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Kramers Fulde-Ferrell state and superconducting spin diode effect
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We study a novel equal-spin pairing state with opposite center-of-mass momentum for each spin polarization.
This state, dubbed a Kramers Fulde-Ferrell (KFF) state, respects time-reversal symmetry and can be realized in
a one-dimensional system with spin-orbit coupling and nearest-neighbor attraction. We find that the KFF state
supports nonreciprocal spin transport for both bulk superconductor and Josephson junctions. In addition to the
spin Josephson diode effect, the charge transport is controlled by intriguing dynamics of bound states whose
transitions can be manipulated by the length of the KFF superconductor. The KFF state is relevant for embedded
quantum structures in monolayer Fe-based superconductors and dissipationless superconducting spintronics.
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I. INTRODUCTION

Recent experimental observations of the diode effect in
superconductors [1–4] and Josephson junctions (JJ) [5–9]
have stimulated the research of nonreciprocal transport
properties in superconducting (SC) systems. Following
the proposal of SC diode effect [10], the so-called φ0

Josephson state has been extensively studied [11–23] as a
possible mechanism to realize nonreciprocal transport in
JJs. More recently, many theoretical proposals [24–31] have
been put forward for SC diode in bulk superconductors. In
particular, the finite-momentum pairing Flude-Ferrell-Larkin-
Ovchinnikov state [32,33] is believed to provide a physical
mechanism, since the order parameter of the Fulde-Ferrell
(FF) state �(r) = �eiq·r can directly generate a difference in
the critical current along and against the direction of q, leading
to SC diode effect [27,28]. The FF order, also known as helical
superconductivity, can be realized in noncentrosymmetric
superconductors with spin-orbit coupling (SOC) and
time-reversal symmetry breaking fields [34–47].

So far, the study of SC diode effect focused on the nonre-
ciprocity of charge transport. One may wonder if there exists a
similar nonreciprocal property in spin transport in certain SC
systems. From the symmetry point of view, SC diode effect in
charge transport, where critical currents in opposite directions
have different magnitudes, requires the system to break both
inversion and time-reversal (T ) symmetry, since the charge
current operator changes sign under either inversion or T .
While the spin current operator changes sign under inversion,
it is invariant under T . Thus, the nonreciprocity in spin trans-
port only requires breaking inversion symmetry and can be
realized in T invariant superconductors.

In this article, we propose a novel SC state that can realize
nonreciprocal spin transport. This state has equal-spin pair-
ing and a FF type of order parameter �σ (r) = �eiσQ·r, with
opposite Cooper pair center-of-mass momentum for opposite
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spin polarizations as shown schematically in Fig. 1(a). We
term this SC state as a Kramers FF (KFF) state since T
symmetry is maintained. Such a FF state has pairing field
with only one Q vector in each pairing channel, which is
translational invariant unlike the Larkin-Ovchinnikov state
also known as the pair density wave state, where the pairing
field has both Q and −Q vectors in each channel so that
the pairing order parameters varies in space. We demonstrate
that the KFF state can be realized in a mean-field theory
of a concrete model describing a spin-orbit coupled chain
with nearest-neighbor attractions as illustrated in Figs. 1(a)
and 1(b). The nonzero Q pairing across the Fermi points in
Fig. 1(a) is enabled by the SOC split bands. We study the
condition to realize the nonreciprocal spin transport where the
critical spin current along positive and negative directions are
unequal in magnitude for both bulk SC state and Josephson
junction structures. Moreover, we find intriguing properties
and rich phases in the charge transport across JJs of the KFF
state, which can be realized by simply changing the length
of the SC chain. Similar pairing state was also studied in the
two dimensional honeycomb system where the valley degree
of freedom plays the role of spin here [48].

This article is organized as follows. We start with the
introduction of our model Hamiltonian and mean-field for-
mulation for the KFF state in Sec. II. In Sec. III, we discuss
the nonreciprocal spin transport for the bulk SC with KFF
order, which is followed by the discussion of the hidden
inversion symmetry that is related to the nonreciprocal spin
transport in Sec. IV Then we study the transport proper-
ties of the Josephson junction structure constructed from the
KFF state in Sec. V and discuss various phases realized in
the charge transport across JJs of the KFF state in Sec. VI. We
finalize the discussion in Sec. VII.

II. FORMULATION

A. Model Hamiltonian

We first consider a one-dimensional (1D) spin-orbit
coupled chain with nearest-neighbor attraction described by
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the Hamiltonian

Ĥ = −
∑
i, j,σ

ti jc
†
iσ c jσ +α

∑
i

iσc†
iσ ci+1σ +H.c. − V

∑
i

nini+1,

(1)

where ti j are hopping parameters up to the second neighbor
(t1 and t2) and α describes a nearest-neighbor SOC. In 1D,
SOC leaves a conserved spin quantum number which is taken
to be the spin quantization axis along the chain direction.
The nearest-neighbor attraction V responsible for SC order
can be decomposed into equal-spin and opposite-spin pairing
channels as

HI = − V
∑

i

nini+1 = −V
∑
i,σσ ′

c†
iσ c†

i+1σ ′ci+1σ ′ciσ

= − V

Nc

∑
k,k′,q,σσ ′

ei(k−k′ )c†
k+ q

2 σ
c†
−k+ q

2 σ ′c−k′+ q
2 σ ′ck′+ q

2 σ

= − V

Nc

∑
k,k′,q,σ

sin k sin k′c†
k+ q

2 σ
c†
−k+ q

2 σ
c−k′+ q

2 σ ck′+ q
2 σ

− V

Nc

∑
k,k′,q,σ

ei(k−k′ )c†
k+ q

2 σ
c†
−k+ q

2 σ̄
c−k′+ q

2 σ̄ ck′+ q
2 σ , (2)

where the first term corresponds to the attraction between the
electrons with the same spin, the second term corresponds to
the attraction between the electrons with opposite spins, and
Nc is the number of sites. If we further define the two pairing
operators in equal-spin and opposite-spin channels as

�̂‖,q,σ = 1

Nc

∑
k

i sin kc−k+ q
2 σ ck+ q

2 σ

�̂⊥,q,σ = 1

Nc

∑
k

e−ikc−k+ q
2 σ̄ ck+ q

2 σ , (3)

then Eq. (2) can be written as

HI = −NcV1

∑
q

�̂
†
‖,q,σ �̂‖,q,σ − NcV2

∑
q

�̂
†
⊥,q,σ �̂⊥,q,σ , (4)

where these two terms correspond to the pairing channels
with equal and opposite spin respectively and here we denote
the attraction in these two channels as V1 and V2. While
V1 = V2 = V in the original model in Eq. (1), we consider
here a more general model where the effective attraction V1

and V2 can be different. The equal-spin pairing can be induced
in embedded quantum structures in high-Tc superconductors
due to spatial symmetry breaking [49], such as along the
atomic line defects in monolayer FeTeSe [50]. Then the total

Hamiltonian becomes

Ĥ =
∑
k,σ

εk,σ c†
kσ

ckσ − NcV1

∑
q

�̂
†
‖,q,σ �̂‖,q,σ

− NcV2

∑
q

�̂
†
⊥,q,σ �̂⊥,q,σ , (5)

where

εkσ = −2tα cos(k − σθα ) − 2t2 cos(2k) (6)

is the band dispersion with

tα =
√

t2
1 + α2

θα = arctan(α/t1),
(7)

which determines the positions of the Fermi points.

B. Mean-field decoupling

From the structure of Fermi points shown in Fig. 1(a), we
can solve the model in Eq. (5) within a mean-field approxima-
tion assuming the following mean-field ansatz

〈�̂‖,Q,↑〉 = 〈�̂‖,−Q,↓〉 = �‖
〈�̂⊥,0,↑〉 = �⊥eiφ⊥

〈�̂⊥,0,↓〉 = −�⊥e−iφ⊥ . (8)

Here, in equal-spin pairing channel, electrons with up (down)
spin pair into the FF state with a nonzero center-of-mass mo-
mentum Q(−Q). The resulting Kramers doublet ensures that
T symmetry is preserved. In opposite-spin pairing channel,
electrons with up and down spins form zero-momentum pairs,
which is in general a mixture of s-wave and pz-wave pairing
depending on the phase φ⊥. Specifically, φ⊥ = 0 corresponds
to s-wave pairing and φ⊥ = π

2 corresponds to pz-wave pair-
ing, while other values give rise to a mixed parity state.

After the mean-field decoupling, the mean-field Hamilto-
nian can be written as

ĤMF − μN̂ =
∑
kσ

(εkσ − μ)c†
kσ

ckσ

− V1�‖
∑
kσ

(−i sin k)c†
k+ σQ

2 σ
c†
−k+ σQ

2 σ

− 2V2�⊥
∑

k

c†
k↑c†

−k↓ cos (k + φ⊥) + H.c.

+ 2Nc(V1�
2
‖ + V2�

2
⊥). (9)

In the Nambu basis ψ
†
k = (c†

k+ Q
2 ↑, c†

k− Q
2 ↓, c−k+ Q

2 ↑, c−k− Q
2 ↓),

Eq. (9) can be written as

HMF − μN = 1

2

∑
k

ψ
†
k hkψk + 2NcV1�

2
‖ + 2NcV2�

2
⊥ − μNc

(10)

with

hk =

⎡
⎢⎢⎢⎢⎣

εk+ Q
2 ,↑ − μ 0 2iV1�‖ sin k −2V2�⊥ cos

(
k + Q

2 + φ⊥
)

0 εk− Q
2 ,↓ − μ 2V2�⊥ cos

(−k + Q
2 + φ⊥

)
2iV1�‖ sin k

−2iV1�‖ sin k 2V2�⊥ cos
(−k + Q

2 + φ⊥
) −ε−k+ Q

2 ,↑ + μ 0

−2V2�⊥ cos
(
k + Q

2 + φ⊥
) −2iV1�‖ sin k 0 −εk− Q

2 ,↓ + μ

⎤
⎥⎥⎥⎥⎦. (11)
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This mean-field Hamiltonian can be solved self-consistently
for a fixed chemical potential μ and various values of Q and
φ⊥ with the self-consistent equations

�‖ = 1
2Nc

∑
kσ i sin k

〈
c−k+ σQ

2 ,σ ck+ σQ
2 ,σ

〉
�⊥ = 1

Nc

∑
k

cos(k + φ⊥)〈c−k↓ck↑〉

= 1

Nc

∑
k

cos

(
k + Q

2
+ φ⊥

)〈
c−k− Q

2 ↓ck+ Q
2 ↑

〉
,

(12)

and the ground state is determined by the states with the
lowest free-energy density 
 = 1

Nc
〈HMF − μN〉, which also

determines the value of Q and φ⊥.
We perform the calculation with a general set of parameter

and the obtained mean-field phase diagram in Fig. 1(b) shows
that the novel KFF state is a more stable ground state than the
mixed parity state when V1 is larger than V2. We thus focus
on the KFF state driven by equal-spin pairing and investigate
its many intriguing properties. A more detailed analysis of the
mean-field phase diagram as well as the behavior of the order
parameters are shown in Appendix A. The detailed calculation
for the mixed parity state is also shown in Appendix E.

III. NONRECIPROCAL SPIN TRANSPORT AND SPIN
DIODE EFFECT IN BULK KFF STATE

The mean-field Hamiltonian in KFF state becomes

ĤMF − μN̂ =
∑
kσ

(εkσ − μ)c†
kσ

ckσ

+ V1�‖
∑
kσ

i sin kc†
k+ σQ

2 ,σ
c†
−k+ σQ

2 ,σ

+ H.c. + 2NcV1�
2
‖, (13)

which can be written in the Nambu basis ψ
†
kσ

=
(c†

k+ σQ
2 ,σ

, c−k+ σQ
2 ,σ ) as

ĤMF − μN̂ = 1

2

∑
kσ

ψ
†
kσ

hk,Q,σ ψkσ + 2NcV1�
2
‖ − μNc, (14)

where

hk,Q,σ =
[

εk+ σQ
2 ,σ − μ 2iV1�‖ sin k

−2iV1�‖ sin k −ε−k+ σQ
2 ,σ + μ

]
(15)

is block diagonal in spin space, leading to the eigenenergy as

Ekσ,± = 1

2

(
εk+ σQ

2 ,σ − ε−k+ σQ
2 ,σ

)

±
√[

1

2

(
εk+ σQ

2 ,σ + ε−k+ σQ
2 ,σ

)−μ

]2

+ 4V 2
1 �2

‖ sin2 k,

(16)

and we have Ekσ,± = E−kσ̄ ,± due to the T symmetry. Then
the free-energy density at zero temperature 
(�‖, Q) can be

calculated as


(�‖, Q) = 1

Nc
〈ĤMF − μN̂〉

= 1

2Ns

∑
kσ,n=±

Ekσ,n�(−Ekσ,n) + 2V1�
2
‖ − μ,

(17)

where �(x) the Heaviside step function. The order parameter
�‖ for a given Q can be determined self-consistently by
minimizing 
(�‖, Q) with respect to �‖, leading to the
self-consistency equation

�‖ = 1

2Nc

∑
kσ

i sin k
〈
c−k+ σQ

2 ,σ ck+ σQ
2 ,σ

〉
. (18)

The optimal Q value can be further determined by minimizing

(�‖, Q) with respect to Q, i.e., ∂Q
(�‖, Q) = 0.
Because the latter is directly related to the spin
current carried by the KFF state (see Appendix B)
js(Q) = ∑

σ
σ
2 jσ = ∂Q
(�‖, Q, T ), the ground state with

optimized Q = Q0 does not carry any net spin current
since ∂Q
(�‖, Q0, T ) = 0. When the KFF state is driven
out of equilibrium into a state with Q 	= Q0, a nonzero
applied spin current js(Q 	= Q0) = js 	= 0 is realized.
Throughout the remaining text, we define the charge and spin
currents in units of e

h̄ and unity, respectively. Since the spin
current carrying state has equal but opposite center-of-mass
momentum ±Q for Cooper pairs in opposite spin channels,
the charge current always vanishes due to T symmetry.
The critical spin currents in the + and − directions are
determined by the maximum and minimum values of js(Q)
sustained by the SC state according to js,c+ = maxQ[ js(Q)]
and js,c− = minQ[ js(Q)]. When | js,c+| 	= | js,c−|, the SC
state enables nonreciprocal spin transport as shown in
Fig. 1(c).

We performed mean-field calculations using two sets of
parameters. In the first case, we set t2 = 0 and obtain analyti-
cally that the ground state has Q0 = 2θα = σ (k f σ,+ + k f σ,−),
consistent with the SOC split bands where electrons pair
across the Fermi points k f σ,± in the same spin sector, giving
rise to finite Cooper pair momenta σQ0 with more details
shown in Appendix C. The zero-temperature free energy in
Eq. (17) and the current density from its momentum derivative
are calculated numerically and plotted in Figs. 2(a) and 2(c) as
a function of Q. The critical spin currents js,c± are determined
by the maximum and minimum values of the spin current
density. Figure 2(c) shows that the two critical momenta Q±
at which the spin current reaches critical values coincide with
the two momenta where the SC order parameter �‖(Q±)
vanishes. In this case with t2 = 0, we find that the critical
spin currents js,c+ = − js,c−, as shown in Fig. 2(a), and the
spin transport is reciprocal. The absence of nonreciprocal spin
transport turns out to be due to a hidden inversion symmetry
when t2 = 0.

IV. HIDDEN INVERSION SYMMETRY

To demonstrate the hidden inversion symmetry, we can
perform a local gauge transformation c†

iσ → e− i
2 σQxi d†

iσ ,
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FIG. 1. (a) Schematic band structure of the spin-orbit coupled
1D chain, showing the two pairing channels across the Fermi points.
(b) Phase diagram obtained from mean-field calculations with pa-
rameters t1 = 1, t2 = −0.5, α = 0.4, and μ = −0.53. (c) Schematic
illustration of nonreciprocal spin transport due to different criti-
cal spin currents | js,c−| > | js,c+| in the “+” and “−” directions.
A spin current | js,c+| < | js,±| < | js,c−| flows as a dissipationless
supercurrent in the “−” direction (marked by | js−|) but can only
be transported as a normal dissipative current in the “+” direction
(marked as | js+|).

corresponding to c†
kσ

→ d†
k− σQ

2 ,σ
in momentum space. Then

the mean-field Hamiltonian Eq. (13) becomes

ĤMF − μN̂ =
∑
kσ

(εkσ − μ)d†
k− σQ

2 ,σ
dk− σQ

2 ,σ

+ V1�‖
∑
kσ

i sin kd†
k,σ

d†
−k,σ

+ H.c. + 2NcV1�
2
‖

FIG. 2. Spin current density [(a) and (b)], free energy, and SC
order parameter [(c) and (d)] as a function of momentum Q. Parame-
ters for (a) and (c): t2 = 0 and t1 = 1, α = tan( π

20 ), μ = 0, and V1 =
2. Parameters for (b) and (d): t2 = −0.5 and t1 = 1, α = 0.4, μ =
−0.53, and V1 = 2. The spin current is defined as js = 1

2 ( j↑ − j↓).

=
∑
kσ

(
εk+ σQ

2 ,σ − μ
)
d†

k,σ
dk,σ

+ V1�‖
∑
kσ

i sin kd†
k,σ

d†
−k,σ

+H.c. + 2NcV1�
2
‖.

(19)

Since in the absence of t2, εk+ σQ
2 ,σ = −2tα cos(k + σQ

2 −
σθα ), we can see that in the new basis, the only inversion
breaking term θα owing to the spin-orbit coupling α is can-
celed if Q = Q0 = 2θα . In other words, when Q = Q0 = 2θα ,
the inversion symmetry can be recovered in the new basis,
where the mean-field Hamiltonian becomes

ĤMF − μN̂ =
∑
kσ

(−2tα cos k − μ)d†
k,σ

dk,σ

+ V1�‖
∑
kσ

i sin kd†
k,σ

d†
−k,σ

+ H.c.+2NcV1�
2
‖.

(20)

The transformed Hamiltonian describes two spin-degenerate
p-wave Kitaev chains [51] with inversion symmetry in each
spin sector. It is precisely this hidden inversion symmetry that
forbids the nonreciprocal property of spin current, since this
hidden inversion symmetry changes the sign of the current
operator ĵσ , while keeping the total Hamiltonian invariant,
which guarantees a one-to-one correspondence between the
positive and negative current, such that js,c+ and js,c− have to
have the same magnitude.

In the case with finite t2, the dispersion of the
noninteracting Hamiltonian reads εkσ = −2tα cos(k −
σθα ) − 2t2 cos(2k), and then the Fermi momentum k f σ,±
no longer have a closed form and the sum of the two
Fermi momentum belonging to the same spin polarization
is incommensurate in general. Here we can immediately
see that the gauge transformation above cannot recover
the inversion symmetry as above, since now εk+ σQ

2 ,σ =
−2tα cos(k + σQ

2 − σθα ) − 2t2 cos(2k + σQ), and the
inversion breaking phase of the two cosine function σQ

2 − σθα

and σQ cannot be canceled by Q simultaneously, so that there
is no hidden inversion symmetry that forbids the presence of
the nonreciprocal spin transport. Therefore, the transformed
model describes the two p-wave Kitaev chains with complex
hoppings, which are time-reversal counterparts of each other
but not identical and can be written in the real space as

ĤMF − μN̂ =
∑

iσ

( − tαeiσ ( Q
2 −θα )d†

i,σ di+1,σ − t2eiσQd†
i,σ di+2,σ

+ V1�‖d†
i,σ d†

i+1,σ + H.c.

− μd†
i,σ di,σ

) + 2NcV1�
2
‖. (21)

Indeed, the results shown in Fig. 2(b) confirm that critical
spin currents are nonreciprocal with js,c+ = 0.11 and
js,c− = −0.20 along the + and − directions, respectively.
As a result, a spin current js satisfying 0.11 < | js| < 0.20
flows as dissipationless supercurrent in the negative direction
since | js| < | js,c−| but can only be transported as a dissipative
normal current in the positive direction since | js| > | js,c+|.
This SC spin diode effect is shown schematically in Fig. 1(c).
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FIG. 3. (a) Schematics of an S-N-S Josephson junction. The
lengths of the KFF-SC (S) and normal metal (N) regions are Ns and
Nn. (b) Current phase relation for the Josephson chain with a typical
KFF-SC order determined self-consistently for parameters t1 = 1,
t2 = −0.5, α = 0.5, μ = −0.7, and V1 = 1, leading to �‖ = 0.063
and Q = 0.372π . Upper and lower horizontal dashed lines indicate
critical current I↑,c+ and I↑,c− along “±” directions. (c) Energy-phase
spectrum of the Josephson chain in (b). Two vertical dashed lines in
(b) and (c) correspond to phase bias φ0↑ and φ0↓ where the bound
states cross zero, leading to jumps in the Josephson current shown
in (b). Ns = 319 and Nn = 3. The “N” region has nearest-neighbor
hopping tN = 1. The couplings between “N” and “S” regions are
described by tL = tR = 1 as defined in Appendix D.

V. JOSEPHSON JUNCTIONS

We next study the transport properties of Josephson chains
consisting of a normal metal sandwiched between two KFF
superconductors depicted in Fig. 3(a) with more detailed se-
tups shown in Appendix D. We consider the general case with
nonzero t2 in the KFF state.

A. Spin diode effect with spin-independent phase bias

We first study the transport properties of JJ with spin-
independent phase bias φ. The Josephson currents can be
calculated by the formula

I (φ) = 2e

h̄

∂
Jc(φ)

∂φ
, (22)

where 
Jc(φ) is the free energy of the system [52]. The
results for both spin components and total charge and spin
currents are shown in Fig. 3(b). Due to T symmetry, the
spin-dependent critical currents satisfy Iσ,c+ = −Iσ̄ ,c− such
that charge current is reciprocal |Ie,c+| = |Ie,c−|. In contrast,
the critical current for each spin is asymmetric, i.e., |Iσ,c+| 	=
|Iσ,c−|, giving rise to nonreciprocal Josephson spin currents
|Is,c+| 	= |Is,c−| and the SC spin diode effect.

B. Spin diode effect in the Josephson junction with spin phase

The spin diode effect with nonreciprocal spin current by
applying a spin-dependent phase bias known as the spin
phase [53] is obvious. The spin phase was first introduced
in Ref. [53]. In the current case, we consider the spin phase
in the z direction, which corresponds to the spin-dependent
phase bias φσ = σφ applied to the Josephson junction. We
consider the same parameter set as that shown in Fig. 3 and

FIG. 4. (a) Schematics of a S-N-S Josephson junction with a
spin phase in the z direction. The lengths of the KFF-SC (S) and
normal metal (N) regions are Ns and Nn. (b) Current phase relation
for the Josephson chain with a typical KFF-SC order determined
self-consistently for parameters t1 = 1, t2 = −0.5, α = 0.5, μ =
−0.7, and V1 = 1, leading to �‖ = 0.063 and Q = 0.372π . Upper
and lower horizontal dashed lines indicate critical current I↑,c+ and
I↑,c− along the “±” directions. Ns = 319 and Nn = 3 are used in
the calculations, and the “N” region has nearest-neighbor hopping
tN = 1. The coupling between the “N” and “S” regions is described
by tL = tR = 1 as defined in Appendix D.

the resulting current phase relation is shown in Fig. 4. Here,
since the spin phase φσ = σφ still respects the T symme-
try, the current for the opposite spin polarization are always
equal in magnitude and opposite in the direction, i.e., I↑(φ) =
−I↓(φ), so that the total charge current Ie(φ) always van-
ishes and the total spin current Is(φ) = 1

2 [I↑(φ) − I↓(φ)] =
I↑(φ), which is nonreciprocal as long as the hidden inver-
sion symmetry is broken by finite t2. The nonreciprocal spin
current of the Josephson junction with spin phase is inher-
ited from the nonreciprocal spin transport of the bulk KFF
state.

VI. LENGTH CONTROLLED PHASE TRANSITIONS
IN CHARGE TRANSPORT

An intriguing feature in Fig. 3(b) is the phase difference
between Josephson currents in two spin sectors, which is
clearly revealed in the energy spectrum plotted in Fig. 3(c).
Apart from the continuum states outside the SC gap, there
are eight in-gap states. Among them, four are at exactly zero
energy, corresponding to two pairs of Majorana zero modes
(one for each spin) located at the two ends of the chain due to
p-wave nature of the KFF state [51], which do not contribute
to Josephson current. The other four in-gap states are Andreev
bound states of the S-N-S junction. For junctions made of
conventional superconductors, the energies of the bound states
cross at φ = π [54], corresponding to zero modes trapped
by the π -junction [55]. In the current KFF JJs, the energy
spectrum of the bound states for two spin species shifts in
opposite directions as shown in Fig. 3(c). As a result, the
phase bias where the bound states cross zero shifts from ±π
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TABLE I. Definitions of the various Josephson junction states
via the distributions of the minimums of the free energy.

State label Distribution of minimums of the free energy

0 Global minimum at φ = 0
0′ Global minimum at φ = 0 and local minimum at φ = π

0′ − π ′ Global minimum at both φ = 0 and φ = π

π ′ Global minimum at φ = π and local minimum at φ = 0
π Global minimum at φ = π

to ±φ0σ , where the Josephson current jumps due to branch
switching as shown in Fig. 3(b).

Such phase differences have a great impact on charge trans-
port. The charge current Ie = I↑ + I↓ crosses zero at both φ =
0 and φ = π with positive slopes, indicating the free energy

Jc(φ) of the junction reaches a local minimum at both φ = 0
and π . This state is called a 0′ or π′ state depending on the
momentum of the global minimum. It was studied previously
in JJs where two superconductors are coupled through an
Anderson impurity [56] or a magnetic quantum dot [57]. Here
these remarkable states are realized in T -invariant systems
due to the novel KFF SC order. Remarkably, we find that
distinct Josephson junction states (0, π, 0′, and π′) can all be
realized by tuning the phase shift, which can be easily achieve
by changing the length of the SC region. The definition of
these states are listed in Table I.

The dependence of the phase shift on the length Ns of the
SC region can be understood by performing a local gauge

transformation that maps the KFF JJ onto a Kitaev JJ con-
sisting of two spin-degenerate p-wave Kitaev chains subject
to spin-dependent phase bias φσ = φ + σQ(Ns − 1) as shown
in Appendix D. If we further assume the Josephson current for
the Josephson chain consisting of two spin degenerate p-wave
Kitaev chains with phase bias φ as I0(φ) which is identical
for the two spin species due to the spin degeneracy, then we
can then immediately get the Josephson current for each spin
species as Iσ (φ) = I0[φ + σQ(Ns − 1)], i.e., the Josephson
current Iσ (φ) is shifted from the current of the transformed
junction I0(φ) by a phase σQ(Ns − 1) (mod 2π ) so that the
relative phase difference of the current between the two spin
species is δφ = 2σQ(Ns − 1) (mod 2π ). Various Josephson
junction states can be realized by tuning δφ from 0 to 2π

through the length Ns. This relation is verified numerically
in Figs. 5(a)–5(e) for Q = π

10 and Ns ∈ [321, 332]. Any com-
bination of Q and Ns can produce similar results as long as
δφ covers the range [0, 2π ]. We also calculate the total free
energy of the system for different Ns and indeed observe
transitions between all these states controlled by Ns as shown
in Fig. 5(f). Specifically, for Ns = 321 (331), there is only one
global minimum located at φ = 0 (π) and the system is in
0 (π) state. For Ns = 323 (329), the free energy has a global
minimum at φ = 0 (π ) and a local minimum at φ = π (0)
so that the system is in 0′ (π′) state. The transition between
the two states is reached at Ns = 326, where δφ = π and

Jc(0) = 
Jc(π ).

Interestingly, in this case with only nearest-neighbor hop-
ping t1, the charge current Ie(φ) acquires a period of π in
phase φ instead of 2π as in conventional Josephson current

FIG. 5. [(a)–(e)] Josephson current for different values of Ns. The parameters are t1 = 1, t2 = 0, α = tan( π

20 ), μ = 0, and V1 = 2 in the SC
region. The KFF state has Q = π

10 and �‖ = 0.169. The normal region has tN = tL = tR = 1 as defined in Appendix D. (f) The total free energy
at the corresponding values of Ns in (a)–(e), showing various junction states labeled by 0, 0′, 0′ − π′, π′, and π determined by the distribution
of the (local) minima at φ = 0 and π . The charge current Ie(φ) in (a)–(e) vanishes at both φ = 0 and π , the minima of the free energy in (f).
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at the critical point (Ns = 326), which can also be under-
stood in the gauge transformed basis. In this case with Ns =
326, the phase bias becomes φσ = φ + σπ

2 and we thus have
Iσ (φ) = I0(φ + σπ

2 ), from which we can get I↑(φ + π ) =
I0(φ + 3π

2 ) = I0(φ − π
2 ) = I↓(φ). Then we can derive a new

relation for the total charge current Ie as

Ie(φ + π ) = I↑(φ + π ) + I↓(φ + π )

= I↓(φ) + I↑(φ) = Ie(φ),

so that the charge current Ie(φ) acquires a period of π instead
of 2π . The spin current Is(φ) then acquires a minus sign when
progressing π phase, so that its period is still 2π .

Is(φ + π ) = I↑(φ + π ) − I↓(φ + π )

= I↓(φ) − I↑(φ) = −Is(φ).

The realization of diverse Josephson junction states by simply
controlling the length of the superconductor is an intriguing
property. It originates from the opposite nonzero momentum
of Cooper pairs in each spin sector in the novel KFF state.
The quantum interference of relative phase shifted pairing
functions with opposite spin polarization leads to rich phases
and physical phenomena.

VII. DISCUSSION

We reported the theoretical discovery of a novel time-
reversal invariant, finite momentum pairing Fulde-Ferrell
state, the KFF state. The concrete effective 1D model we used
to realize the KFF state and its many unprecedented properties
is intimately connected to the novel physics observed at
the atomic line defect (ALD) in monolayer iron-based
superconductor Fe(Te,Se), where zero-energy bound states
emerge at both ends of the ALD with no signatures of T
symmetry breaking [50]. The missing atoms cause inversion
symmetry breaking and induces Rashba SOC. It was shown
that significant equal-spin triplet pairing can be induced by
coherent quantum mechanical processes along such a Rashba
ALD embedded in 2D unconventional superconductors [49].
This makes it plausible for materializing the effective 1D
model with significant equal-spin triplet pairing to generate
the KFF state. More recently, evidence for finite momentum
pair density wave order has been observed in monolayer
Fe(Te,Se) along one-dimensional domain walls [58]. The
experimental evidence suggests time-reversal symmetry is
preserved, which makes the KFF state a plausible candidate
in addition to the Larkin-Ovchinnikov state.

The most remarkable of the KFF state is that, in the
presence of broken inversion symmetry, it supports non-
reciprocal spin supercurrent in both bulk superconductor
and JJ. In contrast to nonreciprocal charge transport in SC
systems which requires breaking both inversion and T sym-
metry, nonreciprocal SC spin transport only requires breaking
inversion symmetry. This is because the spin current op-
erator is invariant under time reversal, such that systems
with positive and negative spin current are unrelated by
the T operation. This is true regardless of whether the sys-
tem respects the T symmetry or not, making it free of the
constraint by the Onsager relation. We thus propose a novel
SC spin diode effect as a potential new frontier for using spins

FIG. 6. [(a) and (b)] Phase diagram determined from the mean-
field calculations with two sets of parameters. [(c) and (d)] The
superconducting order parameter for both channels as the function
of the attraction V showing the Cooper instability for the two sets
of paramters. The parameters used are t1 = 1, t2 = 0, α = tan( π

20 ),
and μ = 0 for [(a) and (c)] and t1 = 1, t2 = −0.5, α = 0.4, and
μ = −0.53 for (b) and (d).

to make dissipationless electronic devices in SC spintronics.
While future work is clearly needed which is outside the scope
of the current paper, we point out that the unique properties of
the KFF state make it plausible for possible realizations in JJs
consisting of a ferromagnetic barrier. The exchange field of
the barrier favors spin-triplet pairing and has very little effect
on the critical current of equal-spin triplet pairing such as
in the KFF state, resulting in the slow decay of the critical
current with increasing barrier length. Both effects have been
demonstrated experimentally [59,60]. In turn, detecting the
nonreciprocal spin transport together with the slow decay of
the critical current with the barrier length can serve as the
smoking gun evidence for the KFF state.
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APPENDIX A: MORE DETAILED RESULTS FROM
THE MEAN-FIELD CALCULATION

We perform the calculation with two sets of parameters,
which are shown in Fig. 6. As shown in Fig. 6, the ground
states with finite pairing are either the KFF states with order
parameters solely condensed in the equal-spin pairing channel
or the mixture of s and pz wave pairing states whose order
parameters are solely condensed in the opposite-spin pairing
channel and no mixed states with the coexistence of the order
in both channels are found as the ground states except along
the phase boundary of the two states where these two states are
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degenerate. This means that we can consider the two pairing
channels separately, which further simplifies the mean-field
Hamiltonian and is helpful for us in studying the properties of
each state.

APPENDIX B: DERIVATION OF THE SPIN CURRENT
FOR THE KFF STATE

As shown in the main text, the mean-field Hamiltonian
purely in the equal-spin pairing channel can be written as

ĤMF − μN̂ =
∑
kσ

(εkσ − μ)c†
kσ

ckσ

+ V1�‖
∑
kσ

i sin kc†
k+ σQ

2 ,σ
c†
−k+ σQ

2 ,σ

+ H.c. + 2NcV1�
2
‖, (B1)

which can be further simplified in the Nambu basis ψ
†
kσ

=
(c†

k+ σQ
2 ,σ

, c−k+ σQ
2 ,σ ) as

ĤMF − μN̂ = 1

2

∑
kσ

ψ
†
kσ

hk,Q,σ ψkσ + 2NcV1�
2
‖ − μNc (B2)

with

hk,Q,σ =
[

εk+ σQ
2 ,σ − μ 2iV1�‖ sin k

−2iV1�‖ sin k −ε−k+ σQ
2 ,σ + μ

]
. (B3)

In order to derive the expression for the spin current, let us
consider the free-energy density of the KFF state at finite
temperature T , which is given as


(�‖, Q, T ) = − T

Nc
ln Tr

[
e− ĤMF−μN̂

T
]

= − T

2Nc

∑
kσ

tr
[

ln
(
1 + e− hk,Q,σ

T
)] + 2V1�

2
‖ − μ

=
∑

σ


σ (�‖, Q, T ) − μ (B4)

with


σ (�‖, Q, T ) = − T

2Nc
tr
[

ln
(
1 + e− hk,Q,σ

T
)] + V1�

2
‖. (B5)

The current operator for each spin species in the system stud-
ied is defined as

ĵσ = 1

Nch̄

∑
k

∂kεkσ c†
kσ

ckσ . (B6)

Next, from Eq. (B3) we have

∂Qhk,Q,σ =
[

σ
2 ∂kεk+ σQ

2 ,σ 0

0 − σ
2 ∂kε−k+ σQ

2 ,σ

]
(B7)

and then we further have

1

Nch̄

∑
k

ψ
†
kσ

∂Qhk,Q,σ ψkσ

= 1

Nch̄

∑
k

[
σ

2
∂kεk+ σQ

2 ,σ c†
k+ σQ

2 ,σ
ck+ σQ

2 ,σ

− σ

2
∂kε−k+ σQ

2 ,σ

(
1 − c†

−k+ σQ
2 ,σ

c−k+ σQ
2 ,σ

)]

= 1

Nch̄

∑
k

σ∂kεkσ c†
kσ

ckσ = σ ĵσ , (B8)

which means

ĵσ = σ

Nch̄

∑
k

ψ
†
kσ

∂Qhk,Q,σ ψkσ . (B9)

Then the current for each spin species can be calculated as

jσ (�‖, Q, T ) = Tr
[

ĵσ e− ĤMF−μN̂
T

]
Tr[e− ĤMF−μN̂

T ]
= σ

Nch̄
tr
[
∂Qhk,Q,σ f (hk,Q,σ )

]

= 2σ

h̄
∂Q
σ (�‖, Q, T ), (B10)

where f (x) = (1 + ex/T )−1 is the Fermi distribution function.
Here the operator ĵσ is the density current, from which we
can define the charge current operator as ĵe = e( ĵ↑ + ĵ↓) and
the operator for the spin current carrying spin polarization in z
direction as ĵs = h̄

2 ( ĵ↑ − ĵ↓). Therefore, we can conveniently
define the unit for the charge and spin current as e

h̄ and 1,
so that both currents can be written in a similar format. We
finally arrive at the expression for the spin current with spin
up polarization as

js(Q) =
∑

σ

σ h̄

2
jσ = ∂Q
(�‖, Q, T ). (B11)

This means the ground state with the optimized value of
Q = Q0 does not carry any net spin current as expected, since
∂Q
(�‖, Q0, T ) = 0, and when a spin current js is applied
to the KFF state, the state with a different value of Q, sat-
isfying js(Q) = js is realized. Then the critical spin current
for the positive and negative directions are determined by
the maximum and minimum values of js(Q) sustained by
the superconducting state, which can be defined as js,c+ =
maxQ[ js(Q)] and js,c− = minQ[ js(Q)]. Moreover, due to the
presence of T symmetry, 
↑(�‖, Q, T ) = 
↓(�‖, Q, T ),
which means j↑(�‖, Q, T ) = − j↓(�‖, Q, T ), such that the
charge current jc(Q) = ∑

σ jσ always vanishes in the KFF
state as expected and js(Q) = ∑

σ
σ
2 jσ = j↑.

APPENDIX C: DETERMINING THE OPTIMIZED
Q FOR THE KFF STATE

We first consider a simpler case with only
nearest-neighbor hopping, i.e., t2 = 0. In this case,
the dispersion of the noninteracting Hamiltonian
becomes εkσ = −2t1 cos k − 2σα sin k = −2tα cos(k −
σθα ) with tα =

√
t2
1 + α2 and θα = arctan( α

t1
), which
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determines the Fermi momentum as

k f σ,± = σθα ± arccos

(
− μ

2tα

)
. (C1)

Then the quasiparticle energy Eq. (16) becomes

Ekσ,± = − 2σ tα sin

(
θα − Q

2

)
sin k

±
√[

−2tα cos

(
θα−Q

2

)
cos k−μ

]2

+ 4V 2
1 �2

‖ sin2 k

(C2)

and from Eq. (17) and the T symmetry, we have the free-
energy density at zero temperature as


(�‖, Q) = 1

2Nc

∑
kσ,n=±

Ekσ,n�(−Ekσ,n) + 2V1�
2
‖ − μ

= 1

Nc

∑
k,n=±

Ek↑,n�(−Ek↑,n) + 2V1�
2
‖ − μ, (C3)

which leads to the expression for the spin current as

js(Q) = ∂Q
(�‖, Q)

= 1

Nc

∑
k,n=±

�(−Ek↑,n)

{
tα cos

(
θα − Q

2

)
sin k

+
[
tα sin

(
θα − Q

2

)
cos k

][
2tα cos

(
θα − Q

2

)
cos k

]
Ek↑,n + 2tα sin

(
θα − Q

2

)
sin k

}
.

(C4)

We can easily see that when Q = Q0 = 2θα , Ekσ,± =
±

√
[−2tα cos k − μ]2 + 4V 2

1 �2
‖ sin2 k = ±Ek , then we have

js(Q0) = 1
Nc

∑
k,n=± �(−nEk )tα sin k = 2tα

Nc

∑
k sin k = 0.

Therefore, the ground state is characterized by the momen-
tum Q0 = 2θα = σ (k f σ,+ + k f σ,−), which is also consistent
with the Fermi surface of the noninteracting Hamiltonian,
where the electrons around the two Fermi points k f σ,± within
the same spin species pair together, giving rise to a finite
Cooper pair momentum Q0. We numerically calculate the
zero temperature free energy as well as the current density
as shown in Figs. 2(a) and 2(c) of the main text, which indeed
confirms that the free-energy density reaches the minimum
at Q = Q0 = 2θα and the critical spin currents js,c± are de-
termined by the maximum and minimum values of the spin
current density.

APPENDIX D: THE RELATION BETWEEN THE PHASE
DIFFERENCE AND Ns

To study the transport properties of the Josephson chain,
we consider the system consisting of two superconductors
with KFF order sandwiching a normal metal in between as
shown in Fig. 3(a) of the main text. By setting the lattice
constant to 1, this Josephson chain can be described by
the tight-binding Hamiltonian HJc(φ) = HSL + HN + HSR +

HLN + HRN, where

HSL = −
∑

i, j∈[1,Ns]

∑
σ

(ti j − δi jμ)c†
iσ c jσ

+
Ns−1∑
i=1

∑
σ

(iασc†
iσ ci+1σ +�‖eiσQxi+iφc†

iσ c†
i+1σ ) + H.c.

(D1)

HSR = −
∑

i, j∈[Ns+Nn+1,2Ns+Nn]

∑
σ

(ti j − δi jμ)c†
iσ c jσ +

2Ns+Nn−1∑
i=Ns+Nn+1

×
∑

σ

(iασc†
iσ ci+1σ + �‖eiσQ(xi−Ns−Nn )c†

iσ c†
i+1σ )+H.c.

(D2)

describe the two SC regions on the left and right sides,

HN = −
∑

i, j∈[Ns+1,Ns+Nn]

∑
σ

(tN,i j − δi jμ)c†
iσ c jσ (D3)

describes the normal metal region in the middle, and

HSNL = −tL
∑

σ

c†
Nsσ

cNs+1σ + H.c., (D4)

HSNR = −tR
∑

σ

c†
Ns+Nnσ

cNs+Nn+1σ + H.c. (D5)

Correspond to the coupling between the normal metal region
and the left and right SC region, with φ the phase bias between
the two SCs. Then the Josephson currents can be calculated by
the formula

I (φ) = 2e

h̄
∂φ

∑
n

f (εn)εn(φ), (D6)

with εn the nth eigenvalue for HJc at the phase bias φ and f (ε)
the Fermi distribution function.

Next, we demonstrate the dependence of the relative phase
difference on the length of the superconducting region Ns.
Let us consider a simpler case with only nearest-neighbor
hopping on the superconducting region. We first perform a
local gauge transformation

c†
iσ → e− iσ

2 Q(xi− 1
2 )d†

iσ for i∈ [1, Ns]

c†
iσ → e− iσ

2 Q(Ns− 1
2 )d†

iσ for i∈ [Ns + 1, Ns + Nn]

c†
iσ → e− iσ

2 Q(xi−Nn− 3
2 )d†

iσ for i∈ [Ns + Nn + 1, 2Ns + Nn]

,

(D7)

and then each term in Hamiltonian HJc(φ) becomes

HSL =
Ns−1∑
i=1

∑
σ

[ − tαeiσ ( Q
2 −θα )d†

iσ di+1σ + �‖eiφd†
iσ d†

i+1σ

]

+ H.c. − μ

Ns∑
i=1

∑
σ

d†
iσ diσ , (D8)

HSR =
2Ns+Nn−1∑

i=Ns+Nn+1

∑
σ

[− tαeiσ ( Q
2 −θα )d†

iσ di+1σ +�‖e−iσQ(Ns−1)

× d†
iσ d†

i+1σ

] + H.c. − μ

2Ns+Nn∑
i=Ns+Nn+1

∑
σ

d†
iσ diσ , (D9)
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HN = −
∑

i, j∈[Ns+1,Ns+Nn]

∑
σ

(tN,i j − δi jμ)d†
iσ d jσ , (D10)

HSNL = −tL
∑

σ

d†
Nsσ

dNs+1σ + H.c., (D11)

HSNR = −tR
∑

σ

d†
Ns+Nnσ

dNs+Nn+1σ + H.c. (D12)

We can see that HN , HSNL, and HSNR are unchanged in the
new basis, and if we further use the relation for the KFF
state Q = 2θα , the phase factors eiσ ( Q

2 −θα ) of the hopping tα in
Eq. (D8) and (D9) disappear, and HSL and HSR then describe
the spin degenerate p-wave Kitaev chains with superconduct-
ing phase φ and −σQ(Ns − 1), which means HJc(φ) describes
the Josephson chain consisting of two spin degenerate p-wave
Kitaev chains with phase bias φσ = φ + σQ(Ns − 1) for
spin species σ . If we further assume the Josephson current
for the Josephson chain consisting of two spin degenerate
p-wave Kitaev chains with phase bias φ as I0(φ) which is
identical for the two spin species due to the spin degeneracy,
then we can then immediately get the Josephson current for
each spin species as Iσ (φ) = I0[φ + σQ(Ns − 1)], i.e., the
Josephson current Iσ (φ) is shifted from the current of the
transformed junction I0(φ) by a phase σQ(Ns − 1) (mod 2π )
so that the relative phase difference of the current between the
two spin species is δφ = 2σQ(Ns − 1) (mod 2π ). We verify
this relation numerically in Fig. 5 of the main text where we
take the parameters as t1 = 1, t2 = 0, α = tan( π

20 ), μ = 0,
and V1 = 2, which leads to Q = π

10 and �‖ = 0.169. For
Ns = 321, 323, 326, 329, and 331 which leads to the phase
difference δφ varying from 0 to 2π , Iσ is shifted by 0, ±π

5 ,
±π

2 , ± 4π
5 , and ±π , which is consistent with the results shown

in Figs. 5(a)–5(e) of the main text. Various Josephson junction
states including 0, 0′, 0′ − π ′, π′, and π junction states can
be realized by tuning δφ from 0 to 2π . The definition of these
states is listed in Table I of the main text.

Moreover, if the second-neighbor hopping t2 is finite, after
the gauge transformation of Eq. (D7), then Eq. (D8) and
(D9) acquire the extra term −t2eiσQd†

iσ di+2σ as the second-
neighbor hopping. Now, since the relation Q = 2θα no longer
holds, neither this phase eiσQ nor the phase eiσ ( Q

2 −θα ) of tα in
Eqs. (D8) and (D9) can be gauged away, and the transformed
model no longer describes the Josephson chain consisting
of two spin degenerate p-wave Kitaev chains but rather two
spin dependent p-wave Kitaev chains with complex hopping
parameters that are time-reversal counterparts of each other,
so that the time-reversal symmetry is not broken.

APPENDIX E: �⊥ CHANNEL (MIXTURE OF s AND pz

WAVE PAIRING STATE)

If we consider the mean-field Hamiltonian purely in
the opposite-spin pairing channel, then the mean-field
Hamiltonian becomes

ĤMF − μN̂ =
∑
kσ

(εkσ − μ)c†
kσ

ckσ

− 2V2�⊥
∑

k

c†
k↑c†

−k↓ cos (k + φ⊥)

+ H.c. + 2NcV2�
2
⊥, (E1)

which can be further simplified in the Nambu basis ψ
†
k =

(c†
k↑, c−k↓) as

HMF − μN =
∑

k

ψ
†
k hkψk + 2NcV2�

2
⊥ − μNc (E2)

with

hk =
[

εk↑ − μ −2V2�⊥ cos (k + φ⊥)

−2V2�⊥ cos (k + φ⊥) −ε−k↓ + μ

]
.

(E3)

Diagonalizing hk , and considering the relation εk↑ = ε−k↓ =
εk = −2tα cos(k − θα ) − 2t2 cos(2k) owing to the T symme-
try, we can get

Ek,± = ±
√

(εk − μ)2 + 4V 2
2 �2

⊥ cos2(k + φ⊥) = ±Ek . (E4)

Then the free-energy density at zero temperature 
(�⊥, φ⊥)
can be calculated as


(�⊥, φ⊥) = 1

Nc
〈ĤMF − μN̂〉

= 1

Nc

∑
k,n=±

Ek,n�(−Ek,n) + 2V2�
2
⊥ − μ (E5)

with �(x) the Heaviside step function. Therefore, for a given
value of φ⊥, the order parameter �⊥ can be determined self-
consistently by minimizing 
(�⊥, φ⊥) with respect to �⊥,
leading to the self-consistent equation

�⊥ = 1

Nc

∑
k

cos (k + φ⊥)〈c−k↓ck↑〉. (E6)

The value of φ⊥ can be further determined by minimizing

(�⊥, φ⊥) with respect to φ⊥, which is equivalent to have
∂φ⊥
(�⊥, φ⊥) = 0. From Eq. (E4) and Eq. (E5), we have

∂φ⊥
(�⊥, φ⊥) = − 1

Nc

∑
k

∂φ⊥Ek = −V 2
2 �2

⊥
2π

∫ π

−π

sin(2k + 2φ⊥)

Ek
dk. (E7)

If we further consider the case with t2 = 0, then we have

∂φ⊥
(�⊥, φ⊥) = −V 2
2 �2

⊥
2π

∫ π

−π

sin(2k)√
[−2tα cos(k − φ⊥ − θα ) − μ]2 + 4V 2

2 �2
⊥ cos2 k

dk

= V 2
2 �2

⊥
2π

∫ π

−π

sin(2k)√[−2tα cos
(
k + π

2 − φ⊥ − θα

) − μ
]2 + 4V 2

2 �2
⊥ sin2 k

dk. (E8)
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Apparently, when φ⊥ = nπ
2 − θα with integer n, the denominator of the integral is even in k while the numerator sin(2k) is

odd in k, so that this integral vanishes, which means 
(�⊥, φ⊥) reaches extremum when φ⊥ = nπ
2 − θα and which one (odd

n or even n) is the minimum depends on the details of the parameters. We note that when the free energy reaches a minimum

at φ⊥ = π
2 − θα , the energy spectrum becomes Ek−(φ⊥− π

2 ),± = ±
√

(−2tα cos k − μ)2 + 4V 2
2 �2

⊥ sin2 k which is identical to the
spectrum of the KFF state if V1 = V2.
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