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There have been substantial recent efforts, both experimentally and theoretically, to find a material realization
of the Kitaev spin liquid—the ground state of the exactly solvable Kitaev model on the honeycomb lattice.
Candidate materials are now plentiful, but the presence of non-Kitaev terms makes comparison between theory
and experiment challenging. We rederive time-dependent Majorana mean-field theory and extend it to include
quantum phase information, allowing the direct computation of the experimentally relevant dynamical spin-spin
correlator, which reproduces exact results for the unperturbed model. In contrast to previous work, we find that
small perturbations do not substantially alter the exact result, implying that α-RuCl3 is perhaps farther from
the Kitaev phase than originally thought. Our approach generalizes to any correlator and to any model where
Majorana mean-field theory is a valid starting point.
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I. INTRODUCTION

The Kitaev model describes spin-1/2’s on the honeycomb
lattice with a bond-dependent Ising interaction [1]. Remark-
ably, it is exactly solvable by a transformation to Majorana
fermions due to the appearance of an extensive number of
conserved quantities. The ground state has the fascinating
property that in a weak magnetic field the low-energy excita-
tions are non-Abelian anyons [1]; beyond the intrinsic interest,
these anyons could form the basis for a topological quantum
memory device [2].

While the Kitaev model was first introduced without a
clear path towards material realization, Jackeli and Khaliullin
discovered one such route in 4d/5d transition metals [3]. An
alternative pathway involving the 3d transition metal Co has
recently been discovered [4–6], and there are now several
candidate materials for realizing Kitaev physics [7,8] such
as Na2IrO3 [9–15], Li2IrO3 [13,16–18], H3LiIr2O6 [8,19],
Na2Co2TeO6 [20], and α-RuCl3 [21–25]. The “smoking-gun”
evidence of a quantized thermal Hall effect has been found in
α-RuCl3 [26–28], though sample dependence has complicated
efforts to reproduce the result [29–31].

Due to the convenience of an exact solution, the Kitaev
model without additional terms is often used to compare
against experiments, for instance in inelastic neutron scatter-
ing (INS) [22,23] and thermal Hall effect [32] experiments.
In the candidate materials, however, the microscopic spin
Hamiltonian contains non-Kitaev terms [8,18,33] such as
Heisenberg and “�” terms. It is therefore important to have
a general method to compute static and dynamic quantities
near the pure-Kitaev model point and to know how such terms
modify the exact results.

*tcookmeyer@berkeley.edu

Standard methods such as (infinite) density-matrix renor-
malization group [34–36], (non)linear spin-wave theory
[23,24,36–44], variational Monte Carlo [45], quantum Monte
Carlo [46,47], Monte Carlo cluster perturbation theory [48],
Landau-Lifshitz dynamics [49], and exact diagonalization
[41,50–52] have been used to approach this problem. Al-
though the existence of the exact solution allows some
techniques to be more powerful [45–47], there are numerous
challenges in applying them to a two-dimensional quantum
mechanical system. Instead, one of the most intuitive starting
points for taking advantage of and extending the exact result
is mean-field theory (MFT) as the conserved quantities in the
original model can be thought of as mean fields. Many papers
have used MFT in analyzing the Kitaev model with various
perturbations [53–66], but the authors of Ref. [67] argue that
an augmented MFT is necessary to correctly compute both
static and dynamic quantities at the pure-Kitaev point, which
then must be the correct starting point for an extension. It is
not clear, however, how to extend their approach to perturba-
tions that mix the itinerant and localized Majoranas, such as a
magnetic field, since they are treated distinctly.

Fundamental to the argument of Ref. [67], though, is a par-
ticular understanding of time evolution in mean-field theory;
namely, time evolution occurs under the mean-field decoupled
Hamiltonian. Although this perspective is commonplace (for
example, Refs. [68–71]), an alternative approach would be
time-dependent mean-field theory (TDMFT), as we describe
below. TDMFT as applied to electrons has been around, under
the name time-dependent Hartree-Fock approximation (TD-
HFA), since Dirac [72–74], and, more recently, has been used
to study lattice Hamiltonians relevant to solids [75–77]. Work-
ing by analogy, the authors of Refs. [78–80] extended TDMFT
to Majorana fermions and applied it to the Kitaev model in
a magnetic field to study quantum quenches [78] as well as
spin transport [79,80]. Those studies were centered around the
computation of expectation values, and therefore the phase
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of the wave function was not necessary and not determined.
Remarkably, TDMFT, as we will show, is enough to capture
all static and dynamic ground-state quantities exactly for the
Kitaev model, implying that TDMFT might be integral to
understanding time evolution within mean-field theory in a
variety of systems.

In this paper, we rigorously rederive TDMFT for Majo-
ranas and provide an explicit expression for the wave function
at time t . We then demonstrate how this formalism allows
us to compute dynamical quantities in the perturbed Kitaev
model that agree with exact results at the Kitaev point, and,
as our main result, we find the features of the exact re-
sult are more robust than implied by previous work [67,81].
Our example quantity is the dynamical spin-spin correlator,
S(q, ω), but we emphasize that this approach is fully general
and should work for any ground-state correlator. Additionally,
this approach is not limited to the Kitaev model but instead
can be applied whenever Majorana mean-field theory (or a
quadratic Majorana Hamiltonian) is a good starting point,
and this approach should be generalizable and applicable to
bosonic mean-field theories where the boson number is not
conserved.

In Sec. II, we derive TDMFT for Majoranas. In Sec. III,
we we apply TDMFT to compute the dynamic spin-spin cor-
relator (or dynamic structure factor) in the Kitaev model in
the absence and presence of a magnetic field. In Sec. IV, we
present the results of numerical calculations. We discuss the
implications for the results in Sec. V, and conclude in Sec. VI.

II. GENERAL THEORY FOR TIME-DEPENDENT
MAJORANA MEAN-FIELD THEORY

Our goal in this section is to explain how to perform time
evolution within Majorana mean-field theory. This method
should be easily generalizable to arbitrary noninteracting par-
ticles, however.

We will first describe TDHFA, which, in more modern
language, is equivalent to a time-dependent mean-field the-
ory decoupling. The analysis is natural and straightforward.
For N particles with creation operators f †

i , one computes the
self-consistent decoupling of the Hamiltonian and diagonal-
izes the system into H (�) = H0 = �f †M0(�) �f =∑n εnγ

†
n γn

via �f = U �γ where � denotes some mean-field parameters
like the density 〈 f †

i fi〉, and εn � εn+1. The ground-state wave
function is given by

|�(t = 0)〉 = γ
†
1 γ

†
2 · · · γ †

N |0〉 (1)

with |0〉 being the vacuum.
One can then imagine evolving this state under some

time-dependent Hamiltonian, H[�(t )] =∑n,m f †
mMm,n(�) fn,

which depends on the time-dependent values of �(t ), and
time evolution over a short time is given by e−iH (�(t ))	t .
Evolution then follows by commuting the infinitesimal time
evolution past each of the γ

†
i :

|�(t + 	t )〉 = e−iH (t )	tγ
†
1 (−t ) · · · γ †

N (−t )|0〉
= γ

†
1 (−t − 	t ) · · · γ †

N (−t − 	t )|0〉 (2)

where γ
†
i (−t − 	t ) = e−iH (t )	tγ

†
i (−t )eiH (t )	t = f †

j Uji(t +
	t ).

We can compute that U (t + 	t ) = e−iM(�)	tU (t ) and
therefore the columns of U (t ) satisfy a Schrödinger equa-
tion evolving under the single-particle Hamiltonian Mn,m(�).
It is then straightforward to compute any expectation needed
for �(t ) by converting to the basis of γ

†
i (−t ). In practice,

γ
†
i (−t ) is used to compute �(t ), which is used to evolve

γ
†
i (−t ) to γ

†
i (−t − 	t ), though methods with higher order

error in 	t exist [73,76].
In order to study the Kitaev model, this method has re-

cently been extended to Majoranas [78–80]. In that case,
number is not a conserved quantity, but the authors of
Ref. [78] argue by analogy that the same method would work.
Here we rigorously derive why this analogy holds and provide
an explicit expression for the wave function at time t .

In the Majorana case, we have some Hamiltonian

H
(
M (t ;θi j )

) = 1

4

∑
i j

ciM
(t ;θi j )
i j c j (3)

where Mi j is a function of time and MFT parameters θi j and
c2

i = 1 is a typical Majorana operator. Here θi j = i〈cic j〉 and
is implicitly a function of time. We imagine that any constant
term (which can depend on t or θi j) has been written sep-
arately from the Hamiltonian, and that we have MT = −M.
The factor of 1/4 is chosen such that

[H (M ), H (N )] = H ([M, N]) (4)

as can easily be checked [1]. We, at this point, introduce
rescaled Majoranas ci → c̃i

√
2 so that c̃2

i = 1
2 and {c̃i, c̃ j} =

δi j . It is still true that c̃†
i = c̃i, and we choose this rescaling

because it makes M diagonalizable by a unitary matrix into a
complex fermion basis.

At time t = 0, we diagonalize H0 = 1
2 ā†�0ā where

c̃i = U0,i j ā j for āT = (a1, a2, . . . , aN , a†
1, . . . , a†

N ) and �0 =
diag{E1, E2, . . . , EN ,−E1, . . . ,−EN }. The ground state is
now given by the unique state |v〉 such that ai|v〉 = 0. Arguing
by analogy, we should expect that the time-evolved state will
always be the vacuum of operators ā(t ) = U (t )† �̃c where, in-
stantaneously, we evolve the columns of the matrix U (t ) via a
Schrödinger equation. Noting that infinitesimal time evolution
is governed by the quadratic Hamiltonian H (M (t ;θi j ) ), it is
clear that

ā(t+	t ) = e−iH (M (t ;θi j ) )	t ā(t )eiH (M (t ;θi j ) )	t

= U (t )†ei	tM (t ;θi j ) �̃c (5)

will annihilate |vt+	t 〉 = e−iH (M (t ;θi j ) )	t |vt 〉 where |vt 〉 is the
vacuum for ā(t ). It follows that U (t + 	t ) = e−i	tM (t ;θi j )

U (t )
implying, once again, that U (t ) satisfies a Schrödinger equa-
tion under the single-particle matrix M (t ;θi j ) confirming our
expectation.

However, this calculation does not fix the phase, and it
will be necessary in our case. Using standard results for the
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expression of the relationship between the vacuum states for
two different fermionic bases, and the result of Ref. [82] for
the evaluation of 〈e−iH (M (t ;θi j ) )	t 〉, we find

e−iH (Mt )|v〉 =
√

det X e
1
2 (�a† )T F �a† |v〉. (6)

The matrix e−iH (Mt ) =∏n e−iH (M (tn ,θi j ) )	t is the approximate
time-evolution operator, and we use the notation e−iMt =∏

n e−iM (tn ,θi j )
	t . The matrices F = −X −1Y , X , and Y are de-

termined by the change of basis formula between the operators
ā(t ) and ā, namely,

ā(t ) = U †(t )�̃c = U †
0 eiMt U0ā =

(
X Y
Y ∗ X ∗

)
ā. (7)

As in Ref. [82], we evaluate
√

detX = √|detX |e−iφ(t )/2 and
the sign ambiguity due to φ(t ) = arg[det(X )] is avoided by
requiring that φ(t )/2 is a continuous function.

Now, evolving |v〉 proceeds as in the number-conserving
case. At any time step, we compute θi j by rewriting cic j in
the a(t ) basis and using Eq. (6). The θi j specify the approx-
imate infinitesimal time-evolution operator U (t + 	t, t ) =
e−iH (M (t,θi j ) )	t , which is then used to find the a(t+	t ) basis
and contribution to the phase φ(t + 	t ). This procedure can
straightforwardly be extended to other states beyond |v〉, an
example of which we will see below.

An alternative perspective on the above results comes from
considering more carefully the approximate time-evolution
operator:

U (t, 0) = e−iH (Mt ) =
∏

n

e−iH (M (tn ,θi j ) )	t

= exp

{
H

[
log

(∏
n

e−i	tM (tn ;θi j )

)]}

= exp{H[log(e−iMt )]} (8)

where the second step follows by the Baker-Campbell-
Hausdorff theorem since the H (M ) distributes over addition,
multiplication, and commutation, and [M, N] is still an anti-
symmetric matrix with no trace [83]. This calculation justifies
our use of the notation e−iMt from earlier. It is only, there-
fore, necessary to be able to compute the θi j and, instead of
evolving the wave function, one can just consider updating
the time-evolution operator.

To close this section, we wrap up with a question about the
validity of TDMFT. We are making the mean-field approxima-
tion because we cannot solve the model exactly—whether or
not this approximation is a good starting point depends on the
model. Assuming that it is a good starting point, if we wish to
compute U (t, 0)|�〉 = e−iHt |�〉 where H is any Hamiltonian
and � is any state in the Hilbert space, we need to mean-field
decouple H in some way. If |�〉 is somehow related to the
ground state, one might expect that replacing H with HMF,
with mean-field parameters determined from the ground state,
is the way forward. However, since |�〉 is not the ground state,
we can decouple H again at time t with respect to |�(t )〉,
as in the TDMFT introduced above. We show a comparison

between these two approaches in Appendix A, and it is clear
that TDMFT captures more of the relevant physics. Since,
as we will show, TDMFT reproduces the exact results of the
Kitaev model in the absence of perturbations without any kind
of tuning, we expect that it will remain a good approxima-
tion for small perturbations and finite times. To support this
expectation, we compare TDMFT directly to density-matrix
renormalization group methods in Appendix B, and we find
that it is able to qualitatively (and sometimes quantitatively)
capture the effect of perturbations.

III. DYNAMICAL SPIN CORRELATORS IN THE
KITAEV MODEL

We now turn our focus to the Kitaev-Heisenberg-�
model near the Kitaev point in a small magnetic field, h =
−gμBμ0H:

H = −
∑
〈i j〉α

[
KSα

i Sα
j + �

∑
β �=β̄ �=α

Sβ
i Sβ̄

j + JSi · S j

]
+
∑

i

h · Si.

(9)

The sum is over all nearest-neighbor bonds and each bond
has an index α = x, y, z according to its type. By substituting
Sα

i = 1
2 icibα

i [1] we get

H = 1

4

∑
〈i j〉α

[
Kicic j

(
ibα

i bα
j

)+ J
∑

β

icic j
(
ibβ

i bβ
j

)

+ �
∑

β �=β̄ �=α

icic j
(
ibβ̄

i bβ
j

)]+ 1

2

∑
i

∑
α

hαicib
α
i . (10)

If we set hα = J = � = 0, this model can be exactly solved
since all the operators u〈i j〉α = ibα

i bα
j commute with H and

with each other [1]. The ground state is found in the sector
with uniform u〈i j〉α , and the resulting Hamiltonian is quadratic
in the ci.

Beyond an exact expression for the ground state, any
dynamic quantity, such as the dynamic spin-spin [82,84]
and dynamic energy current-energy current correlators
[85,86], can be computed exactly. We focus on the former
defined as

Sαβ (q, ω) = 1

N

∑
i, j

eiq·(xi−x j )
∫ ∞

−∞
dte−iωt

〈
Sα

i (t )Sβ
j (0)

〉
. (11)

Evaluating the dynamic spin-spin correlator expressions for
the Kitaev model is similar in nature to the x-ray mobility
edge problem, and multiple exact approaches were derived in
Ref. [82].

A. Zero-field approach

We will start by assuming h = 0 for simplification
and to compare with Ref. [67]. In this case, we can
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mean-field decouple the Hamiltonian to get H ≈ HMF = Hc + Hb + HC :

Hc = 1

4

∑
〈i j〉α

⎡
⎣(K + J )

〈
ibα

i bα
j

〉+ J
∑
β �=α

〈
ibβ

i bβ
j

〉+ �
∑

β̄ �=β �=α

〈
ibβ̄

i bβ
j

〉⎤⎦icic j = 1

8

∑
i, j

Mc
i jcic j,

Hb = 1

4

∑
〈i j〉γ

〈icic j〉
⎡
⎣�

∑
β̄ �=β �=γ

ibβ̄
i bβ

j +
∑

α

(Kδα,γ + J )ibα
i bα

j

⎤
⎦ = 1

8

∑
i, j

Mbα
i j bα

i bα
j ,

HC = −〈Hc〉 = −1

4

∑
〈i j〉α

⎡
⎣(K + J )

〈
ibα

i bα
j

〉+ J
∑
β �=α

〈
ibβ

i bβ
j

〉+ �
∑

β̄ �=β �=α

〈
ibβ̄

i bβ
j

〉⎤⎦〈icic j〉. (12)

We will use TDMFT so the expectation values have time
dependence. As a convention, we will choose, e.g., H0

c to
denote that the expectation values are computed in the ground
state, |v〉. The mean-field expectation values in the ground
state are determined self-consistently using the unperturbed
Kitaev model as an initial guess.

We will focus on the dynamic spin-spin correlation, but this
approach should work for any correlator. Letting EMF be the
ground-state energy from mean-field theory, we have

Sαβ
i j (t ) = 〈Sα

i (t )Sβ
j

〉 = − 1
4 eiEMFt

〈
cib

α
i U (t, 0)c jb

β
j

〉
. (13)

If we use the above formalism to evolve |�〉 = c jb
β
j |v〉 in

time [to compute |�(t )〉 = U (t, 0)|�〉 ≈ U (t, 0)|�〉], we can
approximate the time-evolution operator as e−iH (Mt ) which
implicitly depends on the history of mean-field parameters.
Additionally, Mt will be block diagonal in the c and b, so
we can separate the ground state into a tensor product of the
ground states of the c and b, i.e., |v〉 = |vc〉 ⊗ |vb〉, and

U (t, 0)|�〉 = e−iφC (t )e−iHc (Mc
t )e−iHb(Mb

t ),

e−iHx (Mx
t ) =

∏
n

e−i	tHx (tn ), φC (t ) =
∫ t

0
dsHC (s) (14)

where Hx(tn) are determined from Eq. (12) with time-
dependent expectation values. Therefore

Sαβ
i j (t ) = 1

4δαβeiEMFt−iφC (t )

× 〈vc|cie
−iHc (Mc

t )c j |vc〉〈vb|bα
i e−iHα

b (Mb
t )bβ

j |vb〉.
(15)

In order to evaluate the above expressions, we can use
the result of Ref. [82], which we rederive from Eq. (6)
in Appendix C. Additionally, because we need to compute
expectation values with respect to |�(t )〉, we will need to
compute correlations like i〈cic j (t )ck (t )ci〉 which follow from
a straightforward application of Wick’s theorem.

B. Recovering the exact solution

At the exactly solvable point J = � = h = 0, it is clear
that the three flavors of b decouple and Hb =∑α Hα

b
can always be diagonalized by the transformation ibα

i bα
j =

1 − 2χ
†
〈i j〉αχ〈i j〉α ; put another way, Hα

b are all diagonal in
the bond-fermion basis [84]. We choose the gauge where
χ

†
〈i j〉αχ〈i j〉α = 0 describing the ground state, meaning that

the expectations needed for Hc can be readily evaluated:
〈v|ibβ

k bβ

l |v〉(t ) = 1, if k and l are connected via a β bond.
When computing the time-evolution operator acting on
the state |�〉 = c jbα

j |v〉, all the expectations remain the

same, i.e., 〈�|ibβ

k bβ

l |�〉 = 1, except that 〈�|ibα
i bα

j |�〉〉(t ) =
−〈v|ibα

i bα
j |v〉. Therefore, Hc is the same as the exact Hamilto-

nian where one uα
〈i j〉 has changed sign.

Because Hα
b (tn) is diagonal in the bond-fermion basis, it

is clear the bond fermions cannot move. Breaking the ground
state into a product of the ground states of each bα we there-
fore compute

〈vb|bε
i e−iHb(Mb

t )bα
j |vb〉

= δαε〈vbα bα
i e−iHα

b (Mbα

t )bα
j |vbα 〉〈vbβ |e−iHβ

b (Mbβ

t )|vbβ 〉
× 〈vbγ |e−iHγ

b (Mbγ

t )|vbγ 〉
= −iδαεeiφC (t )〈vbα |ibα

i bα
j |vbα 〉. (16)

The phase exactly cancels that accumulated from the HC term
because |�(t )〉 is still an eigenstate of the bond-fermion op-
erators so ibα

i bα
j = 〈ibα

i bα
j 〉. In the ground state, 〈bα

i bα
j 〉 = 0

unless i and j are connected by an α bond.
Putting everything together, and noting that EMF is exactly

the ground-state energy for the Kitaev model, we find that we
recover the exact result [82,84]:

Hc(tn) = HF = −1

2
Kicic j + 1

4

∑
〈kl〉α

Kickcl ,

Sαα
i j = − i

4
eiE0t 〈cie

−iHF t c j〉,

Sαα
ii = 1

4
eiE0t 〈cie

−iHF t ci〉. (17)

In our approach, the flip of the value of ibα
i bα

j in the
Hamiltonian for the time-evolution operator, as seen in the
exact case [84], occurs because we recompute the mean-field
parameters for the state on which the Hamiltonian is acting. In
Ref. [67], the flip occurs due to the anticommutation relations
between bα

i and a newly introduced Z2 link variable. Despite
agreeing for the exact case, we will see that these two different
approaches predict quite different physics in the presence of
perturbations.
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One critique of mean-field theory as applied to the Kitaev
model is that it fails to reproduce the flux gap as the energy
of one bond fermion excitation, as read off of the mean-field
Hamiltonian, is four times larger than the flux gap [67]. How-
ever, if we consider what changes when we add in excitations,
the flux gap is reproduced within the framework of TDMFT.
To stay in the physical subspace, we should actually add two
excitations (see Appendix E), but we will consider only single
excitations since the argument is simpler and straightfor-
wardly generalized. First, let us consider adding one itinerant
Majorana excitation. The Fourier transform nearly diagonal-
izes Hc, so we know the excitations have the rough form
γ

†
k = 1√

2N

∑
i cieik·xi where xi is the location of site i. If want

to compute Hγ
†
k |v〉, we need to mean-field decouple H with

respect to the state γ
†
k |v〉. In the thermodynamic limit, the

mean-field parameters will be the same and therefore this state
is an approximate eigenstate of H .

If we attempt the same calculation with the state χ
†
〈i j〉α |v〉,

the mean-field parameters will not stay the same in the
thermodynamic limit because 〈ibα

i bα
j 〉 = 1. When J = � = 0,

the state is still an eigenstate of Hb but is no longer an

eigenstate of Hc. Therefore, this excitation is not an energy
eigenstate.

If we wanted to describe the state with one bond fermion
inserted, we would need to search for a different self-
consistent mean-field decoupling with 〈ibα

i bα
j 〉 = 1 and, on

all other bonds 〈kl〉β , 〈ibβ

k bβ

l 〉 = −1. Without any pertur-
bations, this will clearly reproduce the flux gap energy,
and, in the presence of perturbations, we can use the self-
consistent solution as an initial guess to find how the flux gap
changes.

C. Finite magnetic field

One of the advantages of our approach to comput-
ing S(q, ω) is the ability to treat generic perturbations. In
Ref. [67], it was crucial that the mean-field decoupled Hamil-
tonian does not mix the ci and the bα

i . However, a magnetic
field is a very natural perturbation, and our approach immedi-
ately generalizes.

First, the mean-field decoupled Hamiltonian will now be

H = H ′
MF = Hc + Hb + Hbc︸ ︷︷ ︸

H ′
bc

+ HC + H ′
C︸ ︷︷ ︸

H ′′
C

= 1

8

∑
a,b

ψaMabψb + H ′′
C , (18)

Hbc = 1

4

∑
〈i j〉α

⎡
⎣∑

β

(J + Kδα,β )
(
icib

β
j

〈
ic jb

β
i

〉+ ic jb
β
i

〈
icib

β
j

〉− icib
β
i

〈
ic jb

β
j

〉− ic jb
β
j

〈
icib

β
i

〉)

+
∑

β �=β̄ �=α

�
(

icib
β
j

〈
ic jb

β̄
i

〉+ ic jb
β̄
i

〈
icib

β
j

〉− icib
β̄
i

〈
ic jb

β
j

〉− ic jb
β
j

〈
icib

β̄
i

〉)⎤⎦+ 1

2

∑
i

∑
α

hαicib
α
i ,

(19)

H ′
C = 1

4

∑
〈i j〉α

⎡
⎣∑

β

(J + Kδα,β )
(〈

icib
β
i

〉〈
ic jb

β
j

〉− 〈icib
β
j

〉〈
ic jb

β
i

〉)+
∑

β �=β̄ �=α

�
(〈

icib
β
i

〉〈
ic jb

β̄
j

〉− 〈icib
β
j

〉〈
ic jb

β̄
i

〉)⎤⎦ (20)

where Hc, Hb, and HC are defined above. Since all the
Majoranas are being intermixed, we introduced ψT =
(c1, . . . , c2N , bx

1, . . . , bx
2N , by

1, . . . , by
2N , bz

1, . . . , bz
2N ). For ease

of notation, we will let (b0
i , b1

i , b2
i , b3

i ) = (ci, bx
i , by

i , bz
i ) so that

ψiα = bα
i where iα = i + 2Nα.

Second, we are going to evolve the state |�〉 = c jb
β
j |v〉

in time, and we will need to compute the correlators like
i〈bα

i ciψ j (t )ψk (t )cibα
i 〉. To numerically evaluate this, we just

repeatedly apply Wick’s theorem in the same way as before.
Lastly, we need to evaluate the expression

Sαβ
i j (t ) = −1

4
eiEMFt−iφC′ (t )〈cib

α
i e−iH ′

bc (Mt )c jb
β
j

〉
,

e−iH ′
bc (Mt ) =

∏
n

e−i	tH ′
bc (tn ), φC′ (t ) =

∫ t

0
dsH ′′

C (s). (21)

In Appendix C, we prove the formula

Sαβ
i j (t ) = −1

4

√
detX eiEMFt−iφC′ (t )

× [(UU † − UFU T )iiα (ŨŨ † − ŨFŨ T ) j jβ

− (UŨ † − UFŨ T )i j (UŨ † − UFŨ T )iα jβ

+ (UŨ † − UFŨ T )i jβ (UŨ † − UFŨ T )iα j
]

(22)

where Û = eiMt U and X and F = −X −1Y are defined from
Eq. (7). Additionally, in this expression, the multiplication of
matrices, AB, only involves the first N columns of A and the
first N rows of B, even if A and B are 2N × 2N matrices.

There is one additional subtlety, however. In a magnetic
field, 〈Sα

i 〉 can develop an expectation. Then, Sαβ (q, ω) =
S̃αβ (q, ω) + δ(ω)δ(q)〈Sα

i 〉〈Sβ
j 〉. We therefore only really want

to calculate

S̃αβ
i j (t ) = Sαβ

i j (t ) − 〈Sα
i (t )
〉〈

Sβ
j

〉
. (23)

If we focus on the first term of Eq. (22), we see that it can
alternatively be written

T1 = −1

4
〈U †(0, t )ψiψiαU (t, 0)〉 〈U (t, 0)ψ jψ jβ 〉

〈U (t, 0)〉 . (24)

Remember, though, that U (t, 0) = e−iH ′
bc (Mt )−iφ′(t ) ≈ U (t, 0)

is just an approximation for the true time-evolution
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operator. Using the fact that the ground state should be an
eigenstate of U (t, 0), we undo the approximation and find
T1 = 〈Sα

i (t )〉〈Sβ
j 〉. Therefore, S̃αβ

i j (t ) simply involves the last
two terms of Eq. (22).

If we do not cancel the term exactly, then when computing
S̃αβ = (q = 0, ω) the small approximation on every site gets
amplified by the number of sites. A percent-level error then
translates to a large discrepancy.

IV. RESULTS

One limiting factor in the numerics is finite size determined
by how long it takes for the Majoranas to travel across the
entire system. In the ground state for h = 0, the c fermions
experience an effective coupling of K̃ = (K + J )〈ibz

i b
z
j〉 +

2J〈ibx
i bx

j〉 + 2�〈ibx
i by

j〉 giving a speed of 3K̃/4 [79]. A system
with N × N unit cells will then experience finite size effects
at roughly t = 4N/(3K̃ ). The only other knob we turn for a
given set of parameters is 	t , and we ensure that decreasing
	t or increasing N has minimal effect on the resulting S(q, ω)
plots. We additionally avoid N that are multiples of 3 to avoid
the gapless points in the Majorana spectrum at the K points [1]
as they introduce additional complications to the numerics.
For additional discussion of convergence, see Appendix D.
The finite size effect makes it most difficult to probe small ω,
which are also least accessible for inelastic neutron scattering
experiments.

We are primarily interested in computing the results for
parameters that we expect to be in the Kitaev phase. For vary-
ing J and �, we use the phase diagrams produced via exact
diagonalization on 24 sites in Ref. [87], however we addition-
ally include points at larger |J| when � = 0 and vice versa to
highlight the effects that each perturbation has individually.
We focus on the ferromagnetic Kitaev model (K = 1) as it
has larger parameter space when J, � �= 0, but the qualitative
results hold true for K = −1.

One of the main differences between our results and those
of Ref. [67] is the flux remains fixed much longer. There are
two ways that we can probe this: either by the time evolution
of the mean-field parameter i〈bα

j b
α
i (t )bα

j (t )bα
j 〉 or by the b

component of Eq. (15), Gb,αβ
i j (t ) = 〈bα

i e−iHα
b (Mb

t )bβ
j 〉. We will

use the former as a more direct comparison with Ref. [67].
We plot Gzz

b (t ) in Fig. 1 and see that even for fairly large
perturbations, the flux remains fixed. Only when both J and
� are substantial does the flux begin to move [88], consistent
with the findings of Ref. [81]. Though quite different from
the result of Ref. [67], if we modify their approach to be
symmetric between the c and b, we find the flux remains fixed
as well.

We now plot S(q = 0, ω) in Fig. 2 for a variety of param-
eters. In total, we see that the perturbations have only a small
effect on the exact result. The Heisenberg term, J , primarily
moves the features to higher or lower ω, depending on the
sign, but the overall qualitative features are the same. For
�, there is more power near the kink in the exact result and
less power at the peak. When combined, we get some of both
features, but, overall, the results are less dramatically different
than those found in Ref. [67].

FIG. 1. We plot |Gb,zz
01 |, where sites 0 and 1 are connected

by a z bond, for a variety of parameters. For small parameters,
the asymptotic value as t → ∞ is not substantially different than
the starting value. Only when both J and � are large do we see the
value drop, which we can interpret as fluxes become mobile [67]. The
dashed line indicates the exact (J = � = 0) result, and the system
sizes are the same as in Fig. 2.

For the magnetic field, we consider the antiferromagnetic
model K = −1 as the ferromagnetic model changes phase
with h = 0.042 [54] when the magnetic field is aligned with
one of the three spin axes. We additionally find it useful to
use a higher order time-evolution scheme [76] as the time step
necessary for convergence needs to be smaller. In the presence
of a magnetic field, we can no longer separate the c and b
Majoranas, and therefore cannot compute Gb.

Due to the smaller time step, it is difficult to get to such
large system sizes and a well-converged S(q, ω), so we mul-
tiply S(q, t ) by a Gaussian of width σ = 60. In Fig. 2(d), we
plot some results for a magnetic field in the z or x direction.
We still find only small effects, such as a smoothing out of
high-energy features and oscillatory features at low ω. In
Appendix B, we consider a field in the [111] direction on a
cylinder geometry and find similar modifications, like found
in Ref. [34].

V. DISCUSSION

As exemplified in Fig. 2, though the features of the exact
result do change in the presence of perturbation, the signal
looks surprisingly similar. This finding is consistent with the
idea that the Kitaev phase is stable to small perturbations [89],
though it appears inconsistent with the conclusion that the
flux gap is fine tuned [81,90]. As mentioned above, the flux
gap is expected to persist when h = 0 and either J = 0 or
� = 0 [81], and when J �= 0 and � �= 0 the fluxes acquire a
hopping that scales like J2�2/K3. When J and � are small,
the corresponding time scale is much longer than what we
can achieve numerically, and we further see that the low-
ω features of the S(q, ω) are not well-enough converged to
make definitive statements about the gap persisting or not (or
whether the scaling at low ω matches Ref. [81]). Our results,
however, indicate that whether the flux gap is fine tuned or
not does not imply that the other aspects of the signal are fine
tuned.

The most immediate use of our results would be to compare
directly with experiments on α-RuCl3 or other Kitaev materi-
als where INS has been performed. We can compute the INS
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FIG. 2. We plot S(q, ω) for a variety of parameters for an N × N unit cell system. The exact result (black line) is the result from a N = 100
system and the other parameters have N as specified in each of the panels. In (a), we consider the effect of J �= 0 and � = 0 and see that the
primary effect is shifting the features from the exact case to higher or lower energy. In (b), we plot the same but for J = 0 and � �= 0. Beyond
some minor adjustments to the peak, the main effect seems to be to smooth out the kink in the exact result. For (c), we see the combination
of both J �= 0 and � �= 0 and, for small parameters, the two effects seem roughly additive. For larger parameters, as the flux becomes mobile,
there are more substantial changes. In (d), J = � = 0 but we consider the effect of a magnetic field in the z direction and x direction. Due to
a smaller time step, we are not able to consider such large systems, and so we multiply S(q, t ) by a Gaussian of width σ = 60, equivalent to
convolving S(q, ω) with a Gaussian of width 1/σ . The main effect of the magnetic field that we see is a smoothing of the high-energy features,
and some oscillatory features at low ω. We pick 	t small enough to ensure convergence (see Appendix D).

signal with

I (q, ω) ∼ f (q)2
∑
α,β

(
δαβ − qαqβ

q2

)
Sαβ (q, ω) (25)

where we follow Ref. [52] in averaging over qz [assuming
that Sαβ (q, ω) is independent of qz] as is done in experi-
ment and in approximating the form factor, f (q) = e−q2c with
c = (0.25 × 4π )−2 Å2 to fit the result of Ref. [91]. Since
we are envisioning the Jackeli-Khaliullin mechanism [3] for
producing a Kitaev material, the x, y, and z axes for the spins
have out-of-plane components, and we account for that when
computing I (q, ω). We plot the result for a few parameters in
Fig. 3.

The large peak in the exact case is not greatly modified
by the perturbations, but the smaller higher energy features
are. Our results appear quite far from available INS data on
α-RuCl3 [21,22] perhaps providing some evidence against the
interpretation of its field-induced phase as a Kitaev spin liq-
uid; in particular, though the signal at the � point may be well
captured by the Kitaev model, the field-induced phase appears
to have little signal at the M point [21], which is inconsistent
with our results unless the inclusion of an in-plane magnetic
field leads to substantial changes.

Furthermore, our approach is only valid in the Kitaev
phase, and we therefore hesitate to compute S(q, ω) with some
of the best candidate spin Hamiltonians of α-RuCl3 since

numerical studies of these models do not support the conclu-
sion that the field-induced spin liquid is a Kitaev spin liquid
[41,92]. In identifying and studying other Kitaev materials,
the main result of our approach is that the INS signal should
be well captured by the exact Kitaev model.

One major technicality that we have not addressed is the
role of gauge. Due to the enlargement of the Hilbert space via
the introduction of four Majoranas per spin, we must project
the unphysical degrees of freedom away with the operator
P. The true ground state of the system would then be P|v〉,
and we explore the effect of this in Appendix E. In total, our
approach is consistent with other mean-field treatments in the
literature, but more consideration is likely warranted in the
future.

One shortcoming of our approximation is that it does not
agree with exact bounds. Using the Lehmann representation,
it is clear that Szz(q, ω) � 0 [45], and we expect sum rules to
be obeyed such as

Szz(q, t = 0) = 1

2π

∫
dωSzz(q, ω). (26)

In the former case, we can quantify the disparity by computing
Pneg = ∫ dωSzz(q, ω)/[

∫
dω|Szz(q, ω)|], and in the latter case

we compute Pdiff, the percent difference between the two sides
of Eq. (26).

In total we get the results plotted in Table I. Focusing solely
on q = 0, except for the largest parameter point, we see the
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FIG. 3. We plot the INS intensity (in arbitrary units) at the (a) � and (b) M point. The legend specifies the size of the system, N used for
each parameter set, and when N is not divisible by 2 we use the point slightly off of the M point which satisfies the boundary conditions. For
smaller perturbations, the features of the exact result are not substantially modified.

error is � 5%. At the M point, there are larger errors for when
J is the only perturbation, but, otherwise, the same is true. We
interpret these errors as being an effect of the approximations
we are making. Of course, these discrepancies must go to zero
for small perturbations since it must be zero in the exact case.

We can also consider the sum rule in real space, and we find
similarly that the error is at the percent level for the correlators
that are nonzero in the Kitaev model. For those correlators that
only are nonzero away from the exact point, the error can be
substantially larger. The unphysical response, Szz(q, ω) < 0,
can be seen as due to the unphysical violation of the real-space
sum rules allowing the momentum-space correlators to violate
exact bounds.

We have checked that the unphysical response remains
when we evolve under the Hamiltonian with mean-field pa-
rameters computed in the state |�(t = 0+)〉 = c jbα

j |v〉; that
is, we only recompute the mean-field parameters once and
then time evolve under that approximate Hamiltonian for all
time. One potential way to avoid the unphysical response is to
compute the correlators from the exact result

Sαα (q, ω) =
∑
m,n

δ(ω − Em + En)|〈n|Sα
q |m〉|2 (27)

TABLE I. We list the disagreement with exact bounds for the
parameters in the left-hand column for S(q, ω) for q = 0 and for
q at the M point. The error is reported as (Pneg, Pdiff ) where Pneg is
the percent of the support that is negative and Pdiff is the percent
difference between the left- and right-hand side of Eq. (26). Although
some of the errors are in the tens of percent, most are 5% or less.

(J, �, hz, N ) S(q = 0, ω) % err. S(M, ω) % err.

(−0.1, 0.0, 0.0, 82) (1.7,0.5) (7.5,−16)
(0.1,0.0,0.0,82) (0.42,0.29) (6.2,−15)
(−0.2, 0.0, 0.0, 82) (3.2,3.0) (7.5, −14)
(0.2,0.0,0.0,82) (0.65,1.1) (5.3,−14)
(0.0, −0.1, 0.0, 77) (0.14,0.46) (0.12,0.39)
(0.0, −0.2, 0.0, 77) (0.03,2.0) (0.02,1.7)
(0.0, −0.3, 0.0, 77) (0.047,5.1) (0.035,4.5)
(0.1, −0.1, 0.0, 77) (0.35,0.66) (0.10,0.55)
(−0.1, −0.1, 0.0, 77) (1.4,1.2) (0.048,0.92)
(−0.2, −0.15, 0.0, 77) (2.6,4.8) (0.27,3.6)
(−0.3, −0.2, 0.0, 77) (4.1,11.4) (2.0,8.0)

where Sα
q = (1/

√
N )
∑

i Sα
i e−iq·xi and |n〉 are the exact eigen-

states of H . Though not “time dependent,” the ideas of
TDMFT enter in the same way as discussed in Sec. III C, since
the flux excitations of the mean-field ground state χ

†
〈i j〉α |v〉

are not self-consistent states. With representations of the self-
consistent mean-field state that represents the insertion of a
flux, one could then follow the approach of Sec. VB3 of
Ref. [82]. Practical considerations require taking into account
only the few-particle response, though in the exact case this
approach captures much of the signal and therefore may pro-
duce similar qualitative insights into the effect of various
perturbations. We leave a full exploration along those lines,
though, to future work.

Additionally, although TDMFT clearly is an important
starting point for the Kitaev case, the computation of the
mean-field parameters at each time step and the exponentia-
tion of Mt greatly increases the cost of computing dynamical
quantities. For other systems, this may make TDMFT imprac-
ticable. When, then, is it necessary to apply TDMFT instead of
evolving in time under the ground-state mean-field decoupled
Hamiltonian?

It depends on why MFT is expected to be valid. There are
at least two distinct scenarios: a large coordination number
or the mean fields being approximately conserved quantities.
In the former limit, TDMFT is likely unnecessary because
only a small number of mean-field parameters will change,
which will be suppressed by the large coordination number of
unchanged parameters.

To see where the other limit arises, we are, at the highest
level, breaking apart interaction terms in the Hamiltonian into
noninteracting ones. In general, we break apart four, e.g.,
Majorana, terms as

c1c2c3c4 − δ̂ = 〈c1c2〉c3c4 + 〈c3c4〉c1c2 − 〈c1c2〉〈c3c4〉
+ 〈c1c4〉c2c3 + 〈c2c3〉c1c4 − 〈c1c4〉〈c2c3〉
− 〈c1c3〉c2c4 − 〈c2c4〉c1c3 + 〈c1c3〉〈c2c4〉

(28)

and we ignore δ̂. Notice that 〈δ̂〉 = 0 for the resulting self-
consistent mean-field ground state (since it is quadratic in
Majoranas), and MFT would be rigorously valid if |〈δ̂2〉| �
|〈c1c2c3c4〉|2. In the simplest case where one decoupling
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channel dominates, we can show

〈δ̂2〉 = (〈[ic1c2]2〉 − 〈ic1c2〉2)(〈[ic3c4]2〉 − 〈ic3c4〉2) (29)

implying that the variance of either ic1c2 or ic3c4 is small
compared to its mean value, and the other’s mean-field value is
not too close to zero (to ensure 〈c1c2c3c4〉 �= 0). Without loss
of generality, say that ic1c2 ≈ 〈ic1c2〉, but this simultaneously
implies that ic1c2 is an approximately conserved quantity in
the ground state of the (full) Hamiltonian since a constant
commutes with the Hamiltonian. The reverse direction is also
true; namely, if ic1c2 commutes with the Hamiltonian, 〈δ̂2〉 =
0 and MFT is rigorously valid.

The same argument can be made for the low-energy excited
states as well, if MFT is valid for those states. Now when
computing a dynamic correlator 〈O(t )O〉, TDMFT will be
necessary if and only if O connects excited states with dif-
ferent values of the constants of motion.

As an explicit example, in the Kitaev model, TDMFT
would not be necessary if we compute 〈ci(t )c j〉, but it is neces-
sary for 〈Si(t )S j〉 because the fluxes, the conserved quantities,
are changed. We also provide a separate model in Appendix F
where TDMFT is required to illustrate that it is necessary
beyond the Kitaev model.

Finally, there seems to remain some ambiguity about how
to apply TDMFT. If one were to apply TDMFT not to Sαβ

i j (t )

but instead directly to Sαβ (q, t ) = 〈Sα−q(t )Sβ
q 〉 where Sα

q (t ) =∑
i Sα

i (t )e−ixi·q, the exact result would not be recovered. In-
deed, in the latter case the single flux being flipped would
be distributed across the lattice and the mean-field value of
i〈Sα

q bi(t )b j (t )Sα−q〉/〈Sα
q Sα−q〉 would be uniform and unaffected

in the thermodynamic limit. It should be clear from the above
discussion, however, that if the mean fields are defined in
real space, then TDMFT should be performed in real space.
Performing the calculation in the momentum basis averages
out the effect that we have changed sectors, being defined by
the (approximately) conserved quantities, even though every
resulting state in the superposition Sα−q|v〉 does not belong to
the same sector as |v〉.

Even in the case where mean-field theory is not rigorously
valid, we expect that TDMFT will do better than the momen-
tum space calculation since it does not average out the effect
of the local operators. However, when mean-field theory is not
rigorously valid, it is hard to assess which approach is “better.”

VI. CONCLUSIONS

In this paper, we have rigorously developed time-
dependent Majorana mean-field theory, as introduced by
Refs. [78–80], and applied the technique directly to compute
dynamic correlators. This approach immediately reproduces
the exact results of the Kitaev model, and we therefore ex-
pect it to qualitatively capture the effects of perturbations.
Although we have only considered the Kitaev model here, our
approach applies generally to any mean-field decoupled (or
quadratic) Majorana system, and it should be generalizable to
any mean-field decoupled fermionic or bosonic system.

In comparing and contrasting our approach with Ref. [67],
we recover the exact result in the absence of perturba-
tions, but our approach immediately extends to the case with

perturbations without any additional approximations. Further-
more, the Z2 link variable that Ref. [67] introduces provides
feedback between the bα

i and the ci Hamiltonian, but our
approach naturally includes both that and the feedback be-
tween the ci and bα

i Hamiltonian. Additionally, since we
treat ci and bα

i on the same footing, we can accommodate
any perturbation, and we are able to recover an explicit
expression for their V α

A0(t ) = (K + J )(i〈bα
j b

α
i (t )bα

j (t )bα
j 〉 −

i〈bα
i bα

j 〉)/4, which they approximated via a Heaviside step
function. With the inclusion of fewer approximations, our
results indicate that the features of the exact model are not
significantly modified in the presence of small perturbations,
in contrast to previous results [81].

We also emphasize that our approach will agree with exact
results of the Kitaev model for any dynamic correlator. In the
exact case, the correlators will be evaluated by commuting any∏

bα
i to the left or right to act on the ground state |v〉, which is

equivalent to recomputing the mean-field parameters for the
state

∏
bα

i |v〉. One natural future direction then would be to
apply our approach to the current-current correlator necessary
to compute κxx and κxy [85,86].
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APPENDIX A: TIME EVOLUTION IN MAJORANA
MEAN-FIELD THEORY: A COMPARISON

When applying mean-field theory to time evolution of
states |�〉, one starting point is to use

U (t, 0)|�〉 = e−iHt |�〉 = e−iHMF,GSt |�〉 (A1)

where H is some arbitrary Hamiltonian and HMF,GS is the
mean-field decoupled Hamiltonian where the mean-field pa-
rameters are determined in the ground state. For states near
the ground state, this approximation might be reasonable.

We can compare this kind of evolution to TDMFT by
doing the following. First, we follow Ref. [78] by computing
S(q = 0, ω) via a quantum quench from a small magnetic
field. In this case, we write the Jordan-Wigner transformed
Kitaev Hamiltonian in an out-of-plane magnetic field as

H (h) = −i
K

4

∑
j∈A

∑
α=x,y

a jb j+α

− K

4
ia jb j+ẑ iā j b̄ j+ẑ − i

h

2
(a jā j − b j+zb̄ j+z ). (A2)

In this rewriting, the conserved quantity at h = 0 is iā j b̄ j+ẑ =
±1 = �̄ j , and the ground state has �̄ j = �̄ = 1.

Now, we find the ground state of H (h) for small h, and
compute the time evolution of the ground state under the
Hamiltonian H (h = 0). By computing 〈Mz(t )〉 = 〈Sz

i (t )〉, we
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FIG. 4. We compare computing Szz(q = 0, ω) with a quantum
quench using TDMFT and evolving under HMF,GS, which we refer to
as MFT. When compared to the exact answer (black curve), it is clear
that TDMFT does substantially better. Using the augmented mean-
field theory of Ref. [67] produces the same curve as MFT. We include
the analytic result Eq. (A8), which demonstrates the numerics’ work.
Here, we use Nk = 200 and the rest of the parameters are given in
the text, and the exact result is evaluated using the Pfaffian method
of Ref. [82] for 100 × 100 unit cells.

can compute [78]

S(q = 0, ω) = 1

N

∑
i, j

∫
dteiωt 〈Si(t )S j〉 = lim

h→0
2

M̃z(ω)

h

(A3)
where M̃z(ω)/h = ωRe[

∫∞
0 dtei(ω+iη)t 〈Mz(t )〉] with η � 1.

We can evolve in time in two ways—the first is TDMFT
[78] and the second is to instead evolve with HMF,GS, which
in this case is H = H0 = −i(K/4)

∑
j∈A

∑
α a jb j+α . In the

former case, we self-consistently compute the expectations
〈ia j ā j〉 = A, 〈ib j b̄ j〉 = B, 〈ia jb j+ẑ〉, 〈iā j b̄ j+ẑ〉, 〈ib j ā j〉, and
〈ia j b̄ j〉.

To do the numerics, we Fourier transform and perform
time-dependent mean-field theory in k space. Since each
(k,−k) pair is independent, we just need to keep track of
the 4 × 4 matrix that provides the time-evolution operator for
that pair. To compute the k integrals for expectation values,
we keep track of N2

k points in the Brillouin zone that are
distributed as per Gaussian quadrature, and we take Nk as large
as the numerics will allow.

We evolve for a time t |K| = 2.5 × 104 using the Euler step
method [76], η/|K| = 7.5 × 10−4, and our initial magnetic
field is h/K = 0.0015. Additionally, we average S(q = 0, ω)
over windows of 	ω = 0.01K because of rapid oscillations.
We are able to essentially reproduce the TDMFT curve from
Ref. [78] and we derive an analytic result below that matches
evolution under HMF,GS.

We see in Fig. 4 that TDMFT is able to capture all the
qualitative features of the exact result whereas evolution un-
der HMF,GS, labeled as MFT, produces a completely different
result. This plot heavily implies that the starting point of
understanding time evolution in mean-field theory should be
TDMFT.

It is worth noting that the augmented MFT of Ref. [67]
would predict the same curve as MFT. Their Hamiltonian,
HaMFT, given in Eq. (16) of Ref. [67], differs from the MFT
Hamiltonian only by the presence of σα

i j . As stated in their
Appendix, though, the ground state, in the presence of small
perturbations, stays in the σα

i j = 1 sector, and finding the
ground state proceeds as normal in MFT. When consider-
ing 〈Sz

i (t )〉 = i〈eiHaMFTt cib
z
i e

−iHaMFTt 〉, we can again set σα
i j = 1

since HaMFT acts on the ground state. The σα
i j only changes the

calculation when it needs to be commuted past a bα
i , which is

not the case here.

1. Analytic MFT result

In addition to numerics, we can exactly compute Mz(t ) in
the case that we are evolving under HMF,GS = H0. First, we
observe that the state we are evolving is the ground state of
H (h). In the limit h → 0, we write the self-consistent value
of h̃ = h + KA/2. We can write the Hamiltonian as H (h) =
H0 − h̃NMz (where N is the number of sites), and treat the
second term as a perturbation. The ground state can be written
as

|�〉 = |0〉 − h̃N
∑
n �=0

|n〉 〈0|Mz|n〉
E0 − En

. (A4)

Our next task is to determine which states |n〉 have nonzero
values of 〈0|Mz|n〉. By going to Fourier space, the resulting
Hamiltonian is given by

H = 1

2

∑
k

(a−k b−k )

(
0 Sk

S∗
k 0

)(
ak

bk

)

+ (ā−k b̄−k )

(
0 Tk

T ∗
k 0

)(
āk

b̄k

)
, (A5)

where ai =
√

2
N

∑
k eikri ak and a†

k = a−k . Here, Sk =
−iJ (e−ik·nx + e−ik·ny + 1)eiδk /2 and Tk = −iJ�eiδk /2 where
nx/y = (±1/2,

√
3/2), δk = ky/

√
3, and � = i〈aibi+z〉 ≈

−0.5249. We now diagonalize these Hamiltonians to get
H =∑k |Sk|( f †

k fk − 1/2) + |Tk|( f̄ †
k f̄k − 1/2). Rewriting Mz

in the fk basis, and acting on the state vacuum in that basis,
we get

Mz|0〉 = 1

N

∑
i

iaiāi − ibi+zb̄i+z|0〉

= 1

2N

∑
k

−
( |Sk||Tk|

S∗
k Tk

+ 1

)
f †
−k f̄ †

k |0〉. (A6)

Therefore, the N/2 states we need to consider are |k〉 =
f †
−k f̄ †

k |0〉 (one for each k ∈ 1BZ), and the energy is Ek =
|Sk| + |Tk| + E0

Now, it is a straightforward computation that

〈Mz(t )〉
h

= N
h̃

h

∑
k∈1BZ

〈0|Mz(t )|k〉〈k|Mz(0)|0〉 + H.c.

Ek − E0

= N
h̃

h

∑
k∈1BZ

|〈k|Mz(0)|0〉|2
Ek − E0

(
ei(E0−En )t + H.c.

)
(A7)
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FIG. 5. We plot the results of TDMFT vs iDMRG from Ref. [34] for the Ny = 3 cylinder. In (a)–(d) [(e)–(h)], we plot S(q, ω) at the �′

(K) point as defined in Ref. [34] for various magnetic field strengths in the [111] direction. In (b) and (c) we see that TDMFT does capture
the dominant effects of the magnetic field, but the comparison for (f) and (g) is worse. For (a) and (e), the two curves should agree, and the
difference is likely due to error in the iDMRG calculation incurred from having a finite bond dimension, which may explain some of the
discrepancy in plots (f) and (g). Overall, TDMFT seems to be providing qualitatively accurate results.

which after integration (and taking only ω > 0) gives

S(q = 0, ω) = 2N
h̃

h

∑
k∈1BZ

〈k|Mz(0)|0〉2δ(ω − En − E0)

= h̃

h

1

N

∑
k∈1BZ

(
1 + Re

[ |Sk||Tk|
S∗

k Tk

])
δ(ω − |Sk| − |�|/2).

(A8)

The final term we evaluate by rewriting δ(x) = η/(x2 +
η2) where η plays the same role as in Eq. (A3). This expres-
sion resembles the density of states, but has some additional
energy dependence. As seen in Fig. 4, the analytic result and
numerics are in good agreement.

This analytic derivation also makes it clear that the spin
gap for the MFT curve is given by |�|/2 = i〈aibi+z〉/2, which
is the static MFT energy of inserting a flux. It is known to
be exactly four times the true flux gap 	 = i〈aibi+z〉/8 [67],
which explains why the gap is much larger.

APPENDIX B: COMPARISON WITH DMRG

In this Appendix we will compare our results us-
ing TDMFT with the density-matrix renormalization group
(DMRG) [93]. DMRG results are “exact” if the bond dimen-
sion χ , the size of the matrices, goes to infinity. See, e.g.,
Ref. [94] for a review of the technique.

The authors of Refs. [34,35] have applied infinite DMRG
(iDMRG) to compute S(q, ω) in the presence of Heisenberg
terms or a magnetic field in the [111] direction. In the latter
case, we can directly compare TDMFT to their results in
Fig. 6(g) of Ref. [34].

In Fig. 5, we compare the results for q = �′ and K , as
defined in their work, and omit q = M since it is similar
to q = K . For TDMFT, we considered a system size of
(Ny, Nx ) = (3, 152) with step size 	t = 0.32, large enough to
have negligible finite size effects, and we multiply S(q, t ) by
a Gaussian of width σ = 55.8 as in Ref. [34]. Our results for
hc = 0 are really for hc = 0.003, but we have checked that this
does not affect our forthcoming analysis. We scale our results
by an hc-independent constant to match the results of Ref. [34]

at large ω and hc = 0 to account for their normalization of
S(q, ω).

Even in the exact case, where the two methods should
agree, there are discrepancies at small ω. These differences
are likely due to the finite bond dimension in the DMRG sim-
ulations since larger and larger bond dimensions are needed to
capture longer and longer time behavior [94], as can be seen
in the insets of Fig. 3 in Ref. [35].

In light of this, comparing the hc �= 0 results is not straight-
forward since the largest discrepancies appear at low ω where
the hc = 0 results disagree. Nevertheless, there is reasonable
qualitative agreement between the results—at large ω, the
features are smoothed out with increasing hc, and similar
oscillating features are added at small ω. Additionally, the
perturbation hc only slightly modifies the overall features of
S(q, ω), consistent with our results.

To include an additional test, we compare our approach
and that of Ref. [67] to short-time DMRG evolution. We
consider a 2 × Ny × Nx system with periodic boundary con-
ditions in the Ny direction and open boundary conditions in
the Nx direction. We time evolve the system for short times
and check convergence in 	t and the bond dimension χ . We
use the TENPY [95] package, and time evolution is performed
by constructing a matrix product operator representation of
the time-evolution operator [96]. We are able to get exact
agreement in the unperturbed model. The z bond is chosen
to be either of the two bonds more closely aligned with the
short axis of the cylinder.

We consider the small perturbation J = −0.04, and plot
the result for two cylinder sizes in Figs. 6 and 7. We plot both
Szz(q = 0, t ) =∑i Szz

i0 (t ) and Szz
00(t ) + Szz

01(t ) where the site 0
is picked to be far from the open boundary conditions and is
connected to site 1 by a z bond.

For the Ny = 3 cylinder in Fig. 6, we are able to get to large
enough bond dimension to have t � 11 converged. Remark-
ably, we see that both MFT approaches accurately capture the
shift in |Szz

00(t ) + Szz
01(t )|, the two correlators that contribute

the most in the unperturbed model. However, the phase is
not accurately captured (not shown), and when we sum over
all sites for Szz(q = 0, t ), the MFT and DMRG approaches
disagree quantitatively but have similar features. The latter
point is expected since the overall features must closely match
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FIG. 6. In (a) we plot |Szz
00(t ) + Szz

01(t )| vs t (where site 0 is far
from the boundaries of the cylinder and connected to site 1 by a
z bond) using DMRG at bond dimension χ , using the augmented
MFT of Ref. [67], and using TDMFT. For reference, we include
the exact result from the unperturbed Kitaev point. We see that the
magnitude of the sum of the two most important correlators for
the unperturbed model is accurately shifted (though we note that the
phases disagree). The DMRG and MFT results only begin to diverge
when the DMRG result is no longer converged in bond dimension at
around t ≈ 11. (b) We plot Szz(q = 0, t ) =∑i Szz

0i (t ) vs t computed
through the various methods as in (a). There is a large quantitative
shift, but the qualitative features agree between the three methods.
The shift decreases with increasing cylinder size as seen in Fig. 7.
Here Nx = 20.

the unperturbed result. For the Ny = 4 cylinder in Fig. 7, the
convergence in bond dimension is worse, but the quantitative
discrepancy between Szz(q = 0, t ) decreases implying that it
is in part due to small cylinder circumferences.

Taken together, TDMFT compares favorably with iDMRG
and DMRG. We were unable to get to large enough bond di-
mension to directly determine whether TDMFT or augmented
MFT is more accurate, but TDMFT extends to the finite field
case and the results of Appendix A show that TDMFT is more
broadly applicable.

FIG. 7. We make the same plot as in Fig. 6 for the Ny = 4
cylinder. Both results are not well converged in bond dimension, but
we notice that Szz(q = 0, t ) is more quantitatively similar than the
Ny = 3 cylinder implying some of the discrepancy is due to the small
circumferences. Here Nx = 16.

APPENDIX C: EVALUATING CORRELATORS

In order to evaluate Eq. (15), we need to evaluate expres-
sions of the form

Ii j = 〈aie
−iH (M)a†

j

〉
(C1)

with regards to the vacuum |v〉 of the operators ā = 1√
2
U †

0 �ci.

Our first step is finding the basis b̄ = S† �̃c = S†U0ā such that
M = SDS†. In that case,

Ii j = 〈ai(U
†
0 SeiDS†U0) j+N,kāke−iH (M)

〉
= T j+N,k

√
detX

〈
aiāke

1
2 a†

αFαβa†
β

〉 (C2)

where we have used Eq. (6) and T = U †
0 eiMU0 is the change

of basis matrix between ā and ā(t ). There is also an implicit
sum over repeated Greek letters (e.g., α and β) from 1 to
N and repeated Roman letters (e.g., k) from 1 to 2N . Now,
we expand the exponential since only the first two terms will
produce nonzero overlaps. We find

Ii j = T j+N,k

√
detX

[
δi,k−N + 1

2 Fαβ (δkαδiβ − δkβδiα )
]

=
√

detX [X †
i, j + (X −1Y )i,αY ∗

j,α] =
√

detX X −1
i j (C3)

where X and Y are related to the four submatrices of T as
in Eq. (6). The last step follows because T is unitary so
T T † = 1 ⇒ 1 = XX † + YY † = X (X † + X −1YY †). We have
thus arrived at Eq. (27) of Ref. [82] without needing to ma-
nipulate Pfaffians.

As noted in the main text, we want to extract the continuous
function φ(t ) = arg[det(X )], which becomes a very rapidly
changing function as system sizes become larger. Fortunately,
a large portion of the change in φ(t ) may be canceled from the
prefactors eiEMFt and e−iψ (t ) in Eq. (15).

In the presence of a magnetic field, we need to essentially
evaluate

Ji jkl = 〈cic je
−iH (M)ckcl

〉
=

√
detX

〈
cic jck (−t )cl (−t )e

1
2 a†

αFαβa†
β

〉
(C4)

with an implicit sum over p and q as before and ck (t ) =
eiH (M)cke−iH (M). We introduce the two matrices �c = √

2Uā
and �c(−t ) = √

2Û ā and Û = eiMU .
By making the following two observations

〈cic j (−t )〉 = 2UiαÛj,β+N 〈aαa†
β〉 = 2UiαÛ †

α j,

〈cia
†
j〉 =

√
2Uiα〈aαa†

j〉 =
√

2Ui j (C5)

where greek letters are implicitly summed only from 1 to
N . We can easily compute that Ji jkl = √

detX (J1 + J2 + J3)
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where

J1 = 〈cic jck (−t )cl (−t )〉 = 4[(UU †)i j (ÛÛ †)kl − (UÛ †)ik (UÛ †) jl + (UÛ †)il (UÛ †) jk], (C6)

J2 = 1
2 Fαβ〈cic jck (−t )cl (−t )a†

αa†
β〉 = 4[−(UU †)i j (ÛFÛ T )kl + (UÛ †)ik (UFÛ T ) jl − (UÛ †)il (UFÛ T ) jk

(C7)− (UFU T )i j (ÛÛ †)kl + (UFÛ T )ik (UÛ †) jl − (UFÛ T )il (UÛ †) jk],

J3 = 1
8 FαβFγ δ〈cic jck (−t )cl (−t )a†

αa†
βa†

γ a†
δ〉

= 4[(UFU T )i j (ÛFÛ T )kl − (UFÛ T )ik (UFÛ T ) jl + (UFÛ T )il (UFÛ T ) jk] (C8)

⇒ Ji jkl = 4
√

detX [(UU † − UFU T )i j (ÛÛ † − ÛFÛ T )kl

−(UÛ † − UFÛ T )ik (UÛ † − UFÛ T ) jl + (UÛ † − UFÛ T )il (UÛ † − UFÛ T ) jk] (C9)

where all matrix multiplication AB in these expressions is only
over the first N columns of A and first N rows of B even if A or
B has dimension 2N × 2N .

Although this expression looks quite different from Ii j ,
if we were trying to evaluate the analogous expression, we
would find

Ji j = 〈cie
−iH (M )c j

〉 = √
detX

〈
cic j (−t )e

1
2 a†

αFαβa†
β

〉
= 2

√
detX (UiαÛ †

α j − (UFÛ T )i j ) = 2UiαIαβU †
β j (C10)

which can be used to rewrite Ji jkl accordingly. The last step
follows making use of the unitarity of T .

If we are interested in computing similar quantities with
more Majoranas, we can use Eq. (C8) of Ref. [83] to prove
that a modified Wick’s theorem applies. This result explains
why our Eq. (C9) looks like it follows Wick’s theorem with a
different definition of a contraction.

APPENDIX D: CONVERGENCE AND OTHER DETAILS
FROM THE NUMERICS

Since we are performing these calculations for finite sys-
tems in real space, the two main parameters that we should
check convergence of are N , indicating the linear size of
the system, and 	t , the time step after which we recompute
the mean-field parameters and Sαβ

i j (t ). We plot a prototypical
example in Fig. 8. As discussed in the main text, finite size
effects appear at tc ∼ N , and this can roughly be seen as the
curves break apart from the overall exponential decay.

We compute

Sαβ (q, ω) =
∫ tc

−tc

dteiωt Sαβ (q, t ) (D1)

where Sαβ
i j (−t ) = [Sβα

ji (t )]∗ = [Sβα
i j (t )]∗ where we take ad-

vantage of the translation and rotation symmetry. We estimate
tc for each system size based on when the finite size effects
become clear. We only find slight differences for the largest N
if we replace the abrupt cutoffs with a smooth one.

We check convergence of Sαβ (q, ω) and find that N ≈ 80
seems sufficient for all the parameter choices we make, except
at the smallest ω. We are limited from going to larger N , in
general, because the time it takes to perform the largest system
sizes and smallest time steps takes days to weeks, but, when
� �= 0, memory also becomes a factor even though we are
taking advantage of the reflection symmetry to reduce matrix
size.

APPENDIX E: A NOTE ABOUT GAUGE

With the transformation 2Sα
i = icibα

i , the Hilbert space has
been expanded, so, properly, we should project the wave func-
tion we obtain back into the physical Hilbert space [1]. The
projection operator has the form

P =
∏

i

1 + Di

2
(E1)

where Di = cibx
i by

i b
z
i . The projection operator commutes with

all the spin operators Sα
i and therefore also the Hamiltonian.

Additionally, P2 = P, as should be expected.
In applying mean-field theory, many works handle the

projection by imposing the constraint on average [58–64],
arguing that the effect is higher order [65], using a different
transformation without a gauge issue [54,78], or ignoring the
effect altogether [53,55,66]. In our formalism, in zero field, we
automatically satisfy the constraints, on average, as expressed
in Ref. [63].

To fully take account of the gauge, we should alternatively
compute

Sαβ
i j = 1

4
eiEMFt

〈
v
∣∣Pcibα

i U (t, 0)c jb
β
j

〉
〈P〉 . (E2)

FIG. 8. We plot Szz(q = 0, t ) for one parameter point but varying
the time step 	t and the number of sites, which is 2 × N × N . As
argued in the main text, we see finite size effects at a time that
roughly scales with N , which is easily identifiable as when the curve
breaks off of a roughly exponential curve.
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If we imagine expanding out P, we need to consider the
contribution from many different terms with various numbers
of Di. Focusing only on the exact case, every term with at
least one Di must vanish as is evident from rewriting the bα

i
in terms of bond fermions [84]. The only exception is the
term with all Di does not vanish by this argument. However,
D =∏i Di ∼∏i ci since all the bα

i pair up into the conserved
quantities u〈i j〉α = ibα

i bα
j . The operator

∏
i ci commutes with

the Hamiltonian and the u〈i j〉α . Ignoring the complications
from having a gapless point, we can see then that

∏
i Di acting

on the ground state just gives a constant. Beyond the exact
point, the Hamiltonian still commutes with D, which implies
that we can group any term, α, in the expansion of P, with
the term αD to just get an overall prefactor 1 + D provided
we limit which terms we consider accordingly. In fact, D
is related to the Majorana fermion parity operator, implying
that only states of the correct parity survive the projection
[83,97], and therefore the physical states have an even number
of excitations compared to the ground state.

We expect terms with fewer than all the Di to be suppressed
by correlations that are small. Limiting our analysis to the
zero-field case, we need an even number of Di to have the
correct number of ci. The analysis of which terms are most
important is complicated because there are

(2NxNy

m

)
terms that

are products of Di from m different sites. A reasonable guess,
though, would be that the leading order correction to our
expression in the main paper would be from the terms with
the fewest numbers of Di. Namely,

Sαβ
i j = 1

4
eiEMFt

〈
v
∣∣(1 +∑k,l>k DkDl

)
cibα

i U (t, 0)c jb
β
j

〉
1 +∑k,l>k〈DkDl〉 . (E3)

However, we find that
∑

k,l>k〈DkDl〉 scales linearly with the
number of sites implying that such a term might provide a
large correction in the thermodynamic limit even for small
perturbations.

If we are interested in the case where J = � = hy = hx = 0
and hz �= 0, we can use the Jordan-Wigner formalism [54]. In
this case we just need to compute Szz

i j (t ), which is exact, and
Sxx

i j (t ), which will contain Jordan-Wigner strings. By picking
site j to be the site where Sx

j = a j/2 (i.e., the unique site with-
out a string operator), and using periodic boundary conditions,
the expression for Sxx

j j (t ) is equivalent to our approach above.
The “flipping” of the sign of the a jb j+x term occurs because
it is scaled by PF,0, the string operator containing the product
of all the (−2Sz

j ) in the first “row” of the honeycomb lattice
(all the sites connected just by x and y bonds), which changes
sign upon the operator of a j = 2Sx

j . Additionally, this operator
PF,0 commutes with the Hamiltonian and has a value of 1 in
the ground state, which implies that Sxx

j+x, j (t ) also receives
no correction. However, terms like Sxx

j+y, j (t ) and Sxx
j+z, j (t ) do

receive corrections, which could be systematically included,
but should be suppressed by a factor of hz/|K|.

To summarize, our approach handles the projection opera-
tor similarly to other works in the literature, and we provide
a potential path to include the neglected effects. It would be
beneficial, in future work, to quantify the errors that these
approximations produce.

APPENDIX F: ANOTHER MODEL REQUIRING TDMFT

Consider the following Hamiltonian:

H =
∑
kσ

εkc†
kσ

ckσ − J
∑
〈i j〉

Sz
i Sz

j − K
∑

i

Sz
i (c†

i↑ci↑ − c†
i↓ci↓),

(F1)

which is just a band of electrons and an Ising ferromagnet cou-
pled via a Kondo term (but only in the z direction). Note that
the Si are spin-1/2 operators. Thinking about the ingredients
mentioned at the end of Sec. V, we can see that the following
model has the conserved quantities Sz and, as the following
calculation confirms, we are required to use TDMFT if we
want mean-field theory and the exact result to agree.

The simplest analysis occurs when J, K > 0. All of the
spin configurations written in the z basis are eigenstates, so
we can treat the Sz

i as classical variables for the purpose
of finding the ground-state energy, and the two degenerate
ground states can be found by setting all the spins aligned
with each other. For all spins pointing up, the problem reduces
to diagonalizing the resulting quadratic Hamiltonian, H0

c =∑
kσ εkc†

kσ
ckσ − K

2

∑
j (n j↑ − n j↓) where n jσ = c†

jσ c jσ . Now,
we compute the ground-state correlator:

4
〈
Sx

i (t )Sx
i

〉 = ei(Ec−Jz/2)t
〈
e−it(H0

c +K[ni↑−ni↓])〉, (F2)

where the ground-state energy is E0 = −JzN/8 + Ec with z
the coordination number.

We are still considering the spins as quantum operators,
so let us mean-field decouple the spins. Alternatively, we can
consider rewriting the spins in terms of Holstein-Primakoff
bosons and then mean-field decouple the bosons, but the result
will be the same. We get

HMF =
∑
kσ

εkc†
kσ

ckσ

− K
∑

i

(〈
Sz

i

〉
(ni↑ − ni↓) + (Sz

i − 〈Sz
i

〉)〈ni↑ − ni↓〉)
− J

∑
〈i j〉

〈
Sz

i

〉
Sz

j + 〈Sz
j

〉
Sz

i − 〈Sz
i

〉〈
Sz

j

〉
(F3)

and it is clear that this mean-field theory will produce the
same ground state and ground-state energy as before. Now we
consider the correlator, and, if we do not use TDMFT, we get

4
〈
Sx

i (t )Sx
i

〉 = e−it (Jz/2+K〈ni↑−ni↓〉), (F4)

so mean-field theory “fails” in the same way it did in the
Kitaev model. Doing the same computation with TDMFT
reproduces the exact result.
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