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Itinerant spin polaron and metallic ferromagnetism in semiconductor moiré superlattices
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Itinerant spin polaron and metallic ferromagnetism are theoretically predicted in the Mott insulator in
semiconductor moiré superlattices doped below and above half filling of the narrow moiré band, respectively.
The existence of a spin polaron can be directly identified from the kink in the dependence of the charge gap on
the magnetic field.
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Recent experiments have discovered a plethora of novel
electronic phases in transition metal dichalcogenide (TMD)
heterostructures, including Mott-Hubbard and charge-transfer
insulators [1–6], generalized Wigner crystals [3,7–11], the
quantum anomalous Hall state [12], and light-induced fer-
romagnetism [13]. These remarkably rich phenomena result
from strong interaction effects in narrow moiré bands, which
generally appear in TMD heterostructures with large moiré
wavelengths. Take the example of WSe2/WS2: the lattice
corrugation introduced by the moiré structure produces a peri-
odic spatial variation of the valence band edge, which acts as a
superlattice potential for charge carriers in the WSe2 layer. At
large moiré wavelength, moiré bands are formed by electron
tunneling t between adjacent potential minima, which are well
described by a simple tight-binding model on an emergent
lattice. The inclusion of the Coulomb interaction between
electrons leads to a Hubbard model description. As a hallmark
of Hubbard model physics, Mott insulating states are found in
angle-aligned WSe2/WS2 [3,4] and twisted AB-homobilayer
WSe2 [6] at the filling of n = 1 hole per moiré unit cell.

One of the fundamental features of the Hubbard model is
the local moment formation driven by the on-site repulsion
U . The presence of local moments in WSe2/WS2 has been
observed by measuring the dependence of optical circular
dichroism on the magnetic field [4]. It is found that the exciton
Zeeman splitting, which is directly related to the magnetiza-
tion, saturates above a certain field where the spins are fully
polarized. The saturation field depends on the filling factor
n and reaches the maximum at n = 1, as expected from the
Hubbard model.

In this work, we study the charge excitations of the Mott
insulator in TMD moiré superlattices in the presence of a
magnetic field. By exactly solving the problem of the Mott
insulator with one doped hole, we find that as the magnetic
field is reduced, the fully polarized state becomes unstable
to the formation of a spin polaron—a bound state of a hole
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and a spin flip. The spin polaron has a kinetic origin due to
the correlated hopping of the hole and the spin flip on the
triangular lattice. Importantly, the binding energy of the spin
polaron is on the order of the hole hopping amplitude t and
has a strong dependence on the center-of-mass momentum
P, which we determine exactly. Our work establishes a spin
polaron, a heavy-mass fermion of charge −e and spin 3

2 , as the
fundamental charge carrier in a hole-doped Mott insulator
over a wide range of magnetic fields, which are experimen-
tally accessible. In contrast, the charge carrier in the electron-
doped Mott insulator is the doublon with charge e and
spin of 1

2 .
The dichotomy between the charge excitations of opposite

signs leads to distinct phases that arise upon doping below
and above n = 1. At n = 1 + δ (δ > 0), metallic (Nagaoka)
ferromagnetism is favored by the kinetic motion of doublons.
At n = 1 − δ, a strange metallic state is formed by the dilute
Fermi gas of spin polarons with incomplete spin polariza-
tion and a gap to adding or removing a charge carrier. As
a direct manifestation of the electron-hole asymmetry, we
predict a discontinuous jump of the saturation field across
n = 1. We further propose compressibility measurements for
detecting spin polarons in TMD moiré materials directly.
Our work reveals doping-induced itinerant magnetic states
in semiconductor moiré systems, whose energy scale is de-
fined by the kinetic energy much larger than the exchange
interactions.

The early work [14] identified spin polaron in the context
of superconductivity in an extended Hubbard model on the
triangular lattice. Related physics in the context of ultracold
atoms has been studied using a t-J model [15]. Compared
to these studies, our work not only introduces TMD moiré
superlattices as the promising material platform for the
realization of spin polaron, but also identifies its experimental
manifestation, namely, the dependence of the charge gap on
the magnetic field.

I. HUBBARD MODEL DESCRIPTION AND
THE MOTT INSULATOR AT n = 1

The starting point for our analysis of a TMD moiré hetero-
bilayer under a magnetic field is the canonical Hubbard model
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on a triangular lattice [1]:

H = − t
∑
〈i, j〉

(c†
i c j + H.c.) + U

∑
i

ni↑ni↓

+ h

2

∑
i

(ni↑ − ni↓). (1)

c†
i is the creation operator of a doped charge in the moiré

superlattice. For simplicity of presentation, we assume the
doped charge is of electron type. As we discuss later, the
long-range Coulomb interaction does not affect the formation
of a spin polaron in the limit of large Hubbard U . For typical
TMD moiré materials, t ∼1 meV [2] is much smaller than the
on-site Coulomb repulsion U , leading to the strong-coupling
regime of the Hubbard model.

At half-filling (n = 1), the Mott insulator is a quantum
antiferromagnet governed by the spin- 1

2 Heisenberg model on
the triangular lattice: HJ = J

∑
〈i j〉 si · s j , with J = 4t2/U and

s is the spin- 1
2 operator. Since t � U , the antiferromagnetic

exchange interaction J in TMD moiré superlattices is
generally weak [16]. As a result, the antiferromagnetic
Mott insulator becomes fully polarized above a small
saturation field h0

s whose value is set by J [see the
Supplemental Material (SM) [24]]: h0

s = 9
2 J = 18 t2

U , where
the superscript “0” refers to an undoped Mott insulator.
For example, using t = 1 meV and assuming U ∼ 50 meV
for angle-aligned WSe2/WS2, J is only 0.08 meV and the
corresponding saturation field is 1 T (using the g factor
6.7 for holes in WSe2). This value is comparable to the
saturation field measured by magnetic circular dichroism
at n = 1 [4].

Thanks to the narrow bandwidth, the full magnetization
curve of TMD moiré materials can be measured over the
entire range of filling factors 0 � n � 2, which is not possible
elsewhere. The ability to achieve full spin polarization in
doped Mott insulators opens access to rich and previously
unexplored Hubbard model physics on the triangular lattice,
as we shall show below.

II. CHARGE EXCITATIONS IN MOTT INSULATOR

As a first step towards the study of doped Mott insulators,
we consider charge excitations of the Mott insulator at n = 1
at full spin polarization induced by a magnetic field h > h0

s .
Interestingly, we find that the charge e and −e excitations have
very different nature, as represented in Fig. 1.

Charge e excitation is simply a doublon created by adding
an electron with minority spin, which costs a minimum
energy

Ed = E0
d + h

2
= U − μ − 6t + h

2
, (2)

where E0
d is the minimum energy of the doublon in the ab-

sence of magnetic field, μ is the chemical potential, −6t
comes from the kinetic energy of the added electron at the
bottom of the band at k = 0, and h/2 comes from the Zeeman
energy of the added minority spin. The nature of charge −e
excitation depends on the magnetic field h. When h is suf-
ficiently large, the lowest-energy excitation is simply a hole

FIG. 1. The gap edges of the Mott insulator as a function of the
magnetic field h. The upper and lower edges of the gap are defined
by the energy cost of adding a charge e and −e quasiparticle, respec-
tively. The charge e quasiparticle is a s = 1

2 doublon. The charge −e
quasiparticle transitions from a s = 1

2 hole to a s = 3
2 spin polaron

at h = h∗ = εb − E 0
sw ∼ t , resulting in a change of slope in the lower

gap edge and the charge gap at n = 1 (inset).

with a minimum energy given by

Eh = E0
h + h

2
= μ − 3t + h

2
, (3)

where E0
h = μ − 3t is the minimum energy of the hole in

the absence of magnetic field, which comes from the kinetic
energy of the hole at the band maxima k = ±K.

However, when the magnetic field is reduced below
a certain value h∗ (with h∗ 	 h0

s for t 	 J; we assume
well-separated scales of energies here for clarity, and address
more realistic parameters later on), we find that the lowest
energy state of the Mott insulator with one hole is no longer
fully spin polarized, but contains one spin flip that is bound
to a hole. The bound state of the hole and the spin flip is a
spin polaron, a composite quasiparticle carrying spin s = 3

2
along the field direction. h∗ is the saturation field for the
Mott insulator with one hole. Viewed from a complementary
perspective, h∗ is the dividing line between the domains with
two types of charge −e excitations in the Mott insulator: the
bare hole and the spin polaron.

As we show below, the origin of the spin polaron formation
is purely kinetic. The spin flip gains kinetic energy of the order
of t 	 J by exchanging its position with an adjacent hole.
Remarkably, this highly restricted kinetic process is sufficient
to bind them together on the triangular lattice, but not on
square or honeycomb lattices. The result is an itinerant spin
polaron whose binding energy depends on its center-of-mass
momentum P. We find that at h < h∗, the energy cost of
adding a carrier with charge −e is

Esp = Eh + Esw − εb = E0
h + E0

sw + 3h

2
− εb, (4)

where E0
sw is the minimum kinetic energy of spin waves in the

absence of magnetic field and εb ∼ t is the binding energy of
the spin polaron at zero momentum P = 0. The total Zeeman
energy 3h

2 comes from the s = 3
2 of the spin polaron.

Comparing the expressions for Esp and Eh, we see that
the spin polaron has lower energy than a hole at h < h∗ with
h∗ = εb − E0

sw. At large Hubbard U , the binding energy εb ∼ t
is significantly larger than E0

sw ∼ J = 4 4t2

U . In a wide range
of fields h0

s ∼ J < h < h∗ ∼ t , spin polarons are the lowest-
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energy charge carriers upon hole doping of the Mott insulator.
Note that our spin polaron exists on top of the field-polarized
state of the Mott insulator, which is fundamentally different
from the magnetic polaron in quantum antiferromagnets at
h = 0 [17–22]. For example, since the noncollinear antiferro-
magnetic state on the triangular lattice spontaneously breaks
spin rotational symmetry, the magnetic polaron at h = 0 does
not have a well-defined spin quantum number, in contrast with
the s = 3

2 spin polaron we find here.
The field-induced transition in the type of the charged

excitations is reflected in the charge gap of the Mott insulator,
defined as � = E+e + E−e:

�(h) =
{

�0 + h, h > h∗,

�0 + E0
sw − εb + 2h, h0

s < h < h∗,
(5)

where �0 is field independent. Due to the different spin quan-
tum numbers of the hole and the spin polaron, �(h) shows a
change of slope at h∗, as illustrated in Fig. 1.

Remarkably, because of its purely kinetic origin, the spin
polaron appears already in the limit U = ∞ ([14]; see also
[15,23]). In what follows, we start by considering U = ∞ first
(t/U = 0). Next, we study the spin polaron formation and the
saturation field at finite t/U , showing that surprisingly, the
binding between the hole and the spin flip is further enhanced
at finite t/U . We finally conclude by discussing experimental
signatures of the spin polaron.

III. SPIN POLARON

Let us first study the spin polaron in the limit U →
∞, where the physical picture becomes especially simple.
A single hole or doublon with momentum k will have en-
ergy εh/d (k) = h

2 ± tγk with γk = ∑
n(eik·tn + e−ik·tn ), where

tn=1,2,3 are the three basis vectors on a triangular lattice. We
examine the state containing one hole and one spin flip using
the general ansatz:

|ψh〉 =
∑
n,m

αnmcn↓S+
m |FMn=1〉. (6)

Here, S+
m ≡ c†

m↑cm↓. The vacuum state corresponds to a fully
polarized state with single occupancy at each site |FMn=1〉 =∏

i c†
i↓|0〉. The wave function must necessarily vanish at the

origin, reflecting the fact that the positions of a spin flip and a
hole cannot coincide.

The Hubbard Hamiltonian at U = ∞, which forbids dou-
ble occupancy, acting on Eq. (6) reduces to a two-particle
problem. This problem can be separated into center of mass
and relative motion, which in relative coordinates becomes a
version of a tight-binding model on a triangular lattice. The
details of the calculation are provided in the Supplemental
Material [24]. We find that at P = 0, the bound state of a hole
and a spin flip occurs for one of the inversion-odd representa-
tions of the group D6 and follows from the especially simple
self-consistency equation

1 +
∑

q

2t sin q · t1(sin q · t1 + sin q · t2 + sin q · t3)

E − 3
2 h − tγq

= 0.

(7)

FIG. 2. The energy spectrum of the Hubbard model at n = 1
doped with one hole as a function of the center-of-mass momentum
P along the �-K direction at (a) infinite U and (b) U = 25t . The dis-
persive bound state (red line) is found below the continuum spectrum
(blue); the total Zeeman energy of the state and the minimum energy
of spin waves are EZ = 3

2 h and Emin
sw = 18 t2

U = 9
2 J . (c) The real-space

wave function in relative coordinates for P = 0 at U = ∞. Inset:
momentum-space wave function in relative coordinates. (d) The
binding energy of the spin polaron increases as a function of t/U .
The results of the exact diagonalization of the full Hubbard model
on a 15 × 15 lattice and of the analytical approach at order t2/U are
shown by dots and a solid line, correspondingly.

This produces a bound state (spin polaron) with energy
Esp(P = 0) = Eh − ε

(0)
b + h, where the binding energy is

found to be ε
(0)
b ≡ εb(P = 0) ≈ 0.42t and the +h contribution

is the energetic cost of a spin flip. The fact that the binding
energy is proportional to t indicates the kinetic origin of spin
polaron formation as we discussed above.

Next, we solve the tight-binding equation describing the
relative motion of the hole and the spin flip with a finite
center-of-mass momentum in order to find the spin polaron
dispersion. The spectrum for P along the �-K direction
obtained from exact diagonalization of the tight-binding equa-
tion on a lattice of 866 sites with periodic boundary conditions
is shown in Fig. 2(a). The dispersive bound state is found be-
low the band bottom. We find that the mass of the bound state
is msp ≈ 13mh, where the mass of the bare hole is mh = 2

3
1

ta2 .
Figure 2(c) shows the real-space wave function of the spin
polaron in the relative coordinates at P = 0. The spin polaron
is tightly bound on a length scale of the order of one lattice
spacing and the wave function realizes the one-dimensional
antisymmetric irrep �3 of the dihedral group D6 and vanishes
exactly at the origin. As seen in Fig. 2(a), the state merges
with continuum at P = K .

For a single doublon, we find, both analytically using the
approach described above and numerically (see SM), that
the spin polaron does not form. It similarly does not form
on the square lattice, for either doping. In particular, this is
dictated by the symmetry of the solution: the wave func-
tion of the bound states must vanish at the origin in the
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relative coordinates, i.e., αnn = βnn = 0. The single-particle
spectrum of a doped electron on the triangular lattice, or
doped electron/hole on a square lattice has only one band
minimum and therefore, the low-energy states of such ex-
citations cannot have a node. In contrast, on the triangular
lattice, the hole dispersion has two band minima at ±K
points. An antisymmetric superposition of ±K states, shown
in the inset in Fig. 2(b), allows for the existence of a spin
polaron.

In the case of the charge-transfer insulator described by
multi-band Hubbard models [2,25], the dispersion of the
charge carriers doped below the fully polarized state at n = 1
still has two band minima at ±K , which leads to the spin
polaron formation. The situation will be different for electron
doping, which we leave to a future study.

IV. FINITE U

We now consider the effect of large finite U (small nonzero
t/U ). The effective Hamiltonian at the order t2/U includes not
only the spin exchange, but also the correlated hopping. The
correlated hopping comes from the second-order processes
wherein the spin or the hole can move over one or two sites
[see the inset in Fig. 2(d)]. Importantly, these processes only
occur when the hole and the spin flip are in the vicinity of each
other. While the correlated hopping is commonly ignored
in the literature [15,23], we show that these microscopic
kinetic processes can have important effects on spin polaron
formation.

We obtain the full analytical solution for the bound state
problem at the order t2

U (see SM). The spectrum of the spin
polaron is shown in Fig. 2(b) at U = 25t . In Fig. 2(d), we
plot the dependence of the binding energy on t/U as obtained
from the analytical approach at the order t2

U . Also shown is
the result of the exact diagonalization of the full Hubbard
model Hamiltonian on a 15 × 15 lattice in the appropriate
spin and charge sectors. The two methods show excellent
agreement up to t/U ≈ 0.05, which corresponds to J/t ≈ 0.2.
Remarkably, the binding energy of the spin polaron increases
with t/U . At large but finite U , the spin flip can become
delocalized to lower its kinetic energy, which competes with
the formation of the bound state. Nevertheless, the proximity
to the hole enables a large number of correlated hopping
processes on the triangular lattice, which leads to an addi-
tional gain in kinetic energy. This increases the binding energy
of the spin polaron and dominates over the spin delocaliza-
tion. Thus, correlated hopping enhances the stability of spin
polarons at finite U , an effect which has been overlooked
before [14]. In contrast, neglecting correlated hopping, i.e.,
working with the t-J model, will produce a decrease in the
binding energy with t/U (see Fig. S8 in the SM), which is
incorrect.

V. FINITE DOPING

We now consider the case of finite doping density. The
Hubbard model on triangular lattice has been extensively
studied in the absence of magnetic field. It is known that,
at U 	 t and for the electron doping (n > 1), the Na-
gaoka ferromagnetic state [26–28] arises due to the kinetic

FIG. 3. The saturation field hs at different fillings obtained by
exact diagonalization of the Hubbard model with an odd number
of doped electrons/holes on 3 × L geometry with L = 9, 12, 15, 18
in the sector with a single spin flip. Panel (a) represents the limit
U = ∞ and panel (b) corresponds to U = 40t . The dashed black
line shows the field h∗ for the undoped Mott insulator at n = 1.

energy gain of the doublons, which dominates over the weaker
antiferromagnetic exchange interaction between localized
spins J = 4t2/U � t . In contrast, for any amount of doped
holes, the ferromagnetic state is unstable at zero magnetic
field [27–31], while the nature of the true ground state is hard
to determine.

Our results provide insight on charge excitations of the
Mott insulator under a magnetic field. As we have shown,
while the undoped Mott insulator is already fully polarized
at small magnetic fields above h0

s ∼ J ∝ t2/U , the state with
one hole can only achieve full polarization above a larger field
h∗∼t > h0

s , at which the first spin flip appears that is bound to
the hole. Now consider a finite but small density δ of holes.
At high field, the fully polarized state is a dilute Fermi gas of
holes. As the field is reduced, provided that the hole density
is sufficiently low, the first spin flip to appear should also
bind with one hole. It follows from this argument that the
saturation field hs at finite hole density should approach h∗ as
δ → 0. In contrast, upon electron doping, the Nagaoka mech-
anism eventually leads to a ferromagnetic ground state at zero
external field (or immediately becomes ferromagnetic in the
limit U = ∞). Note that h∗ remains finite even when U = ∞,
whereas h0

s = 0 in this limit. Therefore, we conclude that the
saturation field as a function of doping shows a discontinuous
jump from hs = h∗ at n = 1− to h0

s < h∗ at n = 1+.
This conclusion is supported by our calculation of the

saturation field hs as a function of doping, using exact di-
agonalization of the Hubbard model shown in Fig. 3. The
calculations were performed at a fixed number of holes Nh =
1, 3, 5 on three-leg ladders with periodic boundary conditions
and various lengths L = 9, 12, 15, 18. By comparing the en-
ergy of the state with a single spin flip to that of a fully
polarized state, we obtain a lower bound on the saturation
field. Figure 3 shows the results of exact diagonalization for
the infinite-U Hubbard model and at U = 40t . On the hole-
doping side, the field hs approaches h∗ (its value is enhanced
because of the finite-width effects, and fully agrees with our
tight-binding calculation). The parameters that we chose are
realistic for many TMD moiré materials [2], where a large
window of magnetic fields exists for the spin polaron pre-
dicted here to be observed. On the electron-doping side the
saturation field equals h0

s at n → 1+ and exhibits behavior
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expected from a Nagaoka ferromagnet at infinite and finite
Hubbard U , as seen in panels (a) and (b).

Finally, we discuss the effect of the long-range Coulomb
repulsion

∑
Vi jnin j on the binding energy of spin polarons. At

U = ∞, it does not affect the energy of a single-spin polaron,
because the system contains only one hole and its Coulomb
energy is independent of the spin configuration. At finite but
large U there will be a small correction of the order of t2

U
V
U �

t due to the small amplitude of admixing doublons.

VI. EXPERIMENTAL IMPLICATIONS

The particle-hole asymmetry of the saturation field, es-
pecially its discontinuity at n = 1, reflects the distinction
between the doublon and the spin polaron in the doped Mott
insulator on the triangular lattice. In light of our theory, it is
encouraging to note that the saturation field in WSe2/WS2

measured at T = 1.7 K [4] indeed decreases with doping at
n > 1, increases with doping at n < 1, and shows a large rapid
change across n = 1, which we expect will sharpen into a
discontinuity at T = 0.

The presence of a spin polaron can be established by the
dependence of the lower edge of the Mott gap at n = 1 on the

magnetic field, which can be obtained from compressibility
measurements. As shown in Fig. 1, our theory predicts a linear
dependence of the lower gap edge on the field with a change in
the slope by a factor of 3 at h = h∗, which shows the different
spin quantum numbers: s = 3

2 for the spin polaron and s = 1
2

for the bare charge carrier below n = 1.
Our theory predicts that at small hole doping, a Fermi

liquid of s = 3
2 spin polarons can form in a range of magnetic

fields below h∗ and above h0
s . This is a pseudogap metallic

state with heavy fermion mass that has a gap to adding an
s = 1

2 electron/hole, and also exhibits filling-dependent mag-
netization plateaus. Its detailed study appeared in Ref. [32].

Note added. Recently, measurements of electronic com-
pressibility in twisted double bilayer WSe2 [33] revealed a
kink in the charge gap as a function of magnetic field, consis-
tent with our theory of the transition between the spin polaron
and the bare hole quasiparticles.
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Imamoğlu, and E. Demler, Phys. Rev. Res. 5, L022048 (2023).
[24] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.107.224420 for the full details on the
derivations, and comparison to the t-J model predictions.

[25] Y. Zhang, T. Liu, and L. Fu, Phys. Rev. B 103, 155142 (2021).
[26] Y. Nagaoka, Phys. Rev. 147, 392 (1966).
[27] T. Hanisch, B. Kleine, A. Ritzl, and E. Müller-Hartmann, Ann.

Phys. 507, 303 (1995).
[28] B. S. Shastry, H. R. Krishnamurthy, and P. W. Anderson, Phys.

Rev. B 41, 2375 (1990).
[29] H. Tasaki, Phys. Rev. B 40, 9192 (1989).
[30] P. Richmond and G. Rickayzen, J. Phys. C 2, 528 (1969).
[31] J. O. Haerter and B. S. Shastry, Phys. Rev. Lett. 95, 087202

(2005).
[32] Y. Zhang and L. Fu, SciPost Phys. Core 6, 038 (2023).
[33] B. A. Foutty, J. Yu, T. Devakul, C. R. Kometter, Y. Zhang, K.

Watanabe, T. Taniguchi, L. Fu, and B. E. Feldman, Nat. Mater.
22, 731 (2023).

224420-5

https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/PhysRevB.102.201115
https://doi.org/10.1038/s41586-020-2092-4
https://doi.org/10.1038/s41586-020-2085-3
https://doi.org/10.1038/s41586-021-03853-0
https://doi.org/10.1038/s41565-022-01180-7
https://doi.org/10.1038/s41586-020-2868-6
https://doi.org/10.1038/s41586-021-03560-w
https://doi.org/10.1038/s41563-021-00959-8
https://doi.org/10.1038/s41586-021-03874-9
https://doi.org/10.1038/s41567-021-01171-w
https://doi.org/10.1038/s41586-021-04171-1
https://doi.org/10.1038/s41586-022-04472-z
https://doi.org/10.1103/PhysRevB.97.140507
http://arxiv.org/abs/arXiv:2106.09600
https://doi.org/10.1103/PhysRevB.104.214403
https://doi.org/10.1103/PhysRevB.39.6880
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/PhysRevB.39.12232
https://doi.org/10.1103/PhysRevLett.60.2793
https://doi.org/10.1103/PhysRevB.38.8879
https://doi.org/10.1103/PhysRevLett.60.944
https://doi.org/10.1103/PhysRevResearch.5.L022048
http://link.aps.org/supplemental/10.1103/PhysRevB.107.224420
https://doi.org/10.1103/PhysRevB.103.155142
https://doi.org/10.1103/PhysRev.147.392
https://doi.org/10.1002/andp.19955070405
https://doi.org/10.1103/PhysRevB.41.2375
https://doi.org/10.1103/PhysRevB.40.9192
https://doi.org/10.1088/0022-3719/2/3/316
https://doi.org/10.1103/PhysRevLett.95.087202
https://doi.org/10.21468/SciPostPhysCore.6.2.038
https://doi.org/10.1038/s41563-023-01534-z

