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Violation of the orbital depairing limit in a nonunitary state: High-field phase
in the heavy fermion superconductor UTe2
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A theoretical study is reported on the origin of an extremely high upper critical field ∼70 T observed in UTe2

with the transition temperature Tc = 1.6–2 K, which exceeds the conventional orbital depairing limit set by the
Fermi velocity and Tc for a superconductor (SC) in the clean limit. We investigate possible violation of the orbital
limit in terms of a spin-triplet nonunitary state, which is effectively coupled to the underlying magnetization
induced by an external field. This produces the reduced internal field by canceling it via magnetization. We
formulate a theory within the Ginzburg-Landau framework to describe this orbital limit violation and analyze
experimental data on the upper critical fields for various field orientations in UTe2. We show that the orbital limit
violation for a spin-triplet SC, as well as the Pauli-Clogston limit violation for a spin-singlet SC, constitutes a
complete and useful framework for examining the high field physics of superconductors in the clean limit.
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I. INTRODUCTION

A recently found heavy Fermion superconductor (SC)
UTe2 has attracted much interest because it is a candidate
material of a triplet pairing, which is rare except for super-
fluid 3He [1,2] and UPt3 [3–6]. They are all characterized
by multiple phases owing to rich internal degrees of freedom
inherent to a spin-triplet pairing. UTe2 is known to exhibit
remarkable superconducting properties in addition to multiple
phases in magnetic field (H) and temperature (T) planes under
both ambient and applied pressure [7]. In the superconducting
energy gap structure probed by several thermodynamic mea-
surements [7–9], a pair of point nodes is located along the
a axis in orthorhombic crystals. The time reversal symmetry
is broken in the superconducting phase detected by the Kerr
rotation experiment [10]. A scanning tunneling microscopy
(STM) experiment suggested that the chiral superconductivity
may be achieved [11].

According to a series of 125Te NMR experiments [12–16],
the Knight shift (KS) or spin susceptibility drops (remains
uncharged) along the b and c axes (the a axis) below the
superconducting transition temperature Tc at low fields, in-
dicating that the d-vector points perpendicular to the a axis.
In other words, the d-vector has the components along the
b and c axes. At the lowest fields along the b axis, the KS
decreases, but as H increases from 5 T up to ∼12 T the KS
as a function of H gradually ceases decreasing to return to
the normal value. This implies that the d-vector changes its
direction to be perpendicular to the applied field direction
parallel to the b axis to gain the Zeeman energy. Along the
c axis, the KS as a function of H begins increasing from
the lowest field and continuously returns to the normal value
at approximately 5 T. Thus the d-vector should be the three
components along all the three directions with complex num-
bers. In other words, the superconducting order parameters
must have three dimensional vectorial structures with three

components. This d-vector rotation phenomenon plays a cru-
cial role in understanding the field reinforced high field phase.

In this paper, we focus on the following experiments [7].
(1) The upper critical field Hc2 is extremely high, reaching

∼70 T compared with Tc = 1.6–2.0 K.
(2) The H-T phase diagram along the magnetic hard b axis

consists of two phases: low field (LSC) and high field phases
(HSC). In the HSC, Hc2(T ) has an unusual positive slope, i.e.,
dHc2(T )/dT > 0.

(3) When tilting H toward the magnetic easy a axis from
the b axis by small angles ϕ up to only ϕ ∼ 7◦, the HSC
quickly diminishes from the H-T phase diagram, leaving the
LSC whose Hc2 ∼ 10 T.

(4) When the field direction changes from the b axis toward
the other magnetic hard c axis by the angle θ measured from
the b axis, the HSC also diminishes up to a slightly larger
angle θ ∼ 12◦, beyond which only the LSC remains. How-
ever, at θ ∼ 35◦ the isolated HSC detached from the LSC
appears above the so-called meta-magnetic transition field Hm

at which the b axis magnetization curve Mb(H ) exhibits a
jump via a first-order phase transition.

As neither quantitative nor qualitative explanation exists
for these remarkable facts of UTe2, we attempt to understand
some of these phenomena theoretically qualitatively. In par-
ticular, we address the following problems.

(A) What determines the upper limit of Hc2? In a clean
limit superconductor [17], which we assume here, the orbital
limit of Hc2 without the Pauli paramagnetic effect is given by
Horb

c2 = �0/2πξ 2, where �0 is the flux quantum, and the co-
herent length ξ = h̄vF/πTc. The Fermi velocity vF measured
recently by the dHvA experiment [18] is vα

F ∼ 11.0 km/s and
v

β

F ∼ 6.3 km/s, yielding Horb
c2 ∼ 12 T. This closely matches

Hc2 ∼ 10 T for the LSC, but is significantly less than the
observed maximal Hc2(θ = 35◦) ∼ 70 T. Note that according
to the Hc2 analysis by Rosuel et al. [19] and Helm et al. [20],
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the estimated vF required to explain Hc2 ∼ 70 T is 6.7–7.1
km/s albeit Tc ∼ 3 K, meaning that the high and low field
phases are governed by the same Fermi surface structure. Thus
we must understand the mechanism that causes the violation
of the orbital depairing limit.

(B) Why does Hc2 ‖ b in the HSC have a positive slope
and terminates abruptly only at Hm = 34 T and reappears
above Hm at approximately θ = 35◦ between the b and c axes
[19–21]? Why is it not between the b and a axes?

In this paper, to address these issues, we assume a spin-
triplet pairing with a nonunitary form [22] characterized by
a complex d-vector with three components. This nonunitary
state quite successfully describes not only UTe2 but also other
SCs such as URhGe and UCoGe. These are all magnetization-
tuned superconductors [23–25].

The main advance from our previous series of papers
[23–25] lies on the point that we can clarify the origin of
the concept of the absolute upper limit of Hc2, namely HAUL

c2 ,
which was introduced in an ad hoc manner in Refs. [23–25].
That is, as these papers describe in detail, because dHc2/dT >

0 in some region of the H-T phase diagrams, Hc2 becomes
unbound. We had to introduce HAUL

c2 to avoid this unphysical
scenario “by hand.” Now, in this paper, we clarify the origin
of HAUL

c2 , leaving intact the main body of our arguments based
on a spin triplet nonunitary state. Simultaneously, this enables
us to establish a general concept for the violation of the orbital
depairing limit in a nonunitary state. Thus the present theory
is applicable not only to UTe2 but also to more general su-
perconductors, providing a mechanism for attaining high field
superconductors by exceeding both the orbital depairing and
Pauli depairing limits. This novel mechanism of the enhance-
ment and limitation of Hc2 associated with HAUL

c2 may explain
the reason a certain class of superconductors in which glob-
ally or locally centrosymmetry is broken exhibit abnormally
high Hc2.

This paper is arranged as follows. First, we briefly describe
our nonunitary triplet theory developed previously [23–25] in
Sec. II. To understand a mechanism of the violation of the
orbital depairing limit of Hc2 we employ a simple Ginzburg-
Landau (GL) formalism to illustrate our basic concept as
clearly as possible in Sec. III. The proposed mechanism is
applied to UTe2. We analyze various experimental data on
H-T phase diagrams for various field orientations in Sec. IV.
In Sec. V, we devote to discussions and perspectives to deepen
our understanding on the physics associated with UTe2 and
other sister compounds, URhGe and UCoGe. The topics in-
clude the classification scheme of the pairing symmetry, the
concept of the d-vector rotation, possible chiral-nonchiral
transition in high fields. Section VI presents the summary and
conclusion.

II. THEORETICAL FRAMEWORK

A. Preliminaries to Ginzburg-Landau theory

To answer the above questions (A) and (B), we begin with
the most generic GL theory for a spin triplet state. Here,
we summarize our previous theory for further developments
[23–25].

We assume a nonunitaty A-phase-like pairing state

described by the complex d-vector

d(k) = φ(k)η = φ(k)(η′ + iη′′) (1)

(η′ and η′′ are real vectors) among the odd-parity pairing
states. φ(k) is the orbital part of the pairing function which is
not specified in the main part of this paper because its form
is irrelevant for the present arguments. The pairing function is
classified under the overall symmetry

SO(3)spin × Dorbital
2h × U (1)guage (2)

with the spin, orbital, and gauge symmetry, respectively
[26,27]. We assume the weak spin-orbit coupling scheme
[28,29]. This assumption is justified by the d-vector rotation
beginning from the low fields, ∼1 T for the c axis [14], and
∼5 T for the b axis [13], indicating that the spin-orbit coupling
is weak that locks the d-vector to crystalline lattices.

We note that the SO(3)spin symmetry is applied to the
Cooper pairs in the many-body sense and the normal state
electrons are under the strong spin-orbit coupling in the
one-body sense. The latter leads to the anisotropic magnetic
behaviors. Note that we are treating a composite electron
system, consisting of the itinerant electron system with a
heavy mass responsible for the SC formation and the localized
electron system at the U atomic sites for the underlying mag-
netic behaviors. Both subsystems result primarily from the
same 5 f electrons on the U atoms. This dichotomy, associated
with strongly renormalized 5 f electron with the enhanced
mass, is not considered here as it is beyond the scope of the
present paper. Thus the SO(3)spin symmetry is perturbed by
the latter localized moments through the effective spin-orbit
coupling whose strength is difficult to evaluate microscopi-
cally. Here, we consider it phenomenologically, as described
shortly. This SO(3)spin triple spin symmetry is expressed in
terms of a complex three component vectorial order parameter
η = (ηa, ηb, ηc).

As mentioned earlier, the spin rotation symmetry is weakly
broken through the spin-orbit coupling (SOC) whose mag-
nitude depends the crystalline direction and determines the
strength of the d-vector rotation field. In contrast, in the limit
of the strong SOC, the d-vector never rotates under a finite
magnetic field because the spin symmetry is reduced to the
crystalline symmetry D2h, yielding four one-dimensional ir-
reducible representations. Thus our framework based on the
weak SOC is sufficiently flexible to include the strong SOC
as a limit. As detailed in the following, the three components
of the order parameter originally the same transition temper-
atures under the spin rotational symmetry, which is broken
by either applied field and the influence of the underlying
magnetic subsystem.

Under Dorbital
2h symmetry, the most general GL free energy

functional up to the quadratic order is expressed by

F (2) = a0(T − Tc0)η · η∗ + b|M · η|2 + iκM · η × η∗, (3)

where b is a positive constant. The last invariant above results
from the nonunitarity of the pairing function in the presence of
the spontaneous moment M(H ), which breaks the SO(3)spin

spin symmetry. Without loss of generality, we assume κ >

0, but we warn that it can be negative in UTe2. This term
responds to external field directions differently.
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It is convenient to introduce

η± = 1√
2

(ηb ± iηc) (4)

for M = (Ma, 0, 0), where we define the a axis as the mag-
netic easy axis. η+ (η−) corresponds to the spin up-up
(down-down) pair or the A1(A2) phase. Note that the spin
quantization axis is defined relative to the M direction, i.e., the
magnetic easy a-axis here. Because of the magnetic coupling
term iκM · η × η∗, the spin direction for the Cooper pair may
change.

From Eq. (3), the quadratic term F (2) becomes

F (2) = a0{(T −Tc1)|η+|2 + (T − Tc2)|η−|2 + (T − Tc3)|ηa|2}
(5)

with

Tc1,2(Ma) = Tc0 ± κ

a0
Ma,

Tc3(Ma) = Tc0 − b

a0
M2

a . (6)

Note that the actual second transition temperature is modified
to T ′

c2 = Tc0 − (κMa/a0)(β1 − β2)/2β2 because of the fourth
order GL terms [23–25], but we ignore this correction and
maintain the expression of Eq. (6) for clarity of our arguments.

The root-mean-square average
√〈M2

a 〉 of the FM fluctua-
tions along the magnetic easy a axis is simply denoted by Ma

and acts to shift the original transition temperature Tc0 and
split it into Tc1, Tc2, and Tc3 expressed by Eq. (6). According
to this, Tc1 (Tc2) increases (decreases) linearly as a function
of Ma, whereas Tc3 decreases quadratically as M2

a from the
degeneracy point Ma = 0. The three transition lines meet at
Ma = 0, where the three components ηi (i = +,−, a) are all
degenerate. Thus, away from the degenerate point at Ma = 0,
the A0 phase beginning at Tc3 quickly disappears from the
phase diagram. Below Tc2 (Tc3), the two components η+ and
η− coexist, symbolically denoted by A1 + A2. Note that, be-
cause their transition temperatures are different, A1 + A2 is
not the so-called A-phase, which is unitary, but is generically
nonunitary except at the degenerate point Ma = 0 where the
totally symmetric phase is achieved with the time reversal
symmetry preserved. Thus the A1 + A2 phase is the so-called
distorted A phase [1]. Similarly, below Tc3, all the components
coexist; A1 + A2 + A0 is realized. We explain it more in detail
in the Appendix. The naming such as A1, A2, and A0 is re-
tained even when the spin quantization axis change according
to the d-vector rotation under fields.

The magnetic coupling κ , which is a key parameter for
characterizing UTe2, is originally estimated [30] as κ =
Tc

N ′(0)
N (0) ln(1.14ω/Tc), where N ′(0) is the energy derivative of

the normal DOS, and ω is the energy cutoff. This term results
from the electron-hole asymmetry near the Fermi level. κ in-
dicates the degree of this asymmetry. This may be significant
for a narrow band or the Kondo coherent band in the heavy
Fermion material UTe2. We can estimate N ′(0)/N (0) ∼ 1/EF

with the Fermi energy EF. Because Tc = 2 mK and EF =
1 K in 3He, κ ∼ 10−3, while for UTe2 Tc ∼ 1 K and EF ∼
TK with the Kondo temperature TK ∼ 30 K [7]. κ ∼ 10−1.
We also note that the sign of κ can be either positive or

negative, depending on the detailed energy dependence at the
Fermi level because it is ∝ N ′(0). If κ > 0 (κ < 0), the up-up
(down-down) pair appears at higher T . Thus the KS remains
unchanged (decreases) below Tc1.

In the following discussions, we consider a case in which
the two components η+ and η− are nonvanishing, ignoring
the third component ηa because, under ambient pressure,
UTe2 exhibits the two phases LSC and HSC, corresponding
to η+ and η−, respectively. The current UTe2 samples with
Tc = 1.6 K exhibit a single transition under H = 0 because
Tc2 < 0, as evidenced by the significant residual density of
states. The second transition is only realized at a finite field
for H ‖ b axis. However, we expect that the second transition
Tc2 > 0 might be realized for samples with Tc = 2 K without
the residual density of states. Note that, under pressure, the
third component becomes relevant [24] (see also Appendix for
the third transition). Hereinafter, we redefine the notation
κ/a0 → κ .

III. UPPER CRITICAL FIELD

Under an applied field with the vector potential A, the
gradient GL energy is given under Dorbital

2h symmetry

Fgrad =
∑

ν=a,b,c

{Ka|Dxην |2 + Kb|Dyην |2 + Kc|Dzην |2}, (7)

where Ka, Kb, and Kc are the effective masses along the
a, b, and c axes, respectively. Di = −i∇i + 2π

�0
Ai is the gauge

invariant derivative, with �0 being the quantum flux and Ai

the vector potential component. This form of Eq. (7) shows
that the Hc2 for the three components each starting at Tcj

( j = 1, 2, 3) intersect each other, never avoiding or leading to
a level repulsion. The level repulsion may occur for the pairing
states belonging to multidimensional representations (see, for
example, Refs. [31–34] in UPt3). The external field H also
passes through Ma(H ) in addition to the vector potential A,
which results in the orbital depairing.

Thus each component is independent within the quadratic
terms. The GL free energy density F under the external mag-
netic field H in terms of the superconducting order parameter
η± is given by

F =
∑

i=±
{a0(T − Tc,i )|ηi|2

+ Ka|Dxηi|2 + Kb|Dyηi|2 + Kc|Dzηi|2}. (8)

The variation with respect of η∗
i leads to the GL equation

a0(T − Tc)ηi + (
KaD2

x + KbD2
y + KcD2

z

)
ηi = 0. (9)

Following the standard procedure [35], the upper critical
field Hc2 is obtained as the lowest eigenvalue of the linearized
GL equation or Schrödinger type equation of a harmonic
oscillator, i.e.,

H (+)
c2, j (T ) = α

j
0 (Tc0 + κMa − T ),

H (−)
c2, j (T ) = α

j
0 (Tc0 − κMa − T ) (10)
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with j = a, b, and c axis. We introduce the coefficients

αa
0 = �0

2π
√

KbKc
a0, αb

0 = �0

2π
√

KcKa
a0,

αc
0 = �0

2π
√

KaKb
a0. (11)

These coefficients determine the initial slopes of the upper
critical fields. H (+)

c2, j and H (−)
c2, j are the upper critical fields for

the spin up-up and down-down pairs, or the A1 and A2 phases,
respectively.

Expressing Eq. (10) in a generic form

Hc2 − α0κM(Hc2) = α0(Tc0 − T ). (12)

The right-hand side of Eq. (12) is simply

Horb
c2 (T ) = α0(Tc0 − T ) (13)

for an unperturbed upper critical field owing to the orbital
depairing limit with Tc0 whose maximum value is given by
Horb

c2 (T = 0) = α0Tc0. On the left-hand side of Eq. (12), we
define the effective field

Heff = Hext − α0κM(Hext ). (14)

This implies that the external field Hext is reduced by the
amount of α0κM(Hext ). The upper bound of the orbital depair-
ing field of Horb

c2 (T ) for the a axis, for example, is determined
by

Horb
c2 (T → 0) = αa

0Tc0 = �0

2π
√

KbKc
a0Tc0. (15)

Consequently, this is given by the expression in the clean
limit: Horb

c2 (T ) = �0/2πξ 2, where the coherence length ξ =
h̄vF/πTc0. Namely, at Horb

c2 (0) the inter-vortex distance be-
comes comparable to the core size ξ . This generally results
in the absolute value of the upper limit of Horb

c2 (0). To break
this absolute upper limit due to the orbital depairing, we must
reduce the effective magnetic field Heff from the external field
Hext. This concept is the same as that developed for a spin sin-
glet pairing [36] and similar to the so-called Jaccarino-Peter
mechanism [37]. Henceforth, we surpress the subscript “ext”;
thus, Hext → H .

It is clear that at T = 0, the absolute value of Heff is
bounded by

|Hc2 − α0κM(Hc2)| � Horb
c2 (T = 0) = α0Tc0 (16)

for Hc2(0) to be a solution. Thus Hc2(0) can be enhanced at
T → 0.

Let us now examine the typical cases for several mag-
netization curves, as shown in Fig. 1. We first consider the
simplest case where the magnetization curve is given by
M(H ) = χH , as depicted in the upper panel of Fig. 1(a).
Because Heff is reduced by the presence of M(H ) in Eq. (14)
[the middle panel in Fig. 1(a)], we obtain

Hc2(T ) = Horb
c2 (T )

1 − α0κχ
, (17)

where 1 − α0κχ is the enhancement factor relative to Horb
c2 (T )

[the bottom panel in Fig. 1(a)]. Thus, in principle, Hc2(T )
increases indefinitely toward the critical point α0κχ = 1 from

H

H

M

H

T

Tc

H H

α

eff

c2 c2
orb

M(H)

cT0 0

H

Heff

0

(a)
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M

H
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H
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M(H)

H eff
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m

(c)

H

H

H
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H

T

Tc

H H

eff

c2 c2
(1)

M(H)

H eff

0

H

Hm

m

H

(b)

c

(2)

LSC HSC LSC
HSC

0

0

0

FIG. 1. (a) Case of a magnetization curve M(H ) = χH (top).
Heff is reduced compared with the external field. The permitted re-
gion with light blue color bounded by α0Tc0 extends to a higher field
(middle). Hc2 is enhanced compared with Horb

c2 (bottom). (b) When
the magnetization has the jump at the metamagnetic field Hm, Heff

goes outside the allowed region at H (1)
c2 . However, it returns above

Hm and HSC appears, separated from LSC. The extrapolated Tc for
HSC is higher than Tc0 for LSC (dotted curve in the bottom panel).
(c) The metamagnetic jump is smaller than the case in (b). LSC and
HSC overlap to appear. The light blue regions in the middle panels
in (a), (b), and (c) show the permitted region for Hc2.

below. As a general tendency, when the magnetization be-
comes saturated at higher field, Hc2(T ) eventually tends to be
finite.

Next, we consider a case in which the magnetization curve
jumps at the metamagnetic transition at Hm, as shown in the
upper panel of Fig. 1(b). Heff exceeds the permitted maximum
region set by α0Tc0 in Eq. (14) at a lower field, as shown in
the middle panel of Fig. 1(b). Thus the low SC (LSC) phase
is terminated at H (1)

c2 (T ) (see the bottom panel of Fig. 1(b)).
However, immediately above Hm, Heff reenters the allowed
region, as indicated in light blue in the middle panel. Thus
high SC (HSC) occurs from Hm to H (2)

c2 (T ), as shown in the
bottom panel of Fig. 1(b). In this case, LSC and HSC are
separated in H-T phase diagram shown in the bottom panel
in Fig. 1(b).

Depending on the magnetization curve with the metamag-
netic transition, a different scenario may occur as shown in
Fig. 1(c). Because Heff defined in Eq. (14) is determined by the
combination of M(H ) and the coupling constant α0κ , the two
SC phases of LSC and HSC overlap, as shown in the bottom
panel of Fig. 1(c). This is in contrast with the case mentioned
above in which LSC and HSC are separated by the normal
state along the H axis in H-T phase diagram. Note that in
these examples, LSC and HSC are the same pairing state.

IV. ANALYSIS OF Hc2(T ) in UTe2

A. H//b

In this section, we examine the H-T phase diagram in UTe2

for H ‖ b by applying the previous general considerations
based on GL theory for nonunitary pairing. To explain various
mysteries associated with the phase diagram for H ‖ b, we
must know the magnetization curve M(H ) in H ‖ b. Accord-
ing to a measurement by Miyake et al. [38,39] M(H ) has the
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(a)

(b)
H(T)

Hc2

orb

A1

T’c2

Tc2

FIG. 2. (a) Resulting H -T phase diagram with the A1 (LSC) and
A2 (HSC) phases. The dashed lines are not realized. (b) Constructed
Heff (green curve) at T = 0 as a function of the external field H using
the measured magnetization curve [38] of Mb(μB) (red curve). Hrot

is the d-vector rotation field. Hm is the metamagnetic transition field.
HAUL

c2 is the absolute upper limit of Hc2.

metamagnetic transition at Hm = 34T via a first order with the
large magnetization jump, which is indicated by the red curve
of Mb in Fig. 2(b). Accordingly, the effective field Heff (green
curve) exhibits a sharp drop at Hm. By selecting an appropriate
parameter value for α0κ , which is only the adjustable param-
eter in our theory, we can reproduce the experimental data.
That is, Heff is reduced below H < Hm as seen by the green
curve of Fig. 2(b). However, beyond Hm, it exceeds the limit
of the permitted region denoted by the light blue band.

In Fig. 2(a), the A1 phase starts at Tc1 and disappears at
a lower field because the Cooper pair polarization points to
the a axis, as evidenced by the KS experiment [12–16]. In
low fields, KS remains unchanged (drops) for the a-axis (b-
and c-axis) field. Thus, for the A1 phase Heff = H because of
d × d∗ ⊥ Mb.

In contrast, the A2 phase with the increasing Tc2 changes
the d-vector direction during the d-vector rotation for the
field range 5–12 T such that d × d∗ ‖ Mb. Thus Tc2 = Tc0 +
κMb(H ) instead of Ma originally given in Eq. (6), or Tc2

increases with Mb(H ) as shown in Fig. 2(a). However, even
if Tc2 is increasing indefinitely, the A2 phase ceases to exist
above Hm because Heff exceeds the limit. It terminates at
HAUL

c2 , where, as indicated by the dotted line of Fig. 2(b) the
extrapolated Heff from below exceeds the limit. This defines
the absolute upper limit of Hc2, or HAUL

c2 , which is given by
HAUL

c2 = α0(T ′
c2 − T ), where T ′

c2 is not realized. Note that a
part of HAUL

c2 (T ) is realized where Heff is still within the
permitted region [Fig. 2(a)]. These constitute the whole A2

phase shown in Fig. 2(a).

B. b to a

When the magnetic field is tilted from the magnetic hard b
axis toward the magnetic easy a axis by the angle ϕ measured

FIG. 3. Phase diagram in the H -T plane for H ‖ b and the field
orientations tilted by the angle ϕ measured from the b axis toward
the a axis. A2 or HSC quickly shrinks as ϕ increases, whereas
A1 or LSC remains almost unaffected. HAUL

c2 (ϕ) becomes low as ϕ

increases indicated by the left-hand side because the projection of
Mb(ϕ) strongly decreases as postulated in the inset. The resulting
upper critical field Hc2(ϕ) is shown.

from b, the HSC phase quickly diminishes from the H-T
phase diagram up to ϕ ∼ 7◦, whereas LSC remains the same.
To understand this intriguing behaviors, we apply the same
concept described above by postulating Mb(ϕ) as a function of
ϕ. When tilting the field direction away from the b axis, Mb(ϕ)
generally decreases because the Mb component projecting
onto the field direction becomes small. Therefore Heff (ϕ)
increases with ϕ, as shown in the left-hand side of Fig. 3,
implying that HAUL

c2 (ϕ) is lowered. The resulting HAUL
c2 (ϕ) is

plotted by the dotted curves in Fig. 3 for the selected angles.
Because Tc2(ϕ) = Tc0 + κMb(ϕ) becomes sharper to rise or
Tc2(ϕ) at Tc2 rotates counterclockwise as depicted in Fig. 3,
the A2 regions with the triangle areas (brown color) shrink
and disappear from the H-T phase diagram.

The postulated Mb(ϕ) behavior to reproduce the phase
diagram is depicted in the inset of Fig. 3, which exceeds
that expected by simple projection of Mb(ϕ) onto the field
direction. Mb(ϕ) decreases quickly upon tilting by a few
degrees, which is noteworthy. This might be understandable
because the magnetic easy a axis is special; The moment Mb

tends to redirect toward the easy a axis to gain the magnetic
energy by increasing the Ma component. Thus the rotation of
the moment direction of Mb may be larger than the simple
projection count. A similar large change of the magnetization
curve by small tiltings of the field direction is observed in
URhGe from the hard to easy axis case [40]. Reflecting the
strong decrease in Mb(ϕ), the resulting Hc2(ϕ) sharply drops
as depicted in the inset of Fig. 3.

C. b to c

We examine the phase diagram for the field orientation
tilted from the b axis to the other hard axis c axis by the angle
θ measured from the b axis to understand the isolated HSC
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FIG. 4. Magnetization curve Mb(H ) (red curve) for H ‖ b axis
obtained experimentaly [38,39]. The other magnetization curves for
various angles of θ are reconstructed by projecting Mb(H ) onto
the magnetic field direction. Heff (θ ) = H − α0κM(θ ) is constructed
from M(θ ) thus obtained. The light blue band at the center indicates
the permitted region for Hc2. The intersection point between Heff (θ )
and the light blue band yields the absolute upper limit HAUL

c2 .

phase whose maximum Hc2 reaches ∼70 T, which exceeds the
orbital depairing upper critical field.

Let us begin to evaluate the magnetization curves Mb(θ ) for
the arbitrary angle θ , which is a key quantity to determine Hc2.
We can easily reconstruct Mb(θ ) from the magnetization curve
Mb, which is measured [38,39] because we know the experi-
mental fact that Hm ∝ 1/ cos θ . This means that the projection
of Mb onto the field direction determines the magnetization
curve for Mb(θ ). Therefore, by projecting Mb onto the field
direction, we obtain Mb(θ ) for an arbitrary angle. In Fig. 4,
Mb(θ ) is depicted as the red curves for the relevant angles
of θ . We can check this procedure for the experimental data
Mb(θ ∼ 23.7◦) for the H ‖ (011) direction [39] by subtracting
the contribution from the magnetization component along the
c axis Mc(θ ) (see also Ref. [25] for some more details).

Using these magnetization curves and the same parameter
value for α0κ , we obtain Heff (θ ) = H − α0κM(θ ) as shown
in Fig. 4. This indicates that for θ � 30◦ the lower edge of
Heff (θ ) begins entering the permitted region, yielding the HSC
up to HAUL

c2 . Upon further increasing θ , Heff (θ ) is leaving this
region; thus, no HSC occurs for θ > 50◦.

We can construct the H-T phase diagram for θ shown in
Fig. 5, where the selected θ cases are depicted, including the
H ‖ b axis for comparison. The left-hand side bar denotes
Heff (θ ). For θ = 12◦ the A2 phase barely remains, beyond
which there is no trace of the A2 phase below Hm in the
phase diagram. This is because Tc2(Mb) curves (denoted in
the dotted straight lines in Fig. 5), beginning at Tc2 for H = 0
rotating counterclockwise owing to the decrease in the Mb

projection. However, for θ = 35◦ this Tc2 line still reaches the
metamagnetic transition field, which enables the HSC to exist
above Hm, as shown in Fig. 5. Thus, beginning from HAUL

c2 ∼
70 T through Hm, the Hc2 curve extends toward Tc2 ∼ 3 K at
H = 0. However, the actual HSC phase disappears abruptly
at Hm because Heff is outside the allowed region below Hm.
For θ = 45◦ as only a small field region permitted for Heff

exists, as shown in the left-hand side of Fig. 5, the resulting

FIG. 5. H -T phase diagram for various θ , including the case H ‖
b axis for comparison. The permitted region of Heff is indicated on the
left-hand side in light blue, which is the same as in Fig. 4. For θ =
35◦, HSC (A2) is permitted for Hm < Heff < HAUL

c2 . The Hc2 curve
starts at HAUL

c2 toward Tc2 at H = 0. However, the HSC terminates
abruptly at Hm, below which Heff is outside the permitted region. The
permitted region at the low field is not available for the A2 because
Tc2 < 0. It is used by LSC (A1), which is relatively unchanged with
varying θ , including the case for H ‖ b axis. The inset shows the
HSC (A2) and LSC (A1) as a function of θ .

HSC region in the H-T phase diagram shrinks. No HSC is
permitted for θ = 50◦. These features are displayed in the
inset of Fig. 5.

V. DISCUSSIONS AND PERSPECTIVES

A. Parameter value of α0κ

We examine the parameter values used in this paper. The
key parameter in this work is the product α0κ of α0 introduced
in Eq. (11) and κ defined in Eq. (3). We ignore the small
anisotropy of the initial slopes of Hc2 at Tc for three field orien-
tations of the a, b, and c axes. From the initial slopes, we find
α0 = 12 T/1.6 K = 7.5 T/K. From the previous estimate κ =
6.9 K/µB [25], which is determined by the splitting between
Tc1 and Tc2, and the amplitude of the ferromagnetic fluctuation
moment along the a direction, we obtain α0κ = 51.8 T/µB.
From Eq. (14), we observe that

Heff = H − α0κM = H − Jcf M, (18)

i.e., this combination is simply the form of the exchange
integral Jcf between the 5 f localized moment and conduction
electrons, i.e., Jcf = α0κ .

It is interesting to note the case in the recently found heavy
Fermion superconductor CeRh2As2 [41], where Hc

c2 = 16 T
and Tc = 0.35 K. This compound is known to break the Pauli-
Clogston limit Hp = 1.84Tc ∼ 0.6 T by far. To overcome this
Pauli-Clogston limit for this spin singlet superconductor, we
introduce the effective field Heff = H − Jcf M, where the in-
ternal field is exerted from the localized 4f moment M to
cancel the external applied field [36]. The exchange integral
is estimated as Jc

cf = 52.5 T/µB (Jab
cf = 23.4/µB) for the c axis
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(ab-plane) in tetragonal crystal. These numbers remarkably
coincide with the present system, but it may be only coinci-
dent. The important aspect is that, to achieve the high Hc2,
we must break the Pauli-Clogston limit for a spin singlet
superconductor or the orbital depairing limit for a spin triplet
superconductor. Here, we propose a common mechanism in
which the external field is effectively cancelled by the internal
field owing to the moments of the localized f electrons through
the exchange coupling to the itinerant electron system.

B. Pairing symmetry of UTe2 and classification scheme

The present analysis clearly shows that the nonunitary
state in the chiral form d (k) = (b + ic)(kb + ikc) is suitable
for UTe2. Here, we select the orbital part φ(k) = kb + ikc.
Under applied fields, the d-vector rotates to save the Zeeman
energy. This means that the spin-orbit coupling to lock the
d-vector to the underlying crystal lattices is weak and finite.
In other words the d-vector rotation fields Hrot depend on the
field orientation, that is, Hrot = 5 ∼ 12 T for H ‖ b axis and
Hrot = 1 T for H ‖ c axis. These weak fields of Hrot indicate
the strength of the spin-orbit coupling (SOC). Therefore we
must adopt the weak SOC scheme for the pairing symmetry
classification.

The spin-orbit coupling is anisotropic; thus, the spin space
symmetry for the Cooper pairs is weakly broken from the
original SO(3)spin. Furthermore, the slow ferromagnetic fluc-
tuations also break it to split the SC transition temperature
into three: Tc1, Tc2, and Tc3. Thus we can reasonably identify
the relevant Cooper pair symmetry beginning from SO(3)spin,
which is decoupled with the orbital part of the pairing func-
tion in this scheme. We emphasize that, in the strong SOC
case advocated by others [42–45], the spin and orbital space
symmetries are tightly coupled, the d-vector rotation cannot
be permitted. As mentioned earlier, the gradual rotation of the
d-vector via a second-order phase transition is accounted for
only by the weak SC case. The orbital symmetry governed
by the crystalline symmetry D2h has no multidimensional
representation. Thus the choice of the chiral form kb + ikc,
which is consistent with many experiments [7–9], is ad hoc
at this stage. This may indicate that the classification scheme
based on the D2h crystalline symmetry is irrelevant and a more
larger symmetry group is required. Note that a convex curve
behavior of the Sommerfeld coefficient γ (H ) at low fields for
H ‖ b axis associated with the Pauli paramagnetic effect [46]
is an important signature of the d-vector locking and should
be checked experimentally.

C. d-vector rotation

The d-vector rotation is an important concept for de-
scribing the phenomena associated with peculiar H-T phase
diagrams. In particular, for H ‖ b axis, the positive slope
above H � 12 T can be accounted for by the d-vector rotation
in which the d-vector becomes perpendicular to the b axis
such that the magnetic coupling iMb · d × d∗ is active and
fully utilizes magnetic energy. Otherwise, this invariant does
not contribute to increasing Tc2. Thus the d-vector rotation is
essential to capture this phenomenon.

Microscopically, the d-vector rotation occurs as a change in
the spin texture formed by the spatial modulation of the three

dimensional d-vector or the Cooper pair spin polarization
defined by S(r) = id × d∗. The averaged S(r) over the vortex
unit cell determines the direction of the d-vector. The d-vector
rotation is induced by the competition between the Zeeman
energy and the pinning of the d-vector to the underlying
lattices owing to the SOC. A microscopic theory based on
quasi-classical Eilenberger equation is now in progress where
intriguing spin textures, including a pair of the half-quantized
vortices and Majorana zero modes both with spinless and
spinful phases, are stabilized [47].

D. Chiral-nonchiral transition and β phase

When the magnetic field H ‖ b axis is applied to the
fully polarized nonunitary chiral p state (a + ic)(kb + ikc),
the chiral-nonchiral transition may occur. This mechanism
was originally proposed by Scharnberg-Klemm [48]. This
is simply because, to compare the two upper critical fields
for the chiral state (a + ic)(kb + ikc) and the nonchiral state
(a + ic)kb, the latter has a generally higher Hc2, a factor ∼1.5
higher for the spherical Fermi surface [49]. The line node in
(a + ic)kb is robust under fields compared with (a + ic)(kb +
ikc) having the point nodes. This nonchiral state (a + ic)kb

is called the β phase [1,28,29]. The β phase produced by
high magnetic fields from the polar phase was recently iden-
tified in superfluid 3He confined in nematic aerogel [50].
Thus it is interesting to investigate this possibility further in
our superconductor. We have already identified the A1, A2,
A1 + A2 (distorted A), and A1 + A2 + A0 phases in lower and
intermediate field regions under ambient and under pressures,
respectively [23–25].

E. Application to URhGe and UCoGe

To examine the validity of the present theory, we apply
it to other materials, ferromagnetic superconductors URhGe
and UCoGe, which are best systems to test our concepts.
Under hydrodynamic and uniaxial pressure, the H-T phase
diagrams in URhGe continuously change as shown in Fig. 6.
The characteristics are strikingly similar to those we have just
observed, such as

(1) Tc(H ) increases as H increases in some part of the H-T
phase diagram,

(2) the extrapolated Tc from the high field Hc2 to high T
exceeds Tc0 at H = 0,

(3) the HSC is separated from LSC at low pressure,
(4) HSC and LSC overlap in high pressure region.
Let us examine these characteristics observed in URhGe in

light of the present idea. It is known that under uniaxial pres-
sure σ , the spontaneous moment Mc decreases linearly and
vanishes at σ = 1.2 GPa, i.e., Mc(μB) = 0.4 − 0.33σ (GPa).
It is reasonable to consider that Mb(H ) = χbH where χb

decreases in proportion with σ , i.e., χb = χb0 − Aσ with A
positive constant because the spontaneous moment Mc sets the
overall magnetic scale. Thus we expect that HAUL

c2 is given by
Hc2 − α0κMc = α0Tc0, or

Hc2 − α0κχbHc2 = α0Tc0,

Hc2 − α0κ (χb0 − Aσ )Hc2 = α0Tc0. (19)
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FIG. 6. H -T phase diagram under hydrodynamic (P) and uniax-
ial (σ ) pressure for URhGe. The extrapolated straight line to lower T
defines HAUL

c2 and Tc2(H = 0) to higher T, respectively. The pressure
dependences of HAUL

c2 and Tc2(H = 0) are shown in the inset, indi-
cating the linear scaling for both quantities with the linear decrease
of Mc. The dotted points are the experimental data [51,52].

Equation (19) can be rewritten as

Hc2(σ )

Hc2(σ = 0)
= 1

1 + κα0Aσ
1−κα0χ0

� 1 − κHc2(σ = 0)Aσ

Tc0
. (20)

Hence HAUL
c2 (σ ) decreases linearly with σ . This also implies

that Tc2(H = 0) decreases linearly with σ . As shown in the
inset of Fig. 6, this relation is well obeyed.

Here, we reuse our previous figure [25] on UCoGe mod-
ified slightly as Fig. 7. It is clear that HAUL

c2 also exists in
UCoGe. The extrapolated Tc2(H → 0) ∼ 1.0 K is signifi-
cantly higher than Tc1. The S-shaped Hc2 is limited from the
above, evidencing the presence of HAUL

c2 . We now understand
the reason for this.

20

15

10

5

0

25

0.2 0 T.6 0.8

H(T )

T(K)
T TT c1c0c2

H
c2

AUL

A1A1

A2

c2
(H→0)

FIG. 7. H -T phase diagram [25] for H ‖ b axis in UCoGe. The
extrapolated straight line to lower T and higher T defines HAUL

c2 =
24 T and Tc2(H = 0) = 1.0 K, respectively. The red dots are the
experimental data [53,54].

F. Perspectives

The present material UT2 is considered to be nearly fer-
romagnetic, although the “static” long range ferromagnetic
(FM) ordering is absent [55]. Slow FM fluctuations have been
reported by several experiments [55–58]. This is similar to
UPt3, where the antiferromagnetic (AF) order above Tc is not
truly static and long-ranged order, yet it leads to the spitting
of Tc and significant effects on SC [23–25].

The interplay between magnetism both with FM and AF
and superconductivity is an important subject and has been
discussed for long time [59]. Initially, the case in which
magnetism results from localized moments is considered.
Thus the conduction electrons responsible for SC is distinc-
tively different from the magnetic subsystem. This includes
chevrel compounds (RE)Rh4B4 and (RE)Mo6S8 (RE: rare
earth atoms). Magnetism profoundly influences SC or Hc2

owing to the onset of AF at TN, below which Hc2 exhibits
an anomalous kink structure associated with the destruction
of a part of the Fermi surface by AF gapping [60]. For the
FM, the internal FM molecular field induces Fulde-Ferrell-
Larkin-Ovchinnikov state [61] immediately below the Currie
temperature TCurrie.

These examples of the coexistence clearly differ from the
present generation of the intertwining problem [62–64] in
that the electrons responsible for magnetism and SC are not
separable and exhibit simultaneous roles for both orderings.
This duality of localized and itinerant electrons in the heavy
Fermion materials is essential in forming the heavy Fermion
state with the enhanced electron mass. In this case, the in-
terplay of magnetism and SC is more intricate, which is
the present scenario in UTe2, as we have observed in this
paper, the concept of the FM molecular field exerted from
the magnetic sub-system is a useful one in understanding
various mysteries associated with the phase diagram con-
structions. This continues to be valid and profitable to apply
for other heavy Fermion SCs [65], including the globally or
locally noncentrosymmery broken SC such as CePt3Si and
CeRh2As2. These are known as the materials in which AF
coexists with SC, and the anomalously enhanced Hc2, which
breaks the Pauli-Clogston limit [36].

We admit that several outstanding issues remain to be
solved in UTe2 despite the present and previous works
[23–25].

(1) Because, according to our theory, the tetra-critical point
exists at H (‖ b) ∼ 13 T as shown in Fig. 2(a), the “fourth”
second-order internal phase transition is still missing.

(2) The detailed phase diagram of HSC in 0 < θ < 12◦
must be investigated because it is continuously connected to
the isolated HSC at 30◦ < θ < 45◦.

(3) The possible chiral-nonchiral transition for HSC should
be checked experimentally. The β phase may be found.

(4) An experiment on elastic neutron scattering can probe
the magnetization Mb(H ) component for 0◦ < ϕ < 8◦ and
0◦ < θ < 45◦ to establish our reconstructed magnetization
curves as shown in Figs. 3 and 4. Additionally, an experiment
on small-angle neutron scattering (SANS) may reveal vortices
with the spin textures for the intermediate fields of H ‖ b axis.

(5) The vortex core contains the Majorana zero-energy
modes spinless or spinful for HSC and LSC, respec-
tively. These zero Majorana modes are detected through the
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FIG. 8. H -T phase diagrams [24] for H ‖ a axis where the
dots are experimental data points [67] for (a) P = 0.40, (b) 0.54,
and (c) 0.40 GPa. The labeling of various phases and transition
temperatures are explained in the text of Appendix.

local density of states [66] probed using STM, or other
methods.

VI. CONCLUSION AND SUMMARY

Based on a nonunitary triplet pairing state, we have found
that the orbital depairing limit of Hc2 can be exceeded by can-
celing the external field via the internal field exerted from the
localized moments. This novel mechanism for a spin triplet
state enables us to analyze the Hc2 phase diagrams for various
field orientations centered along the magnetic hard b axis. In
particular, the record-high Hc2 ∼ 70 T occurring in between
the b and the c axes can be understood by this orbital limit
violation mechanism. The present work not only has identified
the pairing state realized in UTe2 but has also proposed a novel
mechanism for the violation of the orbital limit of Hc2, which
enables us to attain higher Hc2 in a superconductor in general.
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APPENDIX

To easily understand various phases appearing in the H-T
phase diagrams in the main text, we summarize the naming
A1, A2, A0, etc. by adopting the H-T phase diagrams under
pressure as a typical example. Figure 8 shows the H-T phase
diagrams for (a) P = 0.40 GPa, (b) P = 0.54 GPa, and (c)
P = 0.70 GPa for H ‖ a axis [67]. As Fig. 8(a) shows, upon
lowering T at Tc1, the A1 phase begins to appear. Subse-
quently, the A2 phase appears at Tc2, followed by A0 at Tc3.
Below Tc2, the two phases A1 and A2 are mixed to yield a
mixture phase A1 + A2. Similarly below Tc3 a mixture phase
A1 + A2 + A0 is realized. Under H , A2 ceases to exist; thus,
the mixed phase A1 + A0 continues appearing in the inter-
mediate field region. At the highest field, only the A0 phase
remains.

As P increases from left to right in Figs. 8(a)–8(c), each
phase is systematically evolving, i.e., Tc1 increases; thus the
A1 phase enlarges. Both Tc2 and Tc3 decrease as P increases,
leading to shrinking the areas of the A1 and A0 phases, but
the latter survives at higher fields. The reason for it is not yet
known.

For the other field orientation H ‖ b axis [68], note that
the transition lines beginning from Tc2 for each P behaves
similarly to those shown in Fig. 8, contrary to a naive expec-
tation that this internal transition line joins to the tetra-critical
point, i.e., there is no internal transition lines with a positive
slope. This means that the fourth internal transition line occurs
horizontally to the tetra-critical point, as has been observed
recently [69]. This may be an important clue to understanding
the phase diagram for H ‖ b axis under ambient pressure [70].
For the other field orientation H ‖ c axis, the experimental
data [68] show relatively similar phase diagrams and system-
atic pressure evolution to the case for the a axis above.
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