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Spin-singlet topological superconductivity in the attractive Rashba-Hubbard model
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Fully gapped, spin-singlet superconductors with antisymmetric spin-orbit coupling in a Zeeman magnetic field
provide a promising route to realize superconducting states with non-Abelian topological order and therefore
fault-tolerant quantum computation. Here we use a quantum Monte Carlo dynamical cluster approximation to
study the superconducting properties of a doped two-dimensional attractive Hubbard model with Rashba spin-
orbit coupling in a Zeeman magnetic field. We generally find that the Rashba coupling has a beneficial effect
towards s-wave superconductivity. In the presence of a finite Zeeman field, when superconductivity is suppressed
by Pauli pair breaking, the Rashba coupling counteracts the spin imbalance created by the Zeeman field by
mixing the spins, and thus restores superconductivity at finite temperatures. We show that this favorable effect
of the spin-orbit coupling is traced to a spin-flip driven enhancement of the amplitude for the propagation of a
pair of electrons in time-reversed states. Moreover, by inspecting the Fermi surface of the interacting model, we
show that for sufficiently large Rashba coupling and Zeeman field, the superconducting state is expected to be
topologically nontrivial.
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I. INTRODUCTION

In topological superconductors, the nontrivial topology
of the bulk electronic structure leads to the emergence of
Majorana bound states within the bulk superconducting gap
[1–3]. These quasiparticles may be used for fault-tolerant
quantum computing [4], and the search for new topological
superconductors that host robust Majorana modes has there-
fore been an important priority but also a central challenge
in quantum materials research. While topological supercon-
ductivity is usually associated with odd-parity spin triplet
pairing, it was shown that spin-singlet, even parity super-
conductors can also host a non-Abelian topological phase
in the presence of spin-orbit coupling and a Zeeman mag-
netic field [5,6]. Experimental platforms to realize such a
system include heterostructures of a semiconducting thin
film sandwiched between an s-wave superconductor and
a ferromagnetic insulator [7], a two-dimensional electron
gas adjacent to an interdigitated superconductor/ferromagnet
structure [8], electric double layer transistors with an s-wave
superconductor/ferromagnet heterostructure [9], and super-
fluids of cold atoms [5,10].

Realizing topological superconductivity requires an intri-
cate cooperation between helical states created by spin-orbital
coupling, time-reversal symmetry breaking, and supercon-
ductivity. Most studies of these ingredients, however, have
used Bogoliubov-de-Gennes (BdG) weak-coupling mean-
field theory [5,11–13], which assumes that superconductivity
is present and unaffected by the correlations, the spin-orbit
coupling, or the Zeeman field. However, in order to provide
general guiding principles for the design of topological su-
perconducting materials, the effects of correlations, spin-orbit

coupling, and magnetic fields have to be treated on the same
footing on a microscopic, beyond weak-coupling mean-field
level, in order to properly assess the interplay between strong
correlations and topology. Such work, however, is scarce, with
only a few exceptions that include the dynamical mean-field
theory (DMFT) work by Nagai et al. [9] and Lu et al. [14].
Here we investigate these effects and the feedback between
them on a microscopic level within numerical quantum Monte
Carlo (QMC) dynamical cluster approximation (DCA) cal-
culations of a Rashba-Hubbard model using a large enough
cluster that properly accounts for the effects of the nonlocal
Rashba coupling. We also use additional density matrix renor-
malization group (DMRG) calculations on a two-leg ladder
(reported in Appendix B) to show that our DCA results are ro-
bust. Here we consider an out-of-plane Zeeman field. Systems
with in-plane magnetic field were considered in Refs. [15,16].

II. MODEL AND METHODS

We consider a two-dimensional square lattice attractive
Rashba-Hubbard model in a Zeeman magnetic field. Its
Hamiltonian is given by

H =
∑

k

ψ
†
k (εk1 − hσ3 + 2λSOC σ · gk )ψk + U

∑
i

ni↑ni↓.

(1)

Here, we have used a spinor notation ψ
†
k = (c†

k↑, c†
k↓), with

c†
kσ creating an electron with wave vector k and spin σ =

↑,↓. For the square lattice with only nearest-neighbor hop-
ping t , which we use as the energy unit (t = 1), the energy
dispersion is εk = −2t (cos kx + cos ky). σ = (σ1, σ2, σ3) are
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FIG. 1. Illustration of the bandstructure with Rashba spin-orbit
coupling and Zeeman field. In the presence of finite Rashba spin-
orbit coupling λSOC, the Kramers degenerate bands for spin ↑ and
↓ split into two pseudospin bands, resulting in a Dirac cone near
the � point where the two bands touch (blue band structure). When
the Zeeman field breaks time-reversal symmetry, a gap opens at �

(green band structure) resulting in a single (“spinless”) Fermi surface
(red line) when the chemical potential is tuned to an energy within
the gap.

the Pauli matrices, h the Zeeman magnetic field, and λSOC

the Rashba spin-orbit coupling with gk = (− sin ky, sin kx, 0).
The second part of the Hamiltonian describes the on-site at-
tractive interaction U < 0 with the density operators niσ =
c†

iσ ciσ . Here we have set U = −4t and the electron density
〈n〉 = 0.25. We note that orbital effects of the magnetic field
are ignored in this Hamiltonian. Our results are therefore more
relevant to systems in which these effects are expected to not
be important, such as, e.g., strongly correlated systems or ul-
tracold charge neutral fermionic atoms [6]. In addition, it was
argued that in heterostructures of a semiconducting thin film
sandwiched between a ferromagnetic insulator and an s-wave
superconductor [7], the Zeeman field primarily arises from
electron tunneling and not the magnetic field generated by the
ferromagnetic insulator, justifying the neglect of orbital ef-
fects of the magnetic field for such systems [3]. Other systems
consisting of a Tl-Pb monolayer on a Si(111) substrate and an
ion gel, s-wave superconductor, ferromagnet heterostructure
were also proposed in Ref. [9] as a possible realization of the
physics described by this Hamiltonian.

The band structure E (k) that results from diagonalizing
the noninteracting part of the Hamiltonian is schematically
illustrated in Fig. 1. In the presence of a finite spin-orbit
coupling λSOC but zero Zeeman field, the band structure splits

into two pseudospin bands that are degenerate only at the �

point (k = 0), resulting in a Dirac cone (blue surface). The
Fermi surface always has two sheets, no matter where the
chemical potential is located. For finite Zeeman field h, a gap
opens at � (green surface). In this case, when the chemical
potential μ is tuned to fall within the gap, the Fermi surface
consists of only a single (pseudospin) sheet with a helical
spin structure, where the physical electron spin is pointing
in opposite directions on opposite sides of the Fermi surface
due to the spin-momentum locking induced by the spin-orbit
coupling. This allows for the formation of spin-singlet Cooper
pairs with opposite momenta k,↑ and −k,↓ in the presence
of an attractive interaction. However, the pairing in this case is
effectively spinless, since the other pseudospin degree of free-
dom is gapped out, and the superconducting state is expected
to be topologically nontrivial. We note that while this pairing
state is a spin-singlet pairing state in the original spin basis, it
corresponds to a spin-triplet state in the pseudospin basis. In
fact, Sato et al. have shown that the s-wave BdG Hamiltonian
can be mapped to a spinless chiral p-wave superconductor in
the chiral pseudospin basis [6].

In principle, the topological character of the superconduct-
ing phase of the model in Eq. (1) is to be determined by
calculating the Thouless-Kohmoto-Nightingale-Nijs (TKNN)
invariant [6]. However, the calculation of topological in-
variants for interacting systems is more difficult than for
noninteracting systems and would involve calculations inside
the superconducting phase and an additional analytic contin-
uation of the imaginary time quantum Monte Carlo data to
real frequency to construct the zero frequency single-particle
Green’s function, from which an effective Hamiltonian can
be defined [14]. We therefore resorted to the method intro-
duced by Sato et al. [6] for Rashba superconductors relating
the TKNN invariant to the winding number defined as the
xy-plane spin rotation on the Fermi surface. Specifically, we
use the argument by Nagai et al. [9] that a superconducting
state below Tc with nontrivial topological character is asso-
ciated with a nonzero winding number on the normal state
Fermi surface just above Tc. Consistent with the argument
presented above, the winding number is nonzero when only
a single nondegenerate Fermi surface sheet is present.

Here we use nonperturbative QMC/DCA [17–19] calcula-
tions for the model in Eq. (1) to study whether this physics
can indeed be realized and to determine the superconducting
transition temperature Tc in the presence of both finite Rashba
spin-orbit coupling λSOC and Zeeman field h. In the ab-
sence of these terms, the attractive Hubbard model in Eq. (1)
has been studied extensively over the past several decades
[20–30]. Away from half-filling 〈n〉 = 1, this model has a
finite-temperature Kosterlitz-Thouless s-wave superconduct-
ing transition that can be mapped out essentially exactly as
QMC does not face a Fermion sign problem for this model
[26,29,30].

When λSOC is finite but h = 0, the model preserves time-
reversal symmetry. In this case, there is still no sign problem in
the QMC [31]. For |h| > 0, however, time reversal symmetry
is broken, and the QMC calculations are not protected by
symmetry from a sign problem (in this case a phase problem
since the Hamiltonian is complex). The model with finite λSOC

and h was studied with single-site DMFT by Nagai et al. in
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Ref. [9]. The single-site calculation is sign-problem free, but
the purely nonlocal Rashba spin-orbit coupling vanishes in the
effective single-site DMFT problem and is therefore not ade-
quately treated in the calculation. Here, to properly take into
account the effects of the Rashba coupling, we use an eight-
site cluster for the DCA calculations and a continuous-time
auxiliary-field QMC algorithm [32,33] to solve the effective
cluster problem as implemented in the DCA++ code [34]. The
eight-site cluster is the smallest cluster for which the λSOC

coupling does not vanish for the effective cluster problem.
For the parameters of interest in this work, we do not find a
strong phase problem for this cluster, allowing us to perform
simulations for very low temperatures and accurately study
the effects of λSOC and h on the superconducting properties of
the model.

In order to do so, we calculate the s-wave pair-field suscep-
tibility,

Ps(T ) =
∫ β

0
dτ 〈Tτ	s (τ )	†

s (0)〉, (2)

with 	†
s = 1/

√
N

∑
k c†

k↑c†
−k↓. The calculation of Ps(T )

within the DCA method is described in detail in Appendix A.
Tc is determined as the temperature T at which Ps(T ) di-
verges, or equivalently, 1/Ps(T ) becomes zero (see Fig. 6 in
Appendix A). We will also study its leading order term, the
intrinsic pair-field susceptibility Ps,0(T ), which reflects the
amplitude for the propagation of a pair of electrons in time-
reversed momentum and spin states, in order to get insight
into the pairing behavior. This quantity is given by

Ps,0 = T

N

∑
k

[G↑↑(k)G↓↓(−k) − G↑↓(k)G↓↑(−k)]. (3)

Here we have used the notation k = (k, iωn) for fermionic
Matsubara frequencies ωn = (2n + 1)πT and Gσσ ′ (k) is the
fully interacting Green’s function for the model in Eq. (1).
The first term is the usual term for spin-singlet (k ↑,−k ↓)
pairs. The second, spin-flip term G↑↓G↓↑ is only finite when
the spin-orbit coupling λSOC mixes ↑ and ↓ spins, which
leads to finite off-diagonal Green’s function components G↑↓
and G↓↑.

III. RESULTS AND DISCUSSION

Figure 2 shows the superconducting transition temperature
Tc versus the Rashba spin-orbit coupling λSOC for different
values of the Zeeman magnetic field h. Tc was obtained as the
temperature at which the s-wave pair-field susceptibility Ps(T )
diverges (see Fig. 6 in Appendix A). We find nonmonotonic
behavior for h = 0 and 0.5t , while for h = t , Tc monotonically
increases up to the largest λSOC we have studied. For h = 0
and λSOC = 0, Tc ≈ 0.11t and increases by about 20% to
Tc ∼ 0.13t at λSOC ≈ 0.4t before it decreases at larger λSOC.
This initial increase in Tc with λSOC is also found for finite h.
In this case, when λSOC = 0, superconductivity is suppressed
for fields larger than the upper critical field due to Pauli pair
breaking. For h = 0.5t (t ), we do not find a superconducting
transition for λSOC = 0 (0 and 0.125t). For larger λSOC, how-
ever, superconductivity is restored and Tc initially increases
with λSOC before it decreases at larger λSOC. This behavior is

FIG. 2. Superconducting transition in the attractive Rashba-
Hubbard model. The superconducting transition temperature Tc

versus Rashba spin-orbit coupling λSOC for different Zeeman mag-
netic fields h. The data points with square symbols indicate the
parameters for which the superconducting state is expected to be
topologically nontrivial based on the results for the Fermi surface
shown in Fig. 4. Results are shown for an electron filling 〈n〉 = 0.25
and U = −4t , and the DCA calculations were performed for an
eight-site cluster.

consistent with our DMRG calculations of a two-leg Rashba-
Hubbard ladder as reported in Appendix B, where we find
that the binding energy for a pair of holes is negative and
has a minimum at intermediate Rashba coupling for finite
Zeeman fields. The DMRG calculations also show nonmono-
tonic behavior in the λSOC dependence of the on-site pair-pair
correlations with a pronounced enhancement for intermediate
Rashba coupling. Our results are also consistent with those
found previously in single-site DMFT calculations for this
model [9] and note that, as shown in that work, mean-field
theory does not capture the nonmonotonic behavior. For the
data points with the square symbols at large λSOC and finite
h, we expect the superconducting state to be topologically
nontrivial, based on results for the normal state Fermi surface,
as we will discuss later. For h = 0.5t and λSOC = 0.75t , the
Tc of this topological state is only reduced by about 20% to
that of the topologically trivial state for h = λSOC = 0 from
Tc ≈ 0.11t to Tc ≈ 0.085t .

From Fig. 2 it is clear that λSOC increases the Pauli-limit
upper critical field above which superconductivity is sup-
pressed, and thus restores superconductivity for fields above
the upper critical field of the system with λSOC = 0. We now
discuss results for the intrinsic s-wave pair-field susceptibil-
ity Ps,0 defined in Eq. (3) in order to provide insight into
this behavior. In Fig. 3, we show results for the temperature
and λSOC dependence of Ps,0. In conventional (BCS) theory,
this quantity has a logarithmic (Cooper) divergence as T →
0, so that any attractive interaction, no matter how weak,
leads to a superconducting transition at finite temperature. In
an unconventional superconductor, however, the physics can
be different. In the cuprate pseudogap phase, for example,
this Cooper instability is absent, and the superconducting
transition is driven by an effective interaction that increases
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FIG. 3. Intrinsic pair-field susceptibility. (a) Temperature depen-
dence of the s-wave intrinsic pair-field susceptibility Ps,0(T ) for
different Zeeman fields h and Rashba couplings λSOC. The light
(dark) shaded regions show the contributions in Eq. (3) of the first
G↑↑G↓↓ (second G↑↓G↓↑) terms to Ps,0(T ) for h = 0.5, λSOC = 0.25.
(b) Ps,0(T ) at fixed temperature T = 0.05t versus λSOC. All results
are shown for an electron filling 〈n〉 = 0.25 and U = −4t , and the
DCA calculations were performed for an eight-site cluster.

with decreasing temperature [35]. Thus, a logarithmic diver-
gence in Ps,0(T ) is a sufficient, but not necessary condition for
a superconducting instability to occur.

Figure 3(a) plots the temperature T dependence of Ps,0(T )
for two different values of h and λSOC. For λSOC = 0 (solid
circles), finite h = 0.5t splits the Kramers degenerate Fermi
surface into two (↑ and ↓) sheets. As a result, there are
no states available at −k on the ↓ sheet to pair with the
k,↑ state. Consequently, Ps,0(T ) is significantly suppressed at
low temperatures by the Zeeman field. A finite λSOC mixes
spin ↑ with spin ↓ and thus counteracts the spin imbal-
ance created by the h field. Consistent with this expectation,
for λSOC = 0.25t (open cirlces), the low temperature behav-
ior of Ps,0(T ) changes significantly, now showing a strong
upturn with decreasing temperature even for h > 0, which
eventually leads to the finite Tc shown in Fig. 2. Albeit less
dramatic, this enhancement occurs even for h = 0 and is the

reason for the enhancement of Tc with finite spin-orbit cou-
pling λSOC. For h = 0.5t and λSOC = 0.25t , the two terms,
G↑↑G↓↓ and G↑↓G↓↑ that contribute to Ps,0 in Eq. (3) are
shown as shaded regions. The standard G↑↑G↓↓ contribution
remains suppressed at low temperatures, even in the presence
of finite λSOC. In contrast, the spin-flip G↑↓G↓↑ contribution
keeps rising with decreasing temperature, leading to the low-
temperature increase of Ps,0(T ) for finite λSOC. The λSOC and h
dependence of Ps,0(T ) at fixed T = 0.05t in Fig. 3(b) closely
tracks the λSOC dependence of Tc in Fig. 2, showing that it
is indeed the effect of λSOC and h on the intrinsic pair-field
susceptibility Ps,0 that determines Tc.

The key for understanding the different effects of λSOC and
h on Ps,0(T ) is the Fermi surface and band structure plotted in
Fig. 4. Here we show two different parameter sets: h = 0.5t ,
λSOC = 0.25t in Fig. 4(a) and h = t , λSOC = t in Fig. 4(b).
The top two panels show |∇knσ

k | as a proxy for the Fermi
surface, where nσ

k = c†
kσ ckσ is the occupation in momentum

space for spin σ . The bottom panels show the band struc-
ture of the noninteracting model, but including the Hartree
term of the self-energy, to serve as a leading order approxi-
mation of the interacting single-particle spectrum that can be
compared with |∇knσ

k | in the top panels. As is clear from these
plots, the Fermi level crossing of the bands and their spin σ

weights are consistent with the Fermi surface plots in the top
panels.

For the case with h = 0.5t , λSOC = 0.25t in Fig. 4(a),
one sees two bands crossing the Fermi level and two Fermi
surface sheets closed around the � point with very different
spin weights. The spin-orbit induced admixture of the oppo-
site spin, although weak, leads to a finite spin-flip G↑↓G↓↑
contribution to Ps,0(T ) that is immune to the field induced
suppression at low temperature, thus restoring the supercon-
ducting instability.

For the second case with h = t , λSOC = t in Fig. 4(b), the
situation is very different. The splitting of the bands is much
larger resulting in a single Fermi surface sheet only. The states
on this sheet have predominantly spin ↓ character, but now
with a much larger admixture of spin ↑ electrons. For this
case of a single sheet, the superconducting state is expected
to be topologically nontrivial, since the pairing (in the chiral
pseudospin basis) is effectively spinless due to the absence
of the second Fermi surface sheet. As indicated by the square
data points in Fig. 2, the cases with h = 0.5t and λSOC � 0.75t
are also expected to be topologically nontrivial based on their
Fermi surface (not shown).

IV. SUMMARY AND CONCLUSIONS

We have used a dynamic cluster quantum Monte Carlo
approximation to study s-wave superconductivity in the at-
tractive Hubbard model in the presence of a Rashba spin-orbit
coupling λSOC and a Zeeman magnetic field h for an electron
filling 〈n〉 = 0.25. Under certain conditions, these ingredients
can lead to a spin-singlet superconducting state that is topo-
logically nontrivial. We have found that a Rashba coupling
with moderate strength λSOC ∼ 0.5t has a beneficial effect
towards superconductivity. By mixing spin ↑ with ↓ states,
it counteracts the spin imbalance generated by the h field
and thus creates −kF ,↓ Fermi level states that can pair with
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FIG. 4. Fermi surface and band structure. (Top panels) The gradient of the momentum space occupation, |∇kn(k)| for (a) h = 0.5, λSOC =
0.25 and (b) h = 1.0, λSOC = 1.0 for spin ↑ and ↓. (Bottom panels) Corresponding band structure in Hartree approximation with the weight
of spin ↑ and ↓ indicated by line thickness.

degenerate kF ,↑ states. This promotes a superconducting
transition for fields well above the Pauli limit upper critical
field at λSOC = 0. We show that this favorable effect of λSOC

is traced to a spin-flip driven enhancement of the electron
pair propagation amplitude Ps,0, which is induced by the spin
mixture. Finally, we used the gradient of the momentum space
occupation n(k) to obtain information on the Fermi surface
of the interacting system for different λSOC and h. For suf-
ficiently large λSOC and h, we find that the Fermi level falls
within the gap of the effective two-band system, and the Fermi
surface consists of only a single (pseudospin) sheet. For this
case, the superconducting state below Tc is effectively spinless
and therefore expected to be topologically nontrivial. For the
parameters we have studied, we find that the highest Tc for
this topological state is only reduced by about 20% from the
Tc of the topologically trivial state in the absence of spin-orbit
coupling and magnetic field. These results give new insight
into the effects of spin-orbit coupling and magnetic fields on
the superconducting behavior of correlated electron systems,
and thus provide general guidance on how to tune the relative
strengths of these couplings in the search for new topological
superconductors.
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APPENDIX A: DCA CALCULATION OF THE s-WAVE
PAIR-FIELD SUSCEPTIBILITY

In order to calculate the s-wave pair-field susceptibility
[Eq. (2) in the main text] for the model in Eq. (1), we
follow the usual DCA formalism described in Refs. [18,36] to
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FIG. 5. Diagrams for the Bethe-Salpeter equation in the particle-particle channel. For finite (spin-mixing) Rashba coupling, an additional
diagram with crossing Green’s function legs contributes in leading order. This diagram gives rise to the enhancement of s-wave pair correlations
found at low temperatures.

calculate susceptibilities for the lattice in the thermodynamic
limit. This requires a calculation of the four-point two-particle
Green’s function,

G2,σ1...σ4 (x1, x2; x3, x4)

= 〈
Tτ cσ1

(x1)cσ2
(x2)c†

σ3
(x3)c†

σ4
(x4)

〉
, (A1)

where the combined index xi = (xi, τi ) has both spatial xi, and
imaginary time τi coordinates. Fourier transforming on both
the space and time variables gives G2,σ1...σ4 (k1, k2; k3, k4) with
k� = (k�, iωn�

). The s-wave pair-field susceptibility Ps(T ) de-
fined in Eq. (2) in the main text is then obtained from

Ps(T ) = T

N

∑
k,k′

G2,↑↓↑↓(k,−k, k′,−k′). (A2)

The two-particle Green’s function Gs for the lattice in
the thermodynamic limit is obtained from the Bethe-Salpeter
equation in the particle-particle channel shown diagrammati-
cally in Fig. 5,

G2,σ1...σ4 (k,−k, k′,−k′) = Gσ1σ3 (k)Gσ2σ4 (−k)δk,k′

− Gσ1σ4 (k)Gσ2σ3 (−k)δk,−k′

+ T

N

∑
k′′

∑
σ5...σ8

Gσ1σ5 (k)Gσ2σ6 (−k)

× �pp
σ5...σ8

(k,−k, k′′,−k′′)

× G2,σ7σ8σ3σ4 (k′′,−k′′, k′,−k′).
(A3)

Here, Gσσ ′ (k) is the single-particle Green’s function, which,
due to the Rashba spin-orbit coupling is off-diagonal
in the spin, and �

pp
σ4...σ1 (k,−k, k′,−k′) is the irreducible

particle-particle vertex. In the DCA, its momentum depen-
dence is reduced to that of the effective cluster problem,
i.e., �pp

σ4...σ1 (k,−k, k′,−k′) ≈ �
pp
σ4...σ1 (K,−K, K ′,−K ′), where

K = (K, iωn) contains the cluster momenta K. Using the clus-
ter vertex �

pp
σ4...σ1 (K,−K, K ′,−K ′), one can then calculate the

coarse-grained two-particle Green’s function for the lattice,

Ḡ2,σ1...σ4 (K,−K, K ′,−K ′)

≡ N2
c

N2

∑
k∈PK

∑
k′∈PK′

G2,σ1...σ4 (k,−k, k′,−k′)

= Ḡ0
2,σ1...σ4

(K,−K, K ′,−K ′)

+ T

Nc

∑
K ′′

∑
σ5...σ8

Ḡd
2,σ1...σ4

(K,−K,−K, K )

× �pp
σ5...σ8

(K,−K, K ′′,−K ′′)

× Ḡ2,σ7σ8σ3σ4 (K ′′,−K ′′, K ′,−K ′). (A4)

Here, the sums over k, k′, and k′′ have been partially carried
out over the Nc DCA coarse-graining patches PK, etc. [18],
with Nc the cluster size, so that all quantities now depend on
the cluster momenta K only. The coarse-grained bare propa-
gators,

Ḡ0
2,σ1...σ4

(K,−K, K ′,−K ′)

= Nc

N

∑
k∈PK

[
Gσ1σ3 (k)Gσ2σ4 (−k)

]
δK,K ′

− Nc

N

∑
k∈PK

[
Gσ1σ4 (k)Gσ2σ3 (−k)

]
δK,−K ′ , (A5)

and

Ḡd
2,σ1...σ4

(K,−K, K ′,−K ′)

= Nc

N

∑
k∈PK

[
Gσ1σ3 (k)Gσ2σ4 (−k)

]
δK,−K ′ (A6)

only has the (diagonal) first term. By including the spin vari-
ables in the combined indices K = (K, ωn, σ1, σ2) and K ′ =
(K′, ωn′ , σ3, σ4), this equation can be conveniently written in
matrix form (in K and K ′)

Ḡ2 = Ḡ0
2 + Ḡd

2�ppḠ2. (A7)

The cluster vertex �pp is determined from an analogous equa-
tion for the cluster two-particle Green’s function Gc

2 [18],

Gc
2 = Gc,0

2 + Gc,d
2 �ppGc

2. (A8)

The bare cluster propagators

Gc,0
2,σ1...σ4

(K,−K, K ′,−K ′)

= Gc
σ1σ3

(K )Gc
σ2σ4

(−K )δK,K ′

− Gc
σ1σ4

(K )Gc
σ2σ3

(−K )δK,−K ′ ,

and

Gc,d
2 (K ) = Gc

σ1σ3
(K )Gc

σ2σ4
(−K )δK,K ′ ,

where Gc
σσ ′ (K ) is the single-particle cluster Green’s function.

The extraction of the cluster vertex �pp from the Bethe-
Salpeter equation (A8) involves an inversion of Gc

2 and Gc,0
2 .

The addition of the second term with crossed Green’s function
legs proportional to δK,−K ′ makes these matrices singular.
However, after some matrix arithmetics, an equation can be
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FIG. 6. Temperature dependence of inverse s-wave pair-field
susceptibility. The inverse s-wave pair-field susceptibility 1/Ps(T )
calculated according to Eq. (A10) versus temperature for different
combinations of magnetic field h and Rashba spin-orbit coupling
λSOC. The values for the superconducting transition temperature Tc

shown in Fig. 1 in the main text are obtained from the temperature
where 1/Ps(T ) crosses zero (dashed line).

obtained for Ḡ2 that does not involve the inversion of these
matrices [9],

Ḡ2 = Gc
2

[([
Ḡ(1)

2

]−1 − [
Gc,(1)

2

]−1)
Gc

2 + Bc
]−1

B. (A9)

Here B = [Ḡd
2 ]−1Ḡ0

2 and the corresponding cluster quantity
Bc = [Gc,d

2 ]−1Gc,0
2 . The lattice s-wave pair-field susceptibility

Ps(T ) is then obtained from Ḡ2 as

Ps(T ) = T

Nc

∑
K,K ′

Ḡ2,↑↓↑↓(K,−K, K ′,−K ′), (A10)

and the intrinsic pair-field susceptibility Ps,0(T ) in Eq. (3) in
the main text from

Ps,0(T ) = T

Nc

∑
K,K ′

Ḡ0
2,↑↓↑↓(K,−K, K ′,−K ′). (A11)

The temperature dependence of the inverse of Ps(T ) is shown
for a selected set of parameters in Fig. 6.

APPENDIX B: DENSITY MATRIX RENORMALIZATION
GROUP ANALYSIS OF AN ATTRACTIVE
RASHBA-HUBBARD TWO-LEG LADDER

In order to investigate the robustness of the DCA results,
we also carry out complementary density matrix renormaliza-
tion group (DMRG) [37,38] calculations on a two-leg ladder
with open boundaries using the DMRG++ software [39],
working at zero temperature. This provides accurate insight
into the real-space behavior of a minimal version of the 2D
problem [40,41]. We first rewrite the hopping part of Eq. (1)
in real space as

H0 = −t
∑

〈i, j〉,σ
[c†

iσ c jσ + H.c.] − h
∑

i

(ni↑ − ni↓)

+ 2λSOC

∑
〈i, j〉

∑
σ,σ ′

c†
iσ

[
αx

i jσ
y
σσ ′ − α

y
i jσ

x
σσ ′

]
c jσ ′ , (B1)

FIG. 7. Rashba-Hubbard two-leg ladder. (a) Binding energy for
Lx = 32. (b) On-site singlet pair-pair correlations for Lx = 48 and
h = 0.5. Results in both panels are obtained using DMRG for elec-
tron filling 〈n〉 = 0.25 and U = −4t .

where 〈. . . 〉 denotes summation over nearest neighbors, α
μ
i j ≡

i(δi, j+aμ
− δi, j−aμ

), aμ denotes translation in the μ direction
[42], and we take x̂ (ŷ) to be the long (short) direction of the
ladder, namely along legs (across rungs). Here we consider
ladders up to length Lx = 48 (and width Ly = 2). In obtaining
the ground states, a truncation error below 10−9 was targeted
and obtained for all parameters by keeping up to m = 1500
states. Explicit reorthogonalization was used at each step. The
first quantity of interest is the binding energy [43],

	E (N ) = E0(N − 2) + E0(N ) − 2E0(N − 1), (B2)

where E0(N ) denotes the ground state energy of the system
with N electrons present. 	E (N ) < 0 indicates it is favorable
for two holes to form a Cooper pair bound state, a requirement
for pairing to occur. 	E = 0 for two independent holes, but
	E > 0 can also occur due to finite-size effects. The binding
energy for Lx = 32 is plotted for several fields and λSOC values
in Fig. 7(a). For intermediate fields 0.25 � h � 0.5 we find
a minimum in the binding energy at intermediate Rashba
coupling, which reflects an enhanced tendency to pairing and
is in qualitative agreement with the DCA results. At h = 0.5
the value of the binding energy only becomes appreciably
negative at finite λSOC � 0.25. At zero field, however, the
trend is monotonous in λSOC. Some such differences between
the DMRG and DCA results may be expected due to the

224501-7



PETER DOAK et al. PHYSICAL REVIEW B 107, 224501 (2023)

difference in dimensionality, but the qualitative agreement at
h = 0.5 indicates the trend is general and robust.

We next consider pair-pair correlations for h = 0.5. We
focus on on-site singlet pairs, which are favored by the at-
tractive Hubbard interaction. The pair creation operator on
rung i and leg a can be written S†

on−site(i) = c†
ia↑c†

ia↓ and the
corresponding correlation function is given by

P(R) = 1

NR

∑
i

〈S†
on−site(i)Son−site(i + R)〉, (B3)

where NR denotes the number of total neighbors at distance
R from site i, summed over all sites. We neglect eight rungs

at each end of the ladder in order to minimize edge effects.
Correlations for a ladder with Lx = 48 are plotted in Fig. 7(b),
showing power-law behavior as expected for a quasi-1D sys-
tem. We see a pronounced enhancement of the correlation
function upon introduction of the Rashba coupling, with a
maximum near λSOC = 0.375. The nonmonotonous behav-
ior matches that of the binding energy in Fig. 7(a), and is
consistent with the behavior of the s-wave intrinsic pair-field
susceptibility of the 2D system shown in Fig. 3. The benefi-
cial effect of Rashba spin mixing on singlet pairing becomes
evident by comparing the correlations at finite λSOC with the
much weaker correlations at λSOC = 0.
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