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Adding a Rashba term to the Hubbard Hamiltonian produces a model which can be used to learn how spin-
orbit interactions impact correlated electrons on a lattice. Previous works have studied such a model using a
variety of theoretical frameworks, mainly close to half filling. In this work, we determine the magnetic phase
diagram for the Rashba-Hubbard model for arbitrary hole doping using a sine-square deformed lattice mean-
field model with an unrestricted Ansatz, thus suppressing finite-size effects and allowing for inhomogeneous
order. We find that the introduction of Rashba spin-orbit coupling significantly alters the ground-state properties
of the Hubbard model and we observe an increasing complexity of the ground-state phase composition for
increasing spin-orbit strength. We also introduce a gradual deformed envelope (GDE) technique building on the
sine-square methodology to facilitate convergence towards ordered and defect-free ground-state configurations
which is a challenge with the unrestricted ansatz at high interaction strengths. We observe that the use of the GDE
technique significantly lowers the free energy of the obtained configurations. Moreover, we consider transient
dynamics in the Rashba-Hubbard model by quenching the interaction strength. We find that the quench dynamics
within a sine-square methodology allows for the simulation of quasiopen systems by using the zero-energy edge
states as a particle reservoir. Interaction quenches at half filling show a tendency towards quench-induced spatial
spin-magnitude inhomogeneity and a nonequilibrium system magnetization lower than equilibrium predictions,
possibly related to a buildup of nonlocal correlations on the lattice.
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I. INTRODUCTION

Atomic spin-orbit coupling is a relativistic effect of central
importance in condensed matter physics. From the refer-
ence frame of an electron moving in a crystal, the positively
charged lattice ions appear to move in the opposite direction.
The resulting electric current creates a magnetic field which
then couples to the electron spin. This effect is typically large
in heavy metals such as Au and Pt. Additional spin-orbit
interactions occur in crystals that have no center of inversion,
at interfaces between materials, and in thin films. Because
of its prevalence in condensed matter systems, such as those
described above, spin-orbit interactions play a key role in
several research fields [1–3]. This ranges from topics perti-
nent to fundamental physics, such as the emergence of Dirac,
Weyl, and Majorana quasiparticles in topological matter, to
more practically oriented topics, such as enabling information
transfer and detection of spin in solid-state devices.

The magnetic properties of the Hubbard model have been a
topic of interest since its inception, and remain to some extent
disputed, especially in the presence of spin-orbit coupling.
Within a mean-field treatment, the initial works of Penn for
the three-dimensional (3D) square lattice, reproduced by
Hirsch [4,5] in two dimensions, established the commonplace
Hubbard three-phase diagram with an antiferromagnetic
(AFM) phase close to half filling, a ferromagnetic (FM)
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phase at higher magnitudes of the Hubbard-U interaction,
and a paramagnetic phase for the doped model at lower
interaction strengths. A central prediction of these types of
diagrams, namely, the persistence of the commensurate AFM
phase when doped away from half filling, was, however,
quickly disputed by a range of papers [6–9] in the late 1980s
and early 1990s, including by Hirsch himself, finding no
tendency towards AFM ordering beyond half filling using a
Monte Carlo technique, indicating the presence of the doped
AFM phase to be an artifact of the mean-field method. The
prediction of phase separation in the model, initially by
Vischer [10], contributed towards an apparent reputation of
ineptitude regarding the ability of mean-field techniques to
accurately reflect the model properties. More recent works on
magnetism in the Hubbard model [11–13] have also called
attention to the role of negative electron compressibility as an
indicator of phase separation and instability of the model, typ-
ically close to half filling and with homogeneous mean-field
Ansätze, establishing the importance of inhomogeneity in the
ground state and the need for caution when using mean-field
theories.

The use of sine-square deformed (SSD) envelope-based
techniques on finite atomic lattices was made relevant by
Hotta and Shibata [14] in 2012 and has become a valuable
tool in the investigation of magnetic properties in many-body
systems. While the goal is often to map the properties of
systems in the thermodynamic limit, numerical restrictions
often require compromises to be made. Periodic boundary
conditions are typically used to emulate large structures by
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imposing translational invariance on the system. This prevents
some of the finite-size effects that arise in an alternative
approach, open boundary conditions. However, it comes at
the cost of requiring the size of the unit cell, the periodi-
cally repeating entity on the lattice, to be explicitly chosen
a priori. This introduces bias in the calculations which may
obscure the actual model ground state. Open boundary con-
ditions typically entail that the lattice edges are modeled as
“hard walls” through which no particles can propagate. The
edge sites are thus coupled only to the sites in the lattice
interior. By studying finite-size systems with open boundary
conditions, we no longer explicitly require the system prop-
erties to abide by a fixed lattice periodicity, but at the cost
of finite-size effects and frustrations introduced by the open
boundaries. This is where the SSD technique comes into play.
The use of SSD envelopes on finite-size lattices allows us
to mimic the thermodynamic limit by screening out finite-
size effects caused by the lattice edges while imposing no
restrictions on the system ordering, be it on the spin or charge
distribution.

The majority of previous works on the Hubbard model
with Rashba-type spin-orbit coupling has been restricted to
the case of half filling [15–18]. Works on the doped Rashba-
Hubbard model have been largely absent until the past year.
Recently, the magnetic phase diagram of the doped Rashba-
Hubbard model was reported using a restricted mean-field
methodology by Kennedy et al. [19], while Beyer et al.
[20] discussed magnetic and superconducting properties of
the doped Rashba-Hubbard model using a functional renor-
malization group study. The magnetic phase diagram of the
Rashba-Hubbard model is, however, still not properly estab-
lished and even at half filling there is some dispute as to
the method dependence of previously found results, as for
instance discussed by Kawano and Hotta [18].

In addition to determining the ground-state magnetic order-
ing in the Rashba-Hubbard model, we determine its response
to quantum quenches in the electron interaction strength.
Quenching refers to a rapid change in one of the parameters of
the Hamiltonian which triggers a dynamical evolution of the
system from its equilibrium state to a nonequilibrium excited
state [21]. Key questions of interest in quenching are related
to whether the quenching results in a stationary state and what
the timescale and microscopic origin is of thermalization in
quenched systems.

Such nonequilibrium states can be studied experimen-
tally using, for instance, angle-resolved photoemission
spectroscopy (ARPES) and its time-resolved version (TR-
ARPES). ARPES measurements provide information about
the Green function of the system, which in turn reveals the
band structure of the system, such as the presence of gaps. A
prominent example of the interesting physics that arises out
of quantum quenches is excitations of high-temperature su-
perconductors. Experiments have observed [22,23] metastable
superconducting properties in cuprate materials which feature
a d-wave superconducting order parameter at much higher
temperatures than superconductivity could persist under equi-
librium conditions.

Quenching can be performed in several different param-
eters, including magnetic field and interaction strength [21].
In this regard, cold-atom systems on tunable optical lattices

are useful with regard to experimental tunability since Fes-
hbach resonances can be used to tune interaction strengths,
whereas the very geometry of the lattice itself can in principle
also be quenched. Up until now, quenching in the Rashba-
Hubbard model has not been studied to the best of our
knowledge.

In this work, we first consider the magnetic ground-
state properties of the Rashba-Hubbard model on a two-
dimensional (2D) square lattice with the recently developed
sine-square deformed mean-field theory to suppress the
effects of open boundary conditions on the ground-state
configurations. We also consider the effect of doping on
the magnetic properties of the model and utilize the weak-
coupling random-phase approximation as a framework to
elucidate the driving mechanism behind the formation of mag-
netic phases. Second, we present results for the behavior of
the magnetic configurations following a quench in the on-site
interaction strength.

II. THEORY

A. Rashba-Hubbard model and mean-field theory

The starting point for this paper is the grand canonical,
spin- 1

2 Rashba-Hubbard model defined on an N×N square
lattice with nearest-neighbor interactions and open boundary
conditions,

H = Hhop + HU + HG

=
∑

〈i, j〉,σ,σ ′

[
ti jσ

σσ ′
0 − iαR(σxδy − σyδx )σσ ′]

c†
i,σ c j,σ ′

+ U
∑

i

(
ni,↑ − 1

2

)(
ni,↓ − 1

2

)
− μ

∑
i

ni, (1)

where the hopping parameter ti j = −t is assumed isotropic
and site independent. The operator c†

i,σ (ci,σ ) creates (an-
nihilates) an electron on site i with spin projection σ and
U > 0 is the on-site repulsive Hubbard interaction strength.
ni,σ = c†

i,σ ci,σ counts the number of electrons with spin σ

at site i. Moreover, αR represents the Rashba spin-orbit cou-
pling strength, σ0 is taken to be the identity matrix in spin
space, and σi for i ∈ {x, y, z} are the Pauli matrices. The vec-
tors δ = (ri − r j )/a connect nearest-neighbor sites i, j and
δx (δy) is the x (y) component of this vector. The chosen
formulation of HU retains the particle-hole symmetry of the
model, fixing half filling at μ = 0. Below, we use units where
the hopping parameter t and lattice constant a are set to
unity.

We now apply the identity ni,↑ni,↓ = n2
i /4 − (Si · ui )2, in

effect decoupling the charge and spin degrees of freedom,
and introduce the mean charge and spin expectation fields
〈ni〉 and 〈Si〉. Here, ui is an arbitrary unit vector. The charge
operator is defined as ni = ni,↑ + ni,↓ and counts the number
of electrons on a given site. The spin operator Si is given by
Si = 1

2

∑
σ,σ ′ c†

i,σ σσσ ′
ci,σ ′ , where σ = (σx, σy, σz ) is the Pauli

vector. We choose the unit vector ui to point along the spin
expectation value 〈Si〉. The interaction term HU now becomes

HU = U
∑
i,σ

F σσ
i c†

i,σ ci,σ − U
∑
i,σ

Gσ σ̄
i c†

i,σ ci,σ̄ , (2)
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where the spin σ̄ is the opposite of σ . We can write out the
diagonal coefficient F σσ

i and off-diagonal coefficient Gσ σ̄
i as

F σσ
i = 1

2 (〈ni〉 − 1)σσσ
0 − 〈Si,z〉σσσ

z , (3)

Gσ σ̄
i = 〈Si,x〉σσσ̄

x + 〈Si,y〉σσσ̄
y . (4)

The introduction of the mean fields introduces operator-free
terms in the Hamiltonian given by

HE =
∑

i

−U

4
(〈ni〉2 − 1) + U 〈Si〉2. (5)

For a given choice of αR, U , and μ (the hopping parameter t
will be set to 1 throughout this paper), the mean charge field
〈ni〉 and spin field 〈Si〉 must be determined self-consistently.
Note how the order parameter on each site can adjust freely
without any imposed spatial structure with respect to the be-
havior of the density or magnetic texture, and that the charge
and spin degrees of freedom are decoupled, thus allowing for
charge and magnetic order to establish independently of each
other. The system electron filling level, to be defined later, will
be altered implicitly by the chemical potential. In the end, we
are interested in ne(αR,U ) in order to draw up a phase dia-
gram, where ne is the average filling level of the system. While
some phase diagram calculations in the past have tackled this
by fixing the electron density and pinning it throughout the
self-consistency calculations by an a posteriori fitting of the
chemical potential, this assumption of a homogeneous charge
field 〈ni〉 pinned to some fixed level ne is problematic. By
imposing a homogeneous electron filling level on the system,
one risks ending up with thermodynamically unstable phases,
a typical giveaway being a negative electron compressibility.
A good example of a thermodynamically unstable phase is
the previously discussed initial three-phase diagrams in the
nearest-neighbor square lattice Hubbard model and the per-
sistence of the AFM phase when the system is doped. A
consideration of the electron compressibility in these systems
would likely have revealed the instability of the homogeneous
AFM phase away from half filling, something which today
is well established [9,13,24]. Using the chemical potential
instead of the filling level as the basic variable in calculations
improves the credibility of the mean-field result as no a priori
assumption is made on the electron density of the system,
either on the spatial distribution of charge or on the average
filling level, both of which are determined self-consistently.

The site-dependent charge and spin fields are found self-
consistently using an iterative algorithm where the mean fields
are updated after each iteration. We introduce the density
matrix

ρn = ρ({〈ni〉}n, {〈Si〉}n) = e−βH ({〈ni〉}n,{〈Si〉}n )/Z, (6)

where Z = Tr(e−βH ({〈ni〉}n,{〈Si〉}n ) ). The density matrix ρn is at
each iteration n a function of the mean fields {〈ni〉}n, {〈Si〉}n at
the same iteration. Here, β = 1/kBT is the thermodynamic in-
verse temperature of the system and the set notation indicates
that the mean fields are composed of the mean field values at
all sites i. In each iteration, the new mean fields are obtained
by evaluating the thermal average

〈Ai〉n+1 = Tr[ρnAi], (7)

where 〈Ai〉 is either 〈ni〉 or 〈Si〉. Due to the unrestricted nature
of the fields, the charge and spin fields are free to take on
a diverse range of configurations depending on initial condi-
tions and model parameters. In some conditions, likely due to
the nonrigidity of the energy levels of the mean-field system,
the iterative algorithm becomes stuck in oscillations between
two different system configurations. To improve convergence
and alleviate instabilities in the self-consistency calculations,
especially close to half filling, a mixing factor α ∈ (0.0, 1.0]
is introduced in the above expression. Thus, the nth iteration
introduces an updated mean field 〈Ai〉n+1 defined by

〈Ai〉n+1 = (1 − α)〈Ai〉n + αTr[ρnAi]. (8)

Self-consistency calculations can be viewed as a fixed-
point iteration 〈Ai〉n+1 = 〈Ai〉n + �[〈Ai〉n], where we have
defined a function �[〈Ai〉n] ≡ Tr(ρnAi ) − 〈Ai〉n. Note that
ρn is implicitly a function of all mean fields 〈Ai〉n via
the mean-field Hamiltonian. We can interpret �[〈Ai〉] as
the flow of the mean field 〈Ai〉 towards an attractive fixed
point, and convergence is achieved when we reach this point:
�[〈Ai〉] = 0. However, for α > 0, the modified iteration
scheme 〈Ai〉n+1 = 〈Ai〉n + α�[〈Ai〉n] still makes 〈Ai〉 flow to-
wards the same fixed point, and the convergence criterion
remains �[〈Ai〉] = 0. In practice, the criterion of convergence
will be a small number δ serving as the numerical threshold
for convergence. This scheme is known as simple mixing
in the literature [25]. Adjusting α simply changes the rate
of change between numerical iterations, where there is a
trade-off between rapid convergence (large α) and numeri-
cal stability (small α). Choosing α < 1 reduces the risk of
overshooting the real fixed point when updating the mean
fields, which can cause oscillations around the fixed point
and thus numerical instability. We found α = 0.25 to provide
a good trade-off between convergence rate and numerical
stability.

In calculations of the magnetic ground-state phase di-
agram, a small finite thermodynamic inverse temperature
β = 1/kBT with T = 0.01t will be used when evaluating
Fermi distributions and the thermodynamic potential. In the
self-consistency calculations, the initial charge density is set
to half filling across all lattice sites (〈ni〉 = 1) while the
spin density is randomized both in direction and magni-
tude across the sites. This is done for each site by drawing
〈Sμ

i 〉 for μ ∈ {x, y, z} individually from a uniform distribution
between −η and η where η is 10−2.

The free energy of the system after diagonalization is given
by

F = HE − 1

β

∑
n

ln(1 + e−βEn ), (9)

where HE contains the constant mean-field terms from the
Hamiltonian and En are the quasiparticle energy eigenvalues.

B. Sine-square lattice envelope

In this paper, we consider an N×N lattice. Calculations
of system properties on finite-size lattices with open bound-
ary conditions will always to some extent be affected by
the breaking of translational symmetry represented by the
edges of the lattice, be it for instance the introduction of
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i ri
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(ri)

i

x y
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FIG. 1. The sine-square deformed envelope for a finite-size lat-
tice with Lx×Ly sites. The envelope modulates the energy scale of
the system, screening out the finite-size effects associated with the
open boundary conditions.

Friedel oscillations, affecting the ground state at the lattice
center [26,27]. Given the intention of mapping bulk proper-
ties, these edge effects introduce a frustration to the charge
and spin configuration which may ultimately disguise the
real model ground state due to incompatibilities between the
ground-state periodicity and the chosen lattice size. While the
introduction of periodic boundary conditions alleviates some
effects of finite size, the necessary a priori selection of lattice
periodicity constitutes a significant bias in the search for the
appropriate ground-state configuration. In the case of incom-
mensurate ordering, we cannot even define an appropriate
reduced Brillouin zone due to the irrational relation between
the ordering period and the lattice spacing. In the Hubbard
model, we expect—based on previous research [18,28–30]—
a rich ground-state behavior characterized by the presence
of incommensurate configurations, i.e., magnetic and charge
textures with a periodicity incommensurate with the lattice
spacing.

By considering a finite-size lattice, energetically modu-
lated by a sine-square envelope, the intention is to include the
best of both approaches. By still considering a finite-size sys-
tem, we do not impose an arbitrary periodicity on the magnetic
or charge ordering while simultaneously screening out effects
associated with open boundary conditions possibly disguising
the appropriate ground-state configuration. The introduction
of the envelope can, to some extent, be seen as an effective
renormalization of the energy scale, causing the edges of the
lattice with vanishing energy to serve as a “particle bath” in
analogy with the grand canonical ensemble [14,31,32]. We
might then think of the edge states as a buffer to and from
which the system can transfer electrons in order to obtain the
optimal “bulk” filling level in the interior region of the lattice.
We use an envelope function

fenv(ri ) = 1

2

(
1 + cos

π |ri|
R

)
, (10)

where ri is the lattice vector connecting site i with the center of
the lattice (see Fig. 1). The magnitude R is set to the diagonal
distance between the lattice center and the corner edge lattice

site. The sine-square deformed Hamiltonian is then given by

H =
∑

〈i, j〉,σ,σ ′
fenv(ri, r j )

[
ti jσ

σσ ′
0 − iαR(σxδy−σyδx )σσ ′]

c†
i,σ c j,σ ′

+ U
∑
i,σ

fenv(ri )
[
F σσ

i c†
i,σ ci,σ − Gσ σ̄

i c†
i,σ ci,σ̄

]

− μ
∑

i

fenv(ri )ni, (11)

where fenv(ri, r j ) = fenv( ri+r j

2 ) which we abbreviate further to
fi, j ≡ fenv( ri+r j

2 ) and where the definitions of F σσ
i /Gσ σ̄

i are
given with the definition of Eq. (2). The operator-free terms
are given by

HE =
∑

i

fi,i

[
−U

4
(〈ni〉2 − 1) + U 〈Si〉2

]
. (12)

While the presence of open boundary conditions breaks
the translational symmetry of the finite-size lattice, the system
is still translationally symmetric within the cluster. The ener-
getic renormalization of the SSD envelope lifts this symmetry
as well. The appearance of reservoirlike states along the edges
of the lattice entails that the relevant, “bulklike” properties are
confined to the interior of the lattice, rendering a traditional
unweighted average over all lattice sites meaningless. Within
a SSD framework, we can instead define the average system
filling level as [32]

ne =
∑

i fi,i〈ni〉∑
i fi,i

. (13)

In order to characterize magnetic ordering, we will calculate
the magnetic structure factor. A regular Fourier transform of
the magnetic real-space texture would yield a nonmeaningful
result due to the contribution from the edge states. In a similar
manner as above, we introduce the deformed Fourier transfor-
mation [32] so that the spin structure factor may be written as

〈Sq〉 =
∑

i fi,i〈Si〉eiq·ri∑
i fi,i

. (14)

Finally, we would also like to study the charge ordering of the
system apart from the average filling level given by Eq. (13)
as, for instance, charge-density waves. We may then, in anal-
ogy with the magnetic structure factor, calculate a charge
structure factor given by

〈nq〉 =
∑

i fi,iδni eiq·ri∑
i fi,i

, (15)

where we have defined the deviation δni = 〈ni〉 − ne, i.e., the
local deviation from the average filling level of the system.

C. Random phase approximation and magnetic susceptibility

In mean-field systems, a common mechanism causing
magnetic ordering is nesting of the Fermi surface, the typical
example being the Q = (π, π ) nesting vector in the square-
shaped Fermi surface of the half-filled Hubbard model giving
rise to the Néel antiferromagnet. This is reflected through the
magnetic susceptibility which diverges as the system tem-
perature is lowered, causing an instability towards magnetic
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ordering. Following the derivation in Refs. [16,18,33], the
magnetic susceptibility in the random-phase approximation
(RPA) when the system breaks spin-rotational symmetry, as
in our case, is given by the 3×3 RPA susceptibility matrix

χRPA(q) = χ0(q)

I3 − 2Uχ0(q)
, (16)

where χ0(q) is the 3×3 bare magnetic susceptibility matrix
and I3 is the identity matrix. The bare magnetic susceptibility
of the noninteracting system is given by

χ
μν
0 (q) = 1

N

∑
k,n,m

Sμ
n,m(k, k + q)Sν

m,n(k + q, k)

× Fn,m(k, k + q), (17)

where μ, ν ∈ {x, y, z} denotes the spatial directions and where
Fn,m(k, k + q) is the Lindhard function in the zero-frequency
limit,

Fn,m(k, k + q) = f (Em(k)) − f (En(k + q))

Em(k) − En(k + q) + iη
, (18)

and Sμ(k, k + q) are the Pauli matrices, transformed by the
unitary transformation matrices Uk and U †

k+q which diagonal-
ize the noninteracting problem:

Sμ(k, k + q) = 1
2Ukσ

μU †
k+q. (19)

In the above equations f is the Fermi-Dirac distribution, N
denotes the number of modes in k space, and q denotes the
magnetic ordering vector. η > 0 in the Lindhard function is
an infinitesimal convergence factor. Being usually scalar for
spin-degenerate systems, the susceptibility matrix becomes
3×3 due to the breaking of SU(2) symmetry associated with
the Rashba term. The above results can be derived using the
Kubo formula in linear response where the interactions U are
treated as a perturbation in the form of an effective magnetic
field after a mean-field approximation. The linear response
treatment when treating the interactions within mean-field
theory corresponds to a random-phase approximation, as has
been discussed in previous literature.

By diagonalizing the RPA susceptibility matrix given by
Eq. (16), the eigenvalues of the RPA susceptibility may be
written as λi

RPA(q) = λi
0/(1 − 2Uλi

0(q)) for i = 1, 2, 3, where
λi

0 are the eigenvalues of the bare susceptibility matrix in
increasing order. The susceptibility matrix was diagonalized
numerically. If we start in the noninteracting system and
evaluate λi

RPA for an initially infinitesimal U, continuously
ramping up the interaction strength, at some point U is large
enough to cause the denominator (1 − 2Uλ3

0) to vanish,
where λ3

0 is the largest eigenvalue of the bare susceptibility,
causing λRPA to diverge. A divergent eigenvalue necessitates a
divergent element in χRPA, causing the spin expectation value

〈Sq〉 = χRPA(q)hq (20)

to diverge for the respective ordering vector q, where hq

is an infinitesimal magnetic field. An assumption of the
above reasoning is that the U required to make (1 − 2Uλ3

0)
diverge is small and within the region of validity for RPA.
In addition, the assumption that the largest eigenvalue of the
bare susceptibility λ3

0 is the first to cause a divergence in λRPA

necessitates that 2Uλ3
0 < 1.

D. Dynamics of observables due to quantum quench

We will study the effect of a quench at time t = 0 in
either the interaction parameter U or the spin-orbit coupling
strength αR. In effect, we will consider a system defined by the
Schrödinger picture Hamiltonian H (t ) = H0 = H (U, αR) for
t � 0 and H (t ) = H1 = H (U + �U , αR + �αR ) for t > 0. At
t = 0, before the quench, the system will be in the equilibrium
state defined by the density matrix

ρ0 = e−βH0/Z0, Z0 = Tr[e−βH0 ]. (21)

Upon the instantaneous change of the system Hamiltonian,
the eigenbasis of the Hamiltonian will change, assuming
[H1, H0] 	= 0, with a subsequent redefinition of the system
ground state. The density matrix ρ(t ) will thus become time
dependent and evolve according to the von Neumann equa-
tion,

i∂tρ(t ) = [H (t ), ρ(t )]. (22)

The solution to this equation is

ρ(t ) = U (t )ρ0U
†(t ), (23)

where U (t ) is a unitary time-evolution operator for the den-
sity matrix. For a time-independent Hamiltonian, this reduces
to simply U (t ) = e−iHt , but at this point we make no such
assumption. The time-dependent expectation value of the
Schrödinger picture operator AS may then be written as

〈A(t )〉 = Tr[ρ(t )AS]. (24)

Let us now substitute Eq. (23) into the above. Using the
cyclic property of the trace, and defining the Heisenberg oper-
ator AH (t ) ≡ U †(t )ASU (t ), we then obtain the corresponding
equation in the Heisenberg picture,

〈Â(t )〉 = Tr[ρ0AH (t )]. (25)

Here, we have rewritten the expectation value in the Heisen-
berg picture using Eq. (23) and the cyclic property of the trace.
The temporal evolution of the operator AH (t ), and thus the
average 〈A(t )〉, is now given by the Heisenberg equation

i
d

dt
〈A(t )〉 = 〈[AH (t ), HH (t )]〉 (26)

assuming no explicit time dependence in the operator Â. In
this equation, HH (t ) is the Heisenberg picture Hamiltonian
and is related to the Schrödinger picture Hamiltonian by the
unitary transformation HH (t ) = U †(t )H (t )U (t ), where H (t )
is given above. An evaluation of Eq. (25) or Eq. (26) would
thus require an explicit expression for U and U † which in
general depends on a time integral over H (t ).

Instead of evaluating the Heisenberg equation in Eq. (26) as
it stands, we replace HH (t ) with H (t ) = H1 for t > 0. Taking
the change in the system Hamiltonian to be instantaneous, as
modeled by a Heaviside step function, the quench effectively
initializes the quenched system in the ground state of the
prequenched Hamiltonian. The temporal evolution for t > 0
can thus be thought of as the evolution of an excited state of
the quenched Hamiltonian [34,35], where the time evolution
is governed by the time-independent postquench Hamiltonian
H1, in effect an initial value problem. This quench protocol is
reasonable as long as the Hamiltonian changes on a timescale

224427-5



HODT, OUASSOU, AND LINDER PHYSICAL REVIEW B 107, 224427 (2023)

significantly shorter than other relevant timescales in the sys-
tem.

In the system discussed in this paper, Â is either a number
operator c†

i,σ ci,σ , spin-conserving hopping operator c†
i,σ ci+δ,σ ,

or spin-flipping hopping operator c†
i,σ ci+δ,σ̄ . Evaluating the

Heisenberg equation [Eq. (26)] with the postquench Hamil-
tonian H1 as discussed above, we obtain three distinct types
of dynamical equations for the three types of operators,

i
d

dt
〈c†

h,α
ch,α

〉 = −t
∑

δ

{ fh,h+δ〈c†
h,α

ch+δ,α
〉 − fh−δ,h〈c†

h−δ,α
ch,α

〉} + iαR

∑
δ

{ fh,h+δEαᾱ〈c†
h,α

ch+δ,ᾱ
〉 − fh−δ,hE ᾱα〈c†

h−δ,ᾱ
ch,α

〉},

(27)

i
d

dt
〈c†

h,α
ch+�,α

〉 = − t
∑

δ

{ fh+�,h+�+δ〈c†
h,α

ch+�+δ,α
〉 − fh−δ,h〈c†

h−δ,α
ch+�,α

〉} + iαR

∑
δ

{ fh+�,h+�+δEαᾱ〈c†
h,α

ch+�+δ,ᾱ
〉

− fh−δ,hE ᾱα〈c†
h−δ,ᾱ

ch+�,α
〉} + fh+�,h+�

[
Fαα

h+�〈c†
h,α

ch+�,α
〉

− Gαᾱ
h+�〈c†

h,α
ch+�,ᾱ

〉] − fh,h
[
Fαα

h 〈c†
h,α

ch+�,α
〉 − Gᾱα

h 〈c†
h,ᾱ

ch+�,α
〉], (28)

i
d

dt
〈c†

h,α
ch+�,ᾱ

〉 = − t
∑

δ

{ fh+�,h+�+δ〈c†
h,α

ch+�+δ,ᾱ
〉 − fh−δ,h〈c†

h−δ,α
ch+�,ᾱ

〉} + iαR

∑
δ

{ fh+�,h+�+δE ᾱα〈c†
h,α

ch+�+δ,α
〉

− fh−δ,hEαᾱ〈c†
h−δ,ᾱ

ch+�,ᾱ
〉} + fh+�,h+�

[
F ᾱᾱ

h+�〈c†
h,α

ch+�,ᾱ
〉 − Gᾱα

h+�〈c†
h,α

ch+�,α
〉]

− fh,h
[
Fαα

h 〈c†
h,α

ch+�,ᾱ
〉 − Gᾱα

h 〈c†
h,ᾱ

ch+�,ᾱ
〉], (29)

where we have defined the spin-orbit matrix E = σxδy − σyδx,
where Fi and Gi are as defined in Eq. (2), where δ is the
nearest-neighbor vector and finally where h is a general site
index. In Eqs. (28) and (29), the site denoted by h + � can
be both a nearest-neighbor lattice site, and also a general site
farther away on the lattice. Note that � could also be the zero-
vector, which in Eq. (29) leads to the dynamic equation for the
on-site spin-flip operator.

At any given time t , the system configuration is completely
characterized by the set of all possible two-operator expec-
tation values A(t ) = {〈c†

i,α (t )c j,β (t )〉}. We denote this set of
observables the statistical state. Of central importance is the
initial statistical state, defined before the quench at t = 0,
denoted by [36]

A0 = {〈c†
i,α (0)c j,β (0)〉}. (30)

This initial statistical state will serve as the initial values
in the temporal evolution of the system, the dynamics of
each individual average being determined by the appropriate
Heisenberg equation in Eqs. (27)–(29). Note that while the
original Hamiltonian only includes nearest-neighbor hopping
and on-site interaction, the time dynamics require the eval-
uation and temporal evolution of the entire initial statistical
state, including next-nearest hopping operators and beyond.
This is due to a property of the hopping-operator commutators
of the form [c†

i,αci+δ,β , H] depending on hopping operators
between the nearest neighbors of i and nearest neighbors of
i + δ, which again have to be evolved with their own Heisen-
berg equations, causing the set of Heisenberg equations to be
closed only under the finiteness of the lattice itself. Due to
this property, the entire initial statistical state will have to be
temporally evolved, a set which for an N×N lattice involves
the temporal evolution of 4N2 averages coupled at each time
step. When taking into account the Hermitian nature of the
statistical state, the number of independent averages to evolve
reduces to 2N4 + N2.

Finally, let us discuss the numerical treatment of the time
evolution. We have mentioned that the system configuration is
fully characterized by the set of two-operator expectation val-
ues {c†

iα (t )c jβ (t )}. If we collect these expectation values into
a single vector A(t ), then Eqs. (27)–(29) can be summarized
as an equation iA′(t ) = M(t )A(t ). Here, M(t ) is a time-
dependent matrix with components given by the envelope fi j ,
hopping t , Rashba coefficient αR, as well as the mean-field
coefficients Eαᾱ , Fαᾱ

i , and Gαᾱ
i defined previously. This equa-

tion was then solved numerically for a 24×24 lattice using
a fourth-order Runge-Kutta method. There are, however, two
important considerations to keep in mind. First, while this
looks like a linear differential equation, it is implicitly a non-
linear differential equation. This is because the coefficients F
and G introduced in Eq. (2) are themselves defined in terms
of the same mean fields we collected in A(t ). This essentially
makes our equation of the form iA′(t ) = M[A(t )]A(t ), where
in practice we evaluate M(t ) = M[A(t )] once per time step.
Second, we note that M(t ) is a sparse matrix, which means
that the computational effort can be reduced significantly by
not constructing it numerically as a dense matrix. Notably,
the matrix M(t ) has O(N4) nonzero elements and O(N8) zero
elements, making the matrix extremely sparse as N increases.
This sparsity is a result of the Hubbard model only having
on-site and nearest-neighbor interactions. This locality is ev-
ident in Eqs. (27)–(29), where, e.g., the time evolution of
〈c†

h,α
ch+�,α

〉 only depends on components like 〈c†
h−δ,ᾱ

ch+�,α
〉

that are at most one site (h → h − δ) and one spin flip (α →
ᾱ) away.

Transient dynamics in the SSD model

For a system with open boundary conditions, the dynam-
ical equations laid out in the preceding section preserve the
particle number. In essence, while the static, self-consistency
calculations associated with the magnetic phase diagram
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FIG. 2. Ground-state magnetic phase diagram obtained for a 24×24 lattice in the absence of spin-orbit coupling (αR = 0) for the SSD
model. The phases are classified by the type of ordering vector Q = (Qx, Qy ) dominating the magnetic structure factor |〈Sq〉|. An ordering
vector component Qx/y = π indicates that the component lies on the edge of the first Brillouin zone. If the component takes on the general
value Qx/y = Q, this indicates a component in the interior of the Brillouin zone, generally incommensurate with the lattice unless specified.
The presence of a factor 2 in front of the ordering vector, e.g., Q = 2(Q, π ), represents a doubling of the number of maxima in the magnetic
structure factor, i.e., describing an increase in ordering symmetry. The collinear island and defect domains are a special region of the phase
diagram where the system is characterized by the formation of unordered or semiordered regions of charge depletion, bearing the resemblance
to lattice defects (see Fig. 3). [(b)–(f)] Examples of the orders shown in the phase diagram in (a), with classification and parameters listed
under each plot.

involve the coupling to an external particle reservoir through
the chemical potential, the temporal evolution of these states
happens as a closed system, the number of electrons present
in the system being restricted to what the initial statistical
state dictates. As such, in the absence of the SSD envelope,
a quench in U or αR can never cause a change to the filling
level of the system, only to the charge and magnetic order
of the original electron population. This changes upon the
introduction of the SSD envelope and the notion of edge
states serving as a particle bath. As discussed previously,
the presence of electrons along the edges of the lattice with
energies approaching zero allows the system to tune the
filling level in the “bulk” interior of the lattice by transferring
electrons in and out of this interior region. The effect of this
local particle reservoir is that also in the dynamical case
are we able to model quench-induced changes to the filling
level of the system, by a transfer of electrons to and from the
zero-energy edge states as the changes in model parameters
alter the energetics of the initial statistical state. This entails
that we can, to some extent, model open quantum systems
dynamically without taking into account an external particle
reservoir explicitly. Note that, even in the presence of SSD,
the actual particle number is still conserved. The difference

is, however, that we in the presence of SSD draw a distinction
between electrons in the interior versus those at the edges,
causing the migration of electrons between these two regions
to effectively constitute a change in the filling level of the
interior region. This places a restriction on the amount of
electrons the edge can “store” or supply to the bulk system
and thus the degree to which the edges can act as a reservoir.

III. RESULTS AND DISCUSSION

A. Quantum phase diagram

1. Phase diagram in the absence of Rashba spin-orbit
coupling: αR = 0.0

The phase diagram in the absence of spin-orbit coupling
(αR = 0.00) was calculated for a 24×24 lattice using the SSD
Hamiltonian. The phase diagram is shown in Fig. 2 and the
phases are characterized by the dominant ordering vector Q in
their magnetic structure factor |〈Sq〉|. The presence of a factor
2 in front of the ordering vector, e.g., Q = 2(Q, π ), represents
a doubling of the number of maxima in the magnetic structure
factor, i.e., describing an increase in ordering symmetry. In
the phase diagram, the different phases are also described by a
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(a)

(b)

FIG. 3. The spin expectation distribution as well as the spin
expectation magnitude for the defect region in Fig. 2. (a) U = 7.0,
ne = 0.95. Upon reduction of the system filling level, charge defects
arise in the lattice, indicated by the inhomogeneous charge distri-
bution 〈ni〉. The modulation of the spin magnitude |〈Si〉| is directly
linked to these regions of lower charge. (b) U = 7.0, ne = 0.85.
When further decreasing the filling level, the charge defects become
more ordered, showing a strong tendency to order according to the
underlying lattice.

charge structure factor 〈nq〉 describing the charge modulation
of the phase, relative to the average filling level. We note
that due to the definition of the magnetic structure factor
[Eq. (14)], the magnetic ordering vector Q is affected by both
the relative orientation between adjacent spins on the lattice
(spiral, Néel, stripe, etc.), and also by the charge modulation
on the lattice, typically giving a resulting spin-magnitude
modulation. A maximum change in site magnetization or site
charge of δ = 10−4 between successive iterations was used
as a criterion for convergence and the phases were termed
paramagnetic (PM) when the average system magnetization
of the converged phases fell below 10−2. More details on the
self-consistency calculations are discussed in Sec. III B.

The phase diagram displays a variety of charge and spin or-
ders which mainly can be divided into two distinct categories,
a region where charge defect formation dominates the system
behavior and thus disrupts the magnetic configurations, and a
region with clearly defined phases. The main characteristic of
the prior is the formation of charge defects on the lattice with
subsequent alterations to the lattice magnetization, shown in
more detail in Fig. 3. This phenomenon is prevalent for higher
interaction strengths (U � 1) close to half filling (ne → 1),
denoted by the red defect area in the phase diagram. Here,
in response to increasing hole doping, the system retains the
collinear AFM order from the half-filling configuration, ac-
commodating for the reduced filling level by the formation
of charge-deficiency “defects” in the lattice structure, i.e., lo-
calized lattice sites or series of adjacent lattice sites where the
filling level is significantly lower than at the surrounding sites.
This is distinguished from a charge-density wave (CDW) type
of state in that the charge distribution is not continuously
modulated and instead seems to be pinned to the underlying
lattice (see 〈ni〉 in Fig. 3). The spin magnitude is directly mod-
ulated by the charge deficiencies, creating similar regions of
lower spin magnitude corresponding to the regions of reduced
charge, and there are some indications (see 〈Si〉 in Fig. 3) that

these lines of spin and/or charge modulation serve as domain
walls, separating ne = 1.0 Néel domains with differing Néel
vectors. As the filling level is reduced further, the number
of defect lines increases and their spacing on the lattice de-
creases, leading eventually to the semiordered collinear island
domain phase [see Fig. 3(b)]. Here, we see the same type
of abrupt charge depletion, but more ordered and seemingly
pinned to the underlying lattice, respecting to some extent
the fourfold rotational symmetry of the lattice. The site spins
remain collinear. The appearance of such spurious defects in
the lattice, challenging to model by a regular restricted mean-
field Ansatz, is a direct result of the unrestricted methodology
used, and the formation of inhomogeneous configurations is
a possible reason why previous research using translationally
invariant Ansätze have observed negative compressibility in
this region of the phase diagram [8,13,37,38].

The second main region of the phase diagram is charac-
terized by well-defined magnetic phases, i.e., magnetic and
charge spatial modulation with clear and distinct ordering
vectors. At half filling, the system ground state is the well-
established Néel state. Away from half filling for low to
intermediate interaction strengths, magnetic phases of the
type (Q, π ) are prevalent, denoted by the blue region in
Fig. 2 [see in particular Fig. 2(c)]. Note that the phase is
also associated with a stripe charge order and the pattern is
in essence an incommensurate collinear spin-density wave
(SDW). The presence of a (Q, π ) in the low-interaction, doped
Hubbard model has been reported by several sources [13,39]
using homogeneous mean-field and slave-boson approaches,
but without information on the charge distribution. This phase
is often referred to as a “spiral” magnetization, as can be
intuitively understood if one attributes the incommensurate
Q component of the ordering vector solely to the relative
orientation between spins and not magnitude modulation.

An interesting aspect of the differences in methodology in
this paper compared to the restricted Ansatz type of mean-field
analysis is that while the same magnetic ordering vector Q can
be predicted by both, for instance, the (Q, π ) phase, they indi-
cate two very different states. Within a restricted mean-field
methodology, one can choose, for instance, a spiral Ansatz
of the form 〈Si〉 = m[cos(Q · ri ), sin(Q · ri ), 0] [13,19], omit-
ting the z component for brevity. In such an analysis, m and
possibly Q are found self-consistently. Without the possibility
for a spatially varying magnetization magnitude m, a (Q, π )
phase is a spiral configuration, characterized by a spin-canted
magnetization with a period determined by Q. Within our
methodology, however, the (Q, π ) phase can be a collinear
SDW state with no spin canting at all—two entirely differ-
ent states. The incommensurate Q component which causes
spin rotation in the restricted methodology instead represents
an incommensurate charge modulation and subsequent spin-
magnitude modulation in our system. As such, the comparison
of ordering vectors originating within different methodologies
should be done with caution, precisely due to the additional
possibility of having a varying magnetization magnitude in
the present unrestricted framework.

An important feature in our diagram is the presence of
higher-symmetry modifications of the same ordering vector.
While the blue region is characterized by an ordering vec-
tor (Q, π ), the green 2(Q, π ) region, occurring at higher
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interaction strength, is characterized by the same type of
ordering vector, but with twice the number of maxima in
the magnetic structure factor, reflecting a state with higher
symmetry. This is evident from considering the real-space
magnetization pattern in Figs. 2(c) and 2(d).

For U ∼ 5.0–7.0, commensurate (0, π ) and the incom-
mensurate (0, Q) arise for filling levels ne ∼ 0.3–0.5. An
interesting consequence of the unrestricted mean-field model
is the way in which the system transitions between two states.
The violet region in between the purple (0, π ) and the blue (Q,
π ) regions is simply a combination phase where both ordering
vectors to some extent are present in the ground-state phase
[see Fig. 2(e)]. This is different from usual mean-field models
where the a priori selection of mean fields causes abrupt
transitions between phases as one type of phase becomes
energetically unfavorable to another.

2. Phase diagram in the presence of Rashba spin-orbit
coupling: αR = 0.10 and 0.25

The phase diagram was calculated using the same parame-
ter ranges as for the αR = 0.00 diagram, in the presence of
Rashba spin-orbit coupling (SOC) with strength αR = 0.10
and 0.25. We find that the introduction of the Rashba effect in
the Hubbard model dramatically increases the complexity of
the ground-state behavior, especially in the case of αR = 0.25.
The presence of spin-orbit coupling changes the characteris-
tics of the phases already present in the αR = 0.00 diagram,
as well as introducing completely new phases.

In the case of αR = 0.10 [see Figs. 4(a)–4(f)], the phase
composition of the phase diagram, i.e., the presence of dis-
tinct phases in distinct regions, resembles that of the diagram
without SOC. The main impact is that in the most prevalent
phases of the diagram, the previously (αR = 0.00) commensu-
rate component Qx,y = π now has become incommensurate.
This is, for instance, visible in the blue region (Q1, Q2)
phase, corresponding to the αR = 0.00 (Q, π ) phase where
the previously commensurate π component now has moved
slightly inwards from the first Brillouin zone (1BZ) boundary,
effectively lifting the previous staggered order in the direction
perpendicular to the charge modulation and introduced spin
canting between adjacent spins. We also observe a consider-
able broadening of the magnetic structure factor maxima for
this phase in particular, as compared to the more distinct and
sharply defined ordering vectors in the absence of SOC. We
argue that this might be due to the way SOC alters the shape
of the Fermi surface, broadening the range of ordering vectors
(Q1, Q2) at which nesting of the Fermi surface occurs. This is
discussed in more detail in the following section on RPA and
linear response.

The previously discussed defect region retains its main
characteristics for αR = 0.10. As before, we draw a distinction
between the defect domains, characterized by spurious and
randomly located charge deficiencies, and the island domains,
where the charge deficiencies align in a somewhat ordered
manner, pinned to the underlying lattice structure. The main
difference in this region upon the introduction of SOC is
that the magnetization now becomes spiral, with spin canting
occurring between spins on adjacent sites, as opposed to the
collinear order in the absence of SOC. The emergence of

defect lines and features closely adhering to the underlying
lattice is very similar to the behavior in the absence of SOC,
and given the magnitude of the Hubbard U compared to αR in
this region, we argue that this is inherently a property of the
regular Hubbard model, being only slightly modified by the
introduction of SOC.

At half filling, the αR = 0.10 system displays a diagonal
2(Q, Q) order, which can be thought of as the regular Néel
state, but with the diagonal (π , π ) ordering moving in towards
the center of the 1BZ, becoming incommensurate. This is in
apparent agreement with the predictions of Kawano and Hotta
[18] a (Q, Q) state at half filling for systems with Rashba SOC
strength comparable with ours, hinting towards the prevalence
of a higher-symmetry 2(Q, Q) for systems with relatively low
SOC strengths. Our finding of a 2(Q, Q) state for αR = 0.10
is therefore likely not in violation of their findings. We also
observe the half-filling ground state to remain stable away
from half filling, remaining the system ground state at low
interaction strengths as the system is doped.

The doped region towards higher interaction strengths re-
tains some of the characteristics of the diagram without SOC,
the main difference being that the 2(Q1, Q2) state remains
favorable [present in the (0, Q) + 2(Q1, Q2) combination
phase] all the way to U = 7.0 while the related 2(Q, π ) phase
at αR = 0.0 is replaced by stripelike configurations at these
interaction strengths.

For αR = 0.25, the phase composition of the model
changes quite significantly with the introduction of sev-
eral new phases. To begin, we observe the lower-symmetry
(Q, Q) state at half filling for interaction strengths above
U = 1.5, replaced by the higher-symmetry 2(Q, Q) state from
the αR = 0.10 diagram below this value. As for the αR = 0.10
system, the half-filling configuration persists to some extent
as ground state as the system is doped. The half-filling ground
states do not therefore show the same instability upon doping
that is characteristic for the Néel state. At half filling, the
ground state has a spatially constant spin magnitude, but in
response to doping, a SDW state emerges (see Fig. 5). Note,
however, that this phase is ultimately also susceptible to defect
formation, a new emerging phase in the αR = 0.25 diagram
being the (Q, Q) point-defect phase where the CDW charge
ordering of the doped (Q, Q) phase breaks down, creating sys-
tematically ordered charge depletion spots in the lattice (see
Fig. 6). This phase is distinguished from the defect phases at
higher interaction strength in that the charge defect formation
to some extent follows the prevailing magnetic ordering in the
vicinity of the phase.

The central region of the (Q1, Q2) phase of the αR = 0.10
diagram becomes the more complicated (Q1, Q2) + (Q3, Q4)
state at αR = 0.25 [see Fig. 4(i)]. Towards lower filling level,
the (Q1, Q2) αR = 0.10 shows an intricate dependence on U
and ne for αR = 0.25, transforming into an array of differ-
ent phases. At higher interaction strengths for lower filling
levels ne = 0.3–0.6, the phase composition of the diagram
becomes even richer with a selection of commensurate and in-
commensurate stripe phases in both high- and low-symmetry
variants [2(0, Q) vs (0, Q), etc.]. In this region, U � αR,
and the fact that the increase in SOC strength introduces
such a significant increase in phase composition points to the
large near degeneracy of the Hubbard model ground states,
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FIG. 4. Ground-state magnetic phase diagrams obtained for a 24×24 lattice with Rashba spin-orbit coupling (a) αR = 0.10t and (g) αR =
0.25t for the SSD mean-field model. A selection of the ground-state configurations are shown in (b)–(f) for the αR = 0.10t diagram and (h)–(l)
for the αR = 0.25t diagram. Each phase is characterized by its real-space spin distribution 〈Si〉, its charge modulation vector 〈nq〉, and spin
structure factor |〈Sq〉|. The d/p notation in the αR = 0.25 is meant to distinguish between diagonal and parallel charge modulation within
phases with the same magnetic structure factor.
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(a) U = 3.0, R = 0.25, ne = 1.00

(b) U = 3.0, R  = 0.25, ne = 0.98

FIG. 5. The (Q, Q) phase at half- filling for U = 3.0, αR = 0.25.
Upon reducing the filling level, a SDW phase arises as the charge
density 〈ni〉 is spatially modulated with a subsequent modulation in
the spin magnitude |〈Si〉|.

causing a slight perturbation in model parameters to cause a
significant change in ground-state behavior. We note that a
key feature of unrestricted mean-field techniques is that they
allow the system to freely choose its configuration, which is a
significant benefit of the method. However, the same freedom
makes characterization of the phases much more challenging,
as the possible phases themselves change significantly with
the model parameters.

As far as we know, the only published phase diagrams for
the doped Rashba-Hubbard model are by Kennedy et al. [19]
and Beyer et al. [20]. Using a mean-field technique with a
spiral Ansatz, the methodology used by Kennedy et al. is not
capable of assessing the direct impact of Rashba SOC on the
magnetic phases [such as the change from (Q, π ) to (Q1, Q2)
phase when SOC is turned on], only the changes in energetic
favorability between the different, preestablished phases.
This might be a central reason why they, in conflict with
our findings as well as Kawano and Hotta [18], predict the
half-filling Néel state to persist as SOC is introduced. Finding
also the ground-state phases for a fixed density n, there is also
the risk of thermodynamic instabilities as previous research
using a similar methodology and Ansatz has revealed, i.e.,
by observing negative electron compressibility close to half
filling [13]. It is in particular near half filling that we find the
most challenging phases to characterize, such as the various

FIG. 6. The (Q, Q) point-defect phase at ne = 0.97, U = 4.0,
present in the αR = 0.25 phase diagram (Fig. 4), emerging as the
(Q, Q) phase at half filling is doped for U between 3.0 and 5.5. The
key distinction from the domain-type phases at higher interaction
strengths is the degree to which the charge depletion regions are
ordered.

PM

magnetic

FIG. 7. The free energy F , average filling level 〈ni〉, and aver-
age magnetization |〈Si〉| for the U = 5.0, αR = 0.25 ground state
plotted as a function of the chemical potential μ. Both the transi-
tions between magnetic phases as well as the magnetic-paramagnetic
transition are continuous. The black dotted line denotes the defined
paramagnetic transition occurring when |〈Si〉| falls below 0.01.

defect configurations, alluding to the challenging system
properties in this region. Beyer et al. predict a combination
of commensurate and incommensurate SDW ground states
in the Rashba-Hubbard model for filling levels between
ne = 0.45 and 0.55 for SOC strengths relevant for this paper,
but do not find any signs of CDW formation in their study, in
contrast with our findings where intertwined CDW and SDW
formation is predicted to have a significant presence in the
model ground state, both in absence and presence of SOC.

3. Phase transitions, fluctuations, and free energy

We briefly comment on the nature of the phase transitions
in our system. The free energy, average system magnetization,
and filling level are shown for U = 5.0, α = 0.25, in Fig. 7.
The dotted line denotes the magnetic-paramagnetic transi-
tions, defined to occur when the average system magnetization
drops below 0.01. As is evident, the transition from a mag-
netic configuration to the paramagnetic state is a continuous
phase transition, denoted by the vanishing magnetization of
the ground state. Note that the transition between the dif-
ferent magnetic configurations is also continuous. Given the
second-order nature of these phase transitions, it is likely
that fluctuations would affect phase boundaries [13], both
between magnetic phases and for the magnetic-paramagnetic
transition.

The phase diagrams shown in Figs. 2 and 4 show a
diverse composition of phases. In particular, the αR = 0.25
diagram is complex with many competing orders, which can
partly be attributed to the previously discussed SOC-induced
Fermi surface nesting. There is a well-known tendency of
mean-field-type frameworks to overestimate ordering [40,41],
which is important to keep in mind when assessing the
phase diagram. As mentioned, the treatment of fluctuations
is inherently absent within the mean-field formalism and
the inclusion of fluctuations is expected to have an effect on
the phase boundaries and possibly on the number of distinct
phases observed in the diagram. There are limited phase
diagrams published on the Rashba-Hubbard model which
makes assessing the potential impact of fluctuations on the
phase composition challenging. However, we note that in the
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FIG. 8. Largest eigenvalue λ3
0(q) of the bare magnetic suscep-

tibility, contribution of the respective nesting vector Q from the
Fermi surface, as well as the Fermi surface for the half-filled system
(μ = 0.0), plotted for (a) αR = 0.00, (b) αR = 0.10, and (c) αR =
0.25. Note that the ordering vector at which the susceptibility di-
verges, (π, π ) in the absence of SOC, becomes incommensurate as
Q = (Q, Q) with the magnitude of Q decreasing with increasing
αR, corresponding to an increasing spatial period of the magnetic
modulation.

half-filling limit, our approach closely reproduces the results
reported by Kawano and Hotta [18]. They used a density
matrix embedding theory which more accurately accounts for
electron correlations. This similarity suggests the validity of
our framework in the half-filled limit.

4. RPA and Fermi surface nesting

Upon the introduction of Rashba spin-orbit coupling, the
Fermi surface is altered significantly. Nesting of the Fermi
surface (FS) is an important mechanism in establishing lat-
tice superstructure such as spin- and charge-density waves.
The mechanism behind the formation of magnetic phases in
the weak-coupling limit can be understood by considering
the magnetic susceptibility in the RPA framework. In Fig. 8,
the largest eigenvalue λ3

0(q) of the bare susceptibility matrix
is plotted as a function of magnetic ordering vector q. The
q-vector causing the largest eigenvalue is then denoted the
dominant magnetic ordering vector Q. The contributions due
to nesting of the noninteracting FS with nesting vector Q
from different regions of the FS, causing the susceptibility to
diverge, are then mapped by considering the contributions of
the specific ordering vector to the susceptibility integrand in
Eq. (17), evaluated across the 1BZ. Finally, the noninteracting
FS itself is plotted with the nesting vector Q. In Fig. 8, this is
shown at half filling for αR = 0.00, 0.10, and 0.25. From the
figure, it is apparent that as the spin-orbit interaction is turned
on and increased, Q transitions from the initial (π , π ) state to a
diagonal (Q, Q) state with QαR=0.25 < QαR=0.10. For αR 	= 0.0,
the spin degeneracy of the noninteracting FS is lifted and we

FIG. 9. Largest eigenvalue λ3
0(q) of the bare magnetic suscepti-

bility, contribution of the respective nesting vector Q from the Fermi
surface, as well as the Fermi surface for the system with chemical
potential μ = −0.5, plotted for (a) αR = 0.00, (b) αR = 0.10, and
(c) αR = 0.25. The Fermi surface with nesting vectors is here omitted
due to the increased complexity of the ordering vectors in the doped
model, making it challenging to pinpoint the correct manner of the
nesting.

observe that the dominant nesting vector describes nesting
between states in the same FS, but with opposite spin due to
the spin-momentum locking property of spin-orbit coupling.

Figure 9 shows the same properties, but for a system
doped to μ = −0.5. We note that the chemical potential in
the RPA framework is different from the actual chemical
potential in our SSD system due to the Hubbard-U-induced
shift in the chemical potential. The qualitative properties of
the doped susceptibility are, however, applicable. We observe
that in the absence of SOC, the dominant ordering vector
becomes Q = (Q, π ), where one component in effect has
become incommensurate. This can intuitively be understood
by considering how the reduction in filling level breaks the
“perfect” nesting of the half-filled FS, causing the nesting to
become imperfect, occurring only in selected regions. As the
system is doped further, the magnitude of the incommensurate
component decreases. This is in accordance with the observed
Q behavior which decreases from Q ∼ π towards zero as the
system is doped, giving rise to the stripe phases (0, Q) and
(0, π ) (see, for instance, Fig. 2). For αR = 0.10, the second
ordering vector component becomes incommensurate as well,
but the ordering vector remains off-diagonal on the form
(Q1, Q2) as opposed to the diagonal half-filling form (Q, Q).
Finally, in the αR = 0.25 case, the dominant ordering vector
regains the (Q, π ) form, but the susceptibility shows diver-
gence also for several other ordering vectors.

An important takeaway from the RPA analysis is how the
magnetic susceptibility and its q dependence become signifi-
cantly more complex in the presence of SOC. The appearance
of several unique and distinct ordering vectors, especially
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relevant for the doped susceptibility, explains to some extent
the richness of the αR 	= 0 diagrams. We note that while the
RPA analysis is generally valid for low interaction strengths,
it can still give us a qualitative understanding of the driving
mechanisms behind the emergence of magnetic order, both in
the absence and presence of spin-orbit coupling.

B. Self-consistency calculation and convergence

For each combination of model parameters U , αR, and μ,
an initial ten independent self-consistency calculations were
performed with the spin distribution randomized in each cal-
culation. The converged phase with lowest free energy was
chosen as the ground-state configuration. The initial charge
distribution was set to 〈ni〉 = 1 across all lattice sites.

A measure of the stability of the calculations is the de-
viation in average filling level and magnetization across the
ten independent calculations for a given set of parameters,
serving as an indication of whether the same energy mini-
mum is reached consistently, independent of initial conditions.
We generally observed a larger tendency towards ordered
phases and high calculation stability for interaction strengths
below U = 5.0 and below ne = 0.7 for interaction strengths
above U = 5.0. In these more well-behaved regions, the self-
consistency algorithm typically converged to ordered phases
in good coherence with the “trend” observed for similar model
parameters. For U > 5.0 and ne > 0.7, the converged phases
showed a higher degree of unpredictability, both in terms of
the magnetic ordering of the phase as well as the average
density of the phase. The obtained ground state after ten calcu-
lations was often not satisfactorily ordered, and with the use of
an unrestricted Ansatz, order is not a criterion for convergence.
The system may become stuck in an energy landscape riddled
with local minima, preventing the configuration from reach-
ing the “correct” ground state. This observed inability of the
system to establish an ordered state is likely linked to the high
interaction strength which, due to the unrestricted mean-field
Ansatz, prevents the randomized initial spin distribution from
redistributing properly in order to establish an ordered state. In
effect, we end up with semiordered states with lattice defects
as remnants from the randomized initial distribution.

In response to this, we built on the SSD technique and
developed a gradual deformed envelope (GDE) technique.
In essence, with GDE we change the height of the enve-
lope throughout the self-consistency calculations in order to
“grow” the magnetic configuration from the center point of
the lattice in a controlled manner, thus avoiding the situation
where the magnetization in two separate regions of the lattice
develops independently and inconsistently, causing lattice de-
fects where they eventually intersect. The motivation for this
technique is taken from how real-world liquids crystallize on
seed crystals upon solidification in order to form a coherent
monocrystalline material. When using the GDE technique, at
the onset of the calculation, the envelope is only nonzero at
the center of the lattice, causing the magnetization to establish
only in a tiny region consisting of four to eight sites. The cal-
culations are initiated with randomized initial magnetization
as for the regular calculations. As the iterations progress, the
envelope is effectively raised, increasing in magnitude and
becoming nonzero in a continuously growing circle which

with GDE without GDE

f
env

1.0

0.0

initial envelope

after 2500 iterations

Ldiag

(a)

(b) GDE-technique

FIG. 10. (a) The distribution of ground states, characterized by
their free energy, after 45 independent self-consistency calculations
with and without the gradual deformed envelope (GDE) technique
for the model parameters U = 6.0, αR = 0.00, μ = −2.2919. The
continuous line denotes a distribution estimation based on the kernel
density estimation (KDE) method. Half of the simulations with GDE
achieve an approximate ground state with free energy F � 0.13105
and only 2.2% of the calculations without GDE fell below this 50th
percentile. We argue that this limited study indicates a generally ob-
served trend which is that calculations with GDE consistently obtain
lower energy configurations. (b) A schematic of the GDE technique
showing the magnitude of the envelop fenv across the lattice diagonal
Ldiag. In the first 2500 iterations, the envelope is linearly increased
towards the final shape discussed in Sec. II B. Initially, the envelope
is nonzero only at four to eight sites at the lattice center, allowing the
magnetization initially established there to act as a seed for the rest
of the lattice.

eventually compasses the entire lattice. In this way, the spin
distribution is given time to establish in the center before it
steadily grows outwards toward the lattice edges, analogous
to how a monocrystalline material would solidify on a seeding
crystal. The envelope was raised with a constant rate in the
first 2500 iterations of the self-consistency calculations. After
2500 steps, the envelope was static and equivalent in shape to
the envelope used in calculations without the GDE technique.
Upon introduction of the technique, we observed a significant
increase in the ability of the system to access lower-energy
ground states. As an indicator of the effectiveness of GDE, we
chose a particular combination of model parameters (U = 6.0,
αR = 0.00, μ = −2.2919, ne  0.7) in the high-interaction
region troubled by poorly ordered solutions. We performed 45
independent calculations of the model ground state with the
initial magnetization randomized between each calculation.
The 45 calculations were performed both with and without the
GDE technique, and the distribution of obtained ground states,
characterized by the free energy of the configuration, is shown
in Fig. 10. Using the GDE method, we find that half of the
simulations manage to reach an approximate ground state with
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free energy F � 0.13105. For comparison, only 2% of the
calculations without the GDE method converged to the same
energy range. Thus, we conclude that the number of numerical
experiments required to confidently identify the ground-state
energy in the high-interaction limit could possibly be re-
duced by well over an order of magnitude using our GDE
approach.

Finally, we employed an annealing technique in order to
improve ordering. As discussed above, while the phases are
well converged, in using an unrestricted Ansatz, we have no
guarantee that these phases are well ordered with long-range
ordering across the lattice. As the site magnetization and
charge number is determined self-consistently within the local
environment of adjacent sites only, we can get an intuition
about why it is so difficult to establish well-ordered phases
with a coherent ordering across the entire lattice. Many of
the ground-state configurations showed a significant tendency
towards a specific ordering vector, even if the order was not
perfectly established. In order to overcome potential energy
barriers, an annealing technique was used. In effect, the con-
verged solutions were reinserted into the iterative algorithm,
but with a higher initial system temperature T . This tem-
perature was chosen as a small factor proportional to the
interaction strength (typically U ∼ 0.01–0.1). As the itera-
tions proceeded, this temperature was linearly reduced to the
original T = 0.01, the idea being that the increased energy
to the system would allow the lattice to reorganize and re-
distribute charge and magnetization before the temperature
would be lowered again. This method increased the degree
of ordering significantly, most significantly in the above-
mentioned regions with U > 5.0, ne > 0.7.

Finite-size scaling and the effect of SSD

From the outset of this paper, we discussed how we
expected phases with incommensurate order to be prominent
in the phase diagram of the Rashba-Hubbard model given
their appearance in the ground state of the regular Hubbard
model [18,28–30]. Assuming a magnetization mechanism
driven by nesting common for mean-field systems, the
introduction of SOC breaks the perfect (π , π ) nesting,
giving rise to incommensurate ordering vectors. In addition
to the challenge of obtaining the “correct” model ground
state, it is also always necessary to consider the size of the
finite-size system and its affect on the system properties. A
larger system size is expected to more closely emulate the
thermodynamic limit at the cost of being computationally
more expensive than a smaller system. As such, a trade-off
between system size and feasible computational cost has to
be made in obtaining phase diagrams as presented in this
paper.

We argue that the introduction of the SSD technique is an
appropriate approach to overcome these challenges. As has
already been discussed in detail, the SSD approach avoids
bias with respect to real-space periodicity of the magnetic
configuration in addition to screening out boundary effects.
We, however, also argue, in agreement with Refs. [18,31,32],
that the introduction of SSD allows the system behavior in the
thermodynamic limit to be reached for smaller system sizes,

(a)

(b)

(c)

FIG. 11. Finite-size scaling analysis for the (Q1, Q2) phase at
U = 3.0, ne ∼ 0.825 in Fig. 4(a). The (a) average system magne-
tization, (b) filling level, as well as (c) the change in magnetic
configuration quantified by the relative change in order defined in
Eq. (31) is shown for periodic boundary conditions (PBCs), open
boundary conditions, as well as two types of SSD defined in the
text. The dotted line is the average of all data points above N = 20
and is meant to represent a pseudothermodynamic limit. The results
are based on ten randomized trials for each data point and show
that the SSD-type techniques converge more consistently towards
the thermodynamic limit with less oscillatory behavior compared to
PBCs and open boundaries. In addition, both SSD and open systems
show a significantly lower sensitivity in their magnetic configurations
towards increasing system size compared with PBCs. The outlier
at N = 11 for the SSD 2 system (c) takes the value 1.3191 and
is attributed to a change in system ground state, noted also by the
collapse in magnetization [see N = 11 in (b)].

thus lowering the computational cost necessary to emulate
bulklike conditions.

In Fig. 11, the (Q1, Q2) ground-state configuration for
αR = 0.10, U = 3.0, ne ∼ 0.825 [cf. Fig. 4(a)] was obtained
for a system with (1) periodic boundary conditions (PBCs),
(2) open boundary conditions, and two variants of SSD. The
data points are the free energy minimum of ten randomized
trials. SSD 1 corresponds to the technique employed in this
paper where the envelope is zero at the lattice corners and a
small finite envelope value remains at the lattice edges owing
to the shape of the envelope. SSD 2 corresponds to a “perfect”
envelope where the envelope value is zero both at the lattice
corners and edges. Due to the sinusoidal shape of the SSD
envelope, this entails that a significant portion of the lattice
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sites close to corners are lost due to the circular contour of the
envelope and thus that the effective system size is smaller than
the actual N×N sites. In Fig. 11(a), the average system filling
level is shown, in Fig. 11(b) the average system magnetiza-
tion, and in Fig. 11(c) a relative change in order for lattices
ranging from 4×4 to 35×35 in size. The relative change in
order is defined by

relative change in order =
∑

q ||Sq|N − |Sq|N−1|∑
q |Sq|N−1

(31)

and is a measure of the relative change in magnetic configura-
tion as the system size is increased from (N − 1)×(N − 1) to
N×N . In this error estimate, the fourfold rotational symmetry
of the square lattice is taken into consideration in order to
account for identical configurations related by a rotation. It
is evident from the average system magnetization and filing
level as a function of system size N [Figs. 11(a) and 11(b)]
that the SSD-type techniques to a lesser extent experience
periodic oscillations with increasing system size, something
that characterizes both PBCs and open systems. In addition,
Fig. 11(c) shows how the magnetic configuration with PBCs
in particular is sensitive to system size. The magnetic configu-
ration of the open system showed low sensitivity to increasing
system size, apart from the oscillating average magnetization
and filling level of the phase, and behaved very similarly to
SSD. This is likely because open and SSD-type boundary
conditions are quite similar in the sense that no matching of
the magnetic pattern is required at the system edges. While the
open system likely experiences some frustration at the lattice
edges, it is still free to establish the desired periodicity in the
lattice interior, setting it apart from PBCs with the requirement
of lattice matching at the edges likely imposing a stricter
limitation on the realized configuration.

Based on the above discussion which is deemed represen-
tative for the system behavior as a whole, a lattice size of
24×24 with SSD (see SSD 1 in Fig. 11) is likely to emu-
late the thermodynamic limit, showing both less oscillatory
behavior in the magnetization and filling level compared to
PBCs and open systems, in addition to a low relative change
in order for increasing system sizes. This indicates that the
system converges to the “correct” ground state already for
system sizes N in the range 16–20, with filling levels and
magnetization profiles that are considered representative of
the thermodynamic limit.

C. Dynamical magnetic properties: Quantum quenching

1. Interaction quench at half filling

Time dynamics of the magnetic configurations obtained in
the self-consistent SSD framework was simulated by solving
the equations of motion defined by Eqs. (27)–(29). The rel-
evant equation of motion for each of the correlations in the
statistical initial state was solved numerically using a Runge-
Kutta method of order 4. A fixed time step of h = 0.01 was
used for all calculations and the time steps are in units of h̄/t .

Starting with the equilibrium phase at half filling, U = 6.0
for αR = 0.00 and 0.10, respectively, a quench towards lower
interaction strengths was simulated using a time step of h =
0.01 and a Runge-Kutta method of order 4. As discussed in the

section on transient dynamics in the SSD model, the envelope-
modulated system can in some sense be considered an open
system, connected to a particle reservoir of limited particle
number. When a self-consistent solution is obtained in the
static calculations and an initial statistical state is generated
to serve as the initial configuration for the quench, the total
particle number is fixed. This entails that at the start of the
temporal evolution, there exist a given number of electrons
on the lattice, distributed between the interior bulk region and
the reservoirlike edges. The consequence of this distinction
between bulk and edge states is that if a quench changes
the optimal bulk filling level, the system may to some extent
alleviate this by moving electrons in and out of the interior
region of the lattice, a transfer of electrons which would have
been impossible in a regular, unmodulated closed system. In
that sense, the particle number on the lattice is conserved, but
the electrons which determine system observables, i.e., the
electrons in the interior region, are not. In order to simulate a
quench of a half-filled system which is effectively closed and
not able to exchange electrons with an exterior reservoir, we
quench the system not only in U, but also with the appropriate
chemical potential of the half-filled state we quench towards.
In effect, for a given U , we identify the corresponding μ

giving half filling and we quench towards this (U , μ) pair.
In this way, we cancel the U-induced renormalization of the
chemical potential, thus remaining at an approximately con-
stant filling level. The effects of the interaction quench on the
magnetization magnitude of the αR = 0.00 and 0.10 systems
are shown in Fig. 12. An immediate observation is that the
level at which the system magnetization stabilizes or oscillates
around after the initial quench effects is significantly lower
than the equilibrium magnetization, denoted by dotted lines.
The equilibrium magnetization is the magnetization of the
self-consistent phase obtained with the static framework with
the same U , αR, and μ. We also observe that while the initial
magnetization response is of a coherent nature, i.e., taking on
a damped sinusoidal shape, this is modified by the introduc-
tion of more high-frequency oscillations, showing up around
time step 1000. The frequency of the initial damped sinusoidal
oscillation is the largest for the quench towards U = 5.0, de-
creasing in frequency when the postquench U becomes lower.
The inset plots in Fig. 12 show the spatial distribution of the
magnetization magnitude |〈Si〉| for the quench towards U =
2.0. The spatial distribution is nonhomogeneous, but ordered,
in contrast to the equilibrium phases at U = 2.0, ne = 1.0,
αR ∈ {0.00, 0.10}, which have a homogeneous magnetization
magnitude distribution.

Tsuji et al. [42] predicted, using a half-filled Hubbard
model and nonequilibrium dynamical mean-field theory, that
upon an interaction quench towards lower U , the system
magnetization becomes trapped at a nonequilibrium level
above the thermal magnetization. They also predicted the
discrepancy between the nonequilibrium magnetization and
the thermal value to increase with the quench magnitude. The
dynamics following the quench in our model displays this
latter quality with the difference in magnetization increasing
with quench magnitude. However, apart from this, the system
magnetization shows a behavior opposite to the one discussed
in the previously mentioned work [42]. After the interaction
quench, the system magnetization magnitude levels out at a
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R = 0.10

U = 5.0

U = 4.0
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U = 4.0
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     R = 0.00(a)
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FIG. 12. Magnetization magnitude dynamics following an inter-
action quench towards lower interaction strengths, starting from the
U = 6.0, half-filled configuration for (a) αR = 0.00 and (b) αR =
0.10. The inset shows the spatial magnetization magnitude distri-
bution which shows signs of a quench-induced inhomogeneity not
present in the equilibrium phases.

level below the one predicted at equilibrium. We argue that
this significant deviation from previously reported results is a
possible consequence of the quench being performed in an un-
restricted framework. The quench-induced nonhomogeneous
magnetization magnitude (insets in Fig. 12) could indicate
that in response to the interaction quench, a nonhomogeneous
order is established as a means of relaxing frustrations caused
by the abrupt change in system environment. We observe the
nonhomogeneous order to be strongest for the quench towards
U = 2.0, but this behavior is universal across all quenches at
half filling. The quench-induced inhomogeneous order may be
related to the buildup of nonlocal correlations on the lattice.
Correlations over many sites (eight sites shown in Fig. 13) are
generally many orders of magnitude below nearest-neighbor
and on-site correlations at the onset of the temporal evolution.
These nonlocal correlations increase many orders of magni-
tude as the system is evolved. The property that these nonlocal
correlators are initially very low, but increase by many orders
of magnitude as the system evolved, may explain why the
dynamics evolves “smoothly” for the first 500 time steps be-
fore high-frequency components become prominent. In effect,
given the low values of nonlocal correlations, it is reasonable
to conclude that the initial magnetization correction following
the quench is local, with each site adjusting only in response
to its immediate neighbors. As time progresses, the whole
lattice becomes more correlated through the dramatic increase
in nonlocal correlators, possibly explaining why the system
response becomes more complex and why a nonhomogeneous
magnetization order establishes.

1 2

8 sites

FIG. 13. Amplitude of the expectation value of the nonlocal cor-
relation 〈c†

1,↑c2,↑〉 for the arbitrarily labeled sites 1 and 2 separated
by eight sites on the lattice across the lattice center. This specific
correlation is from the quench towards U = 2.0 in absence of SOC
in Fig. 12. The nonlocal expectation value is of order 10−5 in the
self-consistent equilibrium state, but quickly increases to ∼10−2 as
the system is evolved in time.

2. Quench at half filling with (1) periodic boundary conditions
and (2) open boundary conditions without SSD

To further assess the cause of the breakdown in system
magnetization and the possible impact of SSD on the dynam-
ics of the system, the quench towards U = 2.0 and U = 4.0
from Fig. 12 was performed also (1) without SSD, but with
regular open boundary conditions, and (2) without SSD, but
with PBCs. For both cases 1 and 2, the system was prepared
with the same conditions as the subsequent quench, i.e., the
PBC quench was simulated using an initial state obtained
self-consistently using PBCs and so on. The comparison be-
tween the quenches using the three different conditions is
shown in Fig. 14 and we argue that the results indicate that
the observed behavior in Fig. 12 is not a result of the SSD
methodology, but rather a result of the unrestricted mean-field
Ansatz employed in this paper, in line with the discussion
above on the emergence of inhomogeneity. Tsuji et al. [42]
employ a nonequilibrium dynamical mean-field model which,
while it treats spatial correlations in a form similar to regular
Hartree-Fock mean-field theory, also treats temporal correla-
tions [43]. This method is more advanced than the regular
mean-field technique used in this paper, but there has been
previously published literature on the use of mean-field the-
ory together with the Heisenberg equations for simulating
quantum quenches, for instance, on gap dynamics in the Let-
ter by Peronaci et al. [44]. It is thus not obvious that the
mean-field methodology is inadequate for this type of system
dynamics.

A significant difference between Tsuji et al., Peronaci
et al., and this paper is the use of an unrestricted mean-field
Ansatz in the present case. It is plausible that it is the high
number of degrees of freedom attributed to the site-dependent
charge and magnetization which is responsible for the more
turbulent response of our system to quenches compared to the
above-mentioned papers. The average magnetization shown
in Figs. 12, 14, and 15 is an average over 24×24 sites and,
as such, it is reasonable to expect the system response to
be complex in response to an abrupt change in environment
conditions. Real-world systems typically involve an immense
number of degrees of freedom and it is not unreasonable to
expect that the response of such a system to an abrupt change
in environment conditions also involves a complex relation-
ship, owing to the intricate coordination of system degrees of
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U = 4.0

U = 2.0

FIG. 14. Magnetization magnitude dynamics of the U = 4.0 and
U = 2.0 quenches from Fig. 12(a), performed (1) without SSD,
but with open boundary conditions, and (2) without SSD, but with
periodic boundary conditions. The magnetization of the equilibrium
phases is represented by a dotted line. We observe the same tendency
towards undershooting the equilibrium magnetization value, while
noting that the system response with periodic boundary conditions is
significantly more oscillatory than for the system with open bound-
ary conditions, with and without SSD. The results indicate that the
quench-induced subequilibrium magnetization observed likely is an
inherent property of the unrestricted mean-field Ansatz employed.

freedom, and not necessarily a coherent response, typically
observed in dynamics simulations using a restricted k-space
Ansatz.

3. Interaction quench of the doped (Q, π) and 2(Q, π) phases

A quench in the doped αR = 0.10 system was performed
between the (Q1, Q2) at U = 4.0 and the higher-symmetry
2(Q1, Q2) phase at U = 6.0 at filling level ne ∼ 0.7, effec-
tively crossing the phase boundary between the two phases
in Fig. 4(a) dynamically. The magnetization magnitude and
magnetic structure factors following the quench are shown
in Fig. 15. We observe the same tendency of the nonequilib-
rium magnetization falling significantly below the equilibrium
magnetization while in the quench towards U = 6.0, the mag-
netization approaches its equilibrium value eventually. This
points to an important aspect of dynamics in the unrestricted
model. Namely, with the large number of independent degrees
of freedom at play, the system response is complex in the
sense that different system properties adjust on potentially
very different timescales. While the magnetization responds
quickly to the quench, this initial response phase, character-
ized by a dramatic change in the magnitude, is replaced by
a slow, driftlike evolution where frustrations are revealed and
where the spins on individual sites adjust to adjacent lattice
sites and to the rest of the lattice through the buildup of
nonlocal correlations which also here is prominent.

t = 0 t = 10000 t = 20000

Ui = 6.0, U = 4.0  

Ui = 4.0, U = 6.0

R = 0.10
(a)

(b)

FIG. 15. Magnetization dynamics following a quench between
the 2(Q, π ) phase at U = 6.0 and the (Q, π ) phase at U = 4.0 at
ne ∼ 0.7, αR = 0.10. (a) The dotted lines denote the equilibrium
magnetization of the two phases and we observe that the quench
from Ui = 4.0 initially undershoots the equilibrium magnetization
of the U = 6.0 phase before slowly approaching it, while the quench
in the opposite direction does not approach the equilibrium mag-
netization within the number of time steps. (b) The magnetic and
charge structure factors are shown for t = 0, 10 000, and 20 000
showing that while the system responds quickly in terms of adjusting
magnetization magnitude, the magnetization pattern responds very
slowly in comparison.

A key observation in the quench between the 2(Q1, Q2)
and (Q1, Q2) phases is that while the phase magnetization
magnitude adjusts quickly, the ordering vector characterizing
the phases does not and the phases retain their ordering rel-
atively long after the quench is performed. A distinction is
to be made between the quench from high-symmetry 2(Q1,
Q2) to low-symmetry (Q1, Q2) (blue line in Fig. 15), and the
opposite (red line in Fig. 15). The 2(Q1, Q2) phase retains its
ordering when quenched to U = 4.0, showing instead a signif-
icant deviation in magnetization compared to the equilibrium
phase. The opposite quench from (Q1, Q2) likewise retains its
ordering initially, but as evident from the structure factors in
Fig. 15, the higher-symmetry phase slowly emerges as the sys-
tem is evolved. It is possible that the emergence of the 2(Q1,
Q2) ordering coincides with the nonequilibrium magnetiza-
tion approaching the equilibrium value and that the deviation
between nonequilibrium and equilibrium magnetization is
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affected by the quenched phases retaining their original or-
dering. We cannot rule out that in the quench from high to
low symmetry 2(Q1, Q2) → (Q1, Q2), the lower-symmetric
(Q1, Q2) phase will emerge eventually. It is, however, evident
that there is a asymmetry in the timescale between the two
opposite processes.

IV. CONCLUSIONS

In summary, we have studied the ground-state properties of
the Rashba-Hubbard model on a square lattice with nearest-
neighbor hopping using an unrestricted mean-field charge
and spin Ansatz within a sine-square deformed envelope
framework. We have shown that the introduction of Rashba
spin-orbit coupling dramatically alters the phase composition
in the model ground state, both through the modification of
existing phases and by introducing completely new phases not
present in the regular Hubbard model. Large parts of the phase
diagrams are characterized by a rich combination of spin
and charge order, verifying the need for a method which can
characterize both. We have laid out in detail suitable methods
increasing the ability to reach ordered and plausible ground
states in the self-consistency calculation and have introduced
the gradual deformed envelope (GDE) technique. In addition
to the equilibrium study, we establish a framework based on

the Heisenberg equation of motion for the study of magnetiza-
tion dynamics in the model following instantaneous quenches
in model parameters. We find that interaction quenches in
the half-filled model induce an inhomogeneous spin magni-
tude not present in the equilibrium phases. In addition, we
observe a metastable system magnetization magnitude well
below the magnetization predicted by the ground-state phase
diagram, possibly related to the buildup of nonlocal correla-
tions on the lattice and the induced spin inhomogeneity. We
also observe an asymmetry in timescales when quenching
between a high- and low-symmetry phase in the doped sys-
tem, finding the emergence of the higher-symmetric state to
occur at a timescale significantly shorter than for the opposite
process.
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