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We investigate the surface plasmons propagating on disordered bulk permalloys (Pys), whose magnetization
breaks the time reversal symmetry, causing the surface plasmons to possess chirality in the absence of magnetic
fields under the interplay of the anomalous Hall conductivity (AHC) and the boundary conditions at the surface.
Based on the collisionless hydrodynamic model, we incorporate the effect of interband transitions into the
dispersion of surface plasmons. As we show, the AHC will split the forward and backward propagating surface
plasmons into two modes, while the p-d transitions in bulk Py will work against the AHC, yielding slower
propagation surface chiral Berry plasmons (CBPs), and even ceasing the presence of surface modes. The resulting
surface CBP has a broad bandwidth ranging from visible light to infrared frequency. The free-field chirality may
provide a new knob to control the chiral transport of light, as well as a new probe for detecting the intrinsic AHC
in ferromagnetic metals.
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I. INTRODUCTION

The renewed interest in surface plasmons (SPs) stems
primarily from their ability to concentrate light within sub-
wavelength structures, accomplished through the formation of
surface-plasmon polaritons (SPPs). These SPPs have found
widespread applications in the field of plasmonics [1,2]. Re-
cent research in this area encompasses various intriguing
aspects, including the excitations of SPs through electric
currents [3,4] and stimulated emission of radiation (spasers)
[5,6], the development of nanometer-scale photonic circuits
[7,8], the generation and manipulation of electromagnetic
radiation spanning microwave to optical frequencies [9–12],
and the fabrication of subwavelength structure on surfaces
using SP-based nanolithography [13]. Additionally, the easy
interaction of SPs with light opens up avenues for optically
probing the electronic band structures of novel topologically
nontrivial two-dimensional materials, such as graphene moiré
superlattices [14,15] and α-T3 lattices [16–18].

Furthermore, recent developments propose the chiral trans-
port of light in Dirac fermion systems through the formation
of topologically protected edge SPPs. Combing the feature
of Dirac fermions and superlattices, two groups, Pan et al.
[19] and Jin et al. [20], independently proposed to realize
topological optical states in graphene superlattice structure
via Dirac plasmons that exhibit substantial nonreciprocal be-
havior, without seeking sophisticated bulky structural designs
such as reciprocal metamaterials and photonic crystals. In the
presence of periodic structure (i.e., superlattice) the plasmon
dispersion exhibits band structure with Dirac points due to the
symmetry of the superlattice. As in electron band structure, an
applied magnetic field can therefore open a gap at the Dirac
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points and lead to topological protected edge plasmon modes.
They expect this structured graphene sensible in the infrared
regime, in contrast to the bulky structures that often work in
microwave regime and have limited feasibility in nanoscale
optical integration.

The key ingredient to produce chirality is to have bro-
ken time-reversal (TR) symmetry, either by external magnetic
fields or by magnetization of the systems. So far, we have
discussed the chiral plasmon modes induced by external mag-
netic fields. The presence of magnetization can also induce
chiral plasmon.

Song and Rudner [21] (SR) name a new class of plasmons
in 2D metallic system including gapped Dirac materials as
chiral Berry plasmons (CBPs). The chirality manifest itself
as splitting the oppositely propagating plasmons into two
modes, even in the absence of topological edge states. As long
as the Bloch bands possess Berry curvature, there is no need
for external magnetic fields, which is of particular interest for
“on-chip” applications that requires nonreciprocity, such as
optical isolators [22,23] and chiral spintronics [24]. Therefore
a wide range of metals exhibiting anomalous and quantum
anomalous Hall effects can be good platforms for exploring
CBPs. Permalloy is among such metals.

FeNi alloys belong to the most important soft magnetic
alloy systems. Ni-rich FeNi alloys are called permalloys (Pys)
[25]. Most of the studies on Py are dedicated to the effects of
spin-orbit torque [26], exchange coupling [27], spin pumping
[28] and spin to charge conversion [29] in layered heterostruc-
tures. With the arise of topological insulators, the nontrivial
topology become a new field in the study of Pys. The studies
fall into two categories, the formation of textured magne-
tization such as vortex or antivortex in Py heterostructures
[30], or the magnetotransport properties of Py in different
nanopatterns tailored by lithographic printing [31–34], but all
of these nontrivial topologies are in real space.
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In this paper, we study the effect of anomalous Hall
conductivity (AHC) caused by the Berry curvature of band
structure on the surface plasmons propagating on a disordered
bulk Py. In a pioneered paper by Zhang and Vignale [35], the
surface CBP on a ferromagnetic conductor has been studied.
They used the collissionless hydrodynamic equations together
with the Poisson equation to solve the dispersion of the surface
plasmons. However, the conduction electrons were treated as
nearly free of lattice potential, so that the induced density can
only undergo intraband transitions in response to the electric
field. In the long wavelength limit, such a treatment converges
to the Drude model, leading to the intraband dielectric func-
tion. In this work, we apply the s-d polarization model to
study the effect of interband transition, which is indispensable
for the disordered Pys, whose d bands are partially occupied,
resulting in an onset frequency of interband transition slightly
below the long wavelength surface plasmon frequency. d elec-
trons behave obviously differently from those in the Drude
model, such that they are particularly strongly polarized in
the surface region where the surface plasmon’s electric field
varies rapidly along the surface normal. We simplified the
models by treating the d electrons as a polarizable medium
characterized by the local dielectric function εd (ω), which re-
flects the interband transitions in the bulk, as has been applied
in the study of ordinary surface plasmon in Ref. [36]. This
allows us to solve the dispersion of surface CBP in the hydro-
dynamic approximation and find that the interband transitions
will compete with the AHC in affecting the surface CBP. In
addition, we include the intrinsic AHC calculated from the
density functional theory (DFT), whose tensor form modifies
the properties of the surface CBP. Now we have two modes
for long wavelength surface CBP instead of one as predicted
by ZV.

The paper is organized as follows. We will work on the
collissionless hydrodynamic approximation to determine the
effects of the interband transitions and the AHC tensor on
the surface CBP plasmons. Section II discusses the applicable
conditions of this approximation, the semiclassical treatment
of the intrinsic AHC (Sec. II A) and the s-d polarization
model for considering the interband transitions (Sec. II B).
Section II C introduces the process to obtain the implicit
dispersion relation Eq. (23). Section III contains the com-
putational methods for calculating the band structure and
the interband transitions of the disordered bulk Py. All the
numerical results are presented in Sec. IV. Beginning with
the electronic (Sec. IV A) and optical properties (Sec. IV B)
obtained from the DFT calculations, we explain the necessary
of including interband transitions in solving the dispersion
of surface CBP on the Py. Then the effects of the interband
transitions, the AHC and the direction of wave vector with
respect to the magnetization on the dispersion are discussed in
Sec. IV C. Finally, in Sec. V, we summarize our main findings
and outlook their potential applications.

II. HYDRODYNAMIC THEORIES

Surface plasmon stands for the oscillation of charge density
in the interface region. To begin with, we treat the Py as a
semi-infinite electron gas occupying the space z < 0. When
neglecting retardation, that is all interactions are taken to be

instantaneous, the surface plasmon is entirely longitudinal.
This is quite a good approximation as long as we are con-
cerned with the plasmons whose parallel wave vectors satisfy
|q‖| > ω/c. In the retarded region, one should go beyond
the electrostatic limit and consider the full set of Maxwell’s
equations, so that surface plasmon will interact with the elec-
tromagnetic radiation and form the surface-plasmon polariton.

To focus on the long wavelength surface plasmon mode, we
do not deal with the spatial variation of the equilibrium elec-
tron density in the surface region, considering its relatively
short decay length, instead we assume a uniform electronic
density profile abruptly terminated at the interface, that is
the equilibrium density n0(r, ω) = n0�(−z) with � being the
Heaviside step function. For a longitudinal density wave, the
induced density, n1(r, ω), has a dipolar form and associates
with the electric field by Gauss’s law,

∇ · E(r, ω) = −en1(r, ω)/ε0. (1)

Then the dynamics of the density fluctuation can be un-
derstood from the hydrodynamic model with the continuity
equation

∂t n1 + ∇r · j = 0 (2)

and the Euler equation

∂t j p + s2∇rn1 − en0

m
∇rϕ = 0, (3)

where m is the dynamical mass characterizing the collective
motion of the Fermi sea. The electron gas has been treated
as compressible fluid ignoring shear force and viscous force
as mentioned in Ref. [35]. s is the speed of the compres-
sional wave, which has the same order of Fermi velocity. j
is the physical current density given by j ≡ j p + jA, where
j p = n0〈−ih̄∇k〉/m, averaging over the Bloch wave function,
is the canonical current density, while jA is the current density
resulting from the field momentum, which in Py is the anoma-
lous velocity due to the Berry curvature of the band structure
in the absence of external electromagnetic fields.

The essential idea of the proper hydrodynamic approx-
imation is that the relaxation of system to thermodynamic
equilibrium is so fast that “local equilibrium” is always main-
tained. However, it is not the case for plasmons in the electron
liquid, where the restoring force is primarily provided by
the long-range Coulomb interaction. At long wavelength the
frequency associated with this restoring force corresponds to
the plasmon frequency, which is much larger than the inverse
of electron relaxation time. Consequently, the system is con-
sidered to be in the collisionless regime. For disordered Py,
τ ∼ 0.1 ps [37,38] and the surface plasmon frequency is about
1.9 eV according to our DFT calculations, which allows us
to employ the collisionless hydrodynamic approximation to
effectively model the behavior of surface plasmons on Py.
Another factor that will affect the validity of this approxi-
mation is that the collective surface modes may couple to
electron-hole pair excitations. However, this coupling can be
neglected in the long wavelength limit with wave vectors
q < qc ≈ ωp/vF .
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A. The anomalous velocity

The anomalous velocity can be understood well based on
the quasiclassical equations of motion of the electron wave
packets, as explained in the review paper [39]. We restate the
key conclusions here to keep the integrity of our model:

ṙ = 1

h̄

∂εM (k)

∂k
+ �n(k) × k̇, (4)

h̄k̇ = −eE − eṙ × B, (5)

with εM (k) = εn(k) − M · B. In the absence of magnetic
fields, Eqs. (4) and (5) are the same as the traditional Bloch
electron equations of motion except for an additional term
proportional to the Berry curvature, namely the anomalous
velocity,

va,n(k) ≡ �n(k) × k̇, (6)

reflecting the nonconservation of Bloch momentum in
physics. �n(k) represents Berry curvature,

�n(k) = ∇k × 〈un(k)|i∇k|un(k)〉, (7)

where un(k) is the periodic part of the Bloch function with n
being the band index.

The presence of the anomalous velocity leads to the intrin-
sic AHC, which can be derived from the drift of equilibrium
distribution in pure magnetic crystal without considering any
scattering processes [40]. In the absence of magnetic fields,
the electrical current density caused by the equilibrium distri-
bution function fn(k) becomes

je = −e

(2π )3

∑
n

∫
BZ

fn(k)ṙ(k)d3k

= σAHC × E, (8)

with

σAHC = e2

(2π )3h̄

∑
n

∫
BZ

f (k)�n(k)d3k (9)

being the intrinsic AHC. The total physical current density
then becomes

j ≡ j p + σAHC × E
−e

. (10)

It is worth noting that the AHC will not affect the bulk
plasmon mode in that it will not change the hydrodynamic
equations (2) and (3): the anomalous velocity is perpendicular
to both of the electric field and the spatial gradient so that only
j p contributes to the time derivative in the Euler equation and
the continuity equation is also unchanged. However, the AHC
will manifest itself in the boundary conditions and therefore
affect the surface plasmons as we will see in Sec. II C. This
point was clealy demonstrated by SR [21] for the edge plas-
mon of a 2D system and by ZV [35] for the surface plasmon
of a 3D system.

B. The effect of interband transitions

In general, interband transitions take place at frequency
far larger than the bulk plasmon, so that their contribution
to the dielectric function near plasmon frequency can be
negligible. But for some metals, such as Au and Ag, their

interband transitions can be excited by the electromagnetic
wave of frequency less than that of the bulk plasmon. For
Py, according to our DFT calculations, the onset frequency
of interband transition, at about 1.2 eV, lies only slightly
below the surface plasmon frequency from the Drude model,
ωs(q = 0) = ωp/

√
2 = 1.9 eV. Therefore there will be strong

mutual influence between the bulk interband transitions and
the collective surface excitations. And the dynamical dielec-
tric function must be taken into account in the model even
though the surface CBP is a self-sustained eigenmode with no
incident light being employed.

The electrostatic potential ϕ, which is assumed to be in-
stantaneously created by the charge density according to the
modified Poisson equation

εd∇2
r ϕ = en1

ε0
, (11)

where ε0 is the vacuum permittivity and εd the interband
dielectric function. Strictly speaking, εd should be a tensor
and a function of ω as we use in calculating the dispersions
in Sec. II C. We treat it as a scalar in Eq. (11) to simplify the
explanation of the s-d polarization model [36]. Here s refers
to the electrons that occur intraband transitions, and d to those
that occur interband transitions. From Gauss’s law, we have

∇ · E = −e(n1 + nd )

ε0
, (12)

where nd stands for the polarization-charge density due to
interband transitions. By introducing the polarization such
that ∇ · Pd = end , it is easy to see the interband dielectric
function appears in Gauss’s law as

εd∇ · E = −en1

ε0
(13)

by noting that εd E = E + Pd/ε0, so that the Poisson equa-
tion is modified to be Eq. (11).

C. Dispersion relation of the surface CBP

As discussed in Sec. II A, without the confinement of
boundary conditions, the AHC does not take effect in the
hydrodynamic equations, which leaves the dispersion of bulk
plasmons unaffected by the anomalous velocity. However, for
the solution of surface plasmon mode, the AHC does have an
impact on the current density normal to the interface. Consid-
ering a semi-infinite metal as shown in Fig. 1(b), the electric
potential is continuous due to E‖|z=0− = E‖|z=0+ , while the
continuity of its derivative is not true in general except for
accompany with the vanishing current density outside the
metal, which results from D⊥|z=0− = D⊥|z=0+ . In the presence
of interband transitions, the correct form of the electrical cur-
rent density consists of two parts, the normal charge current
density and the polarization current density, such that its per-
pendicular component should be jz

e = −e jz + dPz

dt , where jz is
the z-component of the physical current density that includes
the AHC as shown in Eq. (10). In the frequency domain, the
electrical current density becomes

jz
e (ω) = −e jz(ω) + [εd (ω) − 1]iωε0∂zϕ(ω). (14)
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FIG. 1. Crystal structure and the coordinates system of Py.
(a) The 2 × 2 × 2 supercell of fcc disordered Py. Red (yellow)
spheres represent Fe (Ni) atoms. The lattice constant is 3.537 Å.
(b) Schematics of semi-infinite 3D Py: the magnetization is in-plane
along x axis. q is the wave vector of surface plasmon, which is in the
x-y plane at an angle φq with respect to the magnetization.

Therefore the full boundary conditions should include

ϕ|z=0− = ϕ|z=0+ , (15)

∂zϕ|z=0− = ε1∂zϕ|z=0+ , jz
e

∣∣
z=0− = 0, (16)

where ε1 denotes the dielectric constant of the medium outside
the metal.

Given the uniform distribution of the equilibrium electron
within the metal and the longitudinal characteristic of the
surface plasmon mode, the Fermi liquid under discussion is
translationally invariant parallel to the surface. This allows us
to assume all the physical quantities, such as n1, j p and ϕ,
take the form of eκzei(q·r−ωt ), with q and r in the x-y plane
and κ > 0. Substituting these ansatz into the hydrodynamic
equations (2) and (3) and the modified Poisson equation (11),
we obtain an eigenproblem for the undetermined amplitudes
of n1 and j p, such that(

0 Q
αQT 0

)(
n1

j

)
= iω

(
n1

j

)
, (17)

where Q = (iqx, iqy, κ ) and

α = s2 − 1

εd

ω2
p

κ2 − q2
(18)

with q = |q| and ω2
p = e2n0/(ε0m) being the bulk plasmon

frequency from the Drude model. Its eigenvalue gives the
relation of κ and q

κ2 = q2 + s−2
(
ω2

p/εd − ω2
)
. (19)

Evidently, κ depends explicitly on both q and ω. Equation (19)
has two types of solutions: one is κ = ±q, corresponding to

the solution when no electron density is induced; the other one
is κ �= ±q, for n1 �= 0. We can write down the general solution
for the electrostatic potential as

ϕ = ϕ1eκzeiq·r + ϕ2eqzeiq·r, z < 0 (20)

ϕ = ϕ0e−qzeiq·r, z > 0 (21)

and that for the density oscillation, which is according to the
Poisson equation (11),

n1 = (κ2 − q2)ε0εd

e
ϕ1eκzeiq·r, (22)

with ϕ1, ϕ2, and ϕ0 being integration constants to be de-
termined by the boundary conditions, and κ, q > 0. The
time-dependent part e−iωt has been suppressed for clarity.
Applying the boundary conditions (15) and (16), we obtain
a set of linear equations for the amplitudes ϕi (i = 0, 1, 2),
whose secular equation gives the dispersion relation of the
surface CBP,

ω2ε0[κ (ε1 + εd ) + qε1(εd − 1)] − ω2
pε0(κ + qε1)

+ ω(q − κ )(σzx cos φq + σzy sin φq) = 0, (23)

where σαβ (α, β = x, y, z) is the tensor form of the AHC [41]
such that j = j p + ←→σ · E/(−e), φq is the angle between the
wave vector of surface plasmon and the magnetization. It
is called Berry plasmon because its dispersion depends on
the Berry curvature of band structure. The chirality will be
discussed as below.

It is instructive to first examine the solutions in the long
wavelength limit (q → 0) for which Eq. (23) reduces to

ω2ε0(ε1 + εd ) − ω2
pε0 − ω(σzx cos φq + σzy sin φq) = 0,

(24)

which has two possible solutions,

ω± = (σzx cos φq + σzy sin φq)

2ε0(ε1 + εd )

±
√

(σzx cos φq + σzy sin φq)2 + 4ε2
0ω

2
p(ε1 + εd )

2ε0(ε1 + εd )
.

(25)

Unlike in normal definitions, we have enforced q to be pos-
itive and thus ω can be either positive or negative, whose
sign indicates the propagation direction of the surface mode.
When σαβ → 0, the solution becomes |ω| = ωp/

√
ε1 + εd ,

reproducing the 3D surface plasmon frequency at q = 0. The
effect of interband transition should not be ignored for metals
like Py, even if σαβ = 0 as discussed in Secs. IV A and IV B.
For σαβ �= 0, the two solutions represent two modes of surface
plasmon since ω+(−φq) �= −ω−(φq) except for φq = π/2 or
σzx = 0, indicating that the chirality of surface Berry plas-
mons is indeed resulting from the AHC, or in other words,
from the Berry curvature of the Py’s band structure.

Moreover, it should be aware of that εd could be a nonlocal
dynamic dielectric function, i.e., a function of both q and
ω, which requires solving Eq. (25) further to get the final
solutions. In contrast, as σαβ = 0 and ε1 = εd = 1, Eq. (23)
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gives the analytical expression of the ordinary surface plas-
mon dispersion,

ω± = ± 1
2

(√
2ω2

p + q2s2 + qs
)
. (26)

Since ω+ = −ω−, the two solutions represent the same sur-
face plasmon mode but propagating in opposite directions.
Hence, ordinary surface plasmons do not possess any chirality.

III. COMPUTATION METHODS AND DETAILS

A. Special quasirandom structure

A standard supercell approach to model disordered alloys
involves a randomly generated impurity distribution within
the alloy matrix, which always renders a huge supercell
that is unfeasible for DFT calculations. To model disordered
Py in a finite supercell, we employed the Alloy Theoretic
Automatic Toolkit (ATAT) [42] within the framework of Spe-
cial Quasirandom Structures (SQSs) generated by the Monte
Carlo annealing loop algorithm [43]. Alternative approxima-
tions include the coherent potential approximation (CPA) and
the cluster expansion (CE) method. There are two advantages
of SQS: one is that it can perfectly match the maximum
number of correlation functions of the supercell to those of
a random alloy; the other is that it is computationally less
demanding.

We constructed a 32-atom SQS for the disordered Ni80Fe20

(with 26 Ni atoms and 6 Fe atoms). Although the SQS ap-
proach allows an arbitrary supercell size and shape (A × B ×
C) in terms of lattice vectors to achieve the best randomness,
we have traded off the shape freedom and chosen (A × A × A)
to ensure our model preserve the point group symmetry that
Py shows experimentally. However, the size effect on the
performance of SQS to describe optical properties has not
been studied systematically. We, therefore, use the same size
of supercell (2 × 2 × 2) as has been checked by Zhang et al.
for fcc Fe-Ni-Cr disordered alloys [44]. The optimized crystal
structure is fcc as shown in Fig. 1, where the red (yellow)
spheres represent iron (nickle) atoms with a lattice constant
of 3.537 Å, which is very close to the experimental values
[45–47].

B. First-principles calculations of electronic
and optical properties

To get a quantitative prediction of the surface CBP on the
disordered Py, we performed the first-principle calculations
using the Vienna ab initio simulation package (VASP) [48]
in combination with the crystal structure predicted by ATAT.
Both spin-polarized and self-consistent relativistic band struc-
tures were carried out with the projector-augmented-wave
(PAW) method [49], and a kinetic-energy cutoff of 500 eV
was used for the plane-wave basis. We have chosen the
Perdew-Burke-Ernzerhof (PBE)-type [50] generalized gradi-
ent approximation (GGA) [51] for the exchange-correlation
functional. The valence electron configurations of Fe and Ni
elements used in PAW potentials were 3d74s1 and 3d94s1,
respectively. A 4 × 4 × 4 Gamma-grid [52,53] containing �

and other high-symmetry points was applied to sample the
full BZ, so that the band extrema are typically included in

the calculation of dielectric function. The lattice constants
and atom coordinates were optimized with total energy con-
vergence criterion less than 10−5 eV/cell and force less than
0.02 eV/atom.

We then employed the WANNIER90 [54] interface combined
with WANNIERTOOLS [55] to calculate the Berry curvature and
the AHC, which has great significance for the dispersion. The
AHC was calculated by means of the Wannier interpolation
[41] to avoid the usage of a dense k mesh, as implemented
in the WANNIER90 package. The starting projection for con-
structing maximally localized Wannier function were chosen
as d orbitals of Fe and d orbitals of Ni. The upper bound
for the inner and outer window for the band disentanglement
procedure were chosen at −5 and 15 eV to the Fermi level.

Finally, We calculated the complex interband dielectric
function with the built-in function in VASP in the random-
phase approximation (RPA) including local field corrections.
This can be done using the standard longitudinal expression
of the dielectric tensor [53]. The imaginary part of interband
dielectric function is given by

ε
(2)
αβ (ω) = 8π2e2

�
lim
q→0

1

q2

∑
o,u,k

wkδ(Eu,k − Eo,k − ω)

× 〈
uu,k+êαq

∣∣uo,k
〉〈

uu,k+êβ q

∣∣uo,k
〉∗

, (27)

where ê and q stand for the polarization and the wave vector
of incident light, respectively. wk denote the k-point weights.
Only direct transitions from occupied (labeled by o) and un-
occupied (u) Kohn-Sham states are taking into account. α and
β refer to Cartesian coordinates and � the volume of the
unit cell. BZ integrations were performed using a Gaussian
smearing method with a width of 0.2 eV. To simplify our
discussion on the obtained dielectric function in Sec. IV B,
we also give the transversal expression although unused in our
calculations,

ε
(2)
αβ (ω) = 4π2e2h̄4

�ω2m2
e

lim
q→0

∑
o,u,k

2wk|Pou|2αβ

× δ(Eu,k − Eo,k − ω) (28)

with the transition matrix

|Pou|2αβ = 〈uu,k|i∇α − kα|uo,k〉〈uu,k|i∇β − kβ |uo,k〉∗. (29)

The real part of the interband dielectric function ε
(1)
αβ (ω)

is obtained from the imaginary part ε
(2)
αβ (ω) by the usual

Kramers-Kronig transformation,

ε
(1)
αβ (ω) = 1 + 2

π
P

∫ ∞

0

ε
(2)
αβ (ω′)ω′

ω′2 − ω2 + iη
dω′, (30)

where P stands for the principal value and η is the complex
shift parameter, which was set to be 0.1 in the calculation.

IV. RESULTS AND DISCUSSION

A. Electronic properties of Py

Figure 2 shows the band structures and the density of states
(DOS) of the Py with (a) and without (b) spin-orbit coupling
(SOC) calculated from the VASP. It can be seen that the Py
has no band gap and is spin polarized [Fig. 2(a)] near the
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FIG. 2. Band structures and densities of states of Py: (a) without
spin-orbit coupling, the solid lines represent the spin-up result and
the dashed lines the spin-down result; (b) with spin-orbit coupling.

Fermi surface, indicating that the calculated Py is indeed a
ferromagnetic metal. As shown in Fig. 2(b), the presence of
SOC does not change the Py’s metallic characteristics and
the 3d electrons of Ni and Fe atoms play a major role near
the Fermi surface, which suggests the interband transitions
may affect the overall frequency of the surface plasmon as
observed on Ag [36]. If the onset frequency of the interband
transitions is below ωp/

√
2, then it is a strong evidence that

we should consider the dynamic dielectric function of the
bulk Py. Moreover, the obtained total magnetic moment with
considering SOC is 31.42 µB, corresponding to a magnetiza-
tion of 8.23 × 105 A m−1, in agreement with the experimental
results [45].

B. Interband transitions of Py

Interband transitions can be studied by calculating the dy-
namic dielectric function within the VASP. The peaks in the
imaginary part of the dielectric function (Im[ε(ω)]) reveal
the prominent transitions. As shown in Fig. 3, the local field
correction (LFC) [56,57] is important in the presence of SOC,
without which transitions below the bulk plasma frequency
(peaks on the left of the dashed line) might be missing.

FIG. 3. The imaginary parts of interband dielectric functions of
Py. The effects of the local field correction (LFC) and the spin-orbit
coupling (SOC) on εyy have been compared in (a). The inset shows
more details in the long wavelength limit. The vertical dashed line
marks the bulk plasma frequency, ω2

p = 7.311 eV2. (b) compares the
result from VASP calculations with that from experiments [58].

Besides, the inset shows that LFC should be taken into ac-
count even if in the absence of SOC. Although LFC is
independent of frequency, it will resolve the divergence of
Im[ε(ω)] as ω → 0.

To understand the main features of the dielectric function,
we plot the projected density of states (PDOS) of the Py
in Fig. 4. As already shown in Fig. 2(b), the bands near
Fermi level are dominated by Fe-d and Ni-d orbitals. The
selection rule of dipole transitions also requires analysis of
DOSs projected on the other orbitals. Above the Fermi level,
the structure is mainly determined by the d orbitals of Fe and
Ni, while below the Fermi level, the states have a mixed char-
acteristic of p and d orbitals. According to the peak positions
in the PDOS and the selection rule of dipole transitions, there
might be interband transitions from s to p orbitals, from sp
hybridization orbitals to d orbitals, as well as between p and
d orbitals of Fe and Ni atoms. We have labeled the prominent
transition peaks around the bulk plasmon frequency with ar-
rows of different colors in Fig. 3. The corresponding occupied
and unoccupied states are marked by arrows of the same color
in Fig. 4. The blue arrow, for example, at about 1.8 eV in Fig. 3
corresponds to the blue arrows in Fig. 4 for the p-d transition.

Next, to determine whether interband transitions are crucial
in our study on the surface CBP, we have to identify the onset
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FIG. 4. Projected density of states (PDOS) of s, p and d orbitals
of Fe and Ni atoms in Py with local field correction and spin-orbit
coupling. The black (red) lines are the results of Fe (Ni) atoms.

frequency of the transitions. Normally, this can be done by
searching for intersects with the horizontal axis or the absorp-
tion edge in the figure of Im[ε(ω)]. However, there exists a
huge peak below 1 eV arsing from d-d transitions as shown in
Fig. 3, which smears off the absorption edge in our calcula-
tion. Although such a transition should be suppressed by the
selection rule, it acquires some strength due to hybridization
with the surrounding atoms. A small but finite d-d transition
matrix element when divided by ω2 as in Eq. (28) yields the
blowup in the low-energy part of Im[ε(ω)], which leads to
a larger Im[ε(ω)] than the experimental result [58] as shown
in Fig. 3(b). This calculation flaw has also been discussed in
the DFT study of Mg-Ti alloys [59]. Nevertheless, one can
estimate the onset frequency from the PDOS (Fig. 4) to be
about 1.2 eV due to p-d transition, which also agrees well with
the experimental absorption edge as shown in the red curve in
Fig. 3(b). This onset frequency lies slightly below the surface
plasmon frequency of Py, ωp/

√
2 = 1.9 eV, and therefore, the

interband transitions will have a strong effect on the surface
plasmon dispersion.

The finite d-d transition also affects badly on the accuracy
of Re[ε(ω)]. According to Eq. (30), the larger Im[ε(ω)] is
in the low-energy region, the more likely Re[ε(ω)] becomes
negative. To illustrate the impact, we compare the real parts
of the dielectric functions calculated from experiments [58],
the Drude model (i.e., the intraband transitions) and the VASP

(i.e., the interband transitions) in Fig. 5. To make a direct com-
parison between the interband dielectric function obtained
through VASP calculation and that from the experiments, we
have subtracted the Drude contribution (−ω2

p/ω
2) from the

experimental result in Fig. 5(b). The results show a large
discrepancy between the two as expected, but the interband
transitions do contribute to the dynamic dielectric function in
the range between ωp/

√
2 and ωp [red curve in Fig. 5(b)].

Therefore we should consider the bulk dielectric function of
Py in the study of CBP propagating on the surface of Py.

C. Dispersion of surface CBP on Py

The key result of this work is Eq. (23), through which one
can get the dispersion of surface CBP on any bulk magnetic
metals for given AHC and dynamic bulk dielectric function.

FIG. 5. The real parts of dielectric functions. (a) Comparison
of the results from experiments [58], the DFT calculations and the
Drude model. The light gray dashed line locates the position of
the bulk plasma frequency, ω2

p = 7.311 eV2. (b) The real parts of
the interband dielectric functions from the experiments and the DFT
calculation.

Here we assume the bulk Py is placed in vacuum and use the
results from our DFT calculations and previous experiments
[58,60,61] to give a qualitative understanding of the disper-
sion. Magnitudes of wave vectors q have been taken to be less
than qc ≈ h̄ωpkF /(2EF ) to ensure the validity of the hydro-
dynamic approximation. According to our DFT calculations,
ωp = 2.704 eV, EF = 8.686 eV, so that we keep the dispersion
with positive q less than 0.16 kF only.

In Sec. II C, we have discussed the chirality of the surface
Berry plasmon as q → 0. The dispersions of surface CPB with
finite q are shown in Figs. 6–8. The figures are plotted for
the surface CPB propagating in the direction perpendicular to
the magnetization (φq = π/2), and therefore, only σzy takes
effect. The nonzero AHC is the intrinsic one calculated from
the VASP in Figs. 6 and 7.

As discussed in previous sections, both the AHC and the
interband transitions take effect on the surface plasmons on
the disordered Py. To understand better the qualitative differ-
ence of the two effects, we will check the impact of AHC
alone first in Fig. 6. The dashed line is the dispersion of
ordinary surface plasmon calculated from Eq. (26), which is
symmetric about ω = 0. A nonzero AHC breaks the sym-
metry and shifts the dispersion upward, making the ordinary
surface plasmon mode split into two chiral modes, which are
the so-called surface CBPs. For a given q, these two modes
propagate in the opposite directions but have different phase
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FIG. 6. The effect of the AHC on the surface plasmon dispersion
with εd = 1 (i.e., without interband transitions), φq = π/2, s2 =
2.6 × 1012 m2 s−2, ω2

p = 7.311 eV2, and σzy = 90.75 (� cm)−1. The
dashed line is the analytical solution calculated from Eq. (26).

velocity and therefore cannot produce a standing wave by a
linear combination.

In Fig. 7, we study the effects of both the AHC and the
interband transitions on the surface plasmon dispersion of
the Py. The interband transition manifests itself as a nonlocal
dielectric function εd (z, z′, q, ω) in the model. For small q and
far from the surface, a local dielectric function εd (ω) should
be good enough to approximate its effect. As discussed in
Sec. IV B, there is a flaw in the DFT calculation due to a
fictive d-d transition shown in Fig. 3, hence we have used
the experimental results to deal with εd , which is the same
as interband Re[ε(ω)] [the red curve in Fig. 5(b)]. Since the
interband dielectric function extracted from the experiments
does not cover the full range of the surface plasmon frequency,
we have to approximate it as some positive constant here
considering it varies slowly between 2 to 12 with changing
ω. The larger the εd , the stronger the interband transition is.
εd = 1 corresponds to the case without considering interband
transitions. There exhibits two tendencies as increasing εd ,

FIG. 7. The effect of interband transitions on the surface CBP
dispersion with φq = π/2, s2 = 2.6 × 1012 m2 s−2, ω2

p = 7.311 eV2,
and σzy = 90.75 (� cm)−1. The dashed line is the analytical solution
calculated from Eq. (26). The filled points stands for the forward
propagating modes (ω+), while the hollow points stands for the
backward propagating modes (ω−). We have taken absolute values
for the frequencies to compare the frequency differences of the two
modes.

FIG. 8. The frequency (a) and the decay length (b) as a func-
tion of σzy at q = 0.01 kF . The gray dashed lines denote the cutoff
frequency and the corresponding threshold AHC. The orange dotted
line denotes the AHC chosen in Fig. 9.

one is the overall decrease of the surface CBP frequency and
splitting of the two modes, the other is the disappearance of
surface modes, which can be understood well from Eq. (19)
such that κ becomes pure imaginary as εd goes to infinity.
For certain range of q, there is only one chiral mode left,
indicating its potential application on technologies that rely
on nonreciprocity.

The diappearing of the forward propagating mode can also
be achieved with increasing the AHC. Figures 6 and 7 are
based on the intrinsic AHC due to the Berry curvature of band
structure. However, in disordered ferromagnetic metals, the
extrinsic mechanisms such as side-jump and skew scattering
may play an even more important role in producing AHC,
which results in a much larger AHC and even a change of
sign [60,61]. We thus depict the effect of increasing AHC on
the two chiral modes in Fig. 8. To avoid the competitive effect
of interband transitions we have let εd = 1. The negative mode
has been taken as absolute value and denoted by φq = −π/2.
In contrast to the effect of εd , increasing AHC will not only
eliminate one chiral mode for certain q, but also enlarges the
overall frequency and the frequency difference between the
two chiral modes, as shown in Fig. 8(a). Above a threshold
value of AHC, the forward propagating mode merges with the
bulk mode, which is apparent as a divergence of the decay
length in Fig. 8(b).

The dependence of surface CBP frequency on φq is dis-
played in Fig. 9 at fixed q = 0.01 kF . To demonstrate the
importance of the interband effect, we compare the angular
dependence on φq with and without considering the interband
transitions. In Fig. 9(a), the interband transition is turned off

224426-8



SURFACE CHIRAL BERRY PLASMONS ON DISORDERED … PHYSICAL REVIEW B 107, 224426 (2023)

FIG. 9. Surface CBP frequency ω as a function of φq at a fixed
q = 0.01 kF . The effect of different value of AHC has been com-
pared with [in (a) with εd = 1] and without [in (b) with εd = 5] the
interband transitions.

(εd = 1). The frequency exhibits a sinusoidal dependence on
φq for nonzero AHC and is equal to ωs = ωp/

√
2 when σαβ =

0. As a qualitative demonstration, σzx and σzy has been set as
the same value in solving Eq. (23). According to the Figs. 6
and 7, ω is almost linearly dependent on q, we can thus use
the long wavelength result (Eq. (25)) to understand the sinu-
soidal dependence on φq. Take ω+ as an example, it increases
monotonically with the quantity of (σzx cos φq + σzy sin φq).
As σzx = σzy = σ , the quantity becomes

√
2σ cos(φq + π/4),

which has extrema at φq = π/4 or −3π/4, so is ω as shown
in Fig. 9(a). Another ratio of σzx to σzy will shift the extrema to
a different angle φq, which makes the angular dependence an
interesting measurement for the anisotropy of AHC. Noting
that the propagation direction of surface CBP is denoted by

φq rather than the sign of ω in this figure, ω has been taken
positive values only. For an AHC above the threshold value,
there is no forward propagating mode as explained in the
discussion on Fig. 8.

As the interband transition is turned on, we have taken
εd = 5 for an example, the surface CBP modes are com-
pletely forbidden to propagate in the directions of φq between
−0.1 π and 0.6 π , even if the AHC is below the threshold.
The presence of forbidden propagation directions of surface
plasmons on the Py arises as result of κ becoming more likely
to be pure imaginary as εd increases. In the rest directions,
the surface CBP frequency still depends on φq sinusoidally
with smaller extrema but at the same angle as in the εd = 1
case. The exhibition of forbidden direction is fully induced
by the interband transitions, indicating the significance of the
interband effect on the magnetic metals with occupied d bands
like Py.

V. CONCLUSION

To conclude, we have discussed the surface CBP on the
disordered bulk Py. The main result is that there are two
CBP modes on Py, whose frequency difference for a given
wave vector can be enlarged by increasing the AHC, while
the interband transition does the opposite. Above a threshold
AHC, there is only one chiral mode left and always moving
backward in the directions at an angle outside the forbid-
den range. Besides of being applied to devices that require
nonreciprocity, there might be an interesting application in
detecting the intrinsic AHC. For ferromagnetic metals, the
intrinsic AHC is hard to be identified from experiments, since
the side-jump contribution scales similarly to the intrinsic one.
The additional scatterings between electrons with phonons
and magnons make the situation even more complex. Surface
CBP might be a potential indicator for the intrinsic AHC,
whose anisotropy can be reflected by the phase of the sinu-
soidal dependence of the plasmon frequency on φq.
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R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M.
Vanwolleghem, C. R. Doerr, and H. Renner, What is — and
what is not — an optical isolator, Nature Photon. 7, 579 (2013).

[23] S. Mailis, On-chip non-magnetic optical isolator, Nat. Photon.
15, 794 (2021).

[24] S.-H. Yang, R. Naaman, Y. Paltiel, and S. S. P. Parkin, Chiral
spintronics, Nat. Rev. Phys. 3, 328 (2021).

[25] M. E. McHenry and D. E. Laughlin, Magnetic Properties of
Metals and Alloys, Physical Metallurgy, edited by D. E. Laugh-
lin and K. Hono, 5th ed. (Elsevier, 2014), pp. 1881–2008.

[26] M. Aoki, E. Shigematsu, R. Ohshima, T. Shinjo, M. Shiraishi,
and Y. Ando, Anomalous sign inversion of spin-orbit torque in
ferromagnetic/nonmagnetic bilayer systems due to self-induced
spin-orbit torque, Phys. Rev. B 106, 174418 (2022).

[27] S. P. Bommanaboyena, D. Backes, L. S. I. Veiga, S. S. Dhesi,
Y. R. Niu, B. Sarpi, T. Denneulin, A. Kovács, T. Mashoff,
O. Gomonay, J. Sinova, K. Everschor-Sitte, D. Schönke, R. M.
Reeve, M. Kläui, H.-J. Elmers, and M. Jourdan, Readout of
an antiferromagnetic spintronics system by strong exchange
coupling of Mn2Au and Permalloy, Nat. Commun. 12, 6539
(2021).

[28] T. Manoj, S. Kotha, B. Paikaray, D. Srideep, A. Haldar, K. V.
Rao, and C. Murapaka, Giant spin pumping at the ferromagnet
(permalloy) – organic semiconductor (perylene diimide) inter-
face, RSC Adv. 11, 35567 (2021).

[29] H. Bangar, A. Kumar, N. Chowdhury, R. Mudgal, P. Gupta,
R. S. Yadav, S. Das, and P. K. Muduli, Large spin-to-charge
conversion at the two-dimensional interface of transition-metal
dichalcogenides and permalloy, ACS Appl. Mater. Interfaces
14, 41598 (2022).

[30] H. Arava, F. Barrows, M. D. Stiles, and A. K. Petford-Long,
Topological control of magnetic textures, Phys. Rev. B 103,
L060407 (2021).

[31] V. Brajuskovic and C. Phatak, Understanding curvature ef-
fects on the magnetization reversal of patterned permal-
loy Archimedean spirals, Appl. Phys. Lett. 118, 152409
(2021).

[32] B. L. Le, J. Park, J. Sklenar, G.-W. Chern, C. Nisoli, J. D.
Watts, M. Manno, D. W. Rench, N. Samarth, C. Leighton,
and P. Schiffer, Understanding magnetotransport signatures in
networks of connected permalloy nanowires, Phys. Rev. B 95,
060405(R) (2017).

[33] W. Fonseca, F. Garcia, F. Caravelli, and C. de Araujo, Memris-
tive Effects in Nanopatterned Permalloy Kagomé Array, Phys.
Rev. Appl. 18, 014070 (2022).

[34] Q. Li, S. Xiong, L. Chen, K. Zhou, R. Xiang, H. Li, Z. Gao,
R. Liu, and Y. Du, Spin-wave dynamics in an artificial kagome
spin ice, Chinese Phys. Lett. 38, 047501 (2021).

[35] S. S.-L. Zhang and G. Vignale, Chiral surface and edge plas-
mons in ferromagnetic conductors, Phys. Rev. B 97, 224408
(2018).

[36] A. Liebsch, Electronic Excitations at Metal Surfaces (Springer
US, Boston, MA, 1997).

[37] A. Van Itterbeek, A. Dupré, and G. Brandt, Resistivity measure-
ments on permalloy films, Appl. Sci. Res. 9, 470 (1961).

[38] J.-H. Park, H.-W. Ko, J.-M. Kim, J. Park, S.-Y. Park, Y. Jo, B.-G.
Park, S. K. Kim, K.-J. Lee, and K.-J. Kim, Temperature de-
pendence of intrinsic and extrinsic contributions to anisotropic
magnetoresistance, Sci. Rep. 11, 20884 (2021).

[39] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[40] Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth,
D.-s. Wang, E. Wang, and Q. Niu, First Principles Calculation of
Anomalous Hall Conductivity in Ferromagnetic bcc Fe, Phys.
Rev. Lett. 92, 037204 (2004).

[41] X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt, Ab Initio
calculation of the anomalous Hall conductivity by Wannier
interpolation, Phys. Rev. B 74, 195118 (2006).

[42] A. van de Walle, M. Asta, and G. Ceder, The alloy theoretic
automated toolkit: A user guide, Calphad 26, 539 (2002).

[43] A. van de Walle, P. Tiwary, M. de Jong, D. Olmsted, M. Asta,
A. Dick, D. Shin, Y. Wang, L.-Q. Chen, and Z.-K. Liu, Effi-
cient stochastic generation of special quasirandom structures,
Calphad 42, 13 (2013).

224426-10

https://doi.org/10.1038/s41467-020-16190-z
https://doi.org/10.1364/JOSAB.30.000909
https://doi.org/10.1063/1.4927101
https://doi.org/10.1103/PhysRevB.96.081408
https://doi.org/10.1126/science.aay3676
https://doi.org/10.1021/acsphotonics.0c01909
https://doi.org/10.1038/nmat4425
https://doi.org/10.1103/PhysRevLett.130.196201
https://doi.org/10.1088/1361-648X/ab9bcb
https://doi.org/10.1038/s41598-021-99596-z
https://doi.org/10.1103/PhysRevB.105.245414
https://doi.org/10.1038/s41467-017-01205-z
https://doi.org/10.1103/PhysRevLett.118.245301
https://doi.org/10.1073/pnas.1519086113
https://doi.org/10.1038/nphoton.2013.185
https://doi.org/10.1038/s41566-021-00895-8
https://doi.org/10.1038/s42254-021-00302-9
https://doi.org/10.1103/PhysRevB.106.174418
https://doi.org/10.1038/s41467-021-26892-7
https://doi.org/10.1039/D1RA07349D
https://doi.org/10.1021/acsami.2c11162
https://doi.org/10.1103/PhysRevB.103.L060407
https://doi.org/10.1063/5.0045698
https://doi.org/10.1103/PhysRevB.95.060405
https://doi.org/10.1103/PhysRevApplied.18.014070
https://doi.org/10.1088/0256-307X/38/4/047501
https://doi.org/10.1103/PhysRevB.97.224408
https://doi.org/10.1007/BF02921844
https://doi.org/10.1038/s41598-021-00374-8
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevLett.92.037204
https://doi.org/10.1103/PhysRevB.74.195118
https://doi.org/10.1016/S0364-5916(02)80006-2
https://doi.org/10.1016/j.calphad.2013.06.006


SURFACE CHIRAL BERRY PLASMONS ON DISORDERED … PHYSICAL REVIEW B 107, 224426 (2023)

[44] J. Zhang, Y.-P. Zhang, and C.-M. Su, First-principles study of
FeNi1−xCrx (0�x�1) disordered alloys from special quasiran-
dom structures, Calphad 71, 102007 (2020).

[45] G. Nahrwold, J. M. Scholtyssek, S. Motl-Ziegler, O. Albrecht,
U. Merkt, and G. Meier, Structural, magnetic, and transport
properties of Permalloy for spintronic experiments, J. Appl.
Phys. 108, 013907 (2010).

[46] D. M. C. Nicholson, W. H. Butler, W. A. Shelton, Y. Wang,
X.-G. Zhang, G. M. Stocks, and J. M. MacLaren, Magnetic
structure and electronic transport in permalloy, J. Appl. Phys.
81, 4023 (1997).

[47] N. Ghosh, H. Das, M. Gafur, and A. A. Hossain, Formation
and magnetic properties of nanocrystalline 78.5-permalloy by
mechanical alloying, Procedia Eng. 90, 136 (2014).

[48] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[49] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to
the projector augmented-wave method, Phys. Rev. B 59, 1758
(1999).

[50] B. Hammer, L. B. Hansen, and J. K. Nørskov, Improved adsorp-
tion energetics within density-functional theory using revised
Perdew-Burke-Ernzerhof functionals, Phys. Rev. B 59, 7413
(1999).

[51] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.
Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules,
solids, and surfaces: Applications of the generalized gradient
approximation for exchange and correlation, Phys. Rev. B 46,
6671 (1992).

[52] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-
zone integrations, Phys. Rev. B 13, 5188 (1976).

[53] M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F.
Bechstedt, Linear optical properties in the projector-augmented
wave methodology, Phys. Rev. B 73, 045112 (2006).

[54] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt,
and N. Marzari, Wannier90: A tool for obtaining maximally-
localised Wannier functions, Comput. Phys. Commun. 178, 685
(2008).

[55] Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov,
WannierTools: An open-source software package for novel
topological materials, Comput. Phys. Commun. 224, 405
(2018).

[56] S. L. Adler, Quantum theory of the dielectric constant in real
solids, Phys. Rev. 126, 413 (1962).

[57] N. Wiser, Dielectric constant with local field effects included,
Phys. Rev. 129, 62 (1963).

[58] M. Zhang and C. Deng, Magnetic, optical and electrical prop-
erties of permalloy films by DC magnetron sputtering, J Mater
Sci: Mater Electron 32, 4949 (2021).

[59] M. J. van Setten, S. Er, G. Brocks, R. A. de Groot, and
G. A. de Wijs, First-principles study of the optical properties
of MgxTi1−xH2, Phys. Rev. B 79, 125117 (2009).

[60] L. Ye, Y. Tian, X. Jin, and D. Xiao, Temperature dependence of
the intrinsic anomalous Hall effect in nickel, Phys. Rev. B 85,
220403(R) (2012).

[61] Y. Q. Zhang, N. Y. Sun, R. Shan, J. W. Zhang, S. M. Zhou,
Z. Shi, and G. Y. Guo, Anomalous Hall effect in epitaxial
permalloy thin films, J. Appl. Phys. 114, 163714 (2013).

224426-11

https://doi.org/10.1016/j.calphad.2020.102007
https://doi.org/10.1063/1.3431384
https://doi.org/10.1063/1.364924
https://doi.org/10.1016/j.proeng.2014.11.826
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.7413
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.73.045112
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2017.09.033
https://doi.org/10.1103/PhysRev.126.413
https://doi.org/10.1103/PhysRev.129.62
https://doi.org/10.1007/s10854-020-05234-1
https://doi.org/10.1103/PhysRevB.79.125117
https://doi.org/10.1103/PhysRevB.85.220403
https://doi.org/10.1063/1.4827198

