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Role of electron polarization in nuclear spin diffusion
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Dynamic nuclear polarization (DNP) is capable of boosting signals in nuclear magnetic resonance by orders
of magnitude by creating out-of-equilibrium nuclear spin polarization. The diffusion of nuclear spin polarization
in the vicinity of paramagnetic dopants is a crucial step for DNP and remains yet not well understood. In this
paper, we show that the polarization of the electron spin largely controls the rate of proton spin diffusion in a
DNP sample at 1.2 K and 7 T; at increasingly high electron polarization, spin diffusion vanishes. We rationalize
our results using a 2 nucleus–1 electron model and Lindblad’s master equation, which generalizes preexisting
models in the literature and qualitatively accounts for the experimental observed spin diffusion dynamics.
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I. INTRODUCTION

Dynamic nuclear polarization (DNP) [1–4] has enabled
numerous applications in nuclear magnetic resonance (NMR)
and magnetic resonance imaging (MRI), from real-time imag-
ing of in vivo metabolism [5] to the study of active sites at
the surface of catalysts [6], to list only two striking examples
[7–9]. By creating an out-of-equilibrium nuclear polarization,
DNP methods boost the sensitivity of magnetic resonance by
sometimes up to 5 orders of magnitude [3], allowing for the
detection of phenomena that are otherwise not observable.
Solid-state DNP is amenable to many experimental condi-
tions, whether performed on crystals [4,10] or frozen liquids
[2], at low [11] or high magnetic field [12], and all the way
down from 1 K [3] up to room temperature [13]. In all cases,
it requires the presence of stable or transient unpaired electron
spins [1,14]. The high polarization of the latter is transferred
to the surrounding nuclei via microwave (µw) irradiation close
to the resonance frequency of the electron spins. Nuclear spin
diffusion then spreads out the polarization from those in the
vicinity of the electron spin toward those further away in the
bulk [15,16]. However, from the early days of DNP, it was
recognized that the nuclei closest to the electron are unable to
exchange polarization with their neighbors because their fre-
quency is strongly shifted by the hyperfine interaction (HFI)
with the electron. Indeed, the nuclear dipolar Hamiltonian
is truncated by the HFI, which prevents energy-conservative
nuclear flip-flops [17,18]. These magnetically isolated spins
are often said to be within the so-called “spin diffusion bar-
rier.” 60 years after this concept has been introduced, it is
still not clear at which distance from the electron nuclear
spin diffusion starts being effective. Moreover, if diffusion
is sometimes shown to be effective even where the dipolar
interactions are presumably truncated, the mechanisms behind
this phenomenon are not well understood yet [11,19–21].
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We have recently introduced the hyperpolarization
resurgence experiment (HypRes), a method that enables the
observation of nuclear spin diffusion from nuclear spins
nearby the electron, which are not accessible to direct NMR
detection, to those further from the electron, which can be
observed by NMR (the hidden and visible spins, respec-
tively), as depicted in Fig. 1 [19]. Our measurements with
the HypRes method revealed that proton spin diffusion had
a strong temperature dependence between 1.2 and 4.2 K.
Based on a mechanism proposed by Horvitz [22–27], we
postulated that the electron polarization, which varies from
83% at 4.2 K to 99.93% at 1.2 K and 7.05 T, could be the key
factor explaining the variation in nuclear spin diffusion in our
observations.

In this paper, we confirm our hypothesis both experi-
mentally and theoretically. Experimentally, we introduce an
extension of the HypRes experiment where the electron polar-
ization is lowered to a stable level by µw irradiation, which
allows us to compare the efficiency of spin diffusion for
various electron spin polarizations. We find that proton spin
diffusion at 1.2 K in a glassy sample doped with TEMPOL is
indeed faster when the electron polarization is reduced by µw
irradiation. We then propose a new comprehensive model to
estimate the efficiency of nuclear spin diffusion, accounting
for the polarization of electron spins. Using theoretical tools
common in quantum optics, we treat a pair of dipolar coupled
nuclear spins as a two-level system in which transitions are
driven by the quantum noise arising from the motion of a
nearby electron spin. The influence of the nuclear spin bath
on the two-level system is treated using Lindblad’s master
equation [28–32], which could be used to incorporate more
complex relaxation mechanisms into the model. Previous
models used perturbation theory to describe the drive provided
by the electron spin noise but are only valid in the near
vicinity of the electron spin [22–26]. Our model bridges the
gap between this approach and spin diffusion mediated strictly
by nuclear dipolar interactions [30,33–35] (which occurs only
far from the electron in our case) and predicts a new coherent
effect in the midrange.
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FIG. 1. Schematic representation of the hidden and visible nu-
clear spins interacting with the electron spin through the HFI with
intensities A1 and A2. The two nuclei interact together with the
dipole-dipole coupling constant D12.

II. EXPERIMENTAL RESULTS

Figure 2(a) shows the pulse sequence of the HypRes exper-
iment, similar to that in our previous work [19].

(i) The nuclear polarization is first wiped out by a series
of saturation pulses.

(ii) The nuclear spins are polarized by µw irradiation until
they reach DNP equilibrium during the delay tDNP, setting the
µw frequency so as to reach either positive or negative nuclear
polarization.

(iii) The µw irradiation is gated and a delay tg allows the
electron spins to return to Boltzmann equilibrium [36,37].

(iv) The polarization of the visible spins is wiped out by
a selective saturation scheme, optimized so as to saturate
over a limited bandwidth of 200 kHz. The hidden spins are
negligibly affected because the bandwidth of the saturation
pulses is small compared to their hyperfine shifts.

(v) The equilibration of polarization between the visible
and hidden spins is monitored using small-angle pulses.

We performed the µw-off HypRes experiment as in
Ref. [19] on a sample of 50 mM TEMPOL in H2O:D2O:D8-

FIG. 2. Pulse sequence diagrams [panels (a) and (c), respectively] and results of the µw-off and -on HypRes experiments at 7.05 T and 1.2 K
[panels (b) and (d), respectively]. On the 1H channel of the pulse sequence diagram, the black and gray rectangles represent square pulses, with
nutation angles of π/2 and 0.1 deg, respectively. After an initial strong saturation with n = 120 π/2 deg pulses, µw irradiation was switched
on at the maximum available power during delay tDNP = 640 s of the preparation at a frequency fprep of 197 648 and 198 112 MHz for positive
and negative DNP, respectively, with a sawtooth frequency modulation of 160 MHz around the central frequency, at a rate of 500 Hz. After
switching off µw irradiation, a delay tg ≈ 10 s let the electron relax toward Boltzmann equilibrium, before the detection was launched. The
train of m = 19 sinc pulses separated by random delays saturated the visible spins (see the Supplemental Material [38] for more detail on the
saturation scheme). Finally, the HypRes signal was recorded k = 1024 times, with 0.1 deg pulses every 10 s and 0.025 s in the case of the
µw-off and -on experiments, respectively. The µw-off HypRes experiments on panel (b) were recorded with both positive and negative DNP
during preparation, causing a positive and negative polarization overshoot, respectively. The horizontal dashed line on panel (b) indicates the
Boltzmann equilibrium polarization of proton spins. In the case of the µw-on HypRes experiments, µw irradiation was switched back on after
saturation at a specific power and frequency fdetec. The µw-on HypRes experiments were recorded with positive DNP during preparation and
negative DNP during detection. The µw power applied during detection from 0 to 118 mW is indicated on the curves of panel (d).
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glycerol 1:3:6 (v/v/v) (DNP juice) at 1.2 K and 7.05 T
in a liquid helium bath cryostat [41]. The experiment was
performed setting the µw frequency during preparation so
as to reach either positive or negative nuclear polarization,
with a polarization Pmax

DNP on the order of +70% and −70%,
respectively (see the Supplemental Material [38] for more de-
tails on polarization quantification). The positive (or negative)
polarization acquired during preparation was wiped out by
the saturation pulses only for the visible spins, far from the
electron (<0.2% remaining polarization). The spins closer to
the electron retained their polarization, which is invisible by
NMR (due to large hyperfine shifts); this polarization surged
onto the visible spins during the course of detection, causing
an observable positive overshoot (or negative, respectively).
The two resulting curves are shown in Fig. 2(b). The Boltz-
mann equilibrium polarization of proton spins is indicated by
a dashed line for comparison (0.60% in these conditions). The
experimental traces feature two processes: the equilibration of
the hidden and visible spins polarizations via spin diffusion
far beyond Boltzmann equilibrium within ≈0.5 h, followed
by their slow relaxation toward it. The spin diffusion process
monitored during the first part occurs while the electron po-
larization is that of Boltzmann equilibrium, which is 99.93%
in these conditions.

In order to monitor spin diffusion in the same condi-
tions but with a lower electron polarization, we repeated the
experiment using the pulse sequence presented in Fig. 2(c).
In this case, after µw irradiation was switched off, the µw
frequency was changed from the value yielding positive nu-
clear spin polarization to that yielding negative polarization.
µw irradiation was then switched back on during detection.
This experiment was repeated with different values of µw
power during detection from 0 to 118 mW, yielding the curves
shown on Fig. 2(d). The µw power used during detection is
indicated on the curves. Like for the µw-off HypRes exper-
iment, the nuclear polarization acquired by the hidden spins
during preparation first surged onto the visible spins causing
a positive polarization overshoot. Then, instead of decaying
toward thermal equilibrium (only 0.60% polarization), nega-
tive DNP started pulling the polarization toward the opposite
direction at the negative DNP equilibrium value. Most impor-
tantly, the stronger the µw power during the equilibration of
polarization between the visible and hidden spins, the weaker
the electron polarization, and hence the faster the flow of
nuclear polarization from the hidden to the visible spins. µw
irradiation does not influence the nuclei other than through
the electron spins (the sample space heating by µw irradiation
is less than 10 mK). Therefore, only the electron dynamics
can be responsible for the observed rapid spin diffusion from
hidden to visible spins.

III. THEORY

To understand how electron spin polarization influences
nuclear spin diffusion, we calculate the transition rate proba-
bility W between the states |αβ〉 and |βα〉 of a pair of coupled
nuclei, at an internuclear distance a, with dipolar coupling
constant D12, both subject to the dipolar field of an electron
spin, at distances ri and with hyperfine coupling constants
Az,i, as shown in Fig. 1. Following Horvitz’s idea [22] the

electron is treated semiclassically, taking into account the
stochastic time dependence of its state. Because of the high
radical concentration of 50 mM, electron spins are strongly
dipolar coupled, and the correlation time of their spin state
τc is dominated by their dipolar couplings, in contrast with
Horvitz’s case, where τc was dominated by the electron spin-
lattice relaxation. Note that µw irradiation only affects a small
subset of electron spins directly. However, due to fast spectral
diffusion, the whole electron spin bath is indirectly affected by
µw irradiation. Finally, we note that the energy associated with
the transfer of nuclear Zeeman energy throughout the sample
is small compared with that of the electron dipolar energy,
which allows us to treat electron dynamics as unaffected by
nuclear dynamics.

To calculate the nuclear flip-flop transition rate probabil-
ity we can restrict the Hilbert space to the |αβ〉 and |βα〉
subspace. The restricted nuclear dipolar and hyperfine Hamil-
tonians are expressed in terms of the Pauli matrices σ̂± =
Î±
1 Î∓

2 and σ̂z = 2(Î z
1 − Î z

2 ) as follows,

ĤD = − 1
2 D12(σ̂+ + σ̂−), (1)

ĤHF (t ) = 1
2�[P̄ + P′(t )]σ̂z, (2)

respectively, where � = Az,1 − Az,2 is the difference of the
HFI. For simplicity, we ignore any diagonal terms giving
rise to an overall shift of the two energy levels. The dy-
namics of the electron polarization P(t ) is decomposed into
a static contribution given by the average value P̄ and an
unbiased signal P′(t ), with an autocorrelation function R(τ )
= (1 − P̄2)e−�c|τ |, where τc = 1/�c is the correlation time
of the electron spin state [22,42], as detailed in the Supple-
mental Material [38]. In the rotating frame given by U0 =
e−i

∫ t
0 Ĥ ′

HF (τ )dτ , the Hamiltonian reads

Ĥ = 1
2�P̄σ̂z − 1

2 D12[σ̂+ f (t ) + σ̂− f ∗(t )], (3)

and describes a two-level system excited by the drive f (t ) =
ei�

∫ t
0 P′(s)ds. Since the electron dynamics is stochastic, the

spectrum of f (t ) is calculated averaging over all the possible
P′(t ) processes yielding [43–45]

F (ω) = 2�c(1 − P̄2)�2

[ω2 − (1 − P̄2)�2]2 + ω2�2
c

, (4)

which is similar to what Horvitz obtained using a pertur-
bative approach. The excitation spectrum is calculated from
the correlator 〈σ̂−(τ )σ̂+(0)〉 where the presence of the nu-
clear spin bath and the pseudosecular hyperfine interaction are
treated using the relaxation superoperator in Lindblad’s form
(with D(X̂ )· = X † · X − 1

2 {X †X, ·}; see the Supplemental
Material [38]),

� =
∑
i=1,2

�1,i[D(Îi+) + D(Îi−)] + �
(II )
2

2
D(σ̂z ). (5)

The nuclear spin-lattice relaxation is dominated by the pseu-
dosecular hyperfine interaction A±,i,

�1,i = 1
2 A+,iA−,i(1 − P̄2)

�c

�2
c + ω2

0

, (6)

where ω0 is the nuclear Larmor frequency, while the nuclear
zero-quantum relaxation rate (the decay rate of the coherences
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in the |αβ〉, |βα〉 subsystem) is dominated by the interaction
of nuclear spins i with their neighbors k through the couplings
Dik [33],

�
(II )
2 ≈

∑
k �=1,2

(D1k − D2k )2τc,n, (7)

where τc,n is the nuclear correlation time.
The excitation spectrum has a Lorentzian shape centered at

the energy difference �P̄,

S�2 (ω − �P̄) = 2�2

(ω + �P̄)2 + �2
2

, (8)

where we have introduced the effective broadening of the
levels due to the environment �2 = ∑

i=1,2 �1,i + �
(II )
2 . The

transition rate probability of the nuclear flip-flop is given by
the integral [43,46,47]

W = D2
12

4

1

2π

∫ ∞

−∞
S�2 (ω′ − �P̄)F (ω′)dω′

= D2
12

2

�c(1 − P̄2)�2 + �2(�̄2 + �2)

[(1 − 2P̄2)�2 + �2�̄]2 + �2P̄2(�2 + �̄)2
, (9)

where �̄ = �c + �2. The expression of the transition rate de-
pends explicitly on electron polarization. In the limit P̄ → 1,
Eq. (10) is equal to the transition rate between two nondegen-
erate nuclear levels commonly found in the literature [30,33–
35,48].

In the limit of long τc, the nuclear flip-flop rate simplifies
to an expression that can be expressed as the sum of two
contributions W(+) and W(−) with

W(±) = D2
12

4

�2 + �c/2

(�P̄ ± �
√

1 − P̄)2 + (�2 + �c/2)2
. (10)

In the opposite case of short τc, the electron spin fluctuations
become too fast to drive transitions and only contribute to spin
diffusion by broadening the nuclear levels, yielding

W = D2
12

2

�2∗
�2P̄2 + �2

2∗
, (11)

with �2∗ = �2 + 1
�c

(1 − P̄2)�2.
Based on the transition rate, the nuclear spin diffusion

coefficient is calculated as D = Wa2, with a the average inter-
nuclear distance, following Bloembergen [15,49]. Figure 3(a)
shows the diffusion coefficient as a function of the distance
of the closest nucleus to the electron for various electron
polarizations. The dipolar interaction D12 and the HFI Az,1 and
Az,2 were averaged over all orientations so that the diffusion
coefficient depends only on r (and not on the angles between
the vectors connecting the spins and the magnetic field). The
nuclear coherence decay rate was approximated from the ex-
perimental FWHM δν1/2, as �

(II )
2 ≈ δν1/2/2 ≈ 11 kHz (see

the Supplemental Material [38] for the measurement of the
δν1/2). The grayed area represents the distance to the electron
where the assumption that the nuclear spins experience an
average value of the HFI is no longer valid, i.e., �c < |Ai, j |.
The black and gray vertical lines indicate the radius of mean
volume per electron rMV and the radius of the hidden spin
reservoir rh = 0.9 nm, respectively (which we define as the
interface between the hidden and visible spins, where the
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FIG. 3. (a) Calculated spin diffusion coefficient as a function of
the distance to the electron for the same spin system for different
electron polarization P̄ between 0 and 1 in steps of 0.1 [see Eq. (9)].
The vertical black and gray lines represent the radius of the mean
volume per electron and the limit between the visible and hidden
spins, respectively. The gray area indicates the region where the
model hypothesis breaks down (�c < |Ai, j |; see text). The arrow
between the two hollow circles indicates the increase in diffusion
coefficient upon switching on µw irradiation. (b) Calculated spin
diffusion coefficient in the fast and slow motion approximations [see
Eqs. (11) and (10), respectively] compared with the exact solutions
[see Eq. (9)], for P̄ = 0.7. The nuclear interdistance a, the nuclear
broadening due to nucleus-nucleus interactions, and the electron
correlation time 1/�c are assumed to be 0.66 nm, 11 kHz, and 0.5
µs, respectively.

proton spins have a coupling of 100 kHz with the electron).
As depicted by the hollow circles in Fig. 3, our model predicts
that spin diffusion at the interface between the visible and hid-
den spins is ≈17 times faster when the electron polarization is
P̄ ≈ 50% (that is, under µw irradiation [36,37]) compared to
that at Boltzmann equilibrium P̄ = 99.93%. The contrast of
spin diffusion between µw-on and -off is even stronger closer
to the electron.

Although the single electron of our model has a unique
value of τc, this value can be in the long or short limit [see
Eqs. (10) and (11), respectively], depending on distance r.
Figure 3(b) shows the diffusion coefficient computed based on
the exact transition rate [see Eq. (9)] or on the approximated
rates for long and short τc [see Eqs. (10) and (11), respec-
tively], for P̄ = 0.7. Close to the electron, the separation �P̄
between the nuclear levels is large and the electron spin fluc-
tuations are slow in comparison. Far from the electron, the
nuclear levels are closer and the electron spin fluctuations
are fast in comparison. As a consequence, the diffusion co-
efficients computed using the transition probability under the
slow and fast limit coincide with the exact expression close
and far from the electron, respectively.
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IV. DISCUSSION

The rate at which polarization rises in the HypRes curves
(see Fig. 2) is sensitive to the spin diffusion coefficient at the
interface between the hidden and visible spins. As we have
seen, when the polarization of the electron approaches unity,
diffusion is dramatically reduced. In that sense, our theoretical
model matches qualitatively with our experimental observa-
tions. Because DNP occurs under µw irradiation, that is, at
low electron polarization, both our experimental results and
our theoretical model lead to the conclusion that spin diffusion
in the vicinity of the electron is efficient in our conditions,
precisely when DNP is active. Because the mechanism for
spin diffusion relies on fluctuations of the electron spin state,
it should be sensitive to the radical concentration; at lower
radical concentrations, electron-electron interactions would
be weaker and τc longer, resulting in weaker nuclear spin
diffusion [50]. In the limit of noninteracting electron spins,
this spin diffusion mechanism should still be active but τc

would be dominated either by electron spin-lattice relaxation
or by µw irradiation, the latter case corresponding to hyperfine
decoupling [21].

Our model is based on simplifying assumptions which
could be improved in several ways. First, we have assumed
that the decorrelation rate of the electron spin state �c is
large compared to the HFI but this assumption breaks down
at r = 0.34 nm (see Fig. 3). A more precise calculation would
require the use of slow-motion theories [51]. Moreover, we
have only considered the anisotropic part of the HFI. Im-
proving these points would be necessary if one intends to
treat the important case of nuclei on the radical molecule.
We have only considered 2-spin order but considering cou-
pled spin terms between more than two spins could lead to
predicting faster spin diffusion [35]. We have represented the
electron spin state using a spectral density function assum-
ing a homogeneous positive electron polarization. Yet, the
predicted number of flip-flops could be higher if the non-
Zeeman spin temperature of the electron is considered as
it leads to significant variation of electron spin polarization
along the spectrum of the electron spin, even though with an
apparent constant average Zeemann polarization. We found
that, in this sample, spin diffusion in the vicinity of the elec-
tron is effectively quenched when the electron polarization
approaches unity. In other samples, other mechanisms that
couple the nuclear spins to the lattice phonons could be at
play [52]. In particular, methyl rotation which is still active at
temperatures as low as 1 K could contribute to enhancing spin
diffusion [53].

V. CONCLUSION

We showed both experimentally and theoretically that the
rate of proton spin diffusion at 1.2 K and 7.05 T depends

on the level of electron polarization: the lower the elec-
tron polarization, the faster spin diffusion. To do so, we
introduced an extension of the HypRes experiment [19] to
monitor nuclear spin diffusion in the vicinity of the elec-
tron spin while controlling the level of electron polarization
via µw irradiation. We have constructed a model to under-
stand the influence of electron polarization on nuclear spin
diffusion. When the electron correlation time is comparable
to the timescale of the nuclear flip-flops, a coherent mech-
anism enhances nuclear spin diffusion. Our model gives a
recipe to estimate the diffusion efficiency as a function of
the average polarization and correlation time of the electron
spin. When electron polarization is slightly below unity and
in the proximity of the electron, it is equivalent to that of
Horvitz [22].

DNP was simulated in large spin systems including nuclear
spin diffusion in a number of studies, where electron flip-
flops were not included as a drive for nuclear spin diffusion
[30,35,48,54–56]. Our results show the dramatic influence
of this mechanism on spin diffusion. Other mechanisms of
electron-driven nuclear spin diffusion have been reported in
the context of MAS-DNP [57–59] and 13C hyperpolarization
with color centers in diamonds [60,61]. The mechanism that
we have highlighted in this work could potentially be at play in
such contexts and therefore contribute to a better understand-
ing of spin diffusion in dDNP as well as in other types of DNP
experiments [11,20,21,62]. From the understanding offered
by our results, new sample architectures could be devised
to optimize spin diffusion in the context of hyperpolarized
NMR. On the contrary, the same design principles could be
used to minimize spin diffusion and prevent losses of quantum
information in spin qubit systems [63,64].
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