-fold degeneracy en-
sures that states related to each other by translations by the
original lattice basis vectors have the same energy. Evidently,
we can choose �̂(K ) = �̂(−K ) in at most one of these three
states; the other two are not invariant under the usual TRS
T , but instead are symmetric under T (φ) with φ = ±π/3.
Since applying a lattice translation should not break TRS, it is
natural to consider states symmetric under T (φ) for any fixed
φ to be time-reversal invariant.

Finally, there are two additional symmetries of the gap
functions that will be relevant to our analysis. These are
the spin interchange operation S, under which a spin-singlet
(spin-triplet) gap function is odd (even), and the momentum
interchange operation P∗, defined by

�̂ηζ (p)
S−→ �̂T

ηζ (p),

�̂ηζ (p)
P∗−→ �̂ηζ (−p). (13)

Here P∗ is not to be confused with the parity P which addi-
tionally takes η, ζ → −η,−ζ . To understand the significance
of P∗, we consider the time dependence of the gap function,
[�̂ηζ (p, t1, t2)]αβ ∝ 〈dpηαt1 d−pζβt2〉, and introduce the time in-
terchange operation

�̂ηζ (p, t1, t2)
T ∗−→ �̂ηζ (p, t2, t1). (14)

Note that T ∗ is distinct from TRS, which instead takes
t1, t2 → −t1,−t2. Anticommutation relations imply that
SP∗T ∗ = −1; hence the action of T ∗ can be deduced from
that of S and P∗. Gap functions that are odd under T ∗ are
the so-called odd-frequency gap functions [79,80]. Although
we only consider even-frequency gap functions as possible
instabilities, we will see in Sec. IV C that odd-frequency
uniform superconductivity can in principle be induced by
even-frequency PDW.

In general, to resolve when the PDW realizes an FF- versus
an LO-type order, as well as the other symmetry properties of
the resulting phases, we will need to analyze the Ginzburg-
Landau free energy beyond leading order, which we do in
Sec. IV.

B. Linearized gap equation

To determine which PDW (if any) constitutes the system’s
dominant pairing instability, we use a microscopic mean field
theory. In this approach, the gap functions in Eq. (8) satisfy
the self-consistent gap equations:

[�̂ηζ (p)]αβ = −
∑
kη′ζ ′
α′β ′

V η′ζ ′;α′β ′
ηζ ;αβ (p; k)�η′ζ ′ (k)[�̂η′ζ ′ (k)]α′β ′ ,

(15)
where we include both the momentum-independent inter-
actions (6) that drive the pairing instability, and small
momentum-dependent interactions (7) needed to fully deter-
mine the gap function when the triplet instability dominates.

Here we consider the linearized gap equation, which is
valid close to the phase transition. In this case the (angle-
resolved) pairing susceptibility, given by the particle-particle
bubble, is independent of the gap functions:

�ηζ (θ ) = − 1

8π2

∫
tanh

( εη (Q)
2T

) + tanh
( εζ (−Q)

2T

)
εη(Q) + εζ (−Q)

QdQ

≈ NηNζ

Nη + Nζ

� (εη(k) − εζ (−k)), (16)

where θ denotes the angle of the vector Q with the x axis,
Nη = mη

4π
is the density of states (DOS) at the η pocket, and

we define the function

� (x) = − ln
1.13�

T
+ Re

[
ψ

(
1

2
+ ix

4πT

)
− ψ

(
1

2

)]
(17)

with ψ being the digamma function and � the high energy
cutoff. Note that εη(k) − εζ (−k) depends only on the angle
θ , according to the dispersions in Eqs. (2) and (3).

Importantly, � (0) = − ln 1.13�
T implies a logarithmic in-

stability, which means Eq. (15) has a solution for arbitrarily
weak interactions. We therefore refer to the condition εη(k) =
εζ (−k), which results in a logarithmic instability, as per-
fect nesting. This condition is guaranteed in the uniform SC
channel (η = −ζ ), provided either time-reversal or inversion
symmetries are present. In the PDW channels, however, the
trigonal warping w at the K pockets, Eq. (3), and the Fermi
surface mismatch between the � and K pockets both take
the system away from the perfect nesting limit. We therefore
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TABLE II. Basis functions �̂
(μ)
ηζ (p) for singlet (μ = s) and triplet

(μ = t) channels in Eq. (23) for η = ζ (intrapocket) and η �= ζ (in-
terpocket). σ is a vector of Pauli matrices, and εηζ is the Levi-Civita
symbol. θ is the angle made by the small momentum p measured
with respect to the K direction.

�̂ (μ)
ηη �̂

(μ)
ηζ �=η

singlet iσ y iσ y

triplet
√

2 cos 3θσiσ y εηζ σiσ y

analyze the following two perturbations:

εK (k) − εK (−k) = 2w cos 3θ (18)

(with θ denoting the angle formed by k with respect to the x̂
axis) and

ε� (k) − εK (−k) = k2

2

(
1

mK
− 1

m�

)
− μ� + μK + w cos 3θ

≈ 2μ̂ + w cos 3θ. (19)

Here we have approximated k as a weighted root mean square
of the two Fermi momenta, replacing k2 ≈ M(k2

F,�/m� +
k2

F,K/mK )/2, with M = 2m�mK/(m� + mK ) being the re-
duced mass (recall that by our definition, μ�,μK < 0). Using
the fact that kF,η = √

2mη|μη|, this gives k2 ≈ −M(μ� +
μK ), and thus

μ̂ = mKμK − m�μ�

m� + mK
. (20)

This approximation is valid for the momenta near the Fermi
surface as long as the masses at the � and K pockets are com-
parable,

√
m�/mK ,

√
mK/m� 
 �/Tc; otherwise additional

corrections in the pairing susceptibility must be included. We
refer to w and μ̂ as the detuning parameters, with w and
μ̂ both suppressing finite-momentum pairing between � and
K pockets and w additionally suppressing finite-momentum
pairing within the K pockets. Once either detuning parameter
becomes nonzero, the pairing instability becomes a threshold
instability, meaning that it only occurs for sufficiently strong
interactions, a condition we will quantify below.

1. Solutions of the linearized gap equation

To obtain the momentum-dependence of the solutions
to the gap equation, we note that the interactions can be

expressed in the form:

[V (s)]η
′ζ ′;α′β ′

ηζ ;αβ (θ, θ ′) = g(s)
η′ζ ′;ηζ

[
�̂

(s)
ηζ (θ )

]
αβ

[
�̂

(s)∗
η′ζ ′ (θ ′)

]
α′β ′ ,

[V (t )]η
′ζ ′;α′β ′

ηζ ;αβ (θ, θ ′) = g(t )
η′ζ ′;ηζ

[
�̂

(t )
ηζ (θ )

]
αβ

· [
�̂

(t )∗
η′ζ ′ (θ ′)

]
α′β ′ .

(21)

Here μ = s, t denotes the spin-singlet (s) and spin-triplet (t)
channels, and

�̂
(s)
ηζ (θ ) = iσ y,

�̂
(t )
ηζ (θ ) = σiσ y�

(t )
ηζ (θ ), (22)

where σ = (σ x, σ y, σ z ) is a vector of Pauli matrices. The
functions �

(t )
ηζ (θ ) resulting from interactions that are uni-

form on all pockets are ±1, while those arising from the
momentum-dependent interactions in Eq. (7) are

√
2 cos 3θ ,

as summarized in Table II. The constants g(μ)
η′ζ ′;ηζ , implicitly

defined by Eqs. (6) and (7), are summarized in Table III.
Plugging the expressions (21) into Eq. (15), we find that

the momentum-dependence of the solutions to the linearized
gap equation can be parametrized as

�̂
(s)
ηζ (p) =�̂

(s)
ηζ (θ )�(s)

ηζ ,

�̂
(t )
ηζ (p) =d̂ · ̂�

(t )

ηζ (θ )�(t )
ηζ , (23)

where �
(μ)
ηζ are momentum-independent. The unit vector d̂

indicates the direction of the triplet pairing vector, which
spontaneously breaks spin-rotation symmetry; in the absence
of SOC, the free energy (and hence the phase diagram of
interest here) does not depend on d̂.

To solve for the gaps �
(μ)
ηζ , we exploit the fact that the equa-

tions for SC, PDWK , and PDW−K channels, as well as those
for singlet and triplet channels, are decoupled. This follows
from momentum and spin conservation, respectively. Note
that since the FF-type PDW phase breaks inversion symmetry,
in principle the singlet and triplet channels can mix [7], but
we expect one of the channels to be dominant and neglect
this effect here. Inserting 23 back into the gap equation 15
therefore yields six decoupled pairs of reduced gap equations,
which can be solved to obtain singlet and triplet gaps in the
SC, PDWK , and PDW−K channels.

The SC solutions have been analyzed in detail by us and
Kang in Ref. [66] and are reviewed in Appendix B for con-
venience. In this paper, our focus is only on the PDW±K

TABLE III. Definition of the coupling constants g(μ)
ηζ ;η′ζ ′ (μ = s, t for singlet or triplet) in terms of the coupling constants gn (n = 1, . . . , 8)

introduced in Eq. (4), and gt
n (n = 1, 4, 5, 8) introduced in Eq. (7). For the PDW channels, the couplings are invariant under η ↔ η′, ζ ↔ ζ ′,

so not all possible combinations are included explicitly.

Uniform SC channels

g(s)
η,−η;ζ ,−ζ η = � η = ±K g(t )

η,−η;ζ ,−ζ η = � η = ±K
ζ = � g1 g4 ζ = � gt

1 gt
4

ζ = ±K g4 (g2 + g3)/2 ζ = ±K gt
4 (g2 − g3)/2

PDW channels

g(s)
η,η′ ;ζ ,ζ ′ η = �, η′ = ±K η = η′ = ±K g(t )

η,η′ ;ζ ,ζ ′ η = �, η′ = ±K η = η′ = ±K
ζ = �, ζ ′ = ±K (g6 + g7)/2 g8 ζ = �, ζ ′ = ±K (g6 − g7)/2 gt

8

ζ = ζ ′ = ±K g8 g5 ζ = ζ ′ = ±K gt
8 gt

5
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channels, for which the reduced gap equations are(
�

(μ)
±K±K

�
(μ)
�,∓K

)
=

(
ĝ(μ)

5 2ĝ(μ)
8K

ĝ(μ)
8� 2ĝ(μ)

67

)(
�

(μ)
±K±K

�
(μ)
�,∓K

)
. (24)

We have absorbed the particle-particle susceptibility into the
coupling constants for convenience, defining

ĝ(s)
5 = �̄

(s)
KK g5, ĝ(t )

5 = �̄
(t )
KK gt

5,

ĝ(s)
67 = �̄

(s)
�,−K (g6 + g7)/2, ĝ(t )

67 = �̄
(t )
�,−K (g6 − g7)/2,

ĝ(s)
8� = �̄

(s)
KK g8, ĝ(t )

8� = �̄
(t )
KK gt

8,

ĝ(s)
8K = �̄

(s)
−K�g8, ĝ(t )

8K = �̄
(t )
−K�gt

8. (25)

Here,

�̄
(μ)
ηζ =

∫
�ηζ (θ )Tr

[
�̂

(μ)
ηζ (θ )�̂(μ)∗

ηζ (θ )
] dθ

2π
(26)

are Fermi surface averages of �ηη′ (θ ) in Eq. (16), weighted by
traces of the basis functions �̂

(μ)
ηζ (θ ) for the relevant symmetry

channels. The solutions to the reduced gap equations are given
by the eigenvectors of the 2 × 2 matrix in Eq. (24),(

�
(μ±)
±K,±K

�
(μ±)
�,∓K

)
∝

(
κ (μ±) − 2ĝ(μ)

67

ĝ(μ)
8�

)
, (27)

which are expressed in terms of the two eigenvalues:

κ (μ±) = 1
2

(
ĝ(μ)

5 + 2ĝ(μ)
67 ±

√(
ĝ(μ)

5 − 2ĝ(μ)
67

)2 + 8ĝ(μ)
8� ĝ(μ)

8K

)
.

(28)

Near the phase transition, the dominant pairing instability
corresponds to the solution that gives the highest Tc. This, in
turn, is determined by setting the corresponding eigenvalues
to κ (μ±) = 1. Because κ (μ+) is always larger than κ (μ−), it al-
ways gives a higher Tc. We therefore drop the minus solutions
and drop the superscript in κ (μ+) ≡ κ (μ) below.

Evidently, the two PDW±K channels satisfy the same
linearized gap equation, and thus have the same Tc. This de-
generacy follows from the fact that the PDW±K solutions are
related by time reversal symmetry. As we will see in Sec. IV,
however, this degeneracy is lifted in the nonlinearized gap
equation, or equivalently by higher order (in powers of the
gap function) terms in the free energy, which can result in the
spontaneous breaking of TRS.

2. PDW at perfect nesting

To set the stage for a more general study of the PDW
instabilities, we first discuss the case of perfect nesting, ob-
tained by setting the detuning parameters to zero, w = μ̂ = 0.
For simplicity, in the following we neglect the subleading
momentum-dependent interactions in the triplet channel, and
take the DOS on � and K pockets to be equal, N±K = N� =
N . In that case all the averaged particle-particle bubbles are
equal, �̂ηζ = � = −N ln 1.13�

T , and the largest eigenvalues of
the linearized gap equation reduce to

κs = �

2

(
g5 + g6 + g7 −

√
(g5 − g6 − g7)2 + 8g2

8

)
,

κ t = � max [0, g6 − g7]. (29)

The PDW will be the dominant instability only if the
largest of the κ (μ) is greater than all the corresponding eigen-
values γ (μ) in the competing uniform SC channels. Note
that the pair susceptibility � is the same for both uniform
SC and PDW instabilities in the case of perfect nesting.
Because the SC instability depends only on the coupling
constants g1, . . . , g4 (see Appendix B for full expressions),
a leading PDW instability at perfect nesting is possible for
some values of g5, . . . , g8, which in turn are determined by
the details of the microscopic interactions. It is worth em-
phasizing, however, that unlike the uniform SC channel, in
which electron-phonon interactions are known to give rise
to effective on-site attractive interactions, we are not aware
of an analogous mechanism in the PDW channels, and thus
we expect that in the case of attractive interactions, uniform
SC is generically the dominant instability. For this reason, we
discuss only those PDW instabilities that occur in the presence
of purely repulsive interactions.

To elucidate when an instability in the PDW channel exists,
we first note that in order for a solution with Tc > 0 to exist,
κμ must be positive. Since � < 0 diverges logarithmically as
T → 0, the PDW is a weak-coupling instability for perfect
nesting. Therefore because we assume repulsive interactions
(for which g j > 0), an instability in the spin-singlet channel
requires 2g2

8 > g5(g6 + g7). In other words, g8 must be suf-
ficiently large in magnitude compared to g5 and g6 + g7. In
this case, Eq. (27) implies that �

(s)
KK and �

(s)
�,−K have oppo-

site signs, resulting in a sign-changing “s-wave” PDW state.
This is an example of a case in which an effective attraction
emerges from repulsive interactions due to the gap function
changing sign, similar to the uniform s± SC state considered
in, e.g., Refs. [81,82]. In the spin-triplet channel, we have
κ (t ) > 0 if and only if g7 > g6. In this case, the effective
attraction is a result of the sign changing between �̂�K and
�̂K� , as they acquire opposite signs in the spin-triplet channel,
giving rise to an “ f -wave” PDW state.

The main conclusion is that, for repulsive interactions, non-
trivial solutions of the linearized PDW gap equation exist only
in the presence of a � pocket. This is because the PDW insta-
bilities are promoted by either a large umklapp interaction g8

(singlet PDW) or a large exchange interaction between � and
K fermions, g7 (triplet PDW). Clearly, both of these processes
involve fermions at �. In the absence of the � pocket, which is
the case for instance of doped 1H-MoS2, there is no effective
attraction to first order in the interactions gj . Nevertheless, as
pointed out in Ref. [51], higher-order processes can lead to
an effective attractive interaction in the triplet PDW channel,
e.g., via the Kohn-Luttinger mechanism.

C. Stability of the PDW away from perfect nesting

Although PDW can be the instability for perfect nesting,
in actual materials the Fermi surfaces are expected to be
detuned from this limit. We now analyze the stability of the
PDW phase in the presence of the symmetry-allowed detun-
ing parameters w (trigonal warping of the K Fermi pocket)
and μ̂ (mismatch between � and K Fermi pockets) defined
in Eqs. (18)–(20). Both parameters enter into the suscepti-
bility �̄ηζ [see Eqs. (16) and (26)], and generically reduce
the eigenvalues κ (μ) in Eq. (28). Formally, these detuning
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FIG. 5. Critical surface for an instability of the singlet (μ = 0)
PDW channels (PDW±K are degenerate) determined by Eq. (24) in
the phase space of temperature T , trigonal warping w, and Fermi
surface mismatch between � and K pockets μ̂, top right. Cuts are
shown at constant μ̂ (top left), constant w (bottom left), and constant
T (bottom right) in units of Tc0 (Tc at zero detuning). NS indicates the
normal state region of the phase diagrams. The coupling constants
were set to g6 = 1.2g5, g8 = 2g5, g7 = 1.05g5, gt

5 = 0.2g5, and
gt

8 = 0.1g5.

parameters appear in the PDW pairing susceptibility, Eq. (17),
in the same way as a Zeeman field appear in the uniform SC
pairing susceptibility [83]. Therefore the pair-breaking effect
of the detuning of the Fermi pockets on the PDW transition
temperature is equivalent to the pair-breaking effect of a mag-
netic field on the uniform SC transition temperature. Thus
increasing the detuning lowers the PDW critical temperature
Tc. At fixed temperature, the result is a critical surface in the
space of detuning parameters, beyond which all κ (μ) < 0, and
the PDW solution becomes unstable.

The resulting phase diagrams in the parameter space of
T,w, and μ̂ are shown in the upper right panels of Figs. 5
and 6 for the PDW spin-singlet and spin-triplet phases, respec-
tively. Note that the pairing susceptibilities only depend on the
absolute values of w and μ̂, which we will thus consider them
to be positive without loss of generality. Tc as a function of
w (μ̂) for various fixed μ̂ (w) is shown in the top (bottom)
left panels. The critical values of the detuning parameters at
which the PDW solution becomes unstable at various fixed
temperatures are shown in the bottom right panels; the values
at T = 0 are obtained analytically. Since this is a multiband
problem, the curves are not universal and depend (weakly)
on the cutoff �, which we set to 2500Tc0, with Tc0 being the
critical temperature at zero detuning (w = μ̂ = 0).

These plots demonstrate that the PDW instability is ro-
bust for sufficiently small deformations of the Fermi surface
away from perfect nesting. Moreover, the singlet PDW is
very robust to chemical potential mismatch between � and
K (see especially the bottom left subplot in Fig. 5: note
that for small trigonal warping, Tc decreases slowly with μ̂),
while the triplet PDW is more robust to trigonal warping (see
Fig. 6).

FIG. 6. Same as Fig. 5, but for the triplet PDW instabilities (μ =
x, y, z), which are degenerate in our model. All parameters are in
units of Tc0. The reentrant behavior in the Tc vs w plot (top left) is in
part due to the nonsingle-valuedness of Tc as a function of μ̂ that can
be seen in the Tc vs μ̂ plot (bottom left), which indicates that a first
order rather than a second order phase transition likely takes place for
sufficiently large μ̂. See also discussion in the text. NS indicates the
normal state region of the phase diagrams. The coupling constants
are the same as in Fig. 5, except for g7 = 4.2g5.

To understand the observed behavior of the PDW instabil-
ity at finite detuning, it is enlightening to study the critical
curves at zero temperature, which can be obtained analyti-
cally. In particular, the expressions for the weighted-average
pairing susceptibilities at T = 0 are

�̄
(s)
KK = −NK ln

�

|w| ,

�̄
(t )
KK = −NK ln

�

e1/2|w| ,

�̄
(μ)
�K = − 2N�NK

N� + NK
ln

2�∣∣|μ̂| +
√

μ̂2 − w2

4

∣∣ , (30)

where μ = s, t in the last line. The key implication of Eq. (30)
is that the detuning parameters effectively replace the tem-
perature inside the logarithm, which implies in particular that
there is a critical value of the trigonal warping parameter
wc ∼ Tc0 above which the PDW phase become unstable at
zero temperature, as can be seen from the purple curves in
the bottom right panels of Figs. 5 and 6. Note that Tc0, which
is the critical temperature for perfect nesting, has the same
order of magnitude as the zero-temperature gap at perfect
nesting, and it is set only by the strength of the interactions
(here we work in units with the Boltzmann constant set to 1).
It follows that for fixed detuning w, the interactions must be
sufficiently strong for the PDW phase to be realized. This is
in stark contrast to the case of the logarithmic instability at
perfect nesting, which can lead to pairing at zero temperature
in the presence of arbitrarily weak interactions.

The parameter μ̂, on the other hand, only enters �̄
(μ)
�,−K

and does not affect �̄
(μ)
KK . As a result, the spin-singlet PDW
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FIG. 7. Schematic Fermi surfaces at the � (orange) and K (blue) points shifted to a common center for various values of trigonal warping
w at fixed chemical potential mismatch, μ̂ > 0 . Nesting between the two Fermi surfaces is optimal when w = μ̂.

phase is very stable against increasing μ̂ at small w, and the
critical value of μ̂ at which Tc goes to zero is on the order of
the cutoff � (as can be shown analytically). Physically, this is
because condensation at the K pocket remains energetically
favorable—recall that the effective attraction within the K
pocket in this case still arises from pair hopping, and all
interactions here are repulsive. More precisely, while the pair
hopping terms ĝ8� and ĝ8K that drive the PDW instability in
our model decrease (as does Tc), ĝ5 and ĝ67 decrease at the
same rate, so that it is still the case that ĝ8� ĝ8K > ĝ5ĝ67, i.e.,
the stability criterion is satisfied. From Eq. (27), one can see
that ��K decreases relative to �KK as μ̂ increases, so that the
pairing within the K pocket remains energetically favorable
since �̄

(μ)
KK is unchanged.

Additionally, �̄(μ)
�,−K at zero temperature is a constant func-

tion of μ̂ as long as μ̂ < w/2; this results in straight lines in
the corresponding plots in Figs. 5 and 6. We emphasize that
this is a particular feature of our model and not a universal
behavior, but similar nonanalyticities are generically present
in �̄

(μ)
�,−K for other interaction and detuning parametrizations.

In the triplet case, in contrast, the only momentum-
independent coupling in Eq. (25) is ĝt

67, ĝt
5, and ĝt

8 correspond
to subleading f -wave terms in the interactions, and are neces-
sarily small. �̂

(t )
KK is therefore small, and the PDW is mostly

stabilized by paring between � and K fermions, i.e., by
�̂

(t )
�,−K . Consequently, the triplet channel is much more sen-

sitive to the Fermi surface mismatch between the � and K
pockets (parametrized by μ̂), such that Tc drops off sharply
as μ̂ increases. In this case we find a critical value of μ̂ at
zero temperature, as shown in the bottom left panel of Fig. 6.
In fact, Tc, which was computed under the assumption of
a second-order phase transition, is not even a single-valued
function of μ̂, as seen most clearly for the curve corresponding
to w = 0 (purple). This suggests that the phase transition
becomes first-order beyond the threshold value of μ̂ where
multiple solutions appear. Mathematically, the problem is
analogous not only to the standard FFLO instability of a
uniform SC state with Zeeman-split bands [1,2], but also to
an SDW instability of a system with detuned parabolic bands
[84]. In the latter case, the putative first-order phase transition
turns out to be preempted by an SDW whose ordering wave
vector is incommensurate, i.e., distinct from the momentum
separating the two pockets. An interesting possibility, which
is beyond the scope of our work, is that a similar phenomenon
may occur in our model, resulting in an incommensurate
triplet PDW.

We also note that the critical value of μ̂ necessary to
completely suppress the triplet PDW state increases with
increasing w, suggesting that trigonal warping actually
stabilizes the triplet PDW against the Fermi surface mismatch.
As a result, there can be a re-entrant phase transition into the
triplet PDW as either T or w increase. In the latter case, this
happens because �̄�K actually increases with w when μ̂ >

w/2, which is when the Fermi surfaces at � and K (shifted
to a common center) no longer overlap (see Fig. 7). As w

increases, some points on the two shifted Fermi surfaces come
closer, which increases �̄�K . The reentrance with increasing
T , on the other hand, is unphysical and indicates that a first
order phase transition likely takes place at lower temperatures,
as discussed above.

The main conclusion of this analysis is that the detuning
of the Fermi surfaces—trigonal warping of the K pockets and
mismatch between the K and � pockets—act as pair-breaking
for the PDW state, analogously to how a Zeeman magnetic
field is pair-breaking for the uniform SC state. Importantly,
these two detuning parameters, which are expected to be
nonzero in a realistic system, impact the singlet and triplet
PDW instabilities differently, with singlet PDW being much
more robust to chemical potential mismatch between � and
K pockets. However, as long as the energy scales associated
with the detuning are small compared to the bare transition
temperature Tc, the PDW instability can still be driven by
weak to moderate interactions.

IV. PDW ORDER: GINZBURG-LANDAU
FREE ENERGY ANALYSIS

The mean-field analysis of the linearized gap equations is
insufficient to determine all the symmetry properties of the
PDW phases. This is because our analysis only shows that the
PDWK and PDW−K orders are degenerate (as expected from
symmetry considerations), without however setting the rela-
tive amplitudes and phases between them. This information is
necessary to determine whether the PDW is of FF- or LO-type
(and thus whether or not TRS is spontaneously broken) as well
as to establish whether the apparent U(1) symmetry associated
with the relative phase rotation between the two PDW gaps
remains unbroken.

To address these questions, rather than analyzing the non-
linear gap equations, we study the Ginzburg-Landau free en-
ergy F to higher order in the order parameters. Although the
discussion that follows is predominantly phenomenological,
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F can be derived from the microscopic theory. We carry out
this analysis in Appendix C and will utilize some of the results
later to determine the signs and relative magnitudes of the
Ginzburg-Landau coefficients.

To simplify our expression for F , we express our free
energy in terms of the gaps �

(μ)
∓K and �

(μ)
0 associated with

the total pairing gaps of the PDW±K and SC channels, respec-
tively. Using this notation, we can write the free energy as

F =
∑

μ

[
a(μ)

0 |�(μ)
0 |2 + a(μ)

K

(|�(μ)
K |2 + |�(μ)

−K |2)] + F (4)

+ . . . , (31)

where a(μ)
0 ∝ T − T (μ)

SC and a(μ)
K ∝ T (μ)

PDW are coefficients that
depend on the coupling constants, temperature, and detuning
parameters.

To connect this expression back to the pairing gaps �η,ζ

discussed in our mean-field analysis, we fix

�
(μ)
±K,±K = r (μ)�

(μ)
�,∓K ≡ �

(μ)
∓K ,

�
(μ)
�� = r (μ)

0 �
(μ)
K,−K ≡ �

(μ)
0 , (32)

where r (μ) is the same for both PDW channels by symmetry.
The ratios r (μ) of the different contributions to �±K are fixed
by the relevant solution to the self-consistent gap equation.
While in general r (μ) can be complex, close to the phase
transition, it is given to leading order by Eq. (27):

r (μ) = κ (μ) − 2ĝ(μ)
67

ĝ(μ)
8�

. (33)

While higher order terms in the free energy can change this
ratio, close to the phase transition they are subleading, and
the difference is negligible. With this definition, the values
of the coefficients a(μ)

0 and a(μ)
K are fixed by requiring that

minimizing the quadratic terms in F with respect to �(μ)
η

returns the solutions of the reduced gap equations (24). Note
that there is no mixing between singlet and triplet channels in
the absence of SOC at all orders, so we assume only one of
them is relevant close to Tc.

Assuming unitary pairing, i.e., d × d∗ = 0, in the triplet
channel the quartic part of the free energy depends only on
the magnitude of the pairing vector, so that we need only use
the scalar quantity �(t )

η to parametrize the gap in this case
(in general nonunitary pairing is allowed but not energetically
favored, see Appendix C for details). The quartic free energy
for both singlet and triplet channels then has the form

F (4) = β1|�0|4 + β2(|�K |4 + |�−K |4)

+ β3|�0|2(|�K |2 + |�−K |2) + β4|�K |2|�−K |2

+ β5
(
�2

0�
∗
K�∗

−K + c.c.
)

+ β6
(
�2

K�∗
0�

∗
−K + �2

−K�∗
0�

∗
K + c.c.

)
(34)

where we include the uniform SC channel terms of the same
parity and dropped the superscript μ for simplicity of notation.
Note that the last term is allowed because 3K = 0.

From a phenomenological standpoint, we can treat βn as
variable parameters; in general, they depend on the details
of the microscopic theory. Depending on the values of these

parameters, F (4) can favor several different types of orders.
For instance, the sign of β4 determines whether both PDW
gaps condense (|�K | = |�−K | �= 0), resulting in an LO-type
phase, or whether only one of them condense, resulting in an
FF-type phase. Quite generally, one expects β3 > 0, indicat-
ing competition between uniform SC and PDW. Nevertheless,
the Umklapp term with β6 coefficient shows that the LO-type
phase may induce uniform SC as a secondary order.

In the case where uniform SC and PDW orders coex-
ist, the relative phases between the order parameters are
determined by the signs and relative magnitudes of the
parameters β5 and β6. Defining �η = |�η|eiφη , if β5 is neg-
ative, F (4) has three degenerate minima. These are given
by {φ0 = φK = φ−K , φ0 = φK ± 2π

3 = φ−K ∓ 2π
3 } for β6 <

0 and {φ0 = φK + π = φ−K + π, φ0 = φK ± π
3 = φ−K ∓ π

3 }
for β6 > 0. Both the threefold degeneracy and the specific
values are consistent with threefold translational symmetry
breaking, which shifts the difference φK − φ−K by ±2π/3
(see Sec. III A). If β5 > 0, then no choice of the relative phases
simultaneously renders both the terms with coefficients β5

and β6 negative, and the solutions depend on the ratio β5/β6.
However, the resulting ground states are always at least three-
fold degenerate, consistent with the breaking of the threefold
translation symmetry.

While hereafter we analyze the behavior of the free energy
for generic Ginzburg-Landau coefficients, as appropriate for
any system with PDW instabilities with wave vector K , for
completeness we list the values of the βn coefficients obtained
from our model at perfect nesting (see Appendix C):

β1/β0 = 2 + cr4
0 ,

β2/β0 = 2 + cr4,

β3/β0 = 4(1 + r2
0 + r2),

β4/β0 = 4(1 + 2r2),

β5/β0 = 2(r2 + 2(3 − 2c)r0),

β6/β0 = 2r(r0 + 2(3 − 2c)). (35)

Here, the ratios r = r (μ) are given in Eq. (33), β0 = 7ζ (3)N
32π2T 2 ,

with ζ (3) ≈ 1.202 the Riemann zeta function, and N the
DOS, which we have taken to be equal on all pockets for
simplicity. The coefficients c are different in the singlet and
triplet case: we find c = 1 in the singlet channel and c = 3/2
in the triplet channel.

A. LO versus FF order in pure PDW phases

We now consider the case where uniform superconduc-
tivity does not coexist with PDW, to analyze the possible
symmetry-breaking patterns of the pure PDW phases. When
�0 = 0, the free energy simplifies to

F (4)
PDW = β2(|�K |4 + |�−K |4) + β4|�K |2|�−K |2. (36)

To this order in the free energy, there are two possible ground
states: if β4 > 2β2, the ground state is an FF-type PDW
(�−K = 0 or �K = 0), which spontaneously breaks TRS; for
β4 < 2β2, the ground state is an LO-type PDW (|�−K | =
|�K |), which preserves TRS.
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TABLE IV. Symmetry properties of various products of �±K for the case of singlet PDW. The columns correspond to spin interchange
S, parity P, translational symmetry TR, and the U(1) charge; the last two columns show the corresponding induced order, along with their
sign under time-interchange T ∗ in parentheses, and the PDW type that leads to the induces order, respectively. Entries of S, P, TR = 0 imply
the corresponding symmetry is broken by the combination. The possible induced orders are ρK (charge density wave); � (loop current); �0

(uniform SC); �̄0 (odd-frequency) uniform SC); �
(4e)
0 (charge 4e superconducting order); �

(6e)
0 (charge 6e superconducting order); and �̄

(6e)
0

(odd-frequency charge 6e superconducting order). Whether even- or odd-frequency orders are induced in the LO-type PDW is determined by
the sign of �3 in Eq. (37), as indicated in the last column. In the FF-type PDW, the induced 6e order is �

(6e)
0 ± �̄

(6e)
0 .

S P TR U(1) Induced Order (T ∗) PDW Type

�±K −1 0 0 2e NA (1) FF and LO
�−K�∗

K , �K�∗
0 1 0 0 0e ρK (1) LO

|�K |2 − |�−K |2 1 −1 1 0e � (1) FF
�2

K�∗
−K + �2

−K�∗
K −1 1 1 2e �0 (1) LO, �3 < 0

�2
K�∗

−K − �2
−K�∗

K −1 −1 1 2e �̄0 (-1) LO, �3 > 0
�K�−K 1 1 1 4e �

(4e)
0 (1) LO

�3
K + �3

−K −1 1 1 6e �
(6e)
0 (1) FF or LO, �3 < 0

�3
K − �3

−K −1 −1 1 6e �
(6e)
0 (-1) FF or LO, �3 > 0

Within our model, at perfect nesting, the sign of β4 − 2β2

depends only on the ratio r between |�KK | and |��,−K |,
which in turn is given by Eq. (33). Using Eq. (35), we find
a critical r∗ = 2 (r∗ = √

6) such that, for |r| < r∗, the singlet
(triplet) LO-type PDW is realized whereas for |r| > r∗, the
singlet (triplet) FF-type PDW is realized. Thus, in the case of
a triplet PDW, because g(t )

8 is assumed to be small compared
to g(t )

67), |r| is expected to be large, leading to an FF-type triplet
PDW. Conversely, because the singlet PDW is favored when
g8 is large, we expect it to be most likely of the LO-type.

Although the particular critical values r∗ cited above are
specific to our model, the key qualitative observation is that
if the dominant pairing is within the K pockets (small |r|),
LO-type PDW is favored. This has a simple physical explana-
tion: when pairing is predominantly intrapocket, i.e., within
the K pocket, the dominant PDWK and PDW−K gaps are
�̂−K,−K and �̂KK respectively with corresponding Cooper
pairs formed from fermions from a single Fermi pocket. As
a result there is no competition between the two pairing chan-
nels (no trade off in the free energy to establish both orders),
and the LO-type phase, where both orders are present with
equal magnitude, is favored. In contrast, if the dominant pair-
ing is between � and ±K pockets (meaning that the dominant
PDW±K gaps are �̂�,±K ), the corresponding Cooper pairs in
both channels involve the fermions at the � pocket, and the
two channels compete. As a result, it is energetically favorable
for only one of the orders to be present at a time, and the
FF-type phase is established instead.

The PDW free-energy up to quartic order does not depend
on the relative phases between �K and �−K . In fact, the
relative phase of the two PDW gaps in the LO-type PDW is
fixed only by a sixth-order terms in the free energy:

F (6)
PDW = �1(|�K |6 + |�−K |6)

+ �2(|�K |4|�−K |2 + |�K |2|�−K |4)

+ �3
(
�3

K (�∗
−K )3 + c.c.

)
. (37)

The �3 term is minimized when the relative phase satis-
fies cos 3(φK − φ−K ) = 1 for �3 < 0 and cos 3(φK − φ−K ) =
−1 for �3 > 0. These two cases correspond, respectively, to

φK − φ−K = nπ
3 with even and odd integers n. Consequently,

the U(1) symmetry corresponding to the relative phase be-
tween the two PDW gaps is lowered to Z3. The three
degenerate states map into each other under translation by
a single lattice vector, reflecting the threefold translational
symmetry breaking, as explained in Sec. III A. We summarize
the results in Table IV.

B. Effect of uniform SC fluctuations on the PDW

Since the uniform SC and the PDW instabilities are driven
by different interactions in our model, there is an interesting
situation in which even though the PDW may be the leading
instability, the uniform SC one is nearby. We now consider
the fate of a system with a PDW instability that occurs at a
temperature above, but close to, the uniform SC instability
(a0 � 0). In this, case SC fluctuations can be significant. To
study their impact on the PDW instability, we integrate out
the SC fluctuations in the partition function:

ZPDW =
∫

e−βFD[�0] . (38)

Here F is the free energy to quartic order in PDW fields �±K

and to quadratic order in the SC field �0, given in Eqs. (31)
and (34) with β1 = 0. The β6 term, linear in �0, gives rise to
terms that are at least sixth order in �±K , and so we can drop
this term as well. The resulting free energy can be rewritten in
terms of the real and imaginary parts of �0 = �′

0 + i�′′
0:

F = aK |�K |2 + aK |�−K |2 + β2
(|�K |4 + |�−K |4)

+ β4|�K |2|�−K |2 +
(

�′
0

�′′
0

)
· A

(
�′

0

�′′
0

)
, (39)

where

A = (a0 + β3(|�K |2 + |�−K |2))σ 0

+ 2β5Re[�K�−K ]σ z + β5Im[�K�−K ]σ x (40)

is a real symmetric matrix with determinant

det[A] = (a0 + β3(|�K |2 + |�−K |2))2 − 4β2
5 |�K�−K |2.

(41)
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We then perform the Gaussian integral to get

ZPDW = e−βF̃ , (42)

using ∫
exp

[
−β

(
�′

0

�′′
0

)
· A

(
�′

0

�′′
0

)]
d�′

0d�′′
0

=
√

π2

β2 det[A]
= πe− 1

2 ln β2 det[A]. (43)

Expanding to fourth order in �±K , we have (dropping irrele-
vant constants)

F̃ =
(

aK + β3

βa0

)
(|�K |2 + |�−K |2)

+
(

β2 − 1

2β

(
β3

a0

)2
)

(|�K |4 + |�−K |4)

+
(

β4 − 1

β

β2
3 + 2β2

5

a2
0

)
|�K |2|�−K |2. (44)

When the two transitions are in proximity, (i.e., a0 is small
when aK = 0), SC fluctuations are in general detrimental to
the PDW instability, since β3 is a positive definite term within
our model. This is not unexpected since both orders are made
up of the same fermions.

Besides suppressing the PDW instability, SC fluctua-
tions also mediate an effective coupling between PDWK and
PDW−K orders. Since this coupling is negative-definite, SC
fluctuations tend to favor time-reversal invariant LO- type
PDW phases over the time-reversal symmetry breaking FF
ones. This effect is particularly important in systems without
a � pocket, for which the microscopic theory yields β4 = 0
(see Appendix C), such that the two PDW order parameters
would otherwise decouple in the free energy at quartic order,
leaving the question of whether the PDW pairing is FF or LO
unresolved at this order in the free energy.

C. Induced orders

In general, the symmetry-breaking associated with both
FF and LO -type PDW order parameters implies that in
the corresponding ordered phases, additional induced orders
will also exist [6,8,14,40,74,75]. Such induced orders are
important as they can in principle be used to detect and
distinguish the PDW phases in experiment if measured. The
possible induced orders corresponding to the FF- and LO-type
PDW phases, along with their symmetries, are summarized in
Table IV, and include charge-density wave, loop-current or-
der, as well as various types of Cooper pairing with charge
2e, 4e, and 6e. Here, we describe how these possibilities
arise from symmetry-allowed terms in the Ginzburg-Landau
free-energy describing the PDW phases.

First, as was noted above, the β6 term in Eq. (34) is linear
in �0, and is therefore the leading term involving uniform SC
when PDW is the dominant instability at the mean-field level.
As a result, uniform SC with �0 ∝ �2

K�∗
−K + �2

−K�∗
K can be

induced by the LO-type PDW, as can be seen by minimizing
the free energy with respect to �∗

0. Uniform SC order cannot

be induced in FF-type PDW phases, as it requires both �K

and �−K to be nonzero.
Interestingly, an order parameter with opposite parity,

�̄0 ∝ �2
K�∗

−K − �2
−K�∗

K , can also be induced. As discussed
in Sec. III A, all gap functions are necessarily odd under
SP∗T ∗, where recall that S, P∗, and T ∗ are spin-, momentum-
and time-interchange operations respectively. In the uniform
SC case, P∗ is equivalent to parity P, and so we conclude that
while �0 is even under T ∗, i.e., is the usual even-frequency
order, �̄0 must be an odd-frequency SC order [79,80,85–89].
It has been pointed out previously that such odd-frequency
pairing can be induced by nonuniform paired states [90], for
example when a uniform SC coexists with a CDW [91], or in
a PDW state [92].

The question of whether the induced SC is even- or odd-
frequency depends on the relative phase between �K and
�−K . Recall that φK − φ−K = nπ

3 with even (odd) n, for neg-
ative (positive) �3 > 0 in Eq. (37). Therefore, in the LO-type
phase, we find

�0 ∝ |�K |3ei(φK +nπ/3)(1 + (−1)n), (45)

�̄0 ∝ |�K |3ei(φK +nπ/3)(1 − (−1)n), (46)

i.e., �0 vanishes for positive �3 (odd n) whereas �̄0 van-
ishes for negative �3 (even n). Thus a singlet (triplet) PDW
induces a singlet (triplet) SC gap that is even or odd fre-
quency, depending on whether the sign of �3 is negative or
positive, respectively. While we find that �3 is negative in
the our simplified microscopic model, it could in principle
be positive in more complex models, giving rise to a pos-
sibility that a pure odd-frequency uniform SC order can be
induced by an LO-type PDW order. It is important to note,
however, that if parity is broken (e.g., by Rashba or Ising
spin-orbit coupling), which is the case in several monolayer
TMDs, an even-frequency singlet (triplet) uniform SC gap
necessarily accompanies the odd-frequency triplet (singlet)
gap [7,80,87,93]. The even-frequency contribution is likely to
dominate the superconducting properties of the system.

Besides inducing uniform SC, the LO-type PDW phase
also leads to a charge-density wave (CDW) order ρK ∼
〈d†

p�αdp,−Kα〉, 〈d†
pKαdp,�,α〉 via an additional term in the free

energy [6,8,14,40,74],

F (3)
1 = �1ρK�K�∗

−K + c.c. (47)

By definition, ρK = ρ∗
−K , so ρ−K is part of the same order

parameter. Adding quadratic terms Fρ ∝ ρKρ∗
−K and mini-

mizing with respect to ρ∗
−K , we find that at the minimum

of the free energy, a CDW order parameter ρK ∝ �−K�∗
K

is induced in the LO-type PDW phase. Therefore the phase
of the CDW is the same as the relative phase of the two
PDW order parameters, φK − φ−K . Thus the Z3 symmetry of
the relative phase corresponds to the different ways in which
translational symmetry is broken in the LO-type PDW phase.
Figure 8 illustrates the real space profile of the induced CDW
for φK − φ−K = 0 and π/3, corresponding to the two possible
free energy minima found in Sec. IV A for �3 less than or
greater than zero, respectively.
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FIG. 8. The real space profile of the CDW induced by LO-type
PDW for φK − φ−K = 0 and π/3, respectively. Only the value at the
lattice sites shown in blue are physical in the triangular lattice model.

While the term above clearly vanishes for FF-type PDW
orders, if uniform SC is present, mixing terms of the form

F (3)
2 = �2ρK�−K�∗

0 + c.c. (48)

are also symmetry-allowed [14,16,94–96]. For an FF-type
PDW coexisting with a uniform SC phase, we thus obtain an
induced CDW order ρK ∝ �K�∗

0.
Interestingly, the FF-type PDW phase also induces loop-

current order, described by the order parameter � ∝ |�K |2 −
|�−K |2. This type of induced order, absent in the LO-type
phase, preserves translational symmetry (unlike the FF-type
PDW itself) but still breaks TRS and inversion symmetry
[14,97,98]. Physically, it corresponds to a nonzero expectation
value of the current operator along loops connecting nearest
neighbor sites (see Fig. 9), which in this case is equivalent
to a superposition of three currents along the three equivalent

FIG. 9. Schematic picture of PDWK with total momentum K
illustrated in real space where each arrow represents a jump in the
complex phase of the order parameter by 2π/3 (see Appendix A).
One can schematically consider the arrows as induced currents along
the three equivalent directions, giving rise to the loop currents shown
in red and green. All arrows are reversed for PDW−K .

K directions. The broken inversion symmetry means that a
type of effective spin-orbit coupling can also be induced in the
FF-type PDW [7], although in practice this is not the dominant
source of SOC in 1H TMDs.

Finally, higher-order uniform superconductivity involving
bound states of four or six fermions can be induced in LO-type
PDW as �4e ∝ �K�−K and �6e ∝ �3

K + �3
−K [8,9,14,99–

105]. The latter arises due to Umklapp processes, since 3K =
0. An odd-frequency 6e SC condensate of the form �̄6e ∝
�3

K − �3
−K can also be induced if �3 is positive. In FF-type

PDW, only �6e ∝ �3
K can arise. Note that bound states of 4

and 6 (or even more) fermions with nonzero momentum are
also possible in principle [9]. We do not consider these higher
order SC orders in detail.

V. DISCUSSION

In this work, we showed that repulsive interactions can
drive a weak-coupling PDW instability in systems with band
structures similar to those of certain TMDs, like NbSe2 and
heavily doped MoS2, where the Fermi surface consists of a
pair of pockets at ±K and a pocket at �. In particular, among
the eight symmetry-allowed interactions involving the low-
energy electronic states, four contribute only to the uniform
SC instability whereas the other four contribute exclusively
to the PDW instability. As a result, in a scenario in which
repulsive interactions drive pairing and the pockets are per-
fectly nested, it is in principle possible for the PDW instability
to win over the SC one. We also found that the PDW order
remains stable even away from perfect nesting, as long as the
energy scales of the detuning parameters (trigonal warping
and mismatch between the Fermi momenta of the � and K
pockets) are not comparable with the pairing energy scale.
Finally, we compared the secondary orders that are induced
inside the PDW states, which involve not only charge order
and loop-current order, but various types of uniform super-
conducting order with charges 2e, 4e, and 6e.

Several of our results are worth highlighting. First, in our
treatment, the � pocket is in fact integral to the existence of
a PDW instability, in both singlet and triplet channels. Alter-
native mechanisms, such as the Kohn-Luttinger mechanism,
could lead to such instabilities even in the absence of a �

pocket [51]; however, they are not present at leading-order
with generic spin-independent interactions. Second, two types
of PDW order can exist in these systems: FF-type, in which
either the PDW with wave vector K or the PDW with wave
vector −K condense, spontaneously breaking time-reversal
symmetry; and LO-type, which preserves time-reversal sym-
metry by condensing both PDW order parameters with wave
vectors K and −K. While the former is favored when in-
terpocket pairing between K and � dominates, the latter is
favored when the dominant pairing channel is between elec-
trons on the same (±K ) pocket. Third, even when the PDW
instability wins over the uniform SC instability, an LO-type
PDW order is expected to induce uniform SC, such that both
order parameters may simultaneously be present, resulting in
a gap function that, while modulated, does not average to zero.

We now briefly discuss how our results are modified by
the lack of inversion symmetry in 1H TMD monolayers.
The model we considered in the main text has the same
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symmetries as the point group D6h. However, in the case of
a monolayer of 1H TMD, inversion symmetry is explicitly
broken by the crystal structure, lowering the point group sym-
metry to D3h. This results in the emergence of a so-called
Ising SOC term in the Hamiltonian, whose impact on the
uniform SC properties has been extensively discussed in the
literature [51,55–57,60,61,63,66,69,70,106–110]. Rather than
pursue such a detailed analysis in the PDW case, here we
focus on the qualitative effects of the Ising SOC.

For uniform SC, momentum reversal symmetry ensures
that, in the presence of Ising SOC, pairing occurs pre-
dominantly between opposite spins, favoring singlet pairing
and triplet pairing with a d-vector given by d = ẑ [65,66,
110–112]. Importantly, because Ising SOC mixes this triplet
state with the singlet state, the two comprise a single channel.
For PDW pairing, the impact of the SOC is clearer in the
case of pairing within the ±K pockets. This is because, for
large SOC, intrapocket pairing with momentum K can only
occur between electrons of the same spin. This leads to the
possibility of helical or chiral LO-type triplet PDW in the
limit of strong SOC, as pointed out in Ref. [51]. Note that in
contrast to our work, Ref. [51] considered a Kohn-Luttinger
type mechanism for the attractive interactions between spin-
polarized Fermi surfaces at K pockets, as that model, focusing
on MoS2, did not have a � pocket. Within our microscopic
model, however, the triplet PDW pairing occurs primarily
between electrons on � and K pockets. Such a triplet PDW
is expected to be of FF-type, suggesting rather a chiral triplet
FF-type PDW if such an instability were to be realized. Fur-
ther analysis, which we leave for future work, is required to
properly account for the effects of SOC on the chirality of the
gap functions when the � pocket is present, as well as in the
case of spin-unpolarized K pockets.

Our simplified model, which is motivated by the band
structure of certain TMDs, provides a possible route to re-
alize unconventional PDW driven by repulsive electronic
interactions. It remains to be seen whether actual TMD
compound satisfies the conditions necessary for the PDW
to be stabilized—i.e., superconductivity driven by repulsive
interactions, dominant g7 and g8 interactions, and Fermi
pockets at ±K and � of similar shapes and sizes. The re-
cently reported PDW in NbSe2 is unlikely to be related
to the mechanisms discussed here, since the PDW wave
vector is along the �-M direction [17]. For the supercon-
ductors 2H-NbSe2, monolayer NbSe2, 2H-TaS2, and doped
monolayer MoS2, the gap function is very likely conven-
tional and predominantly s-wave like (although an admixture
with f-wave takes place in the noncentrosymmetric mono-
layers due to Ising SOC [110]), consistent with conventional
electron-phonon pairing interaction [57,61,113]. Yet, at least
in few-layer NbSe2, there is indirect evidence in favor of
a subleading unconventional pairing channel, which would
suggest the presence of electron-electron pairing interactions
[67–69,114,115]. The bulk compound 4Hb TaS2, which has
additional Fermi pockets at the M point [116], also displays
superconducting properties typical of unconventional pairing
mechanisms [117–119]. Besides the s-wave nature of the
gap function, in the TMDs that contain a � pocket, such as
2H-NbSe2 and 2H-TaS2, the pockets do not appear well nested
[120,121]. Therefore, to potentially realize a PDW, it would be

interesting to not only suppress the Tc of the uniform SC state,
but also to tune the band structure of these types of TMDs.
While gating provides a powerful knob to tune the chemical
potential of few-layer TMDs, another interesting possibility
to manipulate the band structure of bulk TMDs is via the
so-called misfit compounds (MX )1+δ (T X2)n [122–124]. Here,
the TMD layers, T X2, are intercalated by monochalcogenide
layers MX with a rock-salt structure. Charge is transferred
between the rock-salt and TMD layers, which have differ-
ent periodicity, thus changing the latter’s band structure.
Interestingly, several of these misfit compounds display super-
conductivity [125–127]. Given the large number of building
blocks that can potentially be used in these misfit compounds,
it would be interesting to search for combinations that can
tune the band dispersion closer to the optimal conditions for a
PDW to be observed.
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APPENDIX A: TIGHT BINDING MODEL

Here we present a simple tight-binging model that we used
to produce the band structures in Fig. 1, as well as study
our order parameters in real space. The tight binding model
is defined on the triangular lattice with sites we label with
indices i and j, which stand for Ri = nia1 + mia2, where a1 =
(a, 0) and a2 = a

2 (1,
√

3) are the lattice basis vectors. We take
a = 1 for convenience below, and also define a3 = a2 − a1 =
a
2 (−1,

√
3). Each site then has six nearest neighbors at ±a1,

±a2, and ±a3.
We describe our model in terms of the creation operators

d†
i,α , where α =↑,↓ is a spin index, and i is a site index. The

Hamiltonian has the form

H0 =
∑

iα

μ d†
iαdiα +

∑
〈i j〉α

t d†
iαd jα +

∑
〈〈i j〉〉α

tnnn d†
iαd jα. (A1)

The next-nearest-neighbor hopping terms are needed to gen-
erate both � and ±K pockets; the next-nearest neighbors are
located at a1 + a2, 2a2 − a2, a2 − 2a1, and their opposites. To
make Fig. 1, we took μ = 0, t = 1, and tnnn = 2.5; these pa-
rameters were chosen to ensure that our one-band model gives
a reasonable approximation to the experimentally observed
Fermi surfaces.

The PDW Hamiltonian can also be included in the tight
binding model. In particular, the spin-singlet (onsite) PDW−K

enters the Hamiltonian in real space on a lattice as [that can
be obtained by Fourier transforming Eq. (8)]:

HPDW− =
∑
jαβ

e−iK·R j �
(s)
−K iσ y

αβd†
R jα

d†
R jβ

+ H.c. (A2)
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FIG. 10. νi j and relative phases of nearest neighbors in FF-type
PDWK with total momentum K in real space (opposite phases for
PDW−K ).

while the spin-triplet PDW−K , to leading order in lattice har-
monics, enters as

HPDW− =
∑

〈i j〉αβ

e−iK·R j νi j�
(t )
−K (σ kiσ y)αβd†

Riα
d†

R jβ
+ H.c.

(A3)

with k = x, y, z. The triplet order involves nearest neighbor
terms with νi j = ±1 if R j − Ri points along ±K (see Fig. 10).
Note that for nearest neighbors, e−iK·(R j−Ri ) = e±2π i/3 for
R j − Ri pointing along ±K , for any choice of the three equiv-
alent K. The three-fold rotational symmetry therefore remains
unbroken. Moreover, comparing phases of the order parame-
ter going around a triangular loop, a total phase of ±2π is
accumulated, which indicates a loop supercurrent (see Fig. 9).
Equivalently, we can think of three currents propagating along
the three equivalent −K directions, as one would expect since
the Cooper pairs have a total momentum of −K. If PDWK is
also present, the currents cancel by superposition.

APPENDIX B: MEAN-FIELD SOLUTION OF LINEARIZED
GAP EQUATION FOR UNIFORM SC

For completeness, we include here the reduced linearized
gap equation for the uniform SC channels, which were previ-
ously obtained in Ref. [66]. Defining

ĝ(μ)
1 = �̄

(μ)
�� g(μ)

1 , ĝ(μ)
4η = �̄

(μ)
η,−ηg(μ)

4 , ĝ(μ)
23 = �̄

(μ)
K,−K g(μ)

23 ,

(B1)

where gs
23 = g2+g3

2 , gt
23 = g2−g3

2 , the reduced linearized gap
equation for the uniform SC channels read(

�
(μ)
��

�
(μ)
K,−K

)
=

(
ĝ(μ)

1 2ĝ(μ)
4K

ĝ(μ)
4� 2ĝ(μ)

23

)(
�

(μ)
��

�
(μ)
K,−K

)
. (B2)

The matrix in the equation has eigenvalues

γ (μ±) = 1
2

(
ĝ(μ)

1 + 2ĝ(μ)
23 ±

√(
ĝ(μ)

1 − 2ĝ(μ)
23

)2 + 8ĝ(μ)
4� ĝ(μ)

4K

)
(B3)

in the SC channel. As in the PDW channels, the minus
eigenvalue is always subleading and only the plus solution is
relevant. The eigenvectors are(

�
(μ+)
��

�
(μ+)
K−K

)
∝

(
γ

(μ)
+ − 2ĝ(μ)

23

ĝ(μ)
4�

)
. (B4)

In order for the PDW instability to be the leading one, one
must have κ (μ+) > γ (μ+) [see Eq. (28)].

APPENDIX C: MICROSCOPIC DERIVATION OF THE
GINZBURG-LANDAU FREE ENERGY

Here we outline the standard microscopic derivation of the
free energy in Eq. (34). We use the Matsubara formalism with
fermionic Matsubara frequencies ωn = π (2n + 1)T and be-
gin by carrying out the Hubbard-Stratonovich transformation
of the action with Hamiltonian H + Hint [given by Eqs. (1)
and (5)], which introduces bosonic fields �̂ηζ and its conju-
gate �̂∗

ηζ and yields the action

S =
∑
p,k

ηζη′ζ ′

[�̂∗
η′ζ ′ (k)]α′β ′[V −1(p; k)]η

′ζ ′;α′β ′
ηζ ;αβ [�̂ηζ (p)]αβ

+ T

2

∑
n,p

ηζαβ

�̄pηα

[−iωn + H(BdG)
ηζ (p)

]
αβ

�pζβ

≡ T

2

∑
n,p

ηζαβ

�̄pηα

[−iωn + H(BdG)
ηζ (p)

]
αβ

�pζβ + βH�2 ,

(C1)

where we defined the Nambu spinors �pηα = (dpηα, d̄−pηα )T

and the Bogolyubov-de Gennes (BdG) Hamiltonian

H(BdG)
ηζ (p) =

(
Hη(p)δηζ �̂ηζ (p)

�̂
†
ζη(p) −HT

ζ (−p)δηζ

)
, (C2)

where

Hη(p) = εη(p) + gη(p) · σ (C3)

is the single-body normal state Hamiltonian with spin orbit
coupling gη(p) that from now on we set to zero.

In the next step, we integrate out the fermionic degrees of
freedom dpηα inside the path integral, which transforms the
action into (dropping some constants and making the units of
the logarithm dimensionless)

S[�̂, �̂∗] = −
∑
n,p

ln det[β(−iωn + H(BdG)(p))] + βH�̂2

(C4)
or equivalently the free energy F = T S:

F[�̂, �̂∗] = −T
∑
n,p

Tr[ln βG−1(iωn, p)] + H�2 , (C5)

where we defined the Nambu-Gor’kov Green’s function as

Gηζ (iω, p) = (
iω − H(BdG)(p)

)−1

ηζ

=
(

Gηζ (iω, p) Fηζ (iω, p)

F †
ζη(iω, p) −GT

ηζ (−iω,−p)

)
. (C6)

It is convenient to define the normal state Nambu-Gor’kov
Green’s function via

G−1
0 (iω, p) = G−1(iω, p) + �̌(p), (C7)
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FIG. 11. Diagrammatic expansion of the free energy in powers of the gap function.

where

�̌ηζ (p) =
(

0 �̂ηζ (p)
�̂

†
ζη(p) 0

)
(C8)

[i.e., G−1
0 (iω, p) is the Nambu-Gor’kov Green’s function

in the limit when the gap functions vanish]. The normal
(diagonal) parts of G0 we similarly refer to as G(0)

ηζ , while
the anomalous parts vanish. Using the matrix identity (A +
B)−1 = A−1 − A−1B(A + B)−1 yields the Abrikosov-Gor’kov
equations for the Green’s functions (this is a version of the
Dyson equation for superconducting systems):

Gηζ (iωn, p) = −〈dpηd†
−pζ 〉 = δηζ G(0)

η (iωn, p)

+ G(0)
η (iωn, p)�̂ηζ ′ (p)F †

ζ ′ζ (iωn, p),

Fηζ (iωn, p) = −〈dpηd−pζ 〉 = G(0)
η (iωn, p)�̂ηζ ′ (p)

× GT
ζ ′ζ (−iωn,−p) (C9)

with an implicit sum over ζ ′ on the RHS. When only one
order with momentum P = 0,±K is present, i.e., �̂ηζ ∝
δη+ζ ,P, the solutions of these equations have the property
Fηζ ∝ δη+ζ ,P and consequently Gηζ ∝ δηζ . Even if all orders
are present, for a small gap function, the full normal Green’s
function can then be approximated by its bare expression
(diagonal in pocket indices) on the right-hand side, so that

Fηζ (iωn, p) ≈ G(0)
η (iωn, p)�̂ηζ (p)G(0)T

ζ (−iωn,−p) (C10)

Plugging this expression into Eq. (9) yields the linearized gap
equation (15).

More generally we can expand the free energy when the
gap function is small:

Tr[ln βG−1] = Tr
[
ln βG−1

0

] +
∑

j

(−1) j+1

j
Tr[(G0�̌) j].

(C11)

The odd j terms vanish (as they must since the free energy is
a real scalar), which gives

F[�̂, �̂∗] = T
∑
np j

1

2 j
Tr[(�̂†(p)G(0)(iωn, p)�̂(p)G(0,h)(iωn, p)) j] + H�̂2 , (C12)

where j is again summed over all positive integers and we defined the hole normal state Green’s function G(0,h)
ηζ (iω, p) =

−G(0)T
ζη (−iω,−p), and the trace is over pocket and spin indices. For example,

Tr[�̂†(p)G(0)(iωn, p)�̂(p)G(0,h)(iωn, p)] =
∑
ηζη′

Tr
[
�̂

†
ηζ (p)G(0)

ζ (iωn, p)�̂ζη′ (p)G(0,h)
η′ (iωn, p)

]
=

∑
ηζη′
αβγ δ

[�̂†
ηζ (p)]αβ

[
G(0)

ζ (iωn, p)
]
βγ

[�̂ζη′ (p)]γ δ

[
G(0,h)

η′ (iωn, p)
]
δα

(C13)

with additional spin indices γ and δ. The terms are easiest to compute diagrammatically, as shown in Fig. 11.
Minimizing the free energy with respect to �̂

†
ηζ with only the j = 1 term in Eq. (C12) yields the linearized gap equation.

Assuming the Green’s functions are diagonal in the spin indices, we can simplify the fourth order term (omitting ω and p that
are all equal and an implicit sum over repeated indices):

F (4) = β
η′ζ ′;α′β ′
ηζ ;αβ [�̂†

ηζ ]αβ[�̂ζη′]βα′[�̂†
η′ζ ′]α′β ′ [�̂ζ ′η]β ′α, (C14)

where we define (assuming the gap functions only depend on the momentum directions and not their magnitudes)

β
η′ζ ′;α′β ′
ηζ ;αβ (θ ) = T

4

∑
n,|p|

G(0)
ζβ G(0,h)

η′α′ G(0)
ζ ′β ′G(0,h)

ηα . (C15)

For completeness, we mention that the Matsubara sum can be evaluated analytically using partial fractions and yields

βKL
IJ =

∑
|p|

1

�IJ�KL

[
tanh βεK

2 − tanh βεI

2

δεIK
+ tanh βεI

2 + tanh βεL

2

�IL
+ tanh βεJ

2 + tanh βεK

2

�JK
+ tanh βεL

2 − tanh βεJ

2

δεJL

]
, (C16)

where the multi-indices include pocket and pseudospin indices [e.g., I = (η, α)]. Note that I, K also carry the momentum p while
J, L carry momentum −p. We also defined �IJ = εI + εJ and δεIJ = εI − εJ . In general the integral over |p| cannot be evaluated
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analytically, but in the special case of equal DOS (this assumption can relaxed) with the assumption that εI = ε + �̂I where �̂I

are only functions of the direction of p, the integral can be evaluated by performing a contour integration over momentum first,
and then calculating the Matsubara sum. We obtain

βKL
IJ = − N

4δεIKδεJL
Re

[
ψ

(
1

2
+ iδεIJ

4πT

)
− ψ

(
1

2
+ iδεIL

4πT

)
+ ψ

(
1

2
+ iδεKL

4πT

)
− ψ

(
1

2
+ iδεJK

4πT

)]
, (C17)

where ψ is the digamma function. In the limit of perfect
nesting (i.e., all δε → 0), this simply evaluates to

βKL
IJ → β0 = 7ζ (3)N

32π2T 2
, (C18)

where ζ (3) ≈ 1.202 is the Riemann zeta function (this can
be found by setting δε = 0 before doing the Matsubara sum).
Equation (C14) can then be written more compactly as

F (4) = β0

∫
Tr[�̂†�̂�̂†�̂]

dθ

2π
(C19)

with the trace over both spin and pocket indices. Expres-
sions in Eq. (35) follow after performing the elementary
integrals. Note that the coefficients are more generally model
dependent.

In the triplet channels, we have according to Eq. (23)

�̂
(t )
ηζ (p) = d̂η+ζ · �̂

(t )
ηζ (θ )�(t )

ηζ (C20)

with �̂
(t )
ηζ ∝ σiσ y. The traces over Pauli matrices therefore

reduce to scalars built out of the d vectors, which can be
evaluated using the identity

(dη · σ )(dζ · σ ) = (dη · dζ ) + i(dη × dζ ) · σ. (C21)

For the fourth order terms, we therefore get terms of the form

Tr[(dη · σ )(d∗
η′ · σ)(dζ · σ )(d∗

ζ ′ · σ )]

= 2(dη · d∗
η′ )(dζ · d∗

ζ ′ ) − 2(dη × d∗
η′ ) · (dζ × d∗

ζ ′ ). (C22)

For the β4 term in the free energy Eq. (34), for example, we
have η = η′ = K and ζ = ζ ′ = −K , so the trace reduces to
2|dK |2|d−K |2 = 2, since we assume a unit d vector and unitary
pairing is energetically favored (due to the negative sign in the
last term). As a result, the form of the free energy for singlet
and triplet PDW channels ends up having the same form, as
claimed in the main text. Note that dK and d−K are therefore
independent of each other at the fourth order in the free energy
in the absence of uniform SC.

Interestingly, this is no longer the case at sixth order of the
free energy, given in Eq. (37). Again assuming unitary pairing,
the only term that couples dK and d−K is �3, with the relevant
trace being

Tr[[(dK · σ )(d∗
−K · σ)]3]

= 2(dK · d∗
−K )3 − 3(dK · d∗

−K )(dK × d∗
−K )2, (C23)

which is minimized (maximized) when dK and d∗
−K are

aligned in the same (opposite) direction. We therefore assume
them to be aligned in the main text.
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