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Effects of the Dzyaloshinskii-Moriya interaction on the Fermi-Pasta-Ulam behavior
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We study the behavior of nonlinear spin motion in one-dimensional magnetic chain models. We explore how
the various parameters affect the phase transitions between linear and nonlinear behaviors both with and without
the Dzyaloshinskii-Moriya interaction (DMI). A Fourier analysis method is employed to investigate the modes
in the structure with DMI. In all cases, we find that uniaxial anisotropy is necessary for the Fermi-Pasta-Ulam
effect to appear. We investigate the DMI influence through the use of phase diagrams that examine the transitions
between the three fundamental states: linear, Fermi-Pasta-Ulam, and ergodic. The DMI does make significant
changes in these phase diagrams because it allows for additional routes for the distribution of energy.
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I. INTRODUCTION

Fermi, Pasta, and Ulam (FPU) addressed a fundamental
issue in nonlinear physics through a numerical study of the vi-
brational motion of a one-dimensional linear chain [1]. Their
expectation for a linear system was, if energy is put into one
eigenmode, it will eventually be spread out equally through all
the eigenmodes. This is the ergodic state. What they found,
in contrast, for a nonlinear system was very different. En-
ergy added to one mode was transferred to nearby modes
in frequency, but then would nearly completely return to the
original mode as time progressed. Ultimately, the energy re-
mained in a small number of modes, cycling between these
modes with a time that typically is several thousand periods
of the original motion.

The FPU recurrence was explained by Zabusky and
Kruskal through soliton dynamics [2]. They showed that, in
the continuum limit, the FPU problem was related to the
Korteweg de Vries differential equation and that a large am-
plitude periodic wave would decompose into solitons with
different speeds. The collisions of the fast and slow solitons
lead to a periodic reconstruction of the initial state.

Surprisingly, there has been relatively little work on the
equivalent FPU problem in magnetic systems [3]. We recently
showed [4] that it was possible to find FPU-like behavior in a
chain of exchange-coupled spins, but only when some uniax-
ial anisotropy (or effective demagnetizing field) was present.
A similar anisotropy requirement has been noted in other pub-
lications devoted to Dzyaloshinskii-Moriya interaction (DMI)
[5]; this includes work on ferromagnetic waveguides [6], and
quantum-state transfer and storage devices [7,8].

There are fundamental questions that still need to be
answered. It is important to better understand the role of
the uniaxial anisotropy, which is required to find the FPU
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behavior. Furthermore, magnetic systems with DMI provide
interesting and fundamental twists to the problem in that the
DMI creates a nonreciprocal spin-wave behavior [9–11]. A
second important issue with DMI involves the identification
of the linear eigenstates. The standing spin waves in a one-
dimensional finite chain in a normal ferromagnet are no longer
eigenmodes in a finite system with DMI. In contrast, the
eigenmodes in a system with DMI have a drift velocity. The
net result for the DMI case is that the nodes remain fixed in
time while the antinodes drift with a constant velocity [9].

Exploring these issues may be of importance for both fun-
damental and experimental research efforts [10]. For example,
Moon et al. performed a study of spin-wave properties in the
presence of DMI in ferromagnetic/normal metal bilayers to
investigate asymmetric spin-wave attenuation and excitation
amplitudes [11]. Their results may be useful for characterizing
interfacial DMI and hence, spintronic devices. There is addi-
tional interest in developing a greater understanding for DMI
materials for applications in spin waves [12], magnetic soli-
tons [13], skyrmions (stable vortexlike magnetic structures)
[14], quantum computing [15–19], spintronics [20–23], and
other spin-based technologies [24,25].

There have also been a variety of noteworthy nonlinear
spin-wave studies with DMI in recent years. The following
three examples are representative of the studies. The most
recent of the examples, Wang et al. studied the magnonic
analog to an optical frequency comb (a discrete set of fre-
quencies with equal spacing) [26]. Verba et al. did a study
of nonlinear spin waves dynamics under the influence of
DMI using Hamiltonian formalism [27]. They explored non-
linear spin-wave interactions in a ferromagnetic-heavy-metal
bilayer nanowire. Their results offer a means to control signal
processing effects in nanowires, as well as using spin-wave
amplitude and the nonreciprocal spin-wave dispersion shifts
for the possible use in nonreciprocal devices with power de-
pendence. An investigation for the behaviors of spin waves
when DMI is present in various ferromagnetic materials was
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performed by Wang et al. [28]. Their results may be beneficial
for designing magnonic devices such as unidirectional trans-
mission fibers, which use the DMI-induced total reflection of
spin waves. Their results offer a means to probe DMI strength
as well.

In this paper, we study nonlinear spin waves, and the result-
ing consequences for FPU, in the presence of DMI. Because
the eigenstates are no longer standing waves, we use a discrete
Fourier transform analysis method to decompose the signal
into its constituent frequencies. The Fourier transform was
calculated with a fast Fourier transform (FFT) algorithm as
this is more efficient in computational processing. Examining
the amplitudes of the FFT gives us a representation of the
energy distribution in each mode in the magnetic system.
This method can be applied when DMI is present as well as
when it is absent. This method also allows us to explore the
resulting FPU behavior for a variety of parameters. As such,
we investigate the phase diagrams showing how the dynamic
magnetic behavior (linear, FPU, or ergodic) depends on the
applied magnetic field, the effective anisotropy field, and the
initial amplitude for the system with and without DMI.

There are several outcomes of this work that are worth
highlighting. First, we study how the onset of the FPU behav-
ior depends on the effective anisotropy field. As a result, we
develop an explanation of why uniaxial anisotropy is neces-
sary for the FPU behavior. It turns out the answer is simple. In
the one-dimensional chain, solitons only exist in the presence
of this anisotropy, and similarly to the elastic system, solitons
are a requirement for the FPU behavior. Second, the method
developed to characterize eigenstates in the system with DMI
works well and reproduces earlier work in standard systems.
Finally, in the presence of DMI the initial energy required
for the system to transition to the ergodic limit increases
substantially. We show that this occurs because the DMI inter-
action allows a direct nonlinear excitation of more frequencies
than are found in a system with only the standard exchange
interaction. Thus, the system can accommodate more energy
before transitioning to the ergodic limit.

II. BACKGROUND

There are three basic behaviors in the dynamics of nonlin-
ear systems. If we imagine starting the system in an eigenstate
or a small combination of eigenstates, then in the linear limit
the system remains in the initial state. The second behavior
is similar to the classic FPU-like behavior. In this phase the
initial state will decompose over time but reconstitute period-
ically. The third phase is the ergodic phase where the system
will have its initial energy thermalize and distribute between
all available states, no longer presenting distinguishable wave
forms.

Previously, we explored whether FPU-like behavior could
be found for a quasi-one-dimensional spin system. We found
that some magnetic systems can have FPU-like behavior
under specific conditions. Achieving FPU-like behavior ex-

FIG. 1. Schematic illustration of the geometry in this paper. The
chain is along the y axis, the applied magnetic field, H0, is along the
z axis, and the spin precession is in the x − y plane. M(i) indexes
the site position of the ith spin.

pression by the system proved to be anisotropy dependent.
Systems with one of the transverse directions being a hard
axis and possessing an effective uniaxial anisotropy were suc-
cessfully tested by starting the system in a low-order magnetic
linear eigenstate and varying the amplitude of the initial kick
to the system. We characterized the resulting motions by pro-
jecting the motion of the magnetization onto a set of linear
eigenstates.

We looked at damping in the system through exploring
a dimensionless parameter α. Low damping materials such
as Heusler compounds with damping α ≈ 10−3 [29], cobalt-
iron alloys with α ≈ 10−4 [30], and yttrium iron garnet with
α ≈ 10−5 are available [31,32]. Damping around these values
showed clear FPU-like behavior similar to our results without
damping.

III. THEORETICAL CONSIDERATIONS

Previously, we explored the FPU-like behavior in our sys-
tem by looking at the Zeeman, exchange, and anisotropy (or
equivalent demagnetization) fields only. We started the quasi-
one-dimensional model of N exchange-coupled thin films in
a low-order magnetic linear eigenstate. The spin system is
illustrated in Fig. 1.

We characterized the resulting motions by projecting the
motion of the magnetization onto a set of linear eigenstates,
i.e., standing waves, given by Eq. (1). The projection method
is normalized by dividing through by the magnetization M.

an(t ) = 1

N

∣∣∣∣∣
N∑

i=1

My(i, t )

M
cos

[
πn(i − 1)

N − 1

]∣∣∣∣∣. (1)

When we include the DMI contribution, our equations of
motion are given by

dM(i)

dt
= −|γ |M(i) × {H0ẑ − 4πMx(i)x̂ + J[M(i + 1)

+ M(i − 1)] + HDMI(i)}. (2)

M(i) is the magnetization of the ith site of the system
along the y direction, the gyromagnetic ratio is given by
|γ | = 18.22 rad/(ns kOe), the applied magnetic field is H0

applied along ẑ, the −4πMx(i)x̂ provides the effective de-
magnetizing/anisotropy field for thin films, the magnetization
is |M| = 1.0 kG, J is the exchange-coupling constant with
JM = 20.0 kOe, and HDMI(i) is the DMI in the effective field
from the DMI as given by Eq. (3).

HDMI(i)

⎧⎨
⎩

{Dy[Mz(i + 1) − Mz(i − 1)] − Dz[My(i + 1) − My(i − 1)]} x̂
{−Dx[Mz(i + 1) − Mz(i − 1)] + Dz[Mx(i + 1) − Mx(i − 1)]} ŷ
{Dx{My(i + 1) − My(i − 1)} − Dy[Mx(i + 1) − Mx(i − 1)]} ẑ

. (3)
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In the one-dimensional chain, with x as the symmetry-
breaking direction, only the Dz terms contribute, and the
equations of motion become

dMx(i)

dt
= −|γ |{J{My(i)[Mz(i + 1) + Mz(i − 1)]

− Mz(i)[My(i + 1) + My(i − 1)]} + My(i)H0

− DzMz(i)[Mx(i + 1) − Mx(i − 1)]}, (4a)

dMy(i)

dt
= −|γ |{J{Mz(i)[Mx(i + 1) + Mx(i − 1)]

− Mx(i)[Mz(i + 1) + Mz(i − 1)]}
+ 4πMx(i)Mz(i) − Mx(i)H0 − DzMz(i)

× [My(i + 1) − My(i − 1)]}, (4b)

dMz(i)

dt
= −|γ |{J{Mx(i)[My(i + 1) + My(i − 1)]

− My(i)[Mx(i + 1) + Mx(i − 1)]}
+ 4πMx(i)My(i) + Dz{Mx(i)[Mx(i + 1)

− Mx(i − 1)] + My(i)[My(i + 1) − My(i − 1)]}}.
(4c)

The total energy of the system is given by Eq. (5) where
〈i, j〉 refers to summing over nearest neighbors. The first term
is the energy from the exchange field, the second term is the
DMI contribution, the third term gives the Zeeman contri-
bution, and the fourth term is the effective demagnetization
field/anisotropy contribution, where we have added a factor p
that allows us to scale this energy.

E = −
∑
〈i, j〉

J (Mi · M j )

−
∑
〈i, j〉

Dz · (Mi × M j ) −
∑

i

Mi · H0ẑ −
∑

i

2π p(M ix̂)2.

(5)

As a check, we have insured that energy is conserved for
all our numerical results.

IV. IDENTIFYING THE TIME EVOLUTION OF THE
NORMAL MODES WHEN DMI IS PRESENT

The spatial projection method used previously no longer
works when we include the DMI term because the standing-
wave assumption is no longer valid when DMI is included.
As mentioned earlier, one has wavelike profiles with a drift
velocity but with stationary nodes. These complications bring
up the question, how can one decompose the motion of the
magnetization into normal modes when DMI is present?

V. TECHNIQUE

We decompose the motion into normal modes by using an
iterative overlapping FFT to average the amount of energy
in each representative frequency within a given time bin. We
refer to this scanning FFT method as binning.

We obtain the Mx, My, and Mz time data from the equa-
tions of motion, Eqs. (4), by iterating forward numerically
using second-order Runge-Kutta integration with a �t =
10−5 ns time step. We used typical run times of 130 ns.
Run times of 200–350 ns with a time step of �t = 10−6 ns
were used to check that results were independent of the time
step.

We use bins of 16 ns, take an FFT of My(t ) at each site, find
the amplitude for each frequency, and sum the results for each
site. Then we plot the summed amplitude for the frequencies
to produce a data point for each frequency. The bin is then
shifted by 2 ns and the process is repeated. Each FFT gives
a snapshot of the energy distribution for central frequency
in each bin. When the FFT data points are plotted together
sequentially, they trace out the FPU-like frequency modes of
the system.

The tunability in the time between the FPU-like recur-
rences we found in our previous paper was important for our
binning method. If the FPU-like behavior peaks are too close
together, the FFT has trouble with time resolution. Each bin
requires enough total time data to satisfy a small frequency
resolution adequate to separate the constituent frequencies.
Our frequency resolution is � f ≈ 0.015 GHz. We tuned the
system by using an adequate applied field strength to slow the
FPU-like recurrence enough to meet the resolution require-
ments. We also overlapped the bins to better time-average the
data. Figure 2 shows a general example of how the method
works. We note that the total energy is conserved despite the
changing amplitude in the My(t ).

The results for the binning method are compared to the
results of the projection method in our previous paper in
Fig. 3. The DMI field is initially excluded in order to compare
the methods. The initial configuration is given by Eq. (6)
where A is the initial amplitude, C1 and C2 are the percentage
for combining the modes, n1 and n2 are the respective mode
numbers, i is the index for each site, and N is the total number
of sites.

My(i) = A

{
C1 cos

[
n1(i − 1)π

N − 1

]
+ C2 cos

[
n2(i − 1)π

N − 1

]}
.

(6)

We start the magnetic system in the initial condition with it
in C1 = 95%, n1 = 0 mode and C2 = 5%, n2 = 2 mode. This
initial condition was chosen to introduce asymmetry. We use
N = 256 spins with an initial amplitude of A = 0.1, a time
step of �t = 10−5 ns, maximum time of tmax = 200 ns, and
an applied magnetic field of H0 = 9.9 kOe.

The two methods produce very similar results. We evaluate
the effective time for an individual bin by simply using the
central time of that bin. The amplitudes for Fig. 3(b) have
been scaled to match the projection method of Fig. 3(a).
As previously stated, the projection method is already
normalized.

We now explore the transitions between the linear, FPU-
like, and ergodic phases for the cases when DMI is both absent
and present. To do this, we use phase diagrams indicating the
regions of parameter space where either linear behavior, FPU
behavior, or ergodic behavior are found. We use the projection
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FIG. 2. Illustration of the binning method. We use a bin size of 16 ns indicated by the orange box. As an example, My−sum(t ) =
(1/N )

∑
i My(i)/Ms. We then perform an FFT at each site as described in the text and plot the normalized amplitude of the constituent

frequencies. The amplitudes are normalized by dividing by the largest frequency amplitude in the FFT of the data in the first bin, making
it 1, to scale all the plots. In (a) the bin starts at t = 0. We shift the bin by 2 ns in frame (b) and plot the new FFT data that shows different
amplitude strengths. Frame (c) shows the results again with the time bin shifted by an additional 2 ns.

method when DMI is absent and the binning method when
DMI is present.

VI. RESULTS

Since the binning method is a different technique, we
present Fig. 4 as an example of how the phase regions are
classified using the binning method. For this example, the
initial state is nearly the same as for Fig. 2 with the exception
that the DMI value is set to DzM = 2.5 kOe and the applied
field is varied. Since the frequencies no longer show the transi-
tion towards ergodic behavior clearly, we change to using the
phrase “towards ergodic” to indicate that the number of states
is substantially larger, but perhaps not quite the ergodic state
yet. The linear, FPU-like, and tending towards ergodic plots
are clearly distinct, i.e., in the linear case the amplitudes of

the modes are nearly independent of time, as seen in Fig. 4(a).
In the FPU domain, the amplitudes of the different modes
oscillate in time, as in Fig. 4(b). Finally, in Fig. 4(c) the
amplitudes vary irregularly in time. The FFT amplitudes are
normalized as discussed earlier. We exclude examples for the
projection method since our previous paper shows the plots of
the different states.

Figure 5 demonstrates examples of the limiting factors
associated with the binning method. The parameters for this
figure are A = 0.5, H0 = 5.0 kOe and the initial state is started
in the n = 1 configuration. Figure 5(a) shows the results
when the standard projection method is used, and Fig. 5(b)
shows the results for the binning method. If the FPU oscil-
lations occur too rapidly, as seen in (a), it will exceed the
resolution of the binning method producing vague results as
seen in (b).
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FIG. 3. A comparison of the FPU-like results. The system is
started in the 95% n = 0 and 5% n = 2 states with the initial ampli-
tude A = 0.1 for the projection method in (a) and the binning method
in (b). The binning method utilizes midpoint values, producing a
slight shift in data at the beginning and end of plot (b). In addition,
there is a slight distortion of the width of the peaks.

A. Phase diagrams for systems without DMI

We explore how the FPU behavior depends on the parame-
ters of the system through a series of phase diagrams. Initially,
in Figs. 6–8, we consider the case where there is no DMI in
the system. The system generally uses the same parameters as
in Figs. 2–5 but varying the initial amplitude A, applied field
strength H0, and percent strength of the demagnetization field
p to create the phase diagram. For each case, the system is
started in the C1 = 95% for n1 = 0 and C2 = 5% for n2 = 2
state. The regions where the system shows linear behavior is
below the red boxes; FPU-like behavior is seen in the region
between the red and blue boxes, and ergodic behavior occurs
above the blue boxes.

Figure 6 explores the phase diagram for the variables ap-
plied field and demagnetizing field. The initial amplitude is
held constant at A = 0.12, so to some extent a larger applied
field represents a larger energy for the initial state. We alter
the demagnetization/anisotropy field by multiplying it by a
value p ranging between 0.0 and 1.5. As the applied field is
increased, the phase diagram shows a transition from linear to
FPU-like, then to ergodic as expected. As the demagnetization
field is reduced, the required applied field amplitude to cause
phase transitions increases rapidly, and below about 12% of
the demagnetization field, the system remains linear without
transitions in the region studied, stressing the importance of
the anisotropy provided by the demagnetization field. This is
expected as we initially did not see FPU-like behavior [4] until
we added the demagnetization field to provide the uniaxial

FIG. 4. Examples of linear, FPU, and ergodic behavior for a
system with DMI. The system is started the same as in Fig. 2 with the
DMI value set to DzM = 2.5 kOe while the applied field is varied.
(a) When H0 = 0.1 kOe, the system remains in its initial state with
slight oscillations. (b) When H0 = 5.0 kOe the initial state distributes
to nearby frequencies but periodically returns to the initial state. (c)
When H0 = 75.0 kOe, the characteristic nonlinear behavior of the
system evolves towards an ergodic state.

anisotropy. Larger values of the demagnetization field have
little effect.

We can understand this behavior in a simple way. As men-
tioned in the Introduction, the FPU effect is related to soliton
motion. As has been shown by Mikeska and others [33,34] in
a one-dimensional chain, solitons only exist in the presence of
some effective easy-plane anisotropy. For us, this is provided
by the effective demagnetizing field. When the demagnetizing
field goes to zero, there are no solitons and therefore, no
magnetic FPU.
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FIG. 5. Example of the ergodic case without DMI. The projec-
tion method and the binning method are applied to the same case. The
system is started in the n = 1 state with A = 0.5 and H0 = 5.0 kOe.
(a) The projection method shows a clear breaking of the symmetry
and ergodic behavior near 90 ns. (b) The frequencies no longer show
the transition towards ergodic behavior clearly.

In Fig. 7, we examine the phase diagram for the case
where the variables are the initial amplitude and the demag-
netization field. The applied field is held constant at H0 =
9.9 kOe. When we increase the initial amplitude of the sys-
tem, we again increase the energy of the system and the
potential for nonlinear behavior. The system requires a larger
initial amplitude at smaller demagnetization field strengths to
transition from linear to FPU-like and from FPU-like to er-
godic behavior. As the demagnetization field is increased to
about 50%, the energy appears adequate to allow the ergodic
state to be reached at lower initial amplitudes. The FPU-like

FIG. 6. Phase diagram for the applied field and demagnetization
field variables. The system is started in 95% n = 0 and 5% n = 2
states with the initial amplitude held constant at A = 0.12. The FPU
state clearly vanishes for low values of the demagnetization field.

FIG. 7. Phase diagram for the initial amplitude and demagne-
tization field variables. The system is started in a 95% n = 0 and
5% n = 2 state with the applied field held constant at H0 = 9.9 kOe.
The demagnetization field was incrementally increased from 10% to
100% while varying the initial amplitude to estimate the linear, FPU,
and ergodic phase transition conditions.

region has a narrow range of initial amplitudes between the
linear and ergodic regions.

Figure 8 explores the phase diagram for the variables’
initial amplitude and applied field. As the applied field moves
from small field to large field, there is an increase in the
energy to the system, i.e., the nonlinear terms become more
important, and less initial amplitude is required to cause the
phase transitions.

B. Phase diagrams with DMI

The introduction of DMI has the potential to make sig-
nificant changes in the FPU behavior. The reason for this is
that, as indicated in the Introduction, the eigenstates of the
system are no longer standard standing waves. The nodes
remain fixed in time, but the antinodes drift with a constant
velocity. We note several recent review articles on DMI and
its consequences have recently appeared [35,36].

As before, we investigate the phase transitions for various
combinations between the initial amplitude A, applied field
strength H0, and percent strength of the demagnetization field
p. Again, the system is started in the 95% n = 0 and 5% n = 2
state. We now include DMI and hold the DMI constant at

FIG. 8. Phase diagram for the initial amplitude and applied field
variables. The system is started in a 95% n = 0 and 5% n = 2 state
with the demagnetization field held constant at 100%. At a fixed field,
increasing the amplitude added extra energy to the system, causing
transitions from the linear state to the FPU state to the ergodic state.
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FIG. 9. Phase diagram for the applied field and demagnetization
field variables. The system is started in a 95% n = 0 and 5% n =
2 state with the inclusion of the DMI field set at DzM = 2.0 kOe
with the initial amplitude held constant at A = 0.24. The FPU-like
to ergodic phase transition is seen in (a) while the linear to FPU-like
phase transition is seen in (b).

Dzm = 2.0 kOe for Figs. 9 and 10. As stated earlier, the
boundary between FPU-like and towards ergodic is difficult
to distinguish. The criteria we used for determining this re-
gion was when the FPU-like behavior was no longer clear
and when the FFT amplitude peaks become irregular in time
with no distinguishable pattern. Sometimes the FFT amplitude
peaks collapse completely, like the example given previously
in Fig. 5(b).

When DMI is included, the general shape of the phase
diagram in Fig. 9 is similar to that in Fig. 6 where there is
no DMI. However, there are some differences. Without DMI
the transition from linear to FPU takes place at an external
field of about 4 kOe over most of the demagnetization field
values. With DMI this same transition now typically occurs
near values of 0.25 kOe. In addition, the asymptotic behavior

FIG. 10. Phase diagram for the initial amplitude and demagne-
tization field variables. The system is started in a 95% n = 0 and
5% n = 2 state with the inclusion of the DMI field set at DzM =
2.0 kOe with the applied field held constant at H0 = 6.0 kOe. The
demagnetization field was increased from 10% to 100% while vary-
ing the initial amplitude to estimate the linear, FPU, and ergodic
phase transition conditions.

FIG. 11. Phase diagram for the demagnetization field and DMI
variables. The system is started in a 95% n = 0 and 5% n = 2 state
with the initial amplitude held constant at A = 0.12 with the applied
field held constant at H0 = 9.9 kOe. The DMI value is increased
from DzM = 0.75 kOe to DzM = 5.0 kOe while varying the demag-
netization field strength to estimate the linear, FPU, and ergodic
phase transition conditions.

for the FPU/ergodic transition seen at low demagnetization
features occurs at a much higher value of the demagnetization
field. We suggest that both these features are a result of there
being additional nonlinear paths for energy distribution in the
system with DMI. This will be explicitly demonstrated later.

In Fig. 10, we create the phase diagram as a function of
the demagnetization field strength and the initial amplitude
of the system while holding the applied field constant at
H0 = 6.0 kOe. In comparison to Fig. 7, the field strength had
to be significantly decreased to bring the transition amplitudes
down to the same scale as the no DMI case. The requirement
for a large decrease in applied field strength again could be
a result of there being additional nonlinear paths for energy
distribution in the system with DMI.

In Fig. 11, we investigate the phase diagram as a function
of the variables, demagnetization field percentage, and DMI
strength and hold the initial amplitude at A = 0.12 with the
applied field at H0 = 9.9 kOe. The first thing to notice is that,
for these values, the transition to the ergodic limit occurs at
very high demagnetizing fields (or anisotropy values). It is
well outside the values in the graph, at times near 5000% of
the typical demagnetization field.

We also explored various initial amplitudes ranging be-
tween A = 0.12 and A = 0.6. Increasing the initial amplitude
brought the linear to FPU-like transitions to lower and lower
anisotropy/demagnetization field strengths. A similar result
was previously seen in Fig. 9(b). Pure linear behavior was no
longer able to be found after amplitudes reached A = 0.25.
In all cases, the transition from FPU-like to towards ergodic
required excessively large demagnetization fields.

We note that we explored phase diagrams for the initial
amplitude/DMI case as well as the applied field/DMI case
with unremarkable results.

Figure 12 is a column chart showing how many frequencies
engage in the FPU behavior as a function of the DMI cou-
pling constant. We examine three different cases with different
applied fields or demagnetization fields while increasing the
magnitude of the DMI contribution. The system is started
in the 95% n = 0 and 5% n = 2 state with an amplitude of
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FIG. 12. Column chart depicting the number of frequencies en-
gaged in the FPU behavior. For all three comparisons, the systems are
started in a 95% n = 0 and 5% n = 2 state with an initial amplitude
A = 0.12. The demagnetization field and applied field were slightly
varied for each case. Case 1 has an applied field H0 = 9.9 kOe and
the demagnetization field is 100%. Case 2 has an applied field H0 =
10.0 kOe and 100% demagnetization field. Case 3 has an applied
field H0 = 10.0 kOe and 95% demagnetization field.

A = 0.12 for all three cases. Case 1 has the applied field
strength set at H0 = 9.9 kOe and the demagnetization field
set at 100%. Case 2 has the applied field set slightly higher
at H0 = 10.0 kOe and the demagnetization field set at 100%.
Case 3 has the applied field set at H0 = 10.0 kOe and the
demagnetization field set at 95%.

We estimated frequency engagement by looking at the FFT
amplitudes of the frequencies and whether each frequency
possessed oscillatory behavior. To measure engagement, we
required that a mode have an amplitude which is 5% or larger
compared to that of the mode with the largest amplitude. The

increase in the number of frequencies engaged in the FPU
behavior as the DMI value is increased suggests and supports
that the presence of DMI creates a greater opportunity for the
systems energy to distribute through more paths.

VII. CONCLUSIONS

In summary, we address the possibility of FPU behavior in
systems both with and without DMI. Because the presence
of DMI does not result in standing waves, we introduce a
binning method to identify the states present in the system.
The binning method is validated by reproducing the known
results obtained from the projection method when no DMI
is present in the magnetic system. This allows us to explore
systems with DMI contributions that otherwise would not
have been possible. The method currently has resolution limi-
tations imposed by processor speeds and compromises in data
acquisition rates.

The phase diagrams for the magnetic system without DMI
contributions confirmed the requirement of having a uniaxial
anisotropy present in order to transition from a linear behavior
to the FPU behavior. In many systems, a demagnetization field
will provide the effective uniaxial anisotropy. Figures 6 and 7
demonstrate that as the initial energy is increased, the system
progressively transitions from the linear state to the FPU state
and followed by the ergodic state.

When DMI is included in the system, there exists a greater
potential for the energy in the system to be distributed to
multiple modes. The “towards ergodic” limit can be very large
while the linear limit can become very low, as seen in Fig. 10.
The existence of a demagnetization/anisotropy field remains
critical to the existence of the FPU state. Overall, the FPU-like
nonlinear behavior is easier to achieve and more difficult to
transition out of when DMI is present.
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Rev. B 95, 144401 (2017).

[13] J. Tan, Z.-H. Deng, T. Wu, and B. Tang, J. Magn. Magn. Mater.
475, 445 (2019).

[14] D. Prychynenko, M. Sitte, K. Litzius, B. Krüger, G. Bourianoff,
M. Kläui, J. Sinova, and K. Everschor-Sitte, Phys. Rev. Appl. 9,
014034 (2018).

[15] V. V. Mazurenko, Y. O. Kvashnin, A. I. Lichtenstein, and M. I.
Katsnelson, J. Exp. Theor. Phys. 132, 506 (2021).

[16] J. Sampaio, A. V. Khvalkovskiy, M. Kuteifan, M. Cubukcu, D.
Apalkov, V. Lomakin, V. Cros, and N. Reyren, Appl. Phys. Lett.
108, 112403 (2015).

[17] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
[18] P. W. Shor, SIAM J. Comput. 41, 303 (1999).

224421-8

https://doi.org/10.1103/PhysRevLett.15.240
https://doi.org/10.1103/PhysRevLett.98.047202
https://doi.org/10.1103/PhysRevLett.120.167203
https://doi.org/10.1038/srep45498
https://doi.org/10.1016/j.jmmm.2020.166981
https://doi.org/10.1016/j.jmmm.2016.11.116
https://doi.org/10.1088/1674-1056/24/7/077505
https://doi.org/10.1103/PhysRevB.99.214429
https://doi.org/10.1088/1361-648X/abec1a
https://doi.org/10.1103/PhysRevB.88.184404
https://doi.org/10.1103/PhysRevB.95.144401
https://doi.org/10.1016/j.jmmm.2018.11.048
https://doi.org/10.1103/PhysRevApplied.9.014034
https://doi.org/10.1134/S1063776121040178
https://doi.org/10.1063/1.4944419
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1137/S0036144598347011


yEFFECTS OF THE DZYALOSHINSKII-MORIYA … PHYSICAL REVIEW B 107, 224421 (2023)

[19] A. H. Comstock, C-T. Chou, Z. Wang, T. Wang, R. Song, J.
Sklenar, A. Amassian, W. Zhang, H. Lu, L. Liu et al., Nat.
Commun. 14, 1834 (2023).

[20] D. Cortés-Ortuño, M. Beg, V. Nehruji, L. Breth, R. Pepper,
T. Kluyver, G. Downing, T. Hesjedal, P. Hatton, T. Lancaster
et al., New J. Phys 20, 113015 (2018).

[21] B. H. Zhang, Y. S. Hou, Z. Wang, and R. Q. Wu, Phys Rev. B
103, 054417 (2021).

[22] Y. Ga, Q. Cui, J. Liang, D. Yu, Y. Zhu, L. Wang, and H. Yang,
Phys. Rev. B 106, 054426 (2022).

[23] J. Liang, M. Chshiev, A. Fert, and H. Yang, Nano Lett. 22,
10128 (2022).

[24] N. M. Vargas, F. Torres, A. A. Baker, J. R. I. Lee, M. Kiwi, T.
M. Willey, C. Monton, and I. K. Schuller, Appl. Phys. Lett. 117,
213105 (2020).

[25] Z. Wang, Y. Cao, R. Wang, B. Liu, H. Meng, and P. Yan, J.
Magn. Magn. Mater. 512, 167014 (2020).

[26] Z. Wang, H. Y. Yuan, Y. Cao, Z.-X. Li, R. A. Duine, and P. Yan,
Phys. Rev. Lett. 127, 037202 (2021).

[27] R. Verba, V. Tiberkevich, and A. Slavin, Phys. Rev. B 99,
174431 (2019).

[28] Z. Wang, B. Zhang, Y. Cao, and P. Yan, Phys. Rev. Appl. 10,
054018 (2018).

[29] C. Sterwerf, S. Paul, B. Khodadadi, M. Meinert, J.-M.
Schmalhorst, M. Buchmeier, C. K. A. Mewes, T. Mewes, and
G. Reiss, J. Appl. Phys. 120, 083904 (2016).

[30] M. A. W. Schoen, D. Thonig, M. L. Schneider, T. J. Silva, H.
T. Nembach, O. Eriksson, O. Karis, and J. M. Shaw, Nat. Phys.
12, 839 (2016).

[31] V. Lauer, D. A. Bozhko, T. Brächer, P. Pirro, V. I. Vasyuchka,
A. A. Serga, M. B. Jungfleisch, M. Agrawal, Y. V. Kobljansky,
G. A. Melkov et al., Appl. Phys. Lett. 108, 012402 (2016).

[32] H. Chang, P. Li, W. Zhang, T. Liu, A. Hoffman, L. Deng, and
M. Wu, IEEE Mag. Lett. 5, 6700104 (2014).

[33] H. J. Mikeska, J. Phys. C.: Solid State Phys. 11, L29 (1978).
[34] A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rep.

194, 117 (1990).
[35] R. E. Camley and K. L. Livesey, Surf. Sci. Rep. 78, 100605

(2023).
[36] M. Kuepferling, A. Casiraghi, G. Soares, G. Durin, F. Garcia-

Sanchez, L. Chen, C. H. Back, C. H. Marrows, S. Tacchi, and
G. Carlotti, Rev. Mod. Phys. 95, 015003 (2023).

224421-9

https://doi.org/10.1038/s41467-023-37505-w
https://doi.org/10.1088/1367-2630/aaea1c
https://doi.org/10.1103/PhysRevB.103.054417
https://doi.org/10.1103/PhysRevB.106.054426
https://doi.org/10.1021/acs.nanolett.2c03973
https://doi.org/10.1063/5.0022926
https://doi.org/10.1016/j.jmmm.2020.167014
https://doi.org/10.1103/PhysRevLett.127.037202
https://doi.org/10.1103/PhysRevB.99.174431
https://doi.org/10.1103/PhysRevApplied.10.054018
https://doi.org/10.1063/1.4960705
https://doi.org/10.1038/nphys3770
https://doi.org/10.1063/1.4939268
https://doi.org/10.1109/LMAG.2014.2350958
https://doi.org/10.1088/0022-3719/11/1/007
https://doi.org/10.1016/0370-1573(90)90130-T
https://doi.org/10.1016/j.surfrep.2023.100605
https://doi.org/10.1103/RevModPhys.95.015003

