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In this work, we show that a buckled honeycomb lattice can host a boundary-obstructed topological supercon-
ductor (BOTS) in the presence of f -wave spin-triplet pairing (fSTP). The underlying buckled structure allows
for the manipulation of both chemical potential and sublattice potential using a double gate setup. Although
a finite sublattice potential can stabilize the fSTP with a possible higher-order band topology, because it also
breaks the relevant symmetry, the stability of the corner modes is not guaranteed. Here we show that the fSTP
on the honeycomb lattice gives a BOTS under nonzero sublattice potential, thus the corner modes can survive
as long as the boundary is gapped. Also, by examining the large sublattice potential limit where the honeycomb
lattice can be decomposed into two triangular lattices, we show that the boundary modes in the normal state are
the quintessential ingredient leading to the BOTS. Thus the effective boundary Hamiltonian becomes nothing
but the Hamiltonian for Kitaev chains, which eventually gives the corner modes of the BOTS.
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I. INTRODUCTION

Although superconductivity has not yet been observed
in pristine graphene, it has been experimentally realized
in related families such as multilayer [1–3], twisted moiré
bilayer [4], and alkali-metal intercalated graphene [5–9]. Re-
markably, underlying symmetries of the honeycomb lattice
allow the emergence of various topologically nontrivial states,
such as chiral p-wave and d-wave pairings [10–21]. Re-
cently, it has been shown that the f -wave spin-triplet pairing
(fSTP) [10,22–37] can arise in the honeycomb lattice, deriving
higher-order topological superconductivity (HOTS) [38,39]
that hosts zero-energy Majorana corner modes, protected by
both bulk gap and certain spatial symmetries, such as in-
version symmetry [40–52]. Also, fSTP was shown to be
enhanced when there is a large sublattice potential [53,54].
For instance, an electric field perpendicular to the plane of a
low-buckled honeycomb lattice such as silicene can induce
a considerable sublattice potential and stabilize fSTP [see
Figs. 1(b) and 1(c)] [55]. However, as the sublattice potential
breaks the essential symmetries that protect HOTS simulta-
neously, the stability of the corner modes is not guaranteed
unless a distinct mechanism for their intrinsic protection
exists.

In this paper, we show that fSTP can host corner modes
that remain intact even under a considerable sublattice po-
tential. Interestingly, the sublattice potential turns the HOTS
into an extrinsic topological superconductor [40,41,56–68]
or a boundary obstructed topological superconductor (BOTS)
[69–76], where corner modes are protected by the energy gap
of the edge Hamiltonian, not the bulk Hamiltonian. We also
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propose a double gate setup that enables the realization of a
tunable BOTS phase transition.

In the following, we first illustrate how unbroken symme-
tries can protect the BOTS phase, and then we analyze the
large sublattice potential limit of honeycomb lattices, which
effectively can be mapped into two triangular lattices. We
demonstrate that the existence of boundary modes in the nor-
mal state (without superconductivity) is crucial for the BOTS
(in the superconducting state). As fSTP acts effectively as a
p-wave pairing for these boundary modes, the corner modes
in the BOTS can be interpreted as the end modes of Kitaev
chains [77] on the boundaries.

The rest of the paper is organized as follows. In Sec. II,
we introduce our model to study fSTP in a honeycomb lat-
tice. Then in Sec. III, we describe the boundary-obstructed
topological nature of the model and show its relation to the
topological physics of the Kitaev chain. In Sec. IV, we give
a brief discussion on the disorder, interaction, and extension
of BOTS to spin-polarized cases. Finally, we summarize our
results in Sec. V.

II. MODEL

The Bogoliubov–de Gennes (BdG) Hamiltonian for the
honeycomb lattice with pz orbital and fSTP is given by (see
Appendix A for a derivation)

HBdG(k) = t1H++
1 (k)σxτz + t1H−+

1′ (k)σyτz + t2H++
2 (k)τz

− μτz + Mσzτz + �sH
+−
3 (k)sxτy, (1)

where t1, t2, μ, and M are nearest-neighbor hopping, next-
nearest-neighbor hopping, chemical potential, and sublattice
potential, respectively [78,79]. We note that μ and M can
be changed by controlling the gate voltage [see Fig. 1(b)].
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FIG. 1. The fSTP in the honeycomb lattice. (a) The top view of
the honeycomb lattice with fSTP between next-nearest-neighboring
sites (shown with arrows). (b) Double gate setup for tuning both
μ and M in a buckled honeycomb lattice. (c) The schematic su-
perconducting phase diagram of a honeycomb lattice proposed
in [55]. (d) Momentum space distribution of a general fSTP
[H+−

3 (k) in Eq. (1)].

In Eq. (1), σx,y,z, sx,y,z, τx,y,z are the Pauli matrices
for sublattice, spin, and electron-hole degrees of free-
dom. The Hη1,η2

n (kx, ky) are momentum-dependent functions,
in which Hη1,η2

n (kx, ky) = η1Hη1,η2
n (−kx, ky), Hη1,η2

n (kx, ky) =
η2Hη1,η2

n (kx,−ky ), and their explicit forms are provided in
Appendix A. In Eq. (1), �s = (�A + �B)/2 is the sublat-
tice symmetric amplitude of fSTP, where �A and �B are
the amplitude of fSTP on A and B sublattices, respectively.
The H+−

3 (k) in Eq. (1) is the Fourier transform of fSTP in
real space [see the arrows in Fig. 1(a)], in which its zeros
(pairing nodes) are located along � − M1,2,3 [see Fig. 1(d)].
In this paper, we are interested in a low doping limit in
which the fSTP always gives a fully gapped superconductor to

distinguish the in-gap corner modes. In the following, to
investigate the topological state of Eq. (1), we suppose a
nonzero fSTP regardless of μ and M.

III. RESULTS

We summarize the topological characteristic of Eq. (1) in
the last row of Fig. 2. In Fig. 2(a), we show that when μ =
M = 0 (we set t2 = 0 for simplicity), the system hosts gapless
states for all boundaries. In Fig. 2(b), we turn on μ �= 0 and
set M = 0. In this case, the gapless edge modes still exist
along the armchair edges [Fig. 2(b4) and the top and bottom
edges of Fig. 2(b2)]. Here, the system is a topological crys-
talline superconductor, where C2y:(x, z)→−(x, z) symmetric
edges (armchair edges) remain gapless. In the absence of these
symmetric edges, the system is HOTS [see Fig. 3(f)], which
was already discussed in Ref. [39]. The HOTS arises from the
fact that certain symmetry operators (e.g., inversion) flip the
gap sign on the edge Hamiltonian, which gives in-gap states,
called corner modes. In Fig. 2(c) we set 0 < |M| < |μ|. In this
case, although no gapless one-dimensional (1D) edge mode
remains for the system, zero-energy corner modes still appear.
Note that depending on the signs of M and μ, the corner
modes appear at different edges. We will show that this phase
is a BOTS. The BOTS is protected by mirror My: y → −y
symmetry, and corner modes survive as long as My sym-
metric edges (zigzag edges) remain gapped. In Figs. 2(d)
and 2(e), we show that corner modes can be eliminated via
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FIG. 2. Sequence of topological phase transitions by varying μ and M. In the first row, we plot the energy spectrum for the square geometry
given in the second row. In the second row, we plot the local density of states with red dots for the energy states indicated by red in the first
row. In the third and fourth rows, we plot the energy spectrum for the zigzag and armchair strip geometries, respectively, with translational
invariance along one direction where we show the probability of the wave function on the bulk and two edges [see Fig. 2(a2)] by black and
red/blue colors. In these figures, we set t2 = 0, �s = 0.1t1, and μ and M written inside the second row of each column.
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FIG. 3. (a) Disk geometry for edge theory. (b)–(e) Schematic
plot of the edge mass sign for the edge Hamiltonian in different
topological phases. (b) In HOTS, certain symmetry operators such
as C2y, C6z force mass sign changing for different edges, and zero-
edge mass for symmetric edges. (c) In BOTS, the remaining spatial
symmetries such as My, C3z do not enforce mass sign reversal, but
support a zero-edge mass between edges (domains) with opposite
mass signs. (d) To eliminate these zero-edge masses, the remaining
spatial symmetries enforce their pairwise annihilation at symmetric
edges (such as the edge located on the right side). (e) The trivial
phase does not show any edge mass sign flip, and all boundaries are
gapped out. (f) Hexagonal geometry with only zigzag edges in the
HOTS or BOTS shows the same zero energy in-gap states localized
at the corners (red spots).

a gap closing and reopening at one of the zigzag edges [right
edge of Fig. 2(d2) and edge-2 in Fig. 2(d3)], which we call
the BOTS phase transition. Note that the bulk remains gapped
during this transition (black part of the energy spectrum in the
third and fourth rows of Fig. 2).

Symmetries

Equation (1) has particle-hole symmetry � = τxK[k→−k]

and time-reversal symmetry � = syτzK[k→−k], where K is
the complex-conjugate operator. The system is also invari-
ant under a U (1) spin rotation, whose generator is given by
S = szτz. Moreover, Eq. (1) is invariant under a threefold

rotational symmetry C3z = ei
π
3 szτz

[k→R2π/3k], and mirror sym-
metry My = sy[ky→−ky], where Rθ rotates momentum vector
k by θ around the out-of-plane direction. Furthermore, when
M = 0, Eq. (1) has inversion symmetry P = τzσx [k→−k], a

sixfold rotational symmetry C6z = ei
π
6 szτzσxτz[k→R2π/6k], and

a twofold rotational symmetry C2y = syσxτz[kx→−kx]. When
μ = M = t2 = 0, Eq. (1) additionally has a local symmetry
L = sxσzτy that commutes with S .

First-order topological phase

As we have shown in Fig. 2(a), when μ = M = t2 = 0, the
system supports gapless edge modes at all edges, implying the
existence of a first-order topological phase. To see this, it is
enough to rewrite HBdG(k) using a unitary matrix U (given
in Appendix A 5) in the basis where both U †SU = sz and
U †LU = τz (and U †σzU = σz) are diagonal and

t1H++
1 (k)σx + t1H−+

1′ (k)σy + H+−
3 (k)�sτzσz. (2)

Therefore, in each sector of sz = ±1, HBdG decomposes
to two copies of the celebrated Haldane model [80] with
opposite Chern numbers, similar to the two-dimensional
quantum spin Hall insulator model proposed in graphene
[81,82].

Edge theory

Here, we derive an edge Hamiltonian at the boundary of a
disk geometry to study the effect of nonzero μ, M, and t2 on
the gapless boundary modes. The edge Hamiltonian of Eq. (2)
composed of two counterpropagating chiral edge states can be
written as

Hb(θ, k‖) = vθ τzs0k‖, (3)

where vθ is the Fermi velocity of the gapless edge modes
that depends on the polar angle θ , and k‖ is the locally de-
fined momentum tangent to the disk boundary [see Fig. 3(a)].
Note that the edge Hamiltonian has to satisfy all symme-
tries of Eq. (2), whose representations can be obtained by
considering their definitions regarding the edge Hamilto-
nian and commutation or anticommutation relations between
them (see Appendix B). The representations of particle-
hole, time-reversal, L, and S symmetries are given by � =
sxτzK[k‖→−k‖], � = isyτxK[k‖→−k‖], L = τz, and S = sz, re-
spectively. For spatial symmetries, we find that there are
two types of symmetry operations: type-1 symmetries (pro-
portional to τy or τz, such as C6z, C2y, and P), and type-2
symmetries (proportional to τx or τ0, such as C3z and My),
where type-1 symmetries exchange the sublattice index,
whereas type-2 symmetries preserve it.

Possible edge mass

We can study the topological feature of this system
by understanding how symmetry operations keep the edge
Hamiltonian gapless [83]. The only edge mass that anticom-
mutes with Eq. (3), and respects both � and �, is Hb.m.(θ ) =
m(θ )τx. However, since τx is odd under L, the edge Hamil-
tonian remains gapless [m(θ ) = 0] if L is present (i.e., μ =
M = t2 = 0). On the other hand, spatial symmetries relate
edge masses at different θ . If we add a mass term that re-
spects certain symmetries to the bulk BdG Hamiltonian, we
expect it to give an edge mass that also respects the same
symmetries. The mass terms that are invariant under type-1
symmetries give m(θp) = −m(θ ), where θp means the sym-
metric partner of θ related by the given symmetry. Meanwhile,
the mass terms that are invariant under type-2 symmetries give
m(θp) = +m(θ ).

HOTS

Let us first assume that the system is invariant under type-1
symmetries, which force mass sign changing for symmetry-
related edges, giving zero-energy corner modes [84] [see
Fig. 3(b)]. Then, the system belongs to HOTS [83,85]. We
note that for the symmetric edges where θp = θ , such as
θ = π

2 (armchair edges) under C2y, the symmetry operation
forces m(θp ≡ θ ) = −m(θ ) = 0. Hence, the gapless boundary
modes of the first-order topological phase are protected by
symmetry operators on the symmetric edges. Accordingly,
we can call this phase a C2y protected topological crystalline
superconductor [86]. Both μ and t2 are invariant under type-1
symmetries and keep the gapless states of the armchair edges
[Figs. 2(b2) and 2(b4)], while they gap out gapless states of
zigzag edges [Figs. 2(b2) and 2(b3)]. Thus, the hexagonal
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geometry with only zigzag edges hosts only corner modes
[see Fig. 3(f)].

BOTS

Now let us assume that the system is only invariant under
type-2 symmetries, which do not force any topological gapless
states, as symmetry-related edges obtain the same mass sign.
Despite this fact, the system can still have two different phases
that cannot be smoothly connected without a gap closing at a
symmetric edge [see Figs. 3(c)–3(e)] [69,70]. For instance,
μ and M (and t2) are invariant under type-2 symmetries.
Therefore, the HOTS (when μ �= 0, M = 0) can be smoothly
transformed to BOTS by adding tiny |M|. Accordingly, al-
though small M trivialize HOTS, still in-gap corner modes are
protected because of the underlying BOTS phase [Figs. 2(c2)
or 3(f)]. These corner modes can be eliminated only by a
BOTS phase transition through a gap closing at a symmetric
edge [the zigzag edge located at the right side of Fig. 2(d2)
when |M| ≈ |μ|].

BOTS phase transition

We can obtain a rough estimation of the BOTS transition
for geometries with only zigzag edges. For instance, consider
the hexagonal geometry given in Fig. 3(f), where it has six
edges that are labeled by ei (i = 1, . . . , 6) and their corre-
sponding edge masses are denoted by mei. We first obtain
the edge mass at one of the edges (for instance e4) and
obtain others by symmetry considerations. To obtain me4, we
need to find zero-energy modes at that edge (when μ = t2 =
M = 0) and then project μ, t2, and M onto these zero-energy
modes [87], which leads to me4 = −μ − 2t2 + M (see Ap-
pendix C). The anticommutation of a mass term (i.e., M)
with type-1 symmetries forces m(θp) = m(θ ). Thus, we obtain
me3 = μ + 2t2 + M, where signs of μ and t2 are changed but
M keeps its sign. Using type-2 symmetries, the e4, e1, and
e5 (e2, e3, and e6) edges obtain the same edge mass. As a
result, nearby edges of Fig. 3(f) obtain masses with oppo-
site signs when |M| < |μ + 2t2| and give BOTS transition
at |M| = |μ + 2t2|, which leads to a trivial phase by further
increasing |M|.

Large sublattice potential limit

In the large-M limit, wave functions corresponding to the
positive and negative energy bands of the honeycomb lattice
are polarized on one sublattice [see Fig. 4(b)]. Therefore in
this regime, the honeycomb lattice can be effectively decom-
posed into two triangular lattices, which we denote by κ = ±1
[see Fig. 4(a)]. For instance, if we first take into account only
t1 and M, we can write an effective Hamiltonian on the two tri-
angular lattices with nearest-neighbor hopping t ′ = t2

1
2κM and

on-site potential V ′ = κM+ zt2
1

2κM (see Appendix D). Here z is
the coordination number of a site that counts the number of
the honeycomb links connected to it. When |M| � |t1|, we
confirm that this effective Hamiltonian (by choosing z = 3 for
all sites) gives the identical bulk energy spectrum to the hon-
eycomb lattice. However, the zigzag boundary modes [88,89]
in the normal state of the honeycomb lattice are absent in
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FIG. 4. (a) In the large sublattice potential M limit, the honey-
comb lattice is effectively decomposed into two triangular lattices.
(b) The normal state energy dispersion of the honeycomb lattice with
strip geometry and zigzag edges, in which we only consider t1 and
M (= 2t1). (c) The normal state energy dispersion of the effective
triangular lattice (see the main text) with strip geometry and flat
edges [see Fig. 4(e)]. (d) Same plot as (c) obtained after modifying
the on-site potential on the boundary vertices. The green insets in
(b)–(d) magnify energy dispersion around k = π . (e) Superimposed
figure of the honeycomb lattice with two effective triangular lattices.
(f) Effective Kitaev chains labeled by κ = ±1 reside at the zigzag
edges of the strip geometry of the honeycomb lattice.

the effective triangular lattices [compare Figs. 4(b) and 4(c)].
As we have shown in Fig. 4(d), we can restore the normal-
state boundary modes in the triangular lattices by modifying
the effective on-site potential considering the fact that at the
zigzag boundary vertices, z = 2 [see Fig. 4(e)]. Interestingly,
turning on fSTP in the triangular lattice does not lead to
any corner modes unless we modify the on-site potential at
boundary vertices. Therefore, we can conclude that BOTS in
the honeycomb lattice or the modified triangular lattice are
related to the presence of these normal-state boundary modes.

Effective Kitaev model and topological invariant

Because normal-state boundary modes are effectively lo-
calized at the boundary vertices [90], we can write an effective
1D Hamiltonian [91,92], in which the fSTP acts as a p-wave
pairing for these vertices [see Fig. 4(f)]. Interestingly, this
model can be considered as a generalization of the celebrated
Kitaev model hosting Majorana end modes [77,93–95]. We
can write a general effective Kitaev model including hopping,
spin-orbit coupling (SOC), M, and pairing at the zigzag edges
as

HK(k) = HN(k)τz + HSO(k)sz + HR(k)sx + H�(k)sxτy, (4)

where we apply Fourier transformation using k, the
momentum parallel to the chain. In Eq. (4), HN(k) =
−μ + κM + 2t2 cos(k) + F κ (k), HSO(k) = 2κλSO sin(k),
HR(k) = 2λR sin(k), H�(k) = 2�κ sin(k), and F κ (k) =∑nc

n=0 t ′κ
n cos(nk), where λSO, λR, and t ′κ

n are intrinsic SOC,
Rashba SOC, and the effective hopping terms mediated
by other (e.g., bulk) vertices, respectively. For instance, it

is possible to write F κ (k) ≈ [1+cos(k)]t2
1

κM by employing the
effective Hamiltonian of the triangular lattice derived in
the previous section as the simplest approximation. The
topological state of Eq. (4) is protected by both particle-hole
� = τxK[k→−k] and time-reversal � = syτzK[k→−k]
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symmetries (see also Appendixes E and I), where the
system can have a nontrivial Z2 topological phase and the
Majorana end modes come in pairs [94]. Note that when
λR = λSO = 0, Eq. (4) is invariant under M̃y = τz[k→−k],
which acts effectively as an inversion symmetry for the
Kitaev chain. Therefore, we can use the parity information
ξ (k) at k = 0, π to obtain Z2 = ∏′

k=0,π ξ (k) invariant, where
the prime indicates that the multiplication is done for only
one state of the Kramer’s pair [94]. Because at k = 0, π ,
Eq. (4) reduces to HN (k)τz, we only need to check the sign
changing between HN (0) and HN (π ). Therefore, we obtain
Z2 = κ sgn(−μ+κM−2t2), and the topological transition
occurs at |M| = |μ+2t2|, consistent with the edge state
analysis. In the large-M normal state of two Kitaev chains,
κ = ±1 are energetically separated, and accordingly for
the geometry given in Fig. 4(f), only one of κ = ±1 can
be topological at most. Hence, we can interpret Fig. 2(c2)
containing a Kitaev chain with a topologically nontrivial
phase on the right zigzag edge. The introduction of SOC does
not break the nontrivial Z2 topology of the effective Kitaev
chain, as it preserves time-reversal symmetry. However, the
presence of SOC can alter the equation defining the phase
boundary, deviating slightly from |M| = |μ + 2t2|, due to the
emergence of other effective terms (see Appendix G).

Note that in Eq. (4), considering sublattice-dependent pair-
ings �κ=± = �A,B does not affect the topological properties
of the effective Kitaev chains. Therefore, the presence of
nonzero asymmetric fSTP �a = �A−�B

2 in the honeycomb
lattice, resulting from an imbalance between the local density
of states in the A and B sublattices under a nonzero sublattice
potential, cannot alter the phase transition. Furthermore, the
dependence of the BOTS on the boundary modes in the nor-
mal states allows us to control the Majorana fermions using
boundary engineering (see Appendix J). Additionally, a non-
trivial topological state in the normal state always guarantees
the existence of boundary modes, and it can lead to Majorana
corner modes in the presence of fSTP (see Appendixes G
and H for the quantum spin Hall effect and the quantum valley
Hall effect [96], respectively).

IV. DISCUSSION

The stability of the BOTS we discussed can be understood
by using the fact that the boundary Hamiltonian of the BOTS
is equivalent to the Kitaev chain. According to the previous
studies on the stability of the Kitaev chain against disorder
and interaction, its topological property is stable against weak
perturbation as long as the energy scale associated with the
disorder or interaction is smaller than the energy gap of the
Kitaev chain [97–103]. This indicates that the topological
property of the BOTS is stable against weak perturbation.

We note that the BOTS is equivalent to a trivial supercon-
ductor under the periodic boundary condition. However, under
the open boundary condition, it possesses two inequivalent
phases: one is trivial and the other is topological, which cannot
be continuously deformed to each other without a gap closing
on its boundary. The underlying symmetry of BOTS forces
the topological phase transition mediated by a gap closing
on symmetric edges [70]. Moreover, the bulk in the BOTS

can provide enough carriers to derive the system toward fSTP
instability.

Last but not least, although our discussion focused on
the spin-full systems, the same idea can be applied to
spin-polarized normal states such as gapped Dirac half-
metals. By employing a similar analytic approach to the
spin-polarized case, we found that the spin-polarized sys-
tem also exhibits BOTS as in the case of spin-full systems
(see, e.g., Appendix F).

V. CONCLUSION

In this work, we have studied the topological features of the
f -wave superconductor in buckled honeycomb structures with
sublattice potential. We first uncovered that despite breaking
several symmetries by the sublattice potential, the remaining
symmetries still protect BOTS with corner modes, and these
corner modes disappear after a BOTS phase transition, medi-
ated by gap closing on the symmetric edges. Furthermore, we
uncover that generating boundary modes in the normal state
(using boundary engineering or manipulating gate voltages)
is an important step to realizing BOTS in the presence of
fSTP. Our study can be extended to many recently discovered
superconductors [1–4,104] in which superconductivity may
obtain an fSTP symmetry [105,106].
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APPENDIX A: THE DERIVATION OF THE
BOGOLIUBOV–DE GENNES HAMILTONIAN

1. Normal state

The general Hamiltonian of a honeycomb material with pz

orbital in the normal state reads

H = −t1
∑
〈i, j〉,s

c†
isc js + t2

∑
〈〈i, j〉〉,s

c†
isc js − μ

∑
i,s

c†
iscis

+ M
∑
i,s

κic
†
iscis + iλSO

∑
〈〈i, j〉〉,ss′

vi jc
†
is[sz]ss′c js′

+ iλR

∑
〈〈i, j〉〉,ss′

c†
is[(�s × d̂i j )ẑ]ss′c js′ , (A1)

where t1, t2, μ, λSO, λR, and M are nearest-neighbor hopping,
next-nearest-neighbor hopping, chemical potential, intrinsic
spin-orbit coupling, Rashba spin-orbit coupling, and sublat-
tice potential, respectively. In Eq. (A1), 〈i, j〉 and 〈〈i, j〉〉
indicate nearest-neighbor and next-nearest-neighbor links in
the honeycomb structure. The sα=x,y,z are usual Pauli matri-
ces that act on the spin degree of freedom, and c†

is, cis are
the creation and annihilation operator of an electron in the
ith site with spin s =↑,↓, respectively. We set κi∈A = 1 and
κi∈B = −1, where A and B denote the two sublattices of the
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FIG. 5. Energy dispersion (normal state) of the honeycomb lat-
tice for positive energy, when M �= 0 and λSO �= 0. The intersection
of energy dispersion (with some μ) is shown with blue and red
contours, indicating their spin characteristic. The wiggly green lines
show the instability toward non-FFLO superconductivity between
opposite spins.

honeycomb lattice [Fig. 1(a)]. In Eq. (A1), d̂i j is the direc-

tion that connects i to j site and vi j = �dik×�dk j

| �dik×�dk j | , where k is

the intermediate site that connects i to site j by a nearest-
neighbor path. By employing Fourier transformation c†

is =
1√
N

∑
k∈BZ eik·ri c†

kκis
, cis = 1√

N

∑
k∈BZ e−ik·ri ckκis, we obtain

H =
∑

k

∑
κκ ′={A,B}

∑
s,s′={↑,↓}

c†
sκk[HN(k)]sκ,s′κ ′cs′κ ′k, (A2)

where k = (kx, ky), and

HN(k) = t1H++
1 (k)σx + t1H−+

1′ (k)σy + t2H++
2 (k) − μ

+ λSOH+−
3 (k)szσz + λRH+−

4 (k)sx

+ λRH−+
5 (k)sy + Mσz. (A3)

In Eq. (A3), σα=0,x,y,z are the identity and Pauli
matrices that act on the sublattice degree of freedom.
Furthermore, we suppress the direct product notation
⊗ between Pauli matrices and 2×2 identity matrices,

and we define H++
1 (k) = −2 cos kx

2 cos
√

3ky

2 − coskx,

H−+
1′ (k) = 2 sin kx

2 cos kx
2 − 2 sin kx

2 cos
√

3ky

2 , H++
2 (k) = 4 cos

3kx
2 cos

√
3ky

2 + 2 cos
√

3ky, H+−
3 (k) = 2 sin

√
3ky − 4 cos 3kx

2 sin√
3ky

2 , H+−
4 (k) = −2 cos 3kx

2 sin
√

3ky

2 − 2 sin
√

3ky, and H−+
5 (k)

= 2
√

3 sin 3kx
2 cos

√
3ky

2 , respectively.

2. Pairing potential

The energy dispersion of Eq. (A3) in the presence of both
μ and λSO but without λR = 0 is shown in Fig. 5. As we can
see, the system has two valleys, and the Fermi contours along
them are spin-polarized, and its polarization flips in different
valleys. Considering the Fermi-contour geometry (red and
blue contours in Fig. 5), and in the absence of Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) superconductivity, the pairing

can occur among electrons with opposite spin and momenta,
which can lead to both singlet and triplet pairing instabilities.
Furthermore, in the buckled honeycomb structure, such as
silicene, we can tune both μ and M using a double-gate setup
[see Fig. 1(b)], which may enhance or change superconduc-
tivity instability. Indeed, it is shown that the triplet f -wave
pairing can be dominated over a singlet d-wave channel in
the presence of large M by polarizing wave function in one
of the sublattices [55] [see Fig. 1(c)]. The f -wave pairing
has a sin3θi j characteristic, where θi j is the azimuthal angle
from the horizontal direction. Therefore, the pairing potential
between the nearest-neighbor vertices is zero, while for the
next-nearest neighbors, the sign of pairing flips six times by
rotating around a given site [see Fig. 1(a)]. In the main text,
we assume that λR, λSO � M, which can be satisfied for a
low buckled honeycomb structure under a strong electric field,
and we expect f -wave pairing can be dominated even in the
presence of small spin-orbit coupling. Because of M �= 0, the
f -wave pairing potential �A, �B can be different for A and B
sublattices, respectively. The f -wave pairing in real space can
be modeled by

Hsc =
∑
〈〈i, j〉〉

∑
ss′

vi j (κi�s + �a)c†
is[sx]ss′c†

is′ , (A4)

where we define a symmetric �s = (�A + �B)/2 and an
asymmetric �a = (�A − �B)/2 pairing potential. Note that
vi j = κisin3θi j . We can multiply Eq. (A4) by any arbitrary
phase factor, which, although it may change the form of the
Hamiltonian and symmetries representation, does not have
any physical importance.

3. BdG Hamiltonian

By obtaining Fourier transformation of Eq. (A4), Hsc =
−i

∑
c†

sκkH+−
3 (k)(k)[(�s + σz�a)sx]sα,s′α′c†

s′κk. We can write
the Bogoliubov–de Gennes (BdG) Hamiltonian as

HBdG =
∑

a†
sκτk[HBdG(k)]sκτ,s′κ ′τ ′as′κ ′τ ′k, (A5)

where τ = ±1 indicate electron and hole in the Nambu space;
a†

sκ (+1)k = c†
sκk, a†

sκ (−1)k = csκ−k, asκ (+1)k = csκk, asκ (−1)k =
c†

sκ−k, and we assume summation over repeated indices. The
HBdG(k) is given as follows:

HBdG(k) = t1H++
1 (k)σxτz + t1H−+

1′ (k)σyτz + t2H++
2 (k)τz

+ λSOH+−
3 (k)szσz + λRH+−

4 (k)sx

+ λRH−+
5 (k)syτz

− μτz + Mσzτz + H+−
3 (k)(�s + σz�a)sxτy,

(A6)

where τ0,x,y,z are identity and Pauli matrices that act on the
electron-hole degrees of freedom.

4. Symmetries

In this section, we present the extended symmetries
of (A6). For simplicity, let us first assume that the
honeycomb lattice is unbuckled. Equation (A6) generally
(in the existence of all terms) has particle-hole symmetry
� = τxK[k → −k], time-reversal symmetry � = syτzK
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TABLE I. Symmetry operators [in the bulk representation Eq. (A8) and edge representation Eq. (B1)] and their algebra, where their
commutation or anticommutation XX ′ − sX ′X = 0 are shown with s = ±1, respectively. For the cases in which they do not either commute
or anticommute, we leave their blocks empty. The last two columns show the algebra between symmetry operators (edge representation) and
τz, τx .

Bulk representation Algebra between symmetry operators: XX ′ − sX ′X = 0 Edge representation Algebra

X Operation k → X 2 � � L S My C2x P Mx C2z C2y C3z C6z Operation θ → k‖ → τz τx

� isxτzσzK −k +1 +1 +1 +1 −1 −1 −1 −1 +1 +1 +1 +1 −1 sxτzK θ −k‖ +1 −1
� syτxK −k −1 +1 +1 −1 −1 −1 −1 +1 −1 −1 −1 +1 +1 isyτxK θ −k‖ −1 +1
L τz k +1 +1 −1 +1 +1 −1 −1 +1 −1 +1 −1 +1 +1 τz θ k‖ +1 −1
S sz k +1 −1 −1 +1 +1 −1 −1 +1 −1 +1 −1 +1 +1 sz θ k‖ +1 +1
My syτx (kx,−ky ) +1 −1 −1 −1 −1 +1 −1 +1 −1 −1 +1 · · · · · · syτx −θ −k‖ −1 +1
C2x sxτx (kx,−ky ) +1 −1 −1 −1 −1 −1 +1 +1 +1 −1 −1 · · · · · · sxτx −θ −k‖ −1 +1
P σx −k +1 −1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 szτz θ + π k‖ +1 −1
Mx sxτxσx (−kx, ky ) +1 +1 −1 −1 −1 −1 +1 +1 +1 −1 −1 · · · · · · syτy π − θ −k‖ −1 −1
C2z szσx −k +1 +1 −1 +1 +1 −1 −1 +1 −1 +1 −1 +1 +1 τz θ + π k‖ +1 −1
C2y syτxσx (−kx, ky ) +1 +1 −1 −1 −1 +1 −1 +1 −1 −1 +1 · · · · · · sxτy π − θ −k‖ −1 −1

C3z
1+i

√
3sz

2 R2π/3k −C−1
3z +1 +1 +1 +1 · · · · · · +1 · · · +1 · · · +1 +1 1+i

√
3sz

2 θ + 2π/3 k‖ +1 +1

C6z

√
3σx+iszσx

2 R2π/6k C3z −1 +1 +1 +1 · · · · · · +1 · · · +1 · · · +1 +1
√

3szτz+iτz
2 θ + 2π/6 k‖ +1 −1

[k → −k], and chiral symmetry � = syτy, where K is the
complex-conjugate operator.

Moreover, Eq. (A6) is invariant under a threefold rota-

tional symmetry C3z = ei
π
3 szτz [k → R2π/3k], mirror symme-

try My = sy[(kx, ky) → (kx,−ky)], and a twofold rotational
symmetry C2x = sxτz[(kx, ky) → (kx,−ky)] (λR = 0), in addi-
tion to U (1) spin rotation around the out-of-plane direction,
whose generator is given by S = szτz (λR = 0).

Furthermore, when �a = M = 0, Eq. (A6) has inversion
symmetry P = τzσx[k → −k] (λR = 0), a mirror symme-
try Mx = sxσx[(kx, ky) → (−kx, ky)], and a sixfold rota-

tional symmetry C6z = ei
π
6 szτzσxτz[k → R2π/6k] and two

twofold rotation symmetries C2z = szσx[k → −k] and C2y =
syσxτz[(kx, ky) → (−kx, ky)] (λR = 0).

When μ = M = t2 = 0, Eq. (A6) has an additional local
symmetry L = sxσzτy (λso = 0) that commutes with S .

On the other hand, when �a = �s = 0, Eq. (A6) has
two additional symmetries regarding U (1) gauge symmetry
T = τz and spin rotational symmetry S̃ = sz (λR = 0), where
S = S̃T .

Note that considering the buckling property, some symme-
try operators such as Mx and C2x are not true spatial symmetry
of the system. However, they are related to the other true
spatial symmetry of the system by multiplication of S , for
instance Mx = −iC2yS and C2x = iMyS , respectively.

5. Basis transformation

In studying the first-order topological phase and deriving
the edge Hamiltonian, we rewrite Eq. (A6) in a basis in which
L, S , and σz are diagonal. We use

U = e
iπsxσz

(
− 1

4 + 1
3
√

3
τx+ 1

3
√

3
τz

)
+iπ 1

3
√

3
τy (A7)

and get (λSO = λR = �a = 0)

U †HBdG(k)U = t1H++
1 (k)σx + t1H−+

1′ (k)σy+ τzH
+−
3 (k)�sσz

+ [t2H++
2 (k) − μ]τx + Mσzτx. (A8)

APPENDIX B: EDGE HAMILTONIAN
AND SYMMETRY REPRESENTATION

In the main text, we argue that due to the chiral propagating
of the edge modes in opposite directions, the edge Hamilto-
nian is given by

Hedge(θ, k‖) = vθ τzs0k‖. (B1)

We can justify this edge Hamiltonian as follows. First sz is
absent from Eq. (A8). Thus, the edge Hamiltonian is indepen-
dent of sz. Second, we knew that in Eq. (A8) if we change
the sign of �s (when μ = M = 0) the propagation of chiral
modes flips and therefore the edge Hamiltonian has to be
proportional to τz.

In the following, we obtain a representation of the
symmetry operators for the edge Hamiltonian. To derive a rep-
resentation of symmetry operators, we first note that Ledge =
τz and Sedge = sz. Next, we determine the particle-hole op-
erator, regarding the edge Hamiltonian (anticommuting with
the Hamiltonian and flipping the sign of k‖), and its rela-
tion with Ledge and Sedge (given in Table I). However, the
edge Hamiltonian and Ledge and Sedge are invariant under
exp(iφ + iατz + iβsz + iγ τzsz ). Therefore, we have the free-
dom to choose the particle-hole symmetry representation.
After fixing the particle-hole symmetry representation, we
can uniquely determine a representation for time-reversal
symmetry by considering its definition regarding the edge
Hamiltonian (commuting with the Hamiltonian and flipping
the sign of k‖), and its relation with Sedge, Ledge, and �edge.
We choose �edge = sxτzK[k‖ → −k‖], and we obtain �edge =
isyτxK[k‖ → −k‖].

Next, we determine the representation of other spatial sym-
metries. Generally, all of the spatial symmetry operators have
to commute with the edge Hamiltonian. To obtain them, we
should know how reflection, rotations, and inversion trans-
form k‖. In Table I we show the effect of symmetry operators
on k‖, which can be easily found by considering Fig. 3(a) of
the main text [we illustrate rotation and reflection symmetries
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in Fig. 3(a)]. If a given symmetry operator flips (keeps) the
sign of k‖, it has to anticommute (commute) with τz (we have
tabulated them in Table I). To continue, we need to find the
algebra or relation among different symmetry operators from
their bulk definition (given in Table I) and then construct the
edge representation for them by considering the same algebra.
We start with Medge

y . Considering the definition of Medge
y

regarding the edge Hamiltonian and its relations with Sedge,
Ledge, �edge, and �edge, we obtain an arbitrary combination
of two options. This is because Hedge, Ledge, Sedge, �edge, and
�edge are still invariant under exp(iβsz ). We choose Medge

y =
syτx[k‖ → −k‖], and the representation of other symmetry
operators can be determined uniquely by doing the same pro-
cedure (all given in Table I).

As we have discussed in the main text, the only edge mass
that respects both particle-hole and time-reversal operators
is m(θ )τx. If we assume that in the bulk an L-symmetry-
breaking term commutes with certain symmetry operations,
then similarly its corresponding mass m(θ )τx has to commute
with the edge representation of those symmetry operators.
Therefore, if that symmetry operator anticommutes (com-
mutes) with τx, then m(θ ) should flip (keeps) its sign on
the symmetric partner m(θsp) = −m(θ ) [m(θsp) = m(θ )]. We
also tabulate the commutation or anticommutation of the edge
representation of symmetry operators with τx in Table I.

Furthermore, under time-reversal and particle-hole sym-
metry, we can also add the term m′τzsz to the edge
Hamiltonian Eq. (B1). Considering Eq. (B1) and the
edge mass and m′τzsz, we can write

H ′
edge(θ, k‖) = vθ τzs0k‖ + mτx + m′τzsz. (B2)

The energy spectrum of Eq. (B2) is given by

E (k) = ±
√

(k ± m′)2 + m2. (B3)

The topological phase transition occurs when k = ±m′ and
m = 0. Nonzero values of m′ alter the BOTS transition in
momentum space. It is noteworthy that, in the presence of
λSO, the BOTS transition does not occur at the time-reversal
invariant point (i.e., k = 0 in our low-energy Dirac theory), as
demonstrated in Appendix G. This observation suggests that
spin-orbit coupling introduces additional terms in the effective
edge Hamiltonian.

APPENDIX C: EDGE THEORY

We can find the zero-energy modes of Eq. (A8) by ex-
panding the Hamiltonian up to the linear order of kx around
M1 [87]. To describe the zero-energy edge modes, we sub-
stitute kx → −i∂x, where x = 0 is the position of the edge
that separates the interior region x < 0 from its exterior x > 0,
achieving(
− t1ζ (x)

σx +
√

3σy

2
− i∂x(

√
3σx −σy)t1

)
ψsz=±1,τz=±1(x)=0,

(C1)

where we introduce ζ (x) = −sgn(x), |x| � 0. The following
wave functions satisfy this equation:

ψsz=±1,τz=±1(x) = 1

N e
1
2

∫
ζ (x)dx |sz = ±1, τz = ±1, σz = 1〉 ,

(C2)

where N is the normalization factor. By projecting μ,
M, and t2 onto ψsz=±1,τz=±1(x) subspace, we obtain me4 ≡
m(θ = 0) = −μ − 2t2 + M.

APPENDIX D: LARGE SUBLATTICE POTENTIAL
LIMIT: EFFECTIVE HAMILTONIAN

In the large sublattice potential limit, we can decompose
the Hamiltonian of the honeycomb lattice into two triangular
lattices. For simplicity, consider the Hamiltonian of a hon-
eycomb lattice (normal state) with sublattice potential and
nearest-neighbor hopping terms,

ti jψ
A
j − MψB

i = EψB
i , (D1)

ti jψ
B
j + MψA

i = EψA
i , (D2)

where ψA
i and ψB

i are the wave function at site i and sub-
lattices A and B, respectively. We want to rewrite Eqs. (D1)
and (D2) in such a way that A and B sublattice sectors are
decomposed. To do this, we can rewrite Eqs. (D1) and (D2) as

ψB
i = 1

E + M
ti jψ

A
j , (D3)

ψA
i = 1

E − M
ti jψ

B
j , (D4)

which lead to

ti j
1

E − M
tjkψ

B
k − MψB

i = EψB
i , (D5)

ti j
1

E + M
tjkψ

A
k + MψA

i = EψA
i . (D6)

In the large sublattice limit, we can approximate E = ∓M in
the denominator of Eqs. (D5) and (D6), respectively,

ti j
1

−2M
tjkψ

B
k − MψB

i = EψB
i , (D7)

ti j
1

+2M
tjkψ

A
k + MψA

i = EψA
i . (D8)

These Hamiltonians describe two triangular lattices with ef-
fective on-site and nearest-neighbor hopping. We can read
the effective hopping (k �= i) and on-site potential (k = i) as
t2/(κ2M ) and zt2/(κ2M ) + κM, respectively, where z is the
coordination number.

APPENDIX E: WINDING NUMBER AS A TOPOLOGICAL
INVARIANT FOR THE EFFECTIVE KITAEV CHAIN

The topological phase of the effective Kitaev chain also
protected by the chiral symmetry when λR = 0. To see this,
we rewrite the effective Kitaev Hamiltonian in the basis
where both chiral symmetry � = syτy and S = szτz are diag-
onal (|� = 1,S = 1〉, |� = 1,S = −1〉, |� = −1,S = 1〉,
|� = −1,S = −1〉), getting a block off-diagonalized matrix

U †HKitaev(k)U =
(

0 h(k)
h†(k) 0

)
, (E1)
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where U is a unitary matrix and

h(k) =
(−HN (k) − HSO(k) + iH�(k) HR(k)

HR(k) −HN (k) + HSO(k) − iH�(k)

)
. (E2)

When λR = 0, the topological invariant of the effec-
tive Kitaev chains is given by the winding number of
each diagonal element of h(k), or equivalently νS=±1 =

1
2π

∫
dkh−1

SS (k)∂khSS (k). In the topological phase, the two
winding numbers are nonzero but have opposite signs ν1 =
−ν2 = ±1. After turning on λR �= 0, we have to calculate
the total winding number of the whole h(k) or equivalently
νt = 1

2π

∫
dk tr(h−1(k)∂kh(k)), which already gives zero for

λR = 0. Therefore, in the presence of λR, the winding number
cannot diagnose the topological phase.

APPENDIX F: SPIN-POLARIZED CASE

In the Dirac half-metal material, one spin component is
gapped out, and the remaining Dirac cones are gapless and
spin-polarized. Introducing the sublattice potential gapped
out the remaining Dirac cone. Alternatively, we can also
generalize this material to gapped Dirac half-metal material,
where Dirac cones in both spin sectors are gapped out with
a spin-dependent sublattice potential Msσz, but the sublat-
tice potential for one spin sector is bigger than the other,
for instance M↑ � M↓. Therefore, the Fermi contours are
polarized in one spin sector, and triplet pairing is the only
possible pairing instability. As we have discussed before, the
existence of normal states (edge modes in the absence of
superconductivity) is the key to realizing the BOTS (when
superconductivity is turned on), and we can write down an
effective Hamiltonian for the spin-polarized Kitaev chain

HSPKC(k) = HN(k)τz + HSO(k)τ0 + H�(k)τy. (F1)

In Eq. (F1), HN(k) = −μ + κM↓ + 2t2 cos(k) + F κ
boundary(k),

HSO(k) = 2κλSO sin(k), HR(k) = 2λR sin(k), H�(k) =
2�κ sin(k), and Fboundary(k) = ∑nc

n=0 t ′κ
n cos(nk), where

t ′κ
n are the effective hopping terms mediated by other (e.g.,

bulk) vertices. The particle-hole and time-reversal symmetry
are given by � = τxK[k → −k] and � = K[k → −k],
respectively. In the absence of spin-orbit coupling, Eq. (F1) is
invariant under a chiral symmetry τx and C2x = τz[k → −k]
symmetry. The chiral symmetry allows us to define the
winding number, and similar to the spin-full calculation, it
gives the nontrivial topological phase if |M| < |μ + 2t |. On
the other hand, Z2 topological invariant can be determined by
parity information on k = 0, π , which gives similar results
to the winding number calculation. In the presence of SOC,
we cannot use the winding number, but the Z2 topological
invariant is well-defined and cannot be changed until the edge
Hamiltonian goes to gap-closing.

APPENDIX G: f -WAVE SPIN-TRIPLET PAIRING
AND QUANTUM SPIN HALL EFFECT, LARGE

SPIN-ORBIT COUPLING LIMIT

In the large λSO > M limit, the normal state of the system
has a nontrivial topological phase, which is known as the

quantum spin Hall effect [81]. In the following, we derive the
edge Hamiltonian using symmetry analysis. When (μ = t2 =
M = λR = �s = �a = 0), Eq. (A6) is reduced to

HBdG(k) = t1H++
1 (k)σxτz + t1H−+

1′ (k)σyτz

+ λSOH+−
3 (k)szσz. (G1)

This Hamiltonian is invariant under �, �, C6z, C2z, C2y, Mx,
P , C3z, C2x, My, S , T , and S̃ . In this Appendix, for simplicity,
we assume λR = 0.

It is helpful to rewrite Eq. (G1) in a new basis using a
unitary transformation

U = exp
1
4 iπ (σz−σzτz )

, (G2)

which leads to

U †HBdG(k)U = t1H++
1 (k)σx + t1H−+

1′ (k)σy

+ λSOH+−
3 (k)σzsz. (G3)

Equation (G3) describes two copies (τz = ±1) of the cele-
brated Kane-Mele model, and it hosts two chiral boundary
modes propagating in opposite directions. Therefore, the edge
Hamiltonian can be described by

H0
edge(θ, k‖) = vθk‖szτ0. (G4)

We obtain the symmetries representation of Eq. (G4) using
the same procedure that we used in Appendix B, where we
tabulated them in Table II.

In the following, we try to find a general edge Hamiltonian
regarding nonzero �s, μ, M, and �a. Each of these terms
has a certain commutation or anticommutation relation with
symmetry operators, and we assume that their main effect also
respects those relations in the edges Hamiltonian.

The μ, t2, and M respect all of the local symmetries
(�, �, T , S̃ , and S). The only k‖-independent term that can
satisfy these symmetries is

Wα (θ )τz, (G5)

where α = μ, t2, M. These terms are symmetric under My,
C2x, and C3z. Accordingly, and using Table II, Wα (θ ) =
Wα (−θ ) = Wα (θ + 2π/3). However, although μ and t2 are
symmetric under Mx, C2y, P , C2z, and C6z (commuting with
them), M is not (anticommuting with them). Thus, μ and t2
lead to (where α = μ, t2)

Wα (θ ) = Wα (π − θ ) = Wα (π + θ ) = Wα (θ + 2π/6), (G6)

while M leads to

WM (θ ) = −WM (π − θ )

= −WM (π + θ )

= −WM (θ + 2π/6). (G7)

This means that in the Mx symmetric edges (armchair edges),
WM (θ ) = 0. Note that Wμ,t2,M (θ )τz does not commute with
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TABLE II. Symmetry operators [in the bulk representation Eq. (G3) and edge representation Eq. (G4)] and their algebra, where their
commutation or anticommutation XX ′ − sX ′X = 0 are shown with s = ±1, respectively. For the cases in which they do not either commute
or anticommute, we leave their blocks empty. The last two columns show the algebra between symmetry operators (edge representation) and
sz, sxτx .

Bulk representation Algebra between symmetry operators: XX ′ − sX ′X = 0 Edge representation Algebra

X Operation k → X 2 � � T S̃ My C2x P Mx C2z C2y C3z C6z Operation θ → k‖ → sz sxτx

� −iτxσzK −k +1 +1 +1 −1 +1 −1 −1 −1 +1 +1 +1 +1 −1 τxK θ −k‖ +1 +1
� syK −k −1 +1 +1 +1 −1 −1 −1 +1 −1 −1 −1 +1 +1 isyK θ −k‖ −1 −1
T τz k +1 −1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 τz θ k‖ +1 −1
S̃ sz k +1 +1 −1 +1 +1 −1 −1 +1 −1 +1 −1 +1 +1 sz θ k‖ +1 −1
My sy (kx, −ky ) +1 −1 −1 +1 −1 +1 −1 +1 −1 −1 +1 · · · · · · sy −θ −k‖ −1 −1
C2x sxτz (kx, −ky ) +1 −1 −1 +1 −1 −1 +1 +1 +1 −1 −1 · · · · · · sxτz −θ −k‖ −1 +1
P σx −k +1 −1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 τz θ + π k‖ +1 −1
Mx sxτzσx (−kx, ky ) +1 +1 −1 +1 −1 −1 +1 +1 +1 −1 −1 · · · · · · sx π − θ −k‖ −1 +1
C2z szτzσx −k +1 +1 −1 +1 +1 −1 −1 +1 −1 +1 −1 +1 +1 sz θ + π k‖ +1 −1
C2y syσx (−kx, ky ) +1 +1 −1 +1 −1 +1 −1 +1 −1 −1 +1 · · · · · · syτz π − θ −k‖ −1 +1

C3z
1+i

√
3szτz

2 R2π/3k −C−1
3z +1 +1 +1 +1 · · · · · · +1 · · · +1 · · · +1 +1 1+i

√
3szτz

2 θ + 2π/3 k‖ +1 +1

C6z

√
3σx+iszσxτz

2 R2π/6k C3z −1 +1 +1 +1 · · · · · · +1 · · · +1 · · · +1 +1
√

3τz+isz
2 θ + 2π/6 k‖ +1 −1

the Hamiltonian, and it cannot gap out the edge Hamiltonian
[see Figs. 6(a1) and 6(b1)].

As we discussed before, nonzero �s �= 0 (or �a �= 0)
breaks T and S̃ , but the system is still invariant under S . If
we assume three remaining local symmetries �, �, and S , we
can add the following terms to the edge Hamiltonian, which
break S̃ and T :

δα (θ )syτy + �edge
α (θ )k‖sxτx, α = �s,�a. (G8)

These terms anticommute with Eq. (G4) and can gap it out
[Fig. 6(a2)]. Note that even with nonzero �s or �a, the system
is invariant under My, C2x, and C3z. Using Table II, we obtain

δα (θ ) = δα (−θ ) = δα (θ + 2π/3) (G9)

and

�edge
α (θ ) = �edge

α (−θ ) = �edge
α (θ + 2π/3). (G10)

(a1) (a2) (a3)

(b1) (b2) (b3)
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λso=0.3t1, μ=0.77t1,
 M=0.5t1 , Δ=0.1 t1 

FIG. 6. Energy dispersion (superconducting states or BdG
Hamiltonian) of a strip geometry of the honeycomb lattice with
f -wave spin-triplet pairing and spin-orbit coupling.

Although �s is symmetric under Mx, C2y, P , C2z, and C6z

(commuting with them), �a are not (anticommuting with
them). Using Table II, we obtain

δ�s (θ ) = −δ�s (π + θ ) = −δ�s (π − θ ), (G11)

�
edge
�s

(θ ) = −�
edge
�s

(π + θ ) = −�
edge
�s

(π − θ ), (G12)

δ�a (θ ) = δ�a (π + θ ) = δ�a (π − θ ), (G13)

and

�
edge
�a

(θ ) = �
edge
�a

(π + θ ) = �
edge
�a

(π − θ ). (G14)

This means that at the Mx symmetric edges (armchair edges),
δ�s (θ ) = �

edge
�s

(θ ) = 0.
We can write the general edge Hamiltonian as follows:

Hedge(θ, k‖) = vθk‖sz + W (θ )τz + δ(θ )syτy

+ �edge(θ )k‖sxτx, (G15)

where

W (θ ) = Wμ(θ ) + Wt2 (θ ) + WM (θ ) + Wother corrections(θ ),
(G16)

δ(θ ) = δ�s (θ ) + δ�a (θ ) + δother corrections(θ ), (G17)

�edge(θ ) = �
edge
�s

(θ ) + �
edge
�a

(θ ) + �
edge
other corrections(θ ).

(G18)

As we have discussed before, My, C2x, and C3z give

W (θ ) = W (−θ ) = W (θ + 2π/3), (G19)

δ(θ ) = δ(−θ ) = δ(θ + 2π/3), (G20)

�edge(θ ) = �edge(−θ ) = �edge(θ + 2π/3). (G21)
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However, when M = �a = 0, then Mx, C2y, C2z, P , and C6z

give

W (θ ) = W (π − θ ) = W (π + θ ) = W (θ + 2π/6), (G22)

δ(θ ) = −δ(π − θ ) = −δ(π + θ ) = −δ(θ + 2π/6), (G23)

�edge(θ ) = −�edge(π−θ ) = −�edge(π+θ )

= −�edge

(
θ+2π

6

)
. (G24)

In the following, we discuss different topological phases
of the system by studying the gapless state of the general edge
Hamiltonian Eq. (G15) that is forced by symmetries relations.
We first discuss the case of μ = t2 = M = �a = 0, and then
we discuss possible topological phases.

When μ = t2 = M = 0 (but nonzero �s and �a), the
bulk Hamiltonian is invariant under two other local sym-
metries O1 = τxσzsz and O2 = τyσz [in the representation of
Eq. (A6)]. We obtain their edge Hamiltonian representation as
Oedge

1 = τx and Oedge
2 = szτy by using their relationships (com-

mutation or anticommutation) with other local symmetries �,
�, etc. Note that Oedge

1 and Oedge
2 force W (θ ) = δ(θ ) = 0 in

Eq. (G15). Consequently, Eq. (G15) remains gapless, the f -
wave pairing potential cannot gap out the normal state, and the
system can be considered as a first-order topological phase,
which indicates that gapless states exist along all boundaries.
This phase is connected (�a = 0, λR → 0) to the first-order
topological state that we discuss in the main text.

If we turn on μ �= 0 or t2 �= 0, but keep M = �a = 0, a
nonzero W (θ ), δ(θ ), and �edge(θ ) can be induced in the edge
Hamiltonian. However, symmetry constraints (type-1 symme-
try group) force sign changing for �edge(θsp) = −�(θ ) and
δ(θsp) = −δedge(θ ), which means that they vanish at the sym-
metric edges (armchair edges). Therefore, the normal modes
remain gapless, and f -wave spin-triplet pairing does not gap
them out in the Mx symmetric edges [compare Figs. 6(a2)
and 6(b2)]. We can call this system a crystalline topological
superconductor. Furthermore, due to the sign changing of δ(θ )
and �edge(θ ), this system becomes a HOTS in the absence of
symmetric edges [39].

By introducing M �= 0 or �a �= 0, type-1 symmetries will
be broken, and there is no constraint that forces gapless
states for Eq. (G15). Therefore, the system is no longer
HOTS, and crystalline topological superconductivity breaks
down. Consequently, gapless edge modes along Mx sym-
metric edges are gapped out [see Fig. 6(b3)]. However,
the system can still obtain a nontrivial BOTS phase, where
the topological phase transitions from the nontrivial phase
to the trivial phase mediated by a gap closing at an My

symmetric edge. The energy spectrum of Eq. (G15) is zero
(gapless) if W (θ ) = −v(θ ) δ(θ )

�edge(θ ) and k‖ = δ(θ )
�edge(θ ) . Now con-

sider two My symmetric edges that are located at θ = 0, π .
Doing the same procedure that we used in Appendix C,
we can find W (0) ≈ −(μ + 2t2) + M, while W (π ) ≈
−(μ + 2t2) − M. Therefore, in the absence of δ(0, π ) = 0,
the BOTS phase transition is given by |M| = |μ + 2t2|, which
is the same as that obtained in other limits. This BOTS phase
transition is not dependent on spin-orbit coupling strength, so
reducing λso does not change it. Finally, a trivial insulator is
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(b) (c)

(d) (e)

E E
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/t1
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FIG. 7. The f -wave spin-triplet pairing and valley quantum Hall
effect. (a) The double gate setup with an opposite electric field on
the opposite halves of the system. (b), (d) The energy dispersion
(normal state) of a zigzag strip geometry with an opposite sublattice
mass |M| = 0.3t1 (t1 = 1) on the two sides of the system. (c), (e)
Majorana zero-energy modes (red spots), when we turn on f -wave
spin-triplet pairing �s = 0.1t1. We set (c) μ = −0.4, (e) μ = 0.4,
which is shown by green dashed lines in (b) and (d), respectively.
The number of Majorana zero modes in (c) and (e) amounts to 12
and 4, respectively.

derived from the topological quantum spin Hall phase by re-
ducing λso. Though in this process the normal state undergoes
a bulk gap closing, in the superconducting phase this process
is always gapped. This phase is thus connected to the large
sublattice potential limit that we discussed in the main text.

In Fig. 6(a3) we plot the BOTS phase transition, which ap-
pears for k �= 0, π (corresponding to k = 0 in our low-energy
Dirac theory), and it indicates nonzero δ(θ ). Note that δ(θ )
breaks T symmetry and is a superconducting pairing poten-
tial. Because δ(θ )syτy is k‖-independent, we can interpret it
as an effective spin-singlet pairing potential. We confirm that
in the absence of λso the BOTS transition happens in k = 0,
indicating δ(θ ) is emerging from a combination of spin-orbit
coupling, f -wave spin-triplet pairing, and sublattice potential
processes.

APPENDIX H: f -WAVE SPIN-TRIPLET PAIRING
AND VALLEY QUANTUM HALL EFFECT

Boundary modes in the honeycomb structures can be
achieved by applying the opposite sublattice potential on the
two sides of the system. This can be done by applying an
opposite electric field on two opposite sides of a buckled hon-
eycomb lattice [Fig. 7(a)], in which a boundary mode appears
in the middle of them [Fig. 7(b)]. Actually, this boundary
mode is related to the edge mode of a topological phase with
a nonzero valley Chern number (equal to 1), called the valley
quantum Hall effect, and it is protected by the absence of
scattering between two valleys [96]. One can imagine this
boundary mode as a 1D chain that lives in the middle of the
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FIG. 8. The BOTS transition in a strip geometry where (a) two
edges are zigzag, and (b) one is zigzag and the other is dangling.
We plot energy dispersion (normal state), the edge-resolved winding
number, and the Z2 topological invariant in the left, center, and right
panels. In this calculation, we set M = 0.3t1, �s = 0.1t1, and other
parameters to zero. We also show the energy gap (in the supercon-
ducting state) in the right panels.

system. We show in Figs. 7(c) and 7(e) that the Majorana
zero-energy modes appear (when �s �= 0) at the ends of this
effective 1D (Kitaev) chain. The corner modes in Fig. 7(c) are
related to the normal modes that appear at the zigzag edges
(two effective Kitaev chains that live on the two sides of the
system). These normal modes obtain the same energy due to
opposite sublattice potential on the two sides of the system
[see the degenerate blue and red edge states of the energy
spectrum in Fig. 7(b)].

APPENDIX I: TOPOLOGICAL INVARIANT FOR
THE STRIP OF THE HONEYCOMB LATTICE

We can generalize the Z2 topological invariant or wind-
ing number to calculate the topological states of the strip

geometry. To confirm the Kitaev chain picture, we de-
fine edge-resolved winding-number νS=±1 = νL

S + νR
S , where

νL,R
S = 1

2π

∫
dkTrL,R(h̃−1

S (k)∂kh̃S (k)), and h̃S is the off-
diagonal part of the BdG Hamiltonian in the basis of chiral
symmetry and S . The TrL,R is the partial trace that only sums
over indices that belong to the left (L) or right (R) part of
the system [two opposite halves of the strip geometry; see
Fig. 1(a)] [72]. Note that although νS is a quantized num-
ber, νR,L

S are not. However, the jumping of νR,L
S across the

topological phase transition is a good signature for the topo-
logical phase transition [72]. Furthermore, we numerically
calculate the Z2 topological invariant for the strip geome-
try (see Ref. [94] for the procedure). In Figs. 8(a1)–8(a3)
we compare the Z2, winding number, and energy gap for
a system with zigzag edges, which confirms the applicabil-
ity of these topological invariants for diagnosing topological
phases.

APPENDIX J: BOTS AT THE DANGLING EDGE

The fact that the existence of a nontrivial topological phase
with corner modes depends on the normal-state condition
leads us to design different edge terminations and therefore
manipulate corner modes. For instance, suppose in designing
strip geometry that we instead terminate two edges with the
same sublattice atoms [for instance, remove the red vertices
on the right side of Fig. 1(a)]. In this case, one edge is zigzag
and the other is dangling. The coordination number on the
dangling edge is z = 1, and we expect normal modes for them.
However, its energy is the same as the zigzag normal modes
[compare Figs. 8(a1) and 8(b1)]. Therefore, the two edges
obtain the same topological state simultaneously, where the
jump of the edge-resolved winding number shows a topologi-
cal phase transition for both edges [see Fig. 8(b2)]. Note that
Z2 and νS cannot diagnose this topological phase transition
[see Fig. 8(b3)].
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