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First-principles calculation of the optical rotatory power of periodic systems: Modern
theory with modern functionals

Jacques K. Desmarais ,1,2,* Bernard Kirtman,3 and Michel Rérat 2

1Dipartimento di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
2Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM),

Université de Pau et des Pays de l’Adour, CNRS, E2S UPPA, Pau, France
3Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA

(Received 11 February 2023; revised 20 April 2023; accepted 20 June 2023; published 28 June 2023)

An analysis of orbital magnetization in insulators is provided. It is shown that a previously proposed electronic
orbital angular-momentum operator generalizes the “modern theory of orbital magnetization” to include nonlocal
Hamiltonians. Expressions for magnetic transition dipole moments needed for the calculation of optical rotation
and other properties are developed. A variety of issues that arise in this context are critically analyzed. These
issues include periodicity of the operators, previously proposed band dispersion terms, and, if and where needed,
evaluation of reciprocal space derivatives of orbital coefficients. Our treatment is used to determine the optical
rotatory power of insulators employing a formulation that accounts for electric dipole–electric quadrupole (DQ),
as well as electric dipole–magnetic dipole, contributions. An implementation in the public CRYSTAL program
is validated against a model finite system and applied to the α-quartz mineral through linear-response time-
dependent density functional theory with a hybrid functional. The latter calculations confirmed the importance
of DQ terms. Agreement against experiment was only possible with (i) use of a high-quality basis set, (ii)
inclusion of a fraction of nonlocal Fock exchange, and (iii) account of orbital-relaxation terms in the calculation
of response functions.
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I. INTRODUCTION

The rotatory power of an optically active material refers
to its capacity to rotate the plane of polarization of plane-
polarized light. For a nonmagnetic medium, the angle of
rotation per unit distance �u of light of wavelength λ, prop-
agating along the direction u, may be expressed in terms of
diagonal elements of the optical rotation (OR) tensor βu [1],

�u(ω) =
(

2π

λ

)2 4πβu(ω)

V
, (1)

where V is the volume per unit cell of the optically active
medium and ω is the frequency of the electromagnetic radi-
ation. At variance with the notation of a previous article [2],
here u is the direction of the light beam.

For finite systems, the theory is well established, based
on a multipole expansion of the interaction Hamiltonian
p · A + A · p [3,4]. This results in a formula for the OR angle
about the u direction that is proportional to the sum of a
dynamic magnetic dipole–electric dipole (DD) and an electric
dipole–electric quadrupole (DQ) term [3–5]. For samples in
solution, orientational averaging then leads to a sum over all
directions given by the trace of the DD tensor (the DQ tensor
being traceless) [3–6].

For infinite periodic systems (e.g., crystalline solids), the
theory of OR or, for that matter, the orbital response to electro-
magnetic fields in general is not as straightforward. In the case
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of electric fields, it was noticed as early as 1962 that integrals
of the simple operator −r over crystalline orbitals (COs) ψn,k,

ψn,k(r) = eik·r+iφn (k)un,k(r), (2)

are undefined since their value depends on the (arbitrary)
choice of the unit cell [7]. In Eq. (2), |un,k〉 are the cell-
periodic Bloch functions (BF) and φ(k) is the arbitrary (apart
from the constraints provided by periodic boundary condi-
tions) phase of the COs.

In the same 1962 paper, Blount noted that this problem
can be avoided by replacing −r for −ieik·r∇ke−ik·r, leading to
the replacement −r → −(r + i∇k) for periodic systems. The
same operator was applied by Otto (1992) as well as Kirtman
et al. (2000), then extended to two dimensions (2D) and 3D by
Ferrero et al. (2008), and subsequently utilized by many others
for the calculation of linear as well as nonlinear optical prop-
erties, vibrational spectra, and piezoelectricity, for instance
[8–18]. This treatment also coincides with King-Smith, Van-
derbilt, and Resta’s “modern theory of polarization” [19–22].

As for magnetic fields in periodic systems, a suitable theo-
retical framework was first suggested around the same time by
Brown and by Zak (1964) based on group-theoretic consider-
ations [23–25]. However, their approach was not formulated
in terms of conventional Bloch functions, as used in practical
Kohn-Sham density functional theory (KS-DFT) calculations.
Nonetheless, Brown and Zak’s analysis provided the starting
point for an understanding of the quantum Hall effect (and
eventually topological insulators and other topological states
of matter) in the work of Thouless and co-workers [26–28].
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A practical formulation for calculating the orbital magne-
tization of an insulator did not occur until much later with
Ceresoli, Thonhauser, Vanderbilt, and Resta’s (CTVR) “mod-
ern theory of orbital magnetization” [29,30]. This approach
was soon after extended to Chern insulators and metals by Shi,
Vignale, Xiao, and Niu (SVXN) [31]. SVXN also showed that
their treatment was valid in the presence of electron-electron
interactions, through a theoretical framework known as spin-
current DFT (SC-DFT).

Applications of the CTVR theory have mostly been lim-
ited to tight-binding calculations or calculations with local
or generalized gradient approximations, but not the hybrid
functionals of generalized Kohn-Sham (GKS) theory, and
without orbital relaxation effects [30,32–41]. Indeed, some of
our recent work has shown that hybrid functionals may be
particularly important within the framework of SC-DFT by
providing a nonlocal dependence of the exchange-correlation
(xc) functional on current densities, as practically demon-
strated in the case of Weyl semimetals and Z2 topological
insulators [42–50]. Here we show that a generalization of
CTVR to include nonlocal functionals coincides with a pre-
vious treatment of the orbital response to magnetic fields by
Springborg, Molayem, and Kirtman (SMK) [51].

The CTVR theory pertains to expectation values for cal-
culation of the orbital magnetization (a first-order property).
For higher orders (e.g., OR, a second-order property), we
require transition moments between the ground and excited
states. In this paper, we resolve a variety of issues that remain
concerning the theory of OR.

Remaining issues include (i) the agreement (or lack
thereof) versus large finite systems, (ii) the possibility of miss-
ing terms proportional to the derivative in reciprocal space
of coefficients of the perturbed wave function, (iii) the pos-
sibility of missing “band dispersion” terms, (iv) a strategy
for the effective treatment of quasidegeneracies, and (v) the
importance of DQ terms for calculations in the solid state.
Questions concerning items (i), (ii), and (v) are explicitly
raised in Ref. [52]; item (iii) occurs as a result of the treatment
in Ref. [53]; and item (iv) is a key computational issue that
occurs in evaluating the matrix elements of ∇k.

The paper is organized as follows: In Sec. II, we develop
the formalism for the orbital magnetization from a Wannier
function perspective. This analysis shows how the SMK “an-
gular momentum” generalizes CTVR’s “modern theory” to
nonlocal functionals. In Sec. IV, we show how the same
formalism for orbital magnetization may alternatively be de-
veloped from a perturbation theory perspective. This provides
a convenient route for developing expressions for transition
moments (and, thus, higher-order properties) and provides
answers regarding items (i), (ii), and (v). Technical aspects
of the formal developments are discussed in the appendices,
including, particularly, Appendix C regarding (iii).

II. FORMALISM: WANNIER FUNCTION PERSPECTIVE

A. Review of modern theory for insulators

With infinite periodic systems, the eigenfunctions |ψn,k〉 of
the single-particle Hamiltonian,

Ĥ |ψn,k〉 = εn,k|ψn,k〉, (3)

are crystalline orbitals (COs), which may be written in Bloch
form as in Eq. (2). In the following, we use Dirac’s notation
for the abstract states |ψn,k〉 [54]. Specific representations,
e.g., in direct space, are obtained as 〈r|ψn,k〉 = ψn,k(r).

A key quantity in the discussion of magnetic properties of
periodic systems is the Chern (vector) invariant C [26],

C = i

2π

∫
BZ

dk
occ∑
n

〈∇kun,k| ∧ |∇kun,k〉. (4)

In Eq. (4) and elsewhere, the superscript occ refers to the
occupied manifold, while the subscript BZ indicates integra-
tion over the first Brillouin zone (FBZ). As will be discussed
below, we are concerned here with systems where C vanishes
in the absence of a magnetic field,

C = 0, (5)

thus excluding condensed-matter realizations of the anoma-
lous quantum-Hall effect (Chern insulators) which are left for
future work [55,56].

In the case of insulating systems with a vanishing C, a
unitary transformation of the BFs provides localized Wannier
functions (WFs) |nR〉,

|nR〉 = �

∫
BZ

dk eik·(r−R)|un,k〉, (6a)

with the inverse transform given by

|un,k〉 =
∑

R

e−ik·(r−R)|nR〉, (6b)

where � is the volume of the FBZ and R is a direct lattice vec-
tor (with the corresponding sum running over the infinite set).
The transformation of Eq. (6) is of course, like the orbitals
themselves, only determined up to an arbitrary phase eiφ′

n (k).
For the moment, we set φ′

n(k) = 0, its effect being discussed
further on.

In the case of band insulators, the density matrix has
exponential decay in direct space [57] and it is possible to
represent the orbitals in well-localized form, as per Eq. (6a).
This procedure is also applicable to Z2 topological insulators
[58]. On the other hand, for metals, the power-law decay of the
density matrix means that the localization procedure diverges
[59]. A similar behavior occurs for Chern insulators due to the
existence of conducting chiral edge states [60].

For “Wannier representable” band (or Z2 topological) insu-
lators, CTVR write the orbital magnetization of a large, finite
sample of Nc cells cut from the bulk as [30]

M = − 1

2c�Nc

Nc∑
R

occ∑
n

〈nR|r ∧ i[H, r]|nR〉, (7)

where c is the speed of light. Equation (7) is justified and com-
putationally convenient for local Hamiltonians, with matrix
elements of the velocity operator v̂ that read

〈nR|∇r/i|nR〉 = 〈nR|i[H, r]|nR〉. (8)

Indeed, substituting Eq. (8) into Eq. (7), M reduces to the
standard first-order perturbation theory expression, in terms
of a matrix elements of the electronic angular-momentum
operator L̂ = r ∧ ∇r/i. At this point, we note that the situation
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is different for calculations with a nonlocal GKS Hamiltonian
since the replacement

∇r → −[H, r] (9)

fails to account for the fact that r does not commute with the
nonlocal terms.

Let us stress that no multipole theory of the magnetic field
can be written directly from −[H, r], other than through the
replacement proposed by Eq. (9). In this sense, the ∇r operator
is the “fundamental quantity” (and not −[H, r]).

In the thermodynamic limit (i.e., Ns/Nb → 0, with Nb the
number of WFs |nR〉 centered in the interior of the sample
and Ns the number centered at the surface), using translational
symmetry, the contribution to Eq. (7) from the bulk WFs
becomes [30]

MLC = − 1

2c�

occ∑
n

〈n0|r ∧ i[H, r]|n0〉. (10)

On the other hand, the contribution to Eq. (7) from the Ns

surface localized orbitals ws reads [30]

MIC = − 1

2c�Nc

{
Ns∑
s

〈ws|(r − rs) ∧ i[H, r]|ws〉

+ rs ∧ 〈ws|i[H, r]|ws〉
}

, (11)

where we have used the shorthand notation rs = 〈ws|r|ws〉
to denote the centers of the surface orbitals. Indeed, in the
thermodynamic limit, even though the first term vanishes, rs is
large and a nonvanishing contribution from the second term in
Eq. (11) remains [30]. Then, Eq. (10) is related to currents cir-
culating in the bulk of the solid [the so-called local-circulation
(LC) term], while Eq. (11) originates from current circulating
at the surface of the solid [the itinerant-circulation (IC) term].
Remarkably, however, both contributions may be rewritten
solely in terms of WFs centered in the bulk.

In reciprocal space, the final expressions for the LC term
are [30]

MLC = 1

2c
�

∫
BZ

dk
occ∑
n

〈∇kun,k| ∧ Hk/i|∇kun,k〉, (12a)

and for the IC term [30],

MIC = 1

2c
�

∫
BZ

dk
occ∑
m,n

δm,n/i εn,k〈∇kun,k| ∧ |∇kum,k〉,
(12b)

where

Hk = e−ik·rHeik·r. (12c)

The total orbital magnetization is the sum of the LC and IC
contributions [30],

M = MLC + MIC. (12d)

In deriving Eq. (16), CTVR inserted 1 = ∑all
l |wl〉〈wl |

into Eq. (11), yielding the relation

〈ws|i[H, r]|ws〉 = 2�
all∑
l

〈ws|r|wl〉〈wl |H/i|ws〉. (13)

Here we note that for calculations in a finite basis set, it
is then necessary to remove the identity from the resulting
expressions. In other words, for finite basis set calculations,
it is necessary to make the replacement

all∑
l

|wl〉〈wl | → 1 (14)

in Eq. (12b) for MIC.
To make the presence of the identity more explicit in

Eq. (12b), we use

occ∑
m

δm,nεn,k =
all∑
l

δl,nεn,k =
all∑
l

〈ul,k|Hk|un,k〉 (15)

to write Eq. (12b) as

MIC = 1

2c
�

∫
BZ

dk
all∑
l

occ∑
n

〈∇kun,k| ∧ |∇kul,k〉

× 〈ul,k|Hk/i|un,k〉. (16)

In the following, we develop expressions that are generally
valid for nonlocal Hamiltonians and a finite basis set, in a
manner that achieves the replacements warranted by Eqs. (9)
and (14). The result shows a connection with a previously
proposed treatment by SMK [51].

B. Expressions for nonlocal Hamiltonians and a finite basis

1. Local circulation term

For further development, it proves useful to develop the
derivatives of Eq. (6b),

∇k|un,k〉 = −i
∑

R

e−ik·(r−R)(r − R)|nR〉 (17a)

and

∇r|un,k〉 = −ik|un,k〉 +
∑

R

e−ik·(r−R)∇r|nR〉. (17b)

Furthermore, multiplying Eq. (17a) by Hk, while making
use of Eq. (12c), provides

Hk∇k|un,k〉 = −i
∑

R

e−ik·(r−R)H (r − R)|nR〉. (18)

In Appendix A, we use Eqs. (17a)–(18), and the replacement
of Eq. (9), required for nonlocal Hamiltonians to develop the
following relation:

∧Hk/i|∇kun,k〉 → ∧
∑

R

e−ik·(r−R)∇r|nR〉

= ∧∇r|un,k〉 + ∧ik|un,k〉. (19)

Equation (19) starts with a vector multiplication, as the rela-
tion is only defined up to a gauge A ∧ B = A ∧ C → C =
B + aA (see Appendix A). Finally, inserting Eq. (19) into
Eq. (12a) yields

MLC = 1

2c
�

∫
BZ

dk
occ∑
n

[〈∇kun,k| ∧ ∇r|un,k〉

+ 〈∇kun,k| ∧ ik|un,k〉]. (20)
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Then, applying ∇k to Eq. (2), we obtain a representation of
the position operator for a periodic system due to Blount [7],

rψn,k(r) = ieik·r∇kun,k(r) − i∇kψn,k(r). (21)

Inserting Eq. (21) into Eq. (20) provides

MLC = − 1

2c
�

∫
BZ

dk
occ∑
n

〈ψn,k|(r + i∇k)† ∧ ∇r/i|ψn,k〉.
(22)

2. Itinerant circulation term

Returning to Eq. (16) and using the Hermiticity of Hk, we
obtain

MIC = 1

2c
�

∫
BZ

dk
all∑
l

occ∑
n

〈∇kun,k| ∧ |∇kul,k〉

× 〈ul,k|Hk/i|un,k〉

= 1

2c
�

∫
BZ

dk
all∑
l

occ∑
n

〈un,k|Hk/i|ul,k〉

× 〈∇kul,k| ∧ |∇kun,k〉. (23)

The combination of Eq. (14) with Eq. (23) gives

MIC = 1

2c
�

∫
BZ

dk
occ∑
n

〈un,k|Hk/i∇k
† ∧ ∇k|un,k〉. (24)

By utilizing the conjugate transpose of Eq. (19) along with
Eq. (21), Eq. (24) leads to

MIC = 1

2c
�

∫
BZ

dk
occ∑
n

〈ψn,k|∇r
†/i ∧ (r + i∇k)|ψn,k〉. (25)

3. SMK “angular-momentum” operator

From the combination of Eqs. (12d), (22), and (25), we
obtain an expression for the orbital magnetization in terms of
the SMK “Hermitized angular-momentum” operator,

M = − 1

2c

∫
BZ

dk
occ∑
n

〈ψn,k| �̂ + �̂
†

2
|ψn,k〉, (26a)

where

�̂ = (r + i∇k) ∧ ∇r/i. (26b)

The SMK theory thus corresponds to a generalization of
CTVR’s modern theory of orbital magnetization to calcula-
tions with (generally) nonlocal Hamiltonians in a finite basis
set.

III. EFFECT OF THE ORBITAL PHASES
AND GAUGE-ORIGIN INVARIANCE

It was mentioned in Sec. II A that the complex Bloch or-
bitals and WFs are only determined up to an arbitrary phase
eiφn (k). From Eq. (26b), the effect on the orbital magnetization
of changing the phase of the Bloch orbitals is to make the
replacement

r → r − ∇kφn(k) (27)

in matrix elements of �̂. Therefore, changing the phase of
|ψn,k〉 has exactly the same effect as changing the gauge origin
by an amount −∇kφn(k) for the matrix element involving
orbital |ψn,k〉. Equation (27) has already been pointed out
by SMK. The particular choice of the phase, then, becomes
irrelevant for gauge-origin invariant calculations [for instance,
at the complete basis set (CBS) limit; see Eq. (30) below]. In
our calculations, we set the term −∇kφn(k) to zero. Gener-
ally speaking, an approximate calculation may depend on the
gauge origin and, by extension, on the choice of the phase
[61]. Another criterion of relevance for Eq. (26) is the be-
havior of the “angular-momentum” operator under a lattice
translation from �̂(r) to �̂(r + R). A periodic operator Ô
satisfies Ô(r) = Ô(r + R). We can work out the effect of
translation by a lattice vector R by returning to Eq. (26), from
which we find

− 1

4c

∫
BZ

dk
occ∑
n

〈ψn,k|(r + R + i∇k) ∧ ∇r/i|ψn,k〉 + H.c.

(28)
The translation therefore leads to the (generally) nonvanishing
contribution,

− 1

4c

∫
BZ

dk
occ∑
n

R ∧ 〈ψn,k|∇r/i|ψn,k〉 + H.c., (29)

and, in the general case, we obtain �̂(r) �= �̂(r + R). Of
course, the translation is equivalent to changing the gauge
origin by R. Then, just like in the case of gauge origin, �̂

becomes periodic if the orbitals are exact (i.e., at the CBS
limit). Indeed, at the CBS limit, we may insert Eq. (14) as
well as Eq. (9) into Eq. (26), yielding

M = − 1

4c

∫
BZ

dk
all∑
l

occ∑
n

〈ψn,k|(r + i∇k)|ψl,k〉

∧〈ψl,k|∇r/i|ψn,k〉 + H.c.

= 1

4c

∫
BZ

dk
all∑
l

occ∑
n

〈ψn,k|∇r|ψl,k〉
εn,k − εl,k

∧〈ψl,k|∇r/i|ψn,k〉 + H.c., (30)

which is obviously both periodic and gauge-origin invariant,
and is also independent of the choice of −∇kφn(k).

Because �̂ is only periodic at the CBS limit (or in any other
basis that ensures gauge-origin invariance), in practice, exact
comparison against large finite systems can only be expected
with a large basis set. Moreover, the usual reciprocity between
sampling of reciprocal space (i.e., number of k points to
sample the FBZ) and direct space (i.e., size of the supercell
expansion) is only verified at the CBS limit. In Sec. VII,
we present numerical results that explicitly demonstrate this
behavior.

In the case of finite systems, it has very recently been
shown that a finite basis set of London atomic orbitals yields
the same translational behavior as the exact orbitals [62].
Whether a similar relationship can be developed for infinite,
periodic systems remains to be demonstrated.
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IV. FORMALISM: PERTURBATION
THEORY PERSPECTIVE

The result obtained in Sec. II (for the magnetization in
terms of a “Hermitized angular-momentum” operator) that
was derived using Wannier functions may alternatively be de-
veloped through perturbation theory (PT). The latter approach
is similar to the derivation presented by SVXN in generalizing
the CTVR treatment to metals and Chern insulators [31]. This
approach is also more convenient for extension to higher-order
properties.

We begin by considering a transition matrix element of the
first-order interaction Hamiltonian for the orbital response to
a magnetic field which, in the CO basis, is

− i

c
〈ψn,k|∇r · A + A · ∇r|ψa,k′ 〉. (31)

In Eq. (31), A is the magnetic vector potential. In the Coulomb
gauge (for which ∇r · A = 0),

A = iB0 ∧ q
q2

ei(q·r−ωt ), (32)

where B0 is the (constant) amplitude of the magnetic field with
wave vector q and frequency ω (q = |q|). Then, for a spatially
oscillating magnetostatic field B = [Bx, 0, 0]T propagating in
a direction orthogonal to x (i.e., transversal wave, qx = 0),

A(r) = iB0x

⎛
⎜⎝ 0

−qz ei(qyry+qzrz )/q2

qy ei(qyry+qzrz )/q2

⎞
⎟⎠ (33)

and q2 = q2
y + q2

z .
Inserting Eq. (33) into Eq. (31) provides

B0x

cq2
〈ψn,k|ei(qyry+qzrz )(qy∇z − qz∇y)|ψa,k′ 〉. (34)

In Appendix B, we show that this integral is null, except when

k − k′ = q. (35)

We now expand ei(qyry+qzrz ), |ψn,k〉, and |ψm,k′ 〉 to first order in
q, around the midpoint k̄ = (k + k′)/2, also using Eq. (35),
yielding

B0x

cq2

〈
ψn,k̄ +

(qy

2
∇k̄y

+ qz

2
∇k̄z

)
ψn,k̄

∣∣∣∣
×[1 + i(qyry + qzrz )](qy∇z − qz∇y)

×
∣∣∣∣ψa,k̄ −

(qy

2
∇k̄y

+ qz

2
∇k̄z

)
ψa,k̄

〉
. (36)

For a spatially homogeneous field, we take the limit q → 0
of Eq. (36). Then, we write qy = q cos θ and qz = q sin θ , and
average over θ , which gives

B0x

2c
〈ψn,k̄|iry∇z − irz∇y + 1

2
∇†

k̄y
∇z − 1

2
∇†

k̄z
∇y

−1

2
∇k̄y

∇z + 1

2
∇k̄z

∇y|ψa,k̄〉, (37)

where we have used 〈cos2 θ〉 = 〈sin2 θ〉 = 1
2 , as well as

〈cos θ〉 = 〈sin θ〉 = 0. Repeating the process for y- and

z-directed fields, we get

−B0

2c
· 〈ψn,k|

[
r + i

2
(∇k − ∇†

k )

]
∧ ∇r

i
|ψa,k〉. (38)

Finally, employing the Hermiticity of r and the anti-
Hermiticity of ∇r, Eq. (38) may be written in terms of the
Hermitized SMK operator of Eq. (26b),

−B0

2c
· 〈ψn,k| �̂ + �̂

†

2
|ψa,k〉. (39)

Equation (39) is the analog (for transition moments) of
Eq. (26) of Sec. II for the orbital magnetization.

V. EXTENSION TO OPTICAL ROTATION

A. Operators for the rotatory strengths

For OR, following Stephen [63], Tinoco [4], Snir and
Schellman [64], Hansen and Avery [3], and subsequent work
[65,66], it is convenient to describe the interaction of the sys-
tem with circularly polarized light using the electromagnetic
A gauge (vanishing scalar potential) leading to the interaction
Hamiltonian,

{exp [iq · r]A0(q) + c.c.} · p + p · {A0(q) exp [iq · r] + c.c.}.
(40)

In the following, we generalize the theory of Stephen and
co-workers to periodic systems. This allows us to extend a
previous treatment [2], to include not only DD, but also DQ
contributions to the OR tensor.

We assume here that A0(q) is sufficiently slowly varying so
that only the leading terms in exp[±iq · r] ≈ 1 ± iq · r will
contribute to the response. Choosing q = ẑq, differences in
the absorption of left- and right-circularly polarized light lead
to rotatory strengths proportional to [3,63]

ẑ · 〈ψn,k| exp [−iq · r]p|ψa,k′ 〉 ∧ 〈ψa,k′ | exp [iq · r]p|ψn,k〉,
(41)

including effects from multipoles of all orders. Expansion of
Eq. (41) to first order in q, following the developments in
Eqs. (31)–(39), leads to the simplified formula

〈ψn,k|px|ψa,k〉〈ψa,k|
�̂z + �̂†

z

2
py|ψn,k〉

−〈ψn,k|py|ψa,k〉〈ψa,k|
�̂z + �̂†

z

2
px|ψn,k〉, (42)

where we have introduced the shorthand notation

�̂ = r + i∇k. (43)

Repeating the procedure for arbitrary orientations u of the
light beam provides[

〈ψn,k|p|ψa,k〉 ∧ 〈ψa,k| �̂ + �̂
†

2
∨ p|ψn,k〉

]
u

≡
∑
v,w

εu,v,w〈ψn,k|pv|ψa,k〉〈ψa,k| �̂u + �̂†
u

2
pw|ψn,k〉 (44)

for the rotatory strengths, where εu,v,w is the Levi-Civita sym-
bol and we have introduced a compact notation for the product
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∨. Equation (44) includes both DD and DQ contributions,
as can be seen by adding and subtracting appropriate matrix

elements including pu
�̂w+�̂†

w

2 :

DQ + DD =
[
〈ψn,k|p|ψa,k〉 ∧ 〈ψa,k| �̂ + �̂

†

2
∨ p|ψn,k〉

]
u

= 1

2

∑
v,w

εu,v,w〈ψn,k|pv|ψa,k〉
[
〈ψa,k| �̂u + �̂†

u

2
pw

+pu
�̂w + �̂†

w

2
|ψn,k〉 + 〈ψa,k| �̂u + �̂†

u

2
pw

−pu
�̂w + �̂†

w

2
|ψn,k〉

]
. (45)

With the DQ term (i.e., the first term in square brackets) being
traceless, orientational averaging (summing over u = x, y, z)
leads to an expression involving only the DD contribution,

〈ψn,k|p|ψa,k〉 · 〈ψa,k| �̂ + �̂
†

2
|ψn,k〉. (46)

We note that Eqs. (44)–(46) contain no terms from the ac-
tion of ∇k on the first-order electric field matrix elements
〈ψn,k|p|ψa,k〉. Just like for the magnetization from Eq. (30),
the rotatory strengths become independent of the gauge origin
and orbital phase at the CBS limit (or in another basis that en-
sures gauge-origin invariance). This may be seen by inserting
Eq. (14) as well as Eq. (9) into Eq. (45), yielding

DQ + DD =
all∑
l

[
−〈ψn,k|p|ψa,k〉 ∧ 〈ψa,k|∇r|ψl,k〉

εn,k − εl,k

∨〈ψl,k|p|ψn,k〉
]

u

+ H.c., (47)

which is periodic and does not depend on the gauge origin or
the gradient of the orbital phases −∇kφn(k).

Finally, in recent work on OR, Wang and Yan found a new
“band dispersion” contribution to the rotatory strengths. In
Appendix C, we show how this band dispersion term is an
alternate formulation of the magnetic dipole term in Eq. (45)
for semilocal functionals. As a consequence, band dispersion
contributions are not included in our formulation.

B. Optical rotation tensor

In the Supplemental Material (SM) [67], we develop a
formula for the diagonal elements of the OR tensor βu, be-
ing related to the OR angle through Eq. (1) (including both
magnetic-dipole as well as electric-quadrupole contributions)
based on the operators of Eq. (44) and time-dependent double-
perturbation theory.

β relates the components of the magnetic-dipole plus
electric-quadrupole moments induced by the electric field η

to the time derivative of the electric field E (see SM for more
details) [1,67],

η(ω) = β(ω)

c

∂

∂t
E (t, ω). (48)

For practical calculations, we expand the COs in a finite set of
functions ϕμ,k labeled by the index μ,

|ψl,k〉 =
∑

μ

Cμ,l (k)|ϕμ,k〉, (49)

with the CO coefficients Cμ,l (k) being determined from the
solution of the field-free GKS-DFT equations. To write a
compact expression for βu, it is convenient to use an analytical
expression for the derivatives of the coefficients Cμ,l (k) in
terms of a matrix Q [68],

∇kCμ,l (k) =
all∑
l ′

Ql ′,l (k)Cμ,l ′ (k). (50)

Similarly, the u-component electric-field perturbed coeffi-
cients C(u),±

μ,n (k) are written in terms of a matrix U (in the
noncanonical treatment, only anti-Hermitian virt-occ inter-
bank elements U (u),±

an are nonvanishing) [69],

C(u),±
μ,n (k) =

virt∑
a

U (u),±
an (k)Cμ,a(k). (51)

In Eq. (50), Q is determined from the derivative of the GKS
equation and orthonormality condition [68],

Ql,l ′ (k) = Kl,l ′ (k) − εl ′,kDl,l ′ (k)

εl ′,k − εl,k
, (52a)

for off-diagonal l �= l ′ elements and

�[Ql,l (k)] = −1

2
Dl,l (k) (52b)

for diagonal elements. Here, Kl,l ′ (k) and Dl,l ′ (k) are the k
derivatives of the GKS-DFT Hamiltonian and overlap ma-
trices, respectively, for fixed CO coefficients. The imaginary
part of Ql,l (k), on the other hand, is determined by integers
associated with the phase function φ(k) of Eq. (2) [10], which
we set to zero, as discussed in Sec. III.

In our implementation, we work with the Hermitian
quantity

Q̃l,l ′ (k) = Ql,l ′ (k) + 1

2
Dl,l ′ (k). (53)

In terms of these coefficients, the final formula for βu reported
in Eq. (S44) is given by

βu(ω) = 1

ω
P.V.

∫ ′
dk

occ∑
n

virt∑
a

Im{[U+
an(k) − U−

an(k)]

∧ [ṽna(k) + qna(k)]}u, (54)

where

qna(k) = 1

2

all∑
l

{[
Q̃l,n(k) − 1

2
Dl,n(k)

]
∨ 〈ψa,k|∇r |ψl,k〉

−
[

Q̃∗
l,a(k) − 1

2
D∗

l,a(k)

]
∨ 〈ψl,k|∇r |ψn,k〉

}
, (55)

and vna is defined below in Eq. (57).
In Eq. (54), the prime indicates that integration is restricted

to the portion of the FBZ with positive coordinates [we have
made use of the fact that the operators of Eq. (44) are odd
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under inversion k → −k] and P.V. indicates that the integral
must be interpreted in terms of its Cauchy principal value
(or, equivalently, its finite part). Thus, the elements of Q̃ are
calculated as

Q̃l,l ′ (k) = lim
η→0+

Kl,l ′ (k) − 1
2 (εl,k + εl ′,k )Dl,l ′ (k)

εl ′,k − εl,k + iη
, (56)

for l �= l ′ with η being a small positive number. The parameter
η provides an effective means to deal with quasidegeneracies
for occ-occ or virt-virt blocks of Q̃, wherein the denominator
in Eq. (56) vanishes in the limit η → 0. In Sec. VII, we
demonstrate that accurate calculations are not sensitive to the
value of η, provided that it is sufficiently small. Finally, in
Eq. (54), ṽna = vna+v∗

an
2 , where vna reads

vna = 〈ψn,k|(r + RO) ∨ p|ψa,k〉, (57)

and RO is the gauge origin.
The U (u),±

an (k) matrix elements of Eq. (51) for the u-
component of the electric dipole moment, which are used in
sum-over-states (SOS) calculations, are

U (u),±
an (k) = 〈ψa,k|�u|ψn,k〉

εa,k − εn,k ± ω

� − 〈ψa,k|∇u|ψn,k〉
(εa,k − εn,k ± ω)(εa,k − εn,k )

. (58)

For time-dependent (TD)-DFT calculations, these must be
augmented with orbital-relaxation contributions, calculated
here through a self-consistent solution of the coupled-
perturbed generalized Kohn-Sham (CPKS) equations (some-
times also called density functional perturbation theory,
DFPT) [2,70]. In Eq. (58), the last equality implies the validity
of the off-diagonal hypervirial relation, which holds only for
calculations employing semilocal Hamiltonians (or a com-
plete basis). We denote calculations with the operator �u on
the left of the last equality as the length (or L) formulation, and
those with the ∇u operator as the nabla (or V) formulation.

As discussed in Rérat and Kirtman [2], the OR tensor is
independent of RO by construction if the nabla operator is
used in Eq. (58). In that case, we set RO = 0 (V0 formulation).
On the other hand, calculations with the length operator are
generally gauge-origin dependent, and, then, we use the elec-
tronic centroid RO = ∫

BZ dk
∑occ

n 〈ψn,k|r|ψn,k〉 as the gauge
origin (LC formulation).

VI. COMPUTATIONAL DETAILS

Unless explicitly stated otherwise, all calculations were
performed with a developer’s version of the CRYSTAL23 code
[71], employing all-electron Gaussian atomic-orbital (AO) ba-
sis sets. The field-free calculations were converged down to a
criterium of 1 × 10−10 Hartree a.u. (Eh) on the total energy.

The xc contribution was calculated by numerical quadra-
ture using Gauss-Legendre radial and Lebedev angular point
distributions [72–74], with the quadrature weights proposed
by Becke [75]. We used a pruned grid consisting of 99 ra-
dial points and 1454 angular points (keyword XXLGRID in
the CRYSTAL23 manual) [76]. The XCFUN library [77] was
employed to take the Slater Vosko-Wilk-Nusair (SVWN5) [lo-
cal density approximation (LDA)], Perdew Burke Ernzerhof

(PBE) [generalized gradient approximation (GGA)], and
PBE0 (hybrid approximation) xc functional derivatives re-
quired for the first-order CPKS procedure [78–81]. More
specific details are available in the SM, where the full input
decks are provided [67].

VII. RESULTS AND DISCUSSION

The implementation is validated in several respects on
chains of H2O2, which has served as a model system in previ-
ous work [2,52]. In detail, we discuss the following:

(1) the effect of the parameter η of Eq. (56) for dealing
with quasidegeneracies in the calculation of k derivatives of
the unperturbed orbital coefficients;

(2) comparisons of infinite against finite chains, where
matching results against the large finite system is obtained as
the CBS limit is approached; and

(3) the equivalence of sampling reciprocal space (number
of k points in the FBZ) and direct space (size of the supercell)
being verified as the CBS limit is approached.

Points (2) and (3) here were anticipated from the discus-
sion in Sec. III. After validation of our approach, we present
applications to the calculation of OR from linear-response
(LR) TD-DFT in the adiabatic approximation with hybrid
functionals in α-quartz, where the importance of (i) DQ terms,
(ii) orbital relaxation, (iii) nonlocal Fock exchange, and (iv)
completeness of the basis set expansion is discussed.

A. Validation on finite and infinite chains of H2O2

The calculations on H2O2 chains were performed with
geometries reported in Ref. [2] and available from the input
decks in the SM [67]. The correlation-consistent polarized
valence family of basis sets of Dunning was employed, with
double, triple, and quadruple ζ (cc-pvXz, with X = D, T,
Q) [82]. We do not report on calculations beyond quadruple
ζ because we obtained quasilinear dependencies with quin-
tuple ζ and larger basis sets, and the corresponding results,
then, heavily depended on the overlap eigenvalue threshold
for canonical orthonormalization. The comparison of finite vs
infinite H2O2 chains was done with the SVWN5 functional of
the LDA, and SOS-V0 formulation, being the computationally
simplest case that allows us to discuss all relevant aspects.
We report calculations of the mean OR, which is calculated
from the DD, but not DQ term, as per Eq. (46), so as to
discuss the calculation of matrix elements of the Hermitized
angular-momentum �̂ + �̂

†
operator.

Figure 1 provides values of the mean OR of H2O2 chains as
a function of chain length and size of the single-particle basis
expansion. The solid lines represent fits to polynomials of the
form c4/x4 + c3/x3 + c2/x2 + c1/x + c0. The value of the fit-
ted c0 coefficients (representing the reference finite oligomer
value, extrapolated to infinite chain length) is plotted in the
dashed lines, i.e., 38.50, 45.67, and 54.72 ◦/mm for X = D, T,
Q.

To confirm the quality of the single-particle basis set ex-
pansion, in Table I we provide length and nabla results on
finite oligomers with AO, as well as gauge-including AO
(GIAO) basis sets. The GIAO results were obtained with the
implementation in the GAUSSIAN program [83]. Of course,
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TABLE I. Mean OR as calculated with the V0 and LC formulations and an atomic-orbital (AO) and gauge-including atomic-orbital (GIAO)
basis on the isolated H2O2 molecule and 10-unit and 20-unit oligomer. Calculations on the isolated molecule included orbital relaxation to
allow comparison against the GIAO implementation.

1 × H2O2 10 × H2O2 20 × H2O2

cc-pvXz LC-AO V0-AO L-GIAO LC-AO V0-AO LC-AO V0-AO

D 70.45 75.61 59.24 21.56 42.20 27.56 40.34
T 65.99 59.67 54.53 32.08 47.98 29.43 46.82
Q 66.83 54.66 55.32 56.67 55.99 55.35 55.24

all values for a given system should coincide at the CBS
limit. The good agreement with the cc-pvQz basis set (last
row of the table) is indicative that the calculations are nearly
converged to the CBS limit. Although length and nabla gauge
cc-pvQz results still show considerable disparity on the iso-
lated H2O2 molecule (66.83 vs 54.66), the differences become
much smaller for longer chain lengths (e.g., 55.35 vs 55.24 for
the 20-unit oligomer).

Next, we turn to periodic calculations on the infinite H2O2

chain. As per Eqs. (54)–(56), the periodic formulation requires
a careful treatment of quasidegeneracies in the calculation
of ∇kCμ,l (k). Of course, for an exact solution of the GKS-
DFT equations, the Cμ,l (k) are differentiable [7] and, then,
Q̃ in Eq. (56) must be finite, even at quasidegeneracies.
Practical calculations, on the other hand, are approximate
solutions of the GKS-DFT equations and, therefore, require
a judicious choice of the η parameter of Eq. (56) for sys-
tems that contain quasidegeneracies in the occupied and/or
virtual band structure. As a test for systems with quaside-
generacies, we construct supercells of the H2O2 polymer
(the supercell introduces quasidegeneracies in the FBZ) and
report values of the mean OR for ×7, ×9, and ×11 super-
cell �-point calculations in Table II. The table confirms that
the mean OR is not sensitive to the precise value of η, as
long as it is sufficiently small (at least 10−14 Eh a.u. in this
case). Based on the results of Table II, we employ the value
η = 10−14 Eh a.u. in all subsequent calculations. With this

FIG. 1. Mean OR of finite H2O2 oligomers (dots), employing the
cc-pvXz (X = D, T, Q) basis sets (blue, magenta, red), polynomial fits
(solid lines), and values extrapolated to infinite chain length (dashed
lines).

value of η, the �-point results match the infinite oligomer
value of 38.50 ◦/mm for the sufficiently large ×9 and ×11
supercells. Although this choice of η allows us to achieve
the necessary level of numerical accuracy, convergence of
the calculated values with respect to, e.g., the number of
k points and other numerical tolerances, is relatively slow.
To improve the implementation, a more elaborate scheme
for a treatment of quasidegeneracies in the calculations of
derivatives of the CO coefficients ∇kCμ,l (k) will be pre-
sented in a forthcoming paper, in conjunction with different
applications.

With the choice of η being established, we perform cal-
culations on the small cell of H2O2 with many k points and
compare sampling of reciprocal (number of k points in the
FBZ) and direct (size of the supercell expansion) spaces in
Table III. For the small cell, results are fully converged with
500 k points. A calculation with a ×3 supercell expansion and
3 k points was performed to compare with the 9/1 calculation.
With periodic operators, we expect these two calculations to
be exactly equivalent because of the equivalence of sampling
reciprocal and direct spaces. Calculations with ×7 and ×11
supercell expansions are also provided to study the conver-
gence of the result with respect to supercell size.

Table III confirms the analysis of Sec. III. Generally, in a

finite basis, �̂ + �̂
†

is not periodic and only becomes periodic
at the CBS limit. As a consequence, significant differences
between the small cell vs infinite oligomer results (first and
last columns of the table, i.e., 47.90 vs 38.50 ◦/mm) are ob-
tained with the double-ζ basis set. The difference is greatly
improved at the triple-ζ level to 47.88 vs 45.67 ◦/mm. Finally,
essentially matching results (53.55 vs 54.72 ◦/mm) are gotten
with the quadruple-ζ basis set.

Again, because of the nonperiodicity of �̂ + �̂
†
, dispar-

ities can be observed for sampling of reciprocal vs direct
space, especially with a small basis set. Concentrating on
the 3/3 vs 9/1 calculations (second and fourth columns of
the table), significant differences (44.07 vs 38.50 ◦/mm) are
obtained with a double-ζ basis set, which is improved to
46.14 vs 45.67 ◦/mm at the triple-ζ level, and, finally, almost
matching results of 54.25 vs 54.72 ◦/mm are obtained at the
quadruple-ζ level. As mentioned in Sec. III, the nonperiodic-

ity of �̂ + �̂
†

is associated with its gauge-origin dependence.
In the case of finite systems, the problem may be solved by
including field-dependent phase factors in the basis functions
(GIAOs) [62,84]. Whether a related, or alternative, approach
to the problem can be developed for infinite, periodic systems
remains to be demonstrated.
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TABLE II. �-point calculation of the mean OR (in ◦/mm) on supercells of an H2O2 polymer with the cc-pvDz basis set. The ∞-oligomer
reference value is 38.499 ◦/mm.

η 10−8 10−10 10−12 10−14 10−16 10−75 10−150

×7 49.986 44.537 38.654 38.506 38.506 38.506 38.506
×9 50.584 45.504 38.502 38.499 38.499 38.499 38.499
×11 50.530 44.557 35.315 38.499 38.499 38.499 38.499

B. Application to α-quartz

Quartz is the dominant mineral composing the Earth’s
outer crust. The low-temperature α-quartz phase crystallizes
in a trigonal space group, in either right- or left-handed helix
(space groups P3121 and P3221) polymorphs, which may
be distinguished experimentally on the basis of their optical
rotatory power [85].

Here, we report first-principles calculations of the OR in
right α-quartz (i.e., P3221 dextrorotatory α-quartz with clock-
wise rotation of the plane of polarization when facing the
source of light). Indeed, this sign convention for the OR angle
about direction u provides [5]

�u(ω) = [nL(ω) − nR(ω)]π

λ
, (59)

where nL (nR) is the refractive index for left (right) circularly
polarized light in the (v,w) plane. Then, �u is negative if
nR > nL, i.e., the rotation of the plane of polarization is to-
wards the right (dextro-rotatory) for light coming towards the
observer.

We obtain converged results with a dense 24 × 24 × 24
Monkhorst-Pack net for sampling of reciprocal space (see
SM [67] for full input decks). To assess the effect of the
quality of the single-particle basis set, we performed cal-
culations with the double- and triple-ζ valence polarization
basis sets of Peintinger, Oliveira, and Bredow (POB-DZVP
and POB-TZVP) [86], as well as the 6-311G(d) basis set
of Heyd and co-workers [87], and quasirelativistic effective-
core potentials and valence basis sets, from adjustment to the
multiconfigurational Wood-Boring Hamiltonian (ECP-MWB)
[88]. Crystal structures were fully optimized, under con-
straints provided by the trigonal space group, with the PBE0
functional. The optimized lattice parameters and GKS indirect
band gaps are reported in Table IV, as compared with values
from high-resolution powder x-ray diffraction and electron
energy loss spectroscopy experiments and photoconductivity
measurements [89–92]. Calculations with all four basis sets
provide GKS gaps (7.639 to 9.220 eV) that are somewhat
underestimated, compared to the experimental value of 8.9

TABLE III. Mean OR in (◦/mm) for different supercell ex-
pansions, number of k points, and basis sets, as compared to the
reference infinite oligomer values.

Cells/k points 1/500 3/3 7/1 9/1 11/1 ∞-oligo.

cc-pvDz 47.90 44.07 38.51 38.50 38.50 38.50
cc-pvTz 47.88 46.14 45.68 45.67 45.67 45.67
cc-pvQz 53.55 54.25 54.75 54.72 54.72 54.72

to 11.5 eV [89–92]. This may be expected, as the calculated
gaps from GKS eigenvalue differences are largely dependent
on the fraction of Fock exchange and neglect exciton effects
[70]. For the lattice parameters, a good agreement against the
experiment is obtained with the Heyd basis sets. It is also
noteworthy that the total energy is lowest with the Heyd basis
set.

At the previously optimized PBE0 geometries, we then cal-
culated the OR tensor, employing the SOS and LR-TD-DFT
approaches (i.e., without and with account of orbital relax-
ation contributions), using the PBE and PBE0 functionals.
Since α-quartz, is a uniaxial positive mineral, the optic axis
lies parallel to the c crystallographic axis and experimental
measurements are available at a wavelength of λ = 589.44
nm, yielding a value �c = −21.7 ◦/mm [85].

Calculated values with the length (LC) and nabla (V0)
gauges for the electric dipole operator are reported in Table V.
The table shows that an inclusion of both Fock exchange and
orbital relaxation is crucial in the calculation of the OR tensor.
As far as orbital relaxation is concerned, a comparison of SOS
vs LR-TD-DFT values shows a large difference, e.g., 9.01
to −2.23 for PBE and 3.49 to 0.10, for PBE0 with V0 and
the DZVP basis set. The most extreme case occurs with the
Heyd basis set, where orbital relaxation results in a change
of �c from 4.39 to −63.22 for PBE and 0.97 to −26.14
for PBE0. The importance of orbital relaxation has also been
stressed in a concurrent work [93]. The effect of including
25% Fock exchange in the functional is also quite important;
in the V0 case, the LR-TD-DFT values go from −2.23 to 0.10
for DZVP, −2.31 to −0.042 for TZVP, and −63.22 to −26.14
for the Heyd G-311G(d) basis.

One way to assess the quality of the single-particle basis
is by comparing relative LR-TD-DFT values in the length and
nabla gauges. In principle, the LC and V0 values should match
at the CBS limit. A small variation, therefore, indicates a good

TABLE IV. Optimized lattice parameters (Angstrom), indirect
band gaps (eV) of α-quartz with the PBE0 functional and different
basis sets, as compared to experimental values [89–92]. Total energy
differences �EHeyd are also reported with respect to the Heyd 6-
311G(d) value.

a c Gap �EHeyd

ECP-MWB 5.209 5.735 7.639 –
POB-DZVP 5.019 5.546 9.220 0.749
POB-TZVP 4.998 5.481 8.837 0.011
Heyd 6-311G(d) 4.927 5.431 8.431 0.000
Experiment 4.913 5.405 8.9–11.5 –
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TABLE V. PBE and PBE0 calculation of �c (in ◦/mm) on
α-quartz at wavelength λ = 589.44 nm with the SOS and LR-TD-
DFT approaches (i.e., without and with account of orbital-relaxation
contributions) for different basis sets. The experimental value is
�c = −21.7 ◦/mm [85].

PBE

SOS LR-TD-DFT

Basis set LC V0 LC V0

ECP-MWB −20.98 21.20 −43.61 −5.53
POB-DZVP 10.35 9.01 3.24 −2.23
POB-TZVP 7.90 6.64 1.12 −2.31
Heyd 6-311G(d) −6.96 4.39 −56.29 −63.22

PBE0

SOS LR-TD-DFT

Basis set LC V0 LC V0

ECP-MWB −13.43 7.73 −31.48 −1.96
POB-DZVP 4.81 3.49 0.80 0.10
POB-TZVP 2.42 4.27 3.37 −0.042
Heyd 6-311G(d) −1.72 0.97 −36.05 −26.14

quality basis. The relative variation is much smaller for the
Heyd basis set than for the ECP-MWB, POB-DZVP, or POB-
TZVP ones. This result agrees with the preceding calculations
of total energies and lattice parameters, but not the indirect
gaps.

For our best calculation (PBE0 functional, Heyd basis set,
LR-TD-DFT treatment, gauge-origin invariant V0 formula-
tion), we obtain �c = −26.14 ◦/mm, in good agreement with
the experimental value of �c = −21.7 ◦/mm. For this par-
ticular calculation, the individual contributions from the DD
and DQ terms to the total �c are DD = −14.62 ◦/mm and
DQ = −11.52 ◦/mm, thereby confirming the importance of
DQ terms for calculations in the solid state, as also stressed in
two other recent studies [52,53]. The DQ term also cannot be
ignored for other crystal systems and appears to be generally
necessary for OR calculations in the solid state.

Although the Heyd basis set yields reasonably good agree-
ment with experiment, Table V displays a large dependence
on the gauge (LC vs V0), as well as the basis set. To improve
this dependence, in the future we will consider the possibility
of modifying the single-particle orbitals by field-dependent
phase factors. Indeed, the OR values are very sensitive to the
presence and exact nature of diffuse functions in the basis set.
Removal of the most diffuse s and p functions in the Heyd
basis set changes the PBE0 LR-TD-DFT values obtained with
the V0 (LC) formulation from �c = −26.14(−36.05) ◦/mm
to �c = 252.02 (−4.17) ◦/mm. Finally, preliminary analysis
indicates that the effect of the basis set is influenced in a major
way by its capacity to yield accurate geometries. For instance,
the PBE0 LR-TD-DFT values obtained with the POB-TZVP
basis set of 3.37 (−0.042) ◦/mm with the V0 (LC) formu-
lation are much improved to −4.98(−5.01)◦/mm by using
the optimized geometry from the Heyd basis set. The same
values are further improved to −8.54(−8.84)◦/mm by the
addition of a p function with exponent of 0.12 bohr−2 on the O

atoms. Good agreement with the experiment on OR, therefore,
requires good agreement on optimized geometries.

VIII. CONCLUSIONS

A previously proposed electronic “angular-momentum”
operator is shown to generalize the “modern theory of or-
bital magnetization” to nonlocal Hamiltonians (e.g., hybrid
exchange-correlation functionals of generalized Kohn-Sham
theory). A rigorous development of the theory demonstrates
that previously suggested “band dispersion” terms, as well as
terms involving reciprocal space derivatives of the perturbed
wave function, can be avoided. Finally, it is shown that while
the angular momentum operator is (in principle) periodic at
the complete basis set limit (or in another basis that ensures
gauge-origin invariance), it is not so in the general case.

The formalism is applied to calculating the optical ro-
tatory power (OR) of insulators in the public CRYSTAL

program, where expressions are developed in terms of the
electric dipole–electric quadrupole (DQ) as well as the elec-
tric dipole–magnetic dipole (DD) contributions. For effective
calculations, a strategy is developed to deal with quasidegen-
eracies in obtaining derivatives of the orbital coefficients with
respect to the wave vector. Our implementation is validated
by comparison with a model finite system and we report on an
application to the α-quartz mineral, with linear-response time-
dependent density functional theory calculations, that employ
a hybrid as well as a nonhybrid functional. This application
confirms the importance of DQ terms for OR calculations
in the solid state. In the case of α-quartz, agreement versus
experiment was only possible with an explicit account of (i)
use of a high-quality basis set, (ii) inclusion of a fraction
of nonlocal exact exchange in the exchange-correlation func-
tional, and (iii) taking account of orbital relaxation.

For an implementation that is less dependent on the num-
ber of k points used to sample reciprocal space, as well as
other numerical parameters, we will present in the future an
improved scheme for the treatment of quasidegeneracies in
determining derivatives of the orbital coefficients with respect
to the wave vector. This will be done in conjunction with
different applications for periodic systems of interest.

APPENDIX A: DERIVATION OF EQ. (19)

Expanding the matrix element of Eq. (12a) in WFs using
Eqs. (17a) and (18) gives

MLC = 1

2c
�

occ∑
n

∫
BZ

dk
∑
RR′

e−ik·(R′−R)

×〈nR′|(r − R′) ∧ H/i(r − R)|nR〉

= 1

2c�
�

occ∑
n

∑
RR′

δRR′ 〈nR′|(r − R′) ∧ H/i(r − R)|nR〉

= − 1

2c�
�

occ∑
n

∑
R

〈nR|(r − R) ∧ iH (r − R)|nR〉.

(A1)
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Then, inserting Eq. (9) into Eq. (A1) provides

MLC = − 1

2c�
�

occ∑
n

∑
R

〈nR|(r − R)

∧ [∇r/i + i(r − R)H]|nR〉

= − 1

2c�
�

occ∑
n

∑
R

〈nR|(r − R) ∧ ∇r/i|nR〉, (A2)

where we have used (r − R) ∧ (r − R) = 0.
Inserting Eq. (17a) into Eq. (A2) gives

MLC = − 1

2c
�

occ∑
n

∫
BZ

dk
∑
RR′

〈nR′|(r − R′)

∧ e−ik·(R′−R−r+r)∇r/i|nR〉

= − 1

2c
�

occ∑
n

∫
BZ

dk

(
−i

∑
R

〈∇kun,k|

∧ e−ik·(r−R)∇r/i|nR〉
)

= 1

2c
�

occ∑
n

∫
BZ

dk
∑

R

〈∇kun,k| ∧ e−ik·(r−R)∇r|nR〉.

(A3)

Comparing Eq. (A3) with Eq. (12a), we conclude

∧Hk/i|∇kun,k〉 = ∧
∑

R

e−ik·(r−R)∇r|nR〉 + a|∇kun,k〉,

(A4)

where we have used, for arbitrary vectors A B, C and scalar
a, A ∧ B = A ∧ C → C = B + aA. Inserting Eq. (A4) into
Eq. (A3), we find

MLC = �
occ∑
n

∫
BZ

dk 〈∇kun,k| ∧
∑

R

e−ik·(r−R)∇r|nR〉

+ a × 0, (A5)

which shows that MLC is invariant to the particular choice of
a. We make the simplest possible choice a = 0, and obtain, by
comparing Eq. (A5) with Eq. (12a),

�
occ∑
n

∫
BZ

dk 〈∇kun,k| ∧
∑

R

e−ik·(r−R)∇r|nR〉

= �
occ∑
n

∫
BZ

dk 〈∇kun,k| ∧ Hk/i|∇kun,k〉. (A6)

Hence,

∧Hk/i|∇kun,k〉 → ∧
∑

R

e−ik·(r−R)∇r|nR〉, (A7)

which is simply the first statement in Eq. (19). The second
equality in Eq. (19) is then directly obtained from Eq. (17b).

APPENDIX B: MOMENTUM CONSERVATION

The matrix elements in Eq. (34) have the form∫ ∞

−∞
dr ψ∗

n,k(r)eiq·rÔ(r)ψm,k′ (r), (B1)

where Ô(r) is a periodic operator Ô(r) = Ô(r − R), and R =
la for some integer l and lattice parameter a. Writing the COs
in terms of Bloch functions, we have∫ ∞

−∞
dr ei(k′−k+q)·ru∗

n,k(r)Ô(r)um,k′ (r)

=
∑
l∈Z

ei(k′−k+q)·la
∫ a

0
dr ei(k′−k+q)·ru∗

n,k(r)Ô(r)um,k′ (r),

(B2)

where we have used the lattice periodicity of Ô and u. Using
the identity

∑
l∈Z

ei(k′−k+q)·la = 2π

a
· δ(k′ − k + q), (B3)

the integral gives zero unless k′ − k = −q.

APPENDIX C: MAGNETIZATION WITH SEMILOCAL
FUNCTIONALS IN TERMS OF A “BAND DISPERSION”

FORMULA

Following Eqs. (12a), (16), (22), and (25), we may write
the orbital magnetization as

M = 1

c
�

∫
BZ

dk
occ∑
n

〈∇kun,k| ∧ Hk/i|∇kun,k〉

= 1

c
�

∫
BZ

dk
occ∑
n

[〈∇kun,k| ∧ Hk/i|∇kun,k〉

+ 〈∇kun,k| ∧ (∇kHk )/i|un,k〉
− 〈∇kun,k| ∧ (∇kHk )/i|un,k〉]. (C1)

Then, using ∇k(Hk|un,k〉) = (∇kHk )|un,k〉 + Hk|∇kun,k〉,
Eq. (12d) may be rewritten as

M = 1

c
�

∫
BZ

dk
occ∑
n

[〈∇kun,k| ∧ ∇k(Hk/i|un,k〉)

−〈∇kun,k| ∧ (∇kHk )/i|un,k〉]. (C2)

For arbitrary scalar fields ϑ and ϕ, by inserting ∇ϑ ∧ ∇ϕ =
−∇ ∧ ([∇ϑ]ϕ) into Eq. (C2), we get

M = 1

c
�

∫
BZ

dk
occ∑
n

[−∇k ∧ 〈∇kun,k|Hk/i|un,k〉

− 〈∇kun,k| ∧ (∇kHk/i)|un,k〉]

= 1

c
�

∫
BZ

dk
occ∑
n

[∇k ∧ 〈un,k|Hk/i|∇kun,k〉∗

− 〈∇kun,k| ∧ (∇kHk/i)|un,k〉]
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= 1

c
�

∫
BZ

dk
occ∑
n

[∇k ∧ 〈un,k|Hk/i|∇kun,k〉

− 〈∇kun,k| ∧ (∇kHk/i)|un,k〉]. (C3)

We now use the following identity obtained as a corollary to
the divergence theorem:�

V

dV ∇ ∧ F =
�
S

dS nk ∧ F, (C4)

for some vector field F over the volume V bounded by the
closed surface S with vector normal nk . Inserting Eq. (C4)
into Eq. (C3), we get

M = 1

c
�

occ∑
n

[ �
S

dS nk ∧ 〈un,k|Hk/i|∇kun,k〉

−
∫

BZ
dk 〈∇kun,k| ∧ (∇kHk/i)|un,k〉

]
. (C5)

Over S (the edge of the Brillouin zone, where eik·R for lattice
vector R is pure real), the real part of the integrand in the first

term vanishes because ψn,k is pure real. We now use

(∇kHk )|un,k〉 = ∇k|Hkun,k〉 − Hk|∇kun,k〉
= (∇kεn,k )|un,k〉 + εn,k|∇kun,k〉 − Hk|∇kun,k〉.

(C6)

Inserting Eq. (C6), as well as the identity
∑all

l |ul,k〉〈ul,k| = 1
into Eq. (C5) gives

M = −1

c
�

occ∑
n

all∑
l

∫
BZ

dk {〈∇kun,k|ul,k〉

∧ [〈ul,k|(∇kεn,k/i)|un,k〉 + (εn,k − εl,k )/i〈ul,k|∇kun,k〉]}.
(C7)

Now, using the fact that the real part of the term with
〈∇kun,k|ul,k〉 ∧ 〈ul,k|∇kun,k〉, being the cross product of a
vector with itself vanishes, we get

M = 1

c
�

∫
BZ

dk
occ∑
n

〈∇kun,k|un,k〉 ∧ (∇kεn,k/i), (C8)

which is Wang and Yan’s “band dispersion” term [53].
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