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Phase fluctuations in two-dimensional superconductors and pseudogap phenomenon
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We study the phase fluctuations in the normal state of generic two-dimensional superconducting systems
with s-wave pairing. The effect of phase fluctuations of the pairing fields can be dealt with perturbatively using
disorder averaging, after we treat the local superconducting order parameter as a static disordered background.
It is then confirmed that the phase fluctuations above the two-dimensional Berezinskii-Kosterlitz-Thouless
transition lead to a significant broadening of the single-particle spectrum, giving birth to the pseudogap phe-
nomenon. Quantitatively, the broadening of spectral weights near the BCS gap is characterized by the ratio of
the superconducting coherence length and the spatial correlation length of the superconducting pairing order
parameter. Our results are tested on the fermionic attractive-U Hubbard model on the square lattice, using the
unbiased determinant quantum Monte Carlo method and stochastic analytic continuation.
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I. INTRODUCTION

Over the past few decades, the phemomenon of high-Tc

superconductivity has remained a mysterious but intriguing
problem in the field of condensed-matter physics [1–6]. It
has long been experimentally confirmed that, in the phase
diagram of underdoped cuprate superconductors, there exists
a pseudogap regime located above the transition tempera-
ture Tc and below a characteristic temperature T ∗, where
an energy gap evolves smoothly from the superconducting
gap at Tc [7–9]. The onset of pseudogap behavior below
T ∗ remains a controversial issue: Many scenarios includ-
ing other order parameters competing with superconductivity,
e.g., stripe order or antiferromagnetic order, have been put
forward from both theoretical [10–13] and empirical [14–16]
perspectives. In some scenarios, the pseudogap phase is re-
garded as a symmetry-breaking phase, and the temperature
T ∗ as a phase transition temperature [10,12,14]. The phys-
ical origin of the pseudogap has been a controversial topic
till now.

On the other hand, it is now broadly acknowledged that up
to a characteristic temperature of TOng < T ∗ [17,18], which
can be as high as 140 K in certain materials, the strong
phase fluctuations of the superconducting order parameter
are responsible for the pseudogaplike behavior. Evidences of
fluctuating superconductivity are observed in photoemission
measurements on cuprate Bi2Sr2CaCu2O8+δ (Bi2212) over a
temperature range of �T ≈ (0.3–0.5) Tc near both the node
and the antinode [19–21]. It is expected that the phase fluc-
tuation in cuprate superconductors is partially enhanced by
the effective two-dimensionality of the materials. In particu-
lar, in an ultrathin superconducting film where the couplings
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between layers are comparably weak, the superconducting
transition falls into the Berezinskii-Kosterlitz-Thouless
(BKT) universality class [22,23], which is driven by phase
fluctuation or equivalently by proliferation of vortices. In
Refs. [24–26], vortexlike excitations were directly observed
in the pseudogap regime by measuring the Nernst effect of
moving vortices, which destroyed the phase coherence in
the normal phase while conserving the superconducting gap.
These experiments provide compelling evidence for the sce-
nario of phase fluctuation below TOng. Bergeal et al. [27]
measured the Josephson effect of fluctuating pairs in a trilayer
junction, and they concluded that the pairing fluctuations only
survived in a restricted range of temperature above Tc if the
samples were quite clean, indicating that the upper boundary
of the phase-fluctuating regime TOng might be related to the
disordering of the system.

A mass of theories have been developed to describe such
kinds of phase-disordered superconductors [28–32]: Kwon
and Dorsey [28] proposed a effective low-energy theory of
fermionic quasiparticles coupled to the phase fluctuations of
the superconducting order parameter, and it is shown that
the vortex-pair unbounding near Tc will produce a pseudo-
gaplike feature. Franz and Millis [29] coupled the d-wave
quasiparticles to the fluctuating supercurrents due to unbound
vortex-antivortex pairs, and pointed out that only the trans-
verse phase fluctuations are important in determining the
spectral properties while longitudinal fluctuations are unim-
portant at all temperatures. Curty and Beck [32] took both
amplitude and phase fluctuations of the pairing fields into
account and properly explained the specific heat and magnetic
susceptibility experiments. So far, the theoretical progress had
mainly focused on the phase fluctuation of d-wave super-
conducting order parameters and its interplay with the nodal
quasiparticles, which are specific to cuprate superconduc-
tors. However, the existence of superconducting fluctuations
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and pseudogap behavior is expected to be a generic feature
of two-dimensional (2D) superconductors, because of the
BKT nature of the 2D superconducting phase transitions.
Correspondingly, a generic and simple theoretical framework
describing these phenomena is still lacking.

In this paper, we provide an intuitive way to derive 2D
pseudogap phenomenon, treating thermal fluctuations and
static disorders of the phase of pairing order parameters on
an equal footing. Assuming that the phase of the supercon-
ducting order parameter fluctuates only classically because
only classical fluctuations play an important role at the finite
temperatures Tc < T < TOng, we calculate its correction to the
electronic self-energy using the standard disorder-averaging
method. To the lowest order of perturbative expansion, we
obtain the analytic form of the single-particle spectral func-
tions. Consistent with previous works [28], we find that the
broadening of the single-particle spectrum is determined by
the ratio of two characteristic lengths in the system: the
superconducting coherence length ξBCS in Ginzburg-Landau
theory and the correlation length ξ of the disordered phases.
Furthermore, we demonstrate this result numerically in an
attractive-U Hubbard model, which is known to realize a
superconducting phase at finite doping, using the unbiased
determinant quantum Monte Carlo (DQMC) method. Our nu-
merical simulation confirms these theoretical results.

II. MODEL AND METHODS

In this section, we propose an effective Hamiltonian with
the fermionic degrees of freedom coupled to fluctuating su-
perconductivity as in Eqs. (1) and (2):

Ĥ0 =
∑

σ

∫
d2rψ̂†

σ (r)

(
−∇2

2m
− μ

)
ψ̂σ (r), (1)

V̂ =
∫

d2r[�(r)ψ̂†
↑(r)ψ̂†

↓(r) + H.c.], (2)

where Ĥ0 describes the free spinful fermion in two dimensions
with σ labeling the spin degrees of freedom, and V̂ represents
the coupling between electrons and superconducting fluctu-
ations �(r). �(r) are complex fields of the superconducting
order parameter, and we assume that the pairing is s-wave-like
to simplify the problem. The model above is a generic phe-
nomenological description to an s-wave superconductor, and
we have put the microscopic mechanism of superconducting
pairing aside. The focus of our research is on how the disap-
pearance of phase coherence above the transition temperature
Tc affects the quasiparticle spectrum.

Here, we only consider the classical fluctuations of �,
and we assume �(r) is independent of time. This is be-
cause in the vicinity of the BKT transition temperature, only
the classical fluctuations are important in the low-energy
effective theory, as the correlation length ξ diverges while
the correlation in the imaginary-time direction is cut off by
the inverse temperature β = (kBT )−1. Therefore, in a low-
energy effective theory with a cutoff length scale a satisfying
vF β < a < ξ , all temporal fluctuations of �(r) have been
integrated out.

In momentum space, we can rewrite the Hamiltonian as

Ĥ =
∑

σ

∫
d2k

(2π )2
ξkψ̂

†
σ (k)ψ̂σ (k)

+
∫∫

d2k

(2π )2

d2k′

(2π )2
[�kk′ψ̂

†
↑(k)ψ̂†

↓(k′) + H.c.], (3)

where ξk = k2/2m − μ is the dispersion relation of electrons,
μ = k2

F /2m is the chemical potential, and kF is the Fermi
momentum as usual. The Fourier form of the pairing fields
reads �kk′ = ∫

d2r�(r)e−i(k+k′ )r . It is notable that the space
dependency of �(r) breaks the translational invariance, so the
momentum is not conserved during the scattering processes
induced by �kk′ .

In order to take into account the phase fluctuations of the
pairing, we separate the amplitude and phase components
of the pairing order parameter as �(r) = |�(r)|eiθ (r). It is
assumed that near the transition temperature of supercon-
ductivity, only the phase component fluctuates significantly
and the amplitude part possesses a well-defined value over
the whole space |�(r)| = �0. As a consequence, the super-
conducting pairing fields can be approximated as some kind
of classical disordered backgrounds, and we can resort to
the technique of disorder average [33], which was originally
developed to deal with impurity scattering problem, combined
with perturbation theory, to include the contribution of phase
fluctuations order by order.

The disorder-average conditions are as follows:

�(r) = 0, (4)

�(r)�∗(r′) = �0
2 e

− |r−r′ |2
2ξ2 , (5)

where the overline represents the average over different con-
figurations of �(r). ξ characterizes the spatial correlation
length of the pairing.

In Eq. (5) we have imposed a Gaussian-like correlation
function which is not compulsory and just a choice for the
convenience of calculation. Indeed, by numerically carrying
out the detailed calculations in the next section, we find the
specific line shape of correlations unrelative to the long wave
behavior of the theory if we are satisfied with the physics
in the vicinity of Tc where kF ξ � 1. This is, in turn, an im-
portant advantage of the disorder-averaging approach in that
it depends little on the microscopic dynamics of supercon-
ducting fields and thus has the potential to treat the thermal
fluctuations and static disorders in the material on the same
footing.

III. THEORETICAL ANALYSIS

We base our theoretical analysis on the perturbative expan-
sion of the pairing amplitude �0. This is justified if �0 is
much smaller than the Fermi energy (or the bandwidth). To the
lowest order of nonvanishing expansion, which corresponds
to a second-order scattering process, we write down the self-
energy of electrons by considering the pairing fields as some
scattering backgrounds:


(k, k′, ω) =
∫

d2 p

(2π )2

�kp�
∗
pk′

ω + ξp + iε
, (6)
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where ε is a positive infinitesimal quantity. Note that the
propagator has a pole at ω = −ξk , indicating the num-
ber of fermion particles is not conserved at the interaction
vertex.

The disorder averaging is then straightforward to perform
by simply replacing the correlation function of pairing fields
with the averaged one using the Fourier form of Eq. (5).
Furthermore, it can be easily verified that, after the averaging
operation, the translation symmetry is recovered as long as the
correlation of pairing fields depends only on the displacement
of two space points. We obtain 
(k, k′, ω) = 
(k, ω)δk,k′ and


(k, ω) = 2πξ 2�0
2
∫

d2 p

(2π )2

e− 1
2 ξ 2(k+p)2

ω + ξp + iε
. (7)

In the limit of infinite correlation length ξ → ∞, e.g.,
deep in the superconducting phase, the self-energy in Eq. (7)
degenerates to the mean-field result in the BCS theory as
expected. While for large but finite correlation length, which
corresponds to the normal state where T > Tc and the phase
fluctuations are un-neglectable, the paired momentum will
fluctuate near p = −k and get truncated by roughly ξ−1. This
is the main feature beyond the usual BCS theory by including
the contributions of phase fluctuations.

In principle, Eq. (7) is satisfactory for the numerical
determination of the single-particle properties of electrons.
However, in attempt to make the expression more concise, we
can take a closer look at the imaginary part of the self-energy,
as shown in Eqs. (8) and (9),

Im 
(k, ω) = −2π2ξ 2�0
2
∫

d2 p

(2π )2
e− 1

2 ξ 2(k+p)2
δ(ω + ξp)

(8)

= −πmξ 2�0
2 · e−ξ 2k2+mξ 2(ω+ξk )

× I0

(
ξ 2k2

√
1 − 2m

k2
(ω + ξk )

)
, with ω < μ,

(9)

where we have performed the integral over the 2D mo-
mentum exactly and I0(z) represents the zero-order modified
Bessel function of the first kind. The well-defined imaginary
component of self-energy indicates a finite lifetime of BCS
quasiparticles in the presence of phase fluctuations, which will
contribute to the significant broadening of spectral function in
the pseudogap regime, as we discuss below. Notice that we are
interested in the upper neighborhood of Tc, and Eq. (9) can be
further simplified if we take the asymptotic expression of the
Bessel function in the case of kF ξ � 1, and this leads to

Im 
(k, ω) = −π�0
2 mξ

(2π )1/2k
e− m2ξ2

2k2 (ω+ξk )2

. (10)

It can be seen that the imaginary part of the self-energy obeys
a Gaussian distribution with the standard deviation k

mξ
. This

motivates us to rewrite the self-energy as


(k, ω) = �0
2

ω + ξk + i k
mξ

. (11)

To obtain Eq. (11), we first substitute the normal distri-
bution in Eq. (10) with a Lorentzian, since we assume that

the specific form of correlations in Eq. (5) should not affect
the low-lying physics for a generic superconductor. The real
part of the self-energy is then determined from the Kramers-
Kronig relation. It has also been examined numerically that,
when kF ξ � 1 is satisfied, the approximated self-energy
Eq. (11) reproduces similar real and imaginary components
as given by Eq. (7). From Eq. (11), we can clearly identify the
interplay between electrons and fluctuating superconductivity.
To the lowest order of nonvanishing corrections, the phase
incoherence in the normal state of superconductors offers a
nonzero scattering rate of k/mξ to the BCS quasiparticles.
We demonstrate below that this scattering process gradually
smears the BCS quasiparticle peaks and generally leads to the
emergence of the pseudogap.

A. Pseudogap behavior

Using Eq. (11), we are ready to compute the retarded
Green’s function G(k, ω) in the presence of phase fluctua-
tions:

G(k, ω)= [ω − ξk − 
(k, ω)]−1 = ω + ξk + 2iγk

ω2 − E2
k + 2iγk (ω − ξk )

,

(12)

where we define γk = k
2mξ

, and Ek =
√

ξ 2
k + �0

2 is the elec-
tron’s dispersion relation in the BCS theory. Equation (12)
can be viewed as the Green’s function of finite-lifetime quasi-
particles described by a non-Hermitian one-body Hamiltonian
[34]. In this case, the spectrum is embedded in the pole of the
Green’s function, which is, in general, complex. The real part
of the complex pole determines the quasiparticle’s dispersion,
while the imaginary part leads to a finite lifetime of quasipar-
ticles.

This motivates us to find the complex pole in Eq. (12) by
solving the following equation:

ω2 − E2
k + 2iγk (ω − ξk ) = 0, (13)

which will generally give two solutions:

ω = −iγk ±
√

E2
k − γ 2

k + 2iγkξk. (14)

If we consider the quasiparticles near the Fermi surface where
ξk = 0, then Eq. (14) turns into

ω = −iγ ±
√

�0
2 − γ 2 (15)

and γ = vF
2ξ

is proportional to the inverse of the correlation
length. For γ /�0 � 1, i.e., the phase-coherent region near
the critical temperature, the Green’s function has two complex
poles with opposite real components ±�0, which verifies the
formation of BCS quasiparticles, and the spectrum should
be fully gapped. While for γ /�0 � 1, Eq. (15) is purely
imaginary and the real component is zero, which is exactly the
case of the Fermi liquid. In the intermediate region γ /�0 ∼ 1
where the phase fluctuations are relevant, a crossover from
Fermi liquid to the BCS physics, e.g., the pseudogap, should
occur. The plot of the retarded Green’s function for typical
values of γ /�0 is shown in Fig. 1(a).
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(a)

(b)

FIG. 1. (a) Energy dependence of the amplitude of the retarded
Green’s function |G(kF , ω)| at the Fermi surface for γ /�0 = 0.05,
1.0, and 10.0. (b) Density of states D(ω) for γ /�0 = 0.05, 0.2, 0.5,
1.0, and 2.0. It is clear that the gap is gradually filled as the phase
coherence is destroyed by thermal fluctuations.

The pseudogap phenomenon will naturally emerge if we
compute the fermionic spectral function A(k, ω):

A(k, ω) = −2ImG(k, ω) = 4�0
2γk(

ω2 − E2
k

)2 + 4γ 2
k (ω − ξk )2

(16)

and the density of states (DOS) D(ω) = ∫
d2k

(2π )2 A(k, ω).
Figure 1(b) illustrates the energy dependence of D(ω) in the
pseudogap regime with γ /�0 � 1. We can see explicitly the
gap-filling behavior as phase fluctuations are enhanced.

B. Broadening of spectral peaks

Following our analysis from Eq. (12) to Eq. (16), it be-
comes obvious that when phase fluctuations are suppressed
in the vicinity of critical temperature and γ /�0 � 1, the
spectral function A(k = kF , ω) peaks at ω = ±�0 with a fi-
nite half-width �ω. More specifically, from Eq. (16) we can

estimate

�ω = γ + O(γ ) = π

2
�0

ξBCS

ξ
+ O(ξ−1), (17)

where ξBCS = vF
π�0

is the superconducting coherence length
[35], which characterizes the physical size of the Cooper pair
in the BCS theory, and vF is the Fermi velocity. The con-
tribution of phase incoherence to the broadening of spectral
peaks is thus characterized by the ratio between the correlation
length ξ of the pairing order parameter and the supercon-
ducting coherence length ξBCS. According to our previous
assumptions, when the temperature is in the pseudogap regime
Tc < T < TOng, the superconducting gap �0 is independent of
temperature, while γ is highly sensitive to the changes in tem-
perature through ξ ; e.g., for 2D BKT transition, the correlation
length decreases exponentially above Tc [see the scaling rela-
tion in Eq. (20)]. As the temperature increases, i.e., increase γ ,
the half-width in Eq. (17) grows up, and the peaks are smeared
gradually. When γ /�0 � 1, the two peaks merge into each
other and eventually the gap in the single-particle spectrum is
closed. Following a straightforward calculation, we find that
A(k = kF , ω) reaches its maximum at ω = ±

√
�0

2 − 2γ 2,
and the pseudogap closes when γ /�0 = 1√

2
, which is less

than 1 slightly due to the finite broadening of BCS peaks.
Therefore, Eq. (17) can serve as a quantitative indicator

to measure the effect of phase fluctuations on the spectral
properties of electrons in such phase-disordered superconduc-
tors. The half-width of spectral peaks �ω and the correlation
length ξ can also be directly measured by numerical sim-
ulations, which makes it possible to confirm our theory on
generic lattice models.

Furthermore, we expect a similar analysis can also be
applied to d-wave superconductors. For a system with dx2-y2

pairing, the superconducting gap �0(k) becomes momentum
dependent, and the ratio γ /�0 may vary along the Fermi
surface. Consequently, in the pseudogap state of d-wave su-
perconductors, the phase fluctuations may open a pseudogap
on part of the Fermi surface where the ratio is small, while
the gap remains closed on other part of the Fermi surface
where the ratio is large, and hence leads to Fermi arcs [34].
We argue that, in contrast with the pseudogap emerging in the
underdoped regime and near antinodes of cuprates, the pseu-
dogap induced by fluctuating superconductivity, accompanied
by the Fermi arcs, is, however, general and ubiquitous in 2D
superconductors with d-wave pairing. This is supported by not
only certain photoemission measurements of Bi2212 [19,20],
which indicate that the fluctuation-induced pseudogap exists
above the entire superconducting dome, but also numerical
studies of 2D superconductors with pure superconducting
pairing [36]. We leave a detailed study of this possibility to
future works.

It is also notable that although we have based our calcu-
lations on the theory of free fermion with a circular Fermi
surface, the relation in Eq. (17) can be quite general as it
should be independent of the shape of the Fermi surface or the
details of the microscopic theory of superconductivity, e.g., a
specific form of the decay of correlation functions. Hence, it
is expected to correctly capture the low-energy properties of
the generic s-wave superconductors in the pseudogap regime
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even when there exists strong interaction among electrons, as
we see numerically in the next section.

IV. DQMC SIMULATIONS

In order to verify the role of phase fluctuations and the
relation in Eq. (17), we study the fermionic Hubbard model
with attractive on-site interaction on the square lattice via the
DQMC algorithm. The model Hamiltonian is

H = − t
∑

〈i, j〉,σ
(c†

iσ c jσ + c†
jσ ciσ ) + μ

∑
iσ

niσ

− |U |
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (18)

where t describes the hopping amplitude between nearest-
neighbor sites, |U | is the strength of attractive on-site
interaction, and μ is the chemical potential. It is proved that
this model is free of the notorious sign problem for any
value of doping and interaction strength. This is guaranteed
by the time-reversal symmetry of the model action after the
Hubbard-Stratonovich transformation [37].

From the historical view, the attractive-U Hubbard model
has aroused considerable interest because it shows a BKT
transition to an s-wave superconducting state. The phase
diagram, especially the location of the superconducting
transition, was systematically studied in Refs. [38,39]. At
half-filling, i.e., μ = 0, the transition temperature is sup-
pressed to zero due to the degeneracy of the charge density
order and the superconducting one. However, away from half-
filling, the charge fluctuations are suppressed, leading to a
BKT superconducting transition with a finite transition tem-
perature Tc [39,40]. Furthermore, signals of performed pairs
have been found in the normal state within a certain range of
parameters through the measurements of spin susceptibility,
which is related to the pseudogap behavior in high-Tc super-
conductors [41,42].

In this section, we confirm the existence of the pseudogpap
phase in the attractive-U Hubbard model through large-scale
DQMC simulations, and the gap-filling behavior is directly
observed in both spectral functions and DOS. In addition,
we attempt to verify that the phase fluctuations contribute to
the broadening of fermionic spectral weights as predicted in
Eq. (17). To see this, we first determine the BKT transition
temperature Tc of the superconductivity and obtain the tem-
perature dependence of the correlation length ξ by scaling
analysis. Then, the half-width of the spectral weights is di-
rectly read from the fermionic spectral functions, which can
be recovered from imaginary-time correlation functions using
stochastic analytic continuation (SAC) [43–46]. We notice
that the pseudogap phenomenon has been observed using
this method in models with fermionic quantum critical points
[47,48].

A. Determination of Tc and data collapse

In order to determine the transition temperature Tc, we
define the s-wave pairing correlation function Ps [38] as

Ps = 〈�†� + ��†〉, (19)

where �† = 1√
N

∑
i c†

i↑c†
i↓.

FIG. 2. Doubly logarithmic plot of the correlation function Ps

versus system size L at various temperatures. Error bars are much
smaller than symbol sizes.

Near the critical point of the BKT transition, the correlation
length ξ and the pairing Ps should behave as [23]

ξ ∝ exp
(
at−1/2

r

)
and Ps ∝ ξ 2−η, (20)

where a is a nonuniversal constant and tr = (T − Tc)/Tc is
the reduced temperature. For the BKT transition, the critical
exponent η(Tc) = 1/4. According to the finite-size scaling
theory [49–51], for a finite-size system with linear size L, we
have the scaling relation

PsL
η(Tc )−2 = f

[
L−1exp

(
at−1/2

r

)]
, tr → 0+, (21)

where f is a universal function. This relation gives us the
freedom to appropriately choose a, η, and Tc to make the plot
of PsLη(Tc )−2 versus L−1exp(at−1/2

r ) collapse into a universal
curve.

Note that at the critical temperature Tc, we can conclude
from Eq. (21) that

Ps(L) ∝ L2−η(Tc ). (22)

Using Eq. (22), it is convenient to first locate Tc by measuring
Ps for a range of temperature and lattice sizes. Figure 2 shows
the doubly logarithmic plot of the pairing Ps as a function of
system size L at different temperatures. Hereafter, we fix the
value of interaction strength |U | = 4t and the filling number
〈n〉 = 0.8, which is around the optimal doping as indicated
in Ref. [39] (also note that we have set t = 1 as the unit of
energy). The size of the lattice varies from 12×12 to 18×18.
As the inverse temperature β increases from 6.0 to 10.0, the
slope grows from 1.17 ± 0.02 to 1.83 ± 0.01. According to
Eq. (22), the slope should equal to 7/4 at the critical point.
This gives us the estimation of the transition temperature
βc = 7.75 ± 0.10.

The T dependence of the correlation length ξ (T ) can then
be obtained using data collapse as introduced in Eq. (21). In
Fig. 3, we show the data collapse of the pairing correlation
function Ps(T, L). The data points fall into a universal func-
tion with the following set of fitting parameters: a = 1.40 ±
0.10 and βc = 7.75 ± 0.10 (we have fixed η = 0.25 for the
BKT transition). Hence, the temperature dependence of the

224502-5



XU-CHENG WANG AND YANG QI PHYSICAL REVIEW B 107, 224502 (2023)

FIG. 3. Data collapse of the correlation function Ps(T, L). The
inset is the zoom-in of the lower left corner of the main figure.
The data points collapse quite well under the fitting parameters
a = 1.40 ± 0.10 and βc = 7.75 ± 0.10 (we have fixed η = 0.25 for
the BKT transition).

correlation length ξ (T ) is determined by Eq. (20) with a and
Tc given above, up to a T -independent prefactor.

B. Pseudogap and the role of phase fluctuations

The pseudogap phase is explicitly identified via solving
the density of states D(ω) from the imaginary-time corre-
lation function D(τ ) = 1

L2 TrĜ(τ ) computed by DQMC. The
fermionic spectrum in real frequency is related to the correc-
tion function in imaginary time through an integral transform:

D(τ ) =
∫ ∞

−∞
dω

e−τω

1 + e−βω
D(ω). (23)

Generally speaking, the extraction of D(ω) from D(τ ) is
numerically unstable especially when the input correlation
functions are noisy. The SAC [43–46] method is thus pro-
posed to hopefully find the most possible spectrum by
carrying out a Monte Carlo simulation and simulated anneal-
ing procedure (see detailed discussions in the Appendix).

As a result, the recovered DOS is illustrated in Fig. 4(a).
Above the critical temperature Tc, the gap is gradually filled
up and finally closed at a temperature higher than 0.25. This
explicitly confirms the existence of the pseudogap phase in the
intermediate-coupling regime of the attractive Hubbard model
on a square lattice.

This pseudogap behavior can also be observed in the
fermionic spectral functions, which are obtained using a
method similar to that used for getting the DOS. We show in
Fig. 4(b) the spectral weights on the Fermi surface at different
temperatures. Compared with our analysis in Eqs. (16) and
(17), a qualitative difference is that even below the transition
temperature Tc, where the correlation length tends to infin-
ity, the two spectral peaks still possess a finite half-width.
This motivates us to introduce an intrinsic correlation length
ξ0, which takes into account other effects beyond the phase
fluctuations of the pairing order parameter, such as electron

(a)

(b)

FIG. 4. (a) Density of state D(ω) at different temperatures for
|U | = 4t and 〈n〉 = 0.8 on a 18×18 lattice. A smooth evolution of
the superconducting gap is observed above the critical temperature.
(b) Fermionic spectral function A(k = kF , ω) at different tempera-
tures. The momentum point is chosen as the intersection of the �

line and the Fermi surface.

interactions, to the width of quasiparticle peaks:

�ω = vF

2

(
ξ−1 + ξ−1

0

)
. (24)

The fitting of the half-width data and the correlation length
is shown in Fig. 5. The half-width of spectral peaks is directly
read from Fig. 4(b), and we estimate the error bars of the
half-width by dividing the imaginary-time Green’s functions
measured by DQMC into 30 groups and extracting the spectral
functions using SAC independently.

Considering the numerical accuracy of both �ω and ξ , we
conclude that the linear dependence of �ω on ξ is satisfied in
the pseudogap regime. With the inverse temperature ranging
from 5.6 to 7.6, the magnitude of the correlation length rises
from 101 to 104, which is compatible with our assumption
of kF ξ � 1 in Eqs. (11) and (17). It can also be inferred
from Fig. 4(b) that the superconducting gap �0 is around 0.60
for temperatures close to the critical point. If we neglect the
temperature dependence of �0 since we focus on the vicin-
ity where the phase fluctuations count, we can then acquire
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FIG. 5. Half-width �ω of the spectral weight on the Fermi sur-
face versus the inversion of the correlation length ξ−1. The solid line
is the result of linear fitting, and the shaded region represents the 3σ

confidence interval of the regression.

an estimation of the superconducting coherence length
ξBCS ∼ 3.2. The above analysis justifies our perturbative ex-
pansion in Eq. (6) since the ratio �0/8t is small.

In summary, we conclude that in the intermediate-coupling
regime of the attractive Hubbard model, the phase fluctuations
above Tc give birth to the pseudogap phenomenon, where the
smooth evolution of the superconducting gap occurs in the
single-particle spectrum. This is consistent with the theory
developed in Sec. III that in the presence of phase fluctuations
the BCS quasiparticles acquire a finite lifetime and meanwhile
the two spectral peaks get broadened. At high temperatures,
this further leads to the mergence of two BCS spectral peaks,
and eventually the gap is closed. Within the accuracy that we
can achieve, the half-width of spectral peaks on the Fermi
surface is proportional to the ratio ξBCS/ξ , as predicted in
Eq. (17).

V. CONCLUSION

In this paper, we consider the effect of the phase fluctua-
tions on the normal state of s-wave superconductors. We start
with a low-energy effective theory with electrons coupled to
a static superconducting pairing field, which has a uniform
magnitude and a randomly distributed phase. We apply the
technique of disorder averaging to treat the contributions of
the fluctuating phases, and we obtain the self-energy correc-
tions to the quasiparticles in a perturbative manner. We find
that the phase fluctuations naturally provide a well-defined
imaginary part to the Green’s function. An intuitive relation
then follows that the broadening of the single-particle spec-
trum on the Fermi surface is governed by the ratio of the
superconducting coherence length ξBCS and the correlation
length ξ . This is supposed to be a universal relation regard-
less of the microscopic theory, e.g., the mechanism of the
superconducting pairing or the line shape of the correlation
functions. The predictions given above are verified by our
DQMC simulations of the attractive-U Hubbard model on the
square lattice.

It will be interesting to see if the theoretical results hold
in other models of 2D superconductors that can be simulated
numerically. Furthermore, the theoretical analysis in Sec. III
only includes the leading term in the perturbation theory and,
therefore, only works when the pairing gap is small. It will be
interesting to explore the effects of higher-order terms in the
perturbative expansion. We leave this to future works.
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APPENDIX: STOCHASTIC ANALYTIC CONTINUATION

In this paper, we apply the stochastic analytic continuation
(SAC) [43–46] method to obtain the real-frequency spectral
function from the imaginary-time correlation measured in
QMC. A brief introduction to the SAC method is summarized
below.

In general, the numerical analytic continuation problem is
formulated as solving the inverse of the following integral
transform:

G(τ ) =
∫ ∞

−∞
dωA(ω)K (τ, ω), (A1)

where K (τ, ω) is the integral kernel, A(ω) is the spectral func-
tion to be solved, and G(τ ) is the imaginary-time correlation
sampled in QMC with certain statistical errors. The kernel
K (τ, ω) depends on both temperature and the statistics of
particles, and in our case of the fermionic system, we have
K (τ, ω) = e−τω/(1 + e−βω ) as implied in Eq. (23).

Practically, the QMC simulation gives us a statistical es-
timate Ḡi ≡ Ḡ(τi ) of the exact correlation G(τ ) for a set of
imaginary-time points {τi} for i = 1, . . . , Nτ . The statistical
errors of Ḡ(τi ) are described by the covariance matrix, which
is given by

Ci j = 1

NB(NB − 1)

NB∑
b=1

(
Gb

i − Ḡi
)(

Gb
j − Ḡ j

)
, (A2)

where Gb
i is the measured correlation at τi averaged from the

QMC samples in a certain bin, and NB is the number of bins.
Note that the off-diagonal elements of the covariance matrix
correspond to the correlation between different imaginary-
time points, and the diagonal ones are exactly the square of
the standard deviation of Ḡi.

In order to numerically recover the spectral function, one
should first parametrize A(ω) in an efficient and suitable way.
A widely used scheme is to represent A(ω) by a large number
of δ functions:

A(ω) =
Nω∑
i=1

aiδ(ω − ωi ), (A3)

with {ai, ωi} being the parameters to be sampled. Since the
fermionic spectral function is normalized, it is convenient to
fix the amplitude ai ≡ a for all i and sample over the loca-
tions of δ functions {ωi}. Given certain configurations of δ
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functions, the fitted correlation G̃i can be computed according
to Eq. (A1) and we further define the goodness of fit as

χ2 =
Nτ∑

i, j=1

(G̃i − Ḡi )C
−1
i j (G̃ j − Ḡ j ), (A4)

which quantifies the closeness of the fitted correlation to the
QMC-measured one.

The key idea of SAC is to perform a Metropolis–Monte
Carlo simulation in the configuration space {ai, ωi}, and the

weight of a certain spectrum obeys a Boltzmann distribution:

W ({ai, ωi}) ∼ exp

(
− χ2

2�

)
, (A5)

where � is a fictitious temperature to balance the mini-
mization of 〈χ2〉 and thermal fluctuations. We also apply a
simulated annealing process, which adiabatically tunes down
� from a sufficiently high value, to avoid getting trapped into
any configurations near local minima. Once the optimal � is
found, all statistically acceptable configurations are averaged
to obtain the final spectrum.
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