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Magnetic ground state and perturbations of the distorted kagome Ising metal TmAgGe
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We present the magnetic orders and excitations of the distorted kagome intermetallic magnet TmAgGe. Using
neutron single crystal diffraction we identify the propagation vectors k = ( 1

2 0 0) and k = (0 0 0) and determine
the magnetic structures of the zero-field and magnetic field-induced phases for H along the a and [−110] crystal
directions. We determine the experimental magnetic field- temperature (H , T )-phase diagram and reproduce
it by Monte Carlo simulations of an effective spin exchange Hamiltonian for one distorted kagome layer. Our
model includes a strong axial single-ion anisotropy and significantly smaller exchange couplings, which span up
to the third-nearest neighbors within the layer. Single crystal inelastic neutron scattering (INS) measurements
reveal an almost flat, only weakly dispersive mode around 7 meV that we use alongside bulk magnetization
data to deduce the crystal-electric field (CEF) scheme for the Tm3+ ions. Random phase approximation (RPA)
calculations based on the determined CEF wave functions of the two lowest quasidoublets enable an estimation
of the interlayer coupling that is compatible with the experimental INS spectra. No evidence for low-energy
spin waves associated to the magnetic order was found, which is consistent with the strongly Ising nature of the
ground state.

DOI: 10.1103/PhysRevB.107.224419

I. INTRODUCTION

The interaction between itinerant conduction electrons and
localized magnetic moments gains presently renewed interest.
This is driven by the discovery of unconventional magne-
toresistive properties [1,2] emerging when itinerant electrons
travel through the lattice of noncollinear magnetic moment
arrangements. The shape and topology of the Fermi surface is
crucial in mediating the magnetic interactions between local-
ized moments, but also the conduction electrons adjust when
complex magnetic order sets in. They pick up a Berry phase
from adjacent noncollinear spins, which induces a topological
Hall effect as the example of Mn3Ge shows [3]. The interplay
of the two electron subsystems—itinerant and localized—
could lead to nesting of the Fermi surface, formation of
multi-k magnetic orders and other exotic behaviors. The case
with localized spins on a geometrically frustrated lattice is
especially interesting [4,5]. For example, in the Kagome sys-
tem Gd3Ru4Al12 chiral spin fluctuations influence transport
anomalies even in the paramagnetic regime [6].

Therefore, we focus on the family of magnetically frus-
trated rare-earth RAgGe compounds, which possess hexag-
onal distorted kagome layers spanned by the R3+ ions. The
series shows complex transport properties [7] signifying a
cascade of magnetic orders and metamagnetic transitions as
a function of temperature and magnetic field.

*oksana.zaharko@psi.ch

The magnetic properties of RAgGe are governed by the
local single-ion anisotropy and magnetic exchanges that are
geometrically frustrated. Their interplay varies for different
magnetic ions, which we exemplify here comparing HoAgGe
and TmAgGe. The R3+ ions obey an orthorhombic C2v sym-
metry, which is axial and confined within the kagome layer.
Whereas the Ho anisotropy axis is orthogonal to the twofold
axis, it is along the axis for Tm [Fig. 1(a)]. The overall
hexagonal P6̄2m crystal symmetry leads to a rotation of the
anisotropy axis of the three neighboring R3+ ions by 60◦
relative to each another. The magnetic exchange J1 is predom-
inantly ferromagnetic at the first neighbor distance for both
compounds. The further-neighbor in-plane couplings J2, J3

are defined in Fig. 1(b) and Table III. While also sizable, they
are predominantly antiferromagnetic [8,9].

In HoAgGe [8] the interplay between the single-ion
anisotropy and nearest-neighbor ferromagnetic exchange es-
tablishes a magnetic structure where the magnetic moments
point “in” or “out” of edge-sharing J1 triangles in a Kagome
layer [Fig. 1(b)]. These magnetic states obey the “two-in-
one-out” or “one-in-two-out” Kagome spin-ice rule. The Ising
anisotropy allows the application of an effective pseudospin-
1/2 classical Ising model to this metallic system.

In TmAgGe the Kagome spin-ice rule is disregarded on
the J1 triangles, as the CEF easy axes of the R3+ ions are
perpendicular to the easy axes in HoAgGe [Fig. 1(c)]. The
microscopic interactions lead to a cascade of metamagnetic
transitions when a magnetic field is applied within the kagome
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FIG. 1. (a) Comparison of the local CEF anisotropy directions
of TmAgGe and HoAgGe depicted as blue ellipses. (b) A single
layer of the distorted kagome structure with J1, J2, J3a, and J3b being
exchange interactions used in the model represented by Eq. (5). ni

(i = 1, 2, 3) indicate the three easy crystal electric field (CEF) axes.
(c) Schematic phase diagram of TmAgGe based on magnetization
data [10]. The angle θ denotes the departure of the magnetic field
from the crystallographic a axis within the hexagonal ab plane, Hc is
a critical field value.

layer [Fig. 1(c)] [9,10]. These transitions are thought to arise
via spin flip transitions along the local easy axes. This is
supported by a phenomenological triple coplanar Ising-like
model [10] that accounts for the spin flips and successfully
reproduces the macroscopically determined (H , T )-phase dia-
gram. A microscopic Hamiltonian proposed by Goddard et al.
[9] predicts strong single-ion anisotropy [A = −4.6(1) K]
and almost equal size first nearest-neighbor couplings [J1 =
−0.064(3) K and J2 = 0.054(3) K]. Yet the experimental
data could be reproduced only when some J1 couplings are
suppressed.

In this paper we present a neutron single crystal diffrac-
tion (Sec. II B) and inelastic neutron scattering (Sec. II C)
study on TmAgGe and model these results (Secs. III and IV)
to determine the magnetic structures and the CEF scheme
of the Tm3+ ions. Monte Carlo simulations (Sec. V) of
a Hamiltonian including strong single-ion anisotropy and
Heisenberg-type bilinear exchanges quantify couplings within
a distorted kagome layer. RPA calculations (Sec. VI) based on
the wavefunctions of the two lowest CEF levels validate our
understanding of the magnetic properties of TmAgGe.

II. EXPERIMENTAL DETAILS

A. Sample synthesis

Single crystals of TmAgGe were grown in a manner
similar to that outlined in Refs. [7] and [10]. Specifically,
elemental Tm, Ag, and Ge were placed in a fritted crucible
set [11], sold by LSP ceramics [12] as a Canfield Crucible
Set (CCS), in the atomic ratios of Tm9Ag68Ge23. The CCS
was sealed into an amorphous silica ampule under a partial

pressure of Ar (∼1/6 atm) [13]. The ampule was then heated
to 1190◦C over 10 hours, held at 1190◦C for 10 hours and
then cooled to 850◦C over 400 hours. After reaching 850◦C
the ampule was removed from the furnace and placed into the
rotor of a centrifuge that was used to provide an enhanced,
local acceleration that forced excess liquid through the frit,
leaving TmAgGe single crystals on the growth side crucible.
Single crystals, with mirrored facets and masses in excess of
0.2 g were grown.

B. Neutron diffraction

Single-crystal neutron-diffraction (SND) experiments at
zero field and under field were performed with the single-
crystal neutron diffractometer Zebra at the Swiss Neutron
Spallation Source SINQ, Paul Scherrer Institut (PSI), Switzer-
land. The experiments were carried out with small ∼0.2 g
TmAgGe single crystals to limit absorption and extinction
effects. A neutron wavelength of 1.383 Å was used for
all measurements, offering a compromise between flux and
accessibility in reciprocal space. In zero field, Zebra was
operated in four-circle mode with a Joule-Thomson CCR3
cooling machine. In-field data were collected within a lifting-
arm normal-beam geometry where the crystals were inserted
in vertical magnets. The magnetic states were investigated
under two principal field configurations: H‖a corresponding
to θ = 0◦ and H‖ [−1 1 0] (equivalent to a∗ and [1 2 0] used
in Ref. [10]) where θ = 30◦, see Fig. 2(a).

In accordance to powder neutron diffraction results [14],
the zero-field antiferromagnetic propagation vector is k = ( 1

2 0
0) at temperatures below TN = 4.3 K. Using SND we observed
the three arms k1 = ( 1

2 0 0), k2 = (0 1
2 0), and k3 = (− 1

2
1
2 0).

Figure 2(c) depicts the temperature dependent integrated in-
tensity of the (0 3

2 0) magnetic reflection. The red line signifies
a fit I (T ) ∝ [(TN − T )/TN ]2β . The Néel temperature is refined
to TN = 4.33(1) K and the critical exponent β is 0.12(1). The
fitted critical exponent is in agreement with the theoretical
value of 1/8, which is expected for 2D Ising systems [15].

The application of a magnetic field affects the magnetic
intensities in the three k arms, and leads to the emergence of
an additional k0 = (0 0 0) order. Figures 2(d)–2(g) summarize
the field dependence of the integrated intensities for selected
reflections representing all four propagation vectors alongside
region boundaries from critical field measurements [10]. For
H‖a [Figs. 2(d) and 2(e)], a clear correspondence between the
integrated neutron intensities and critical regions is found. In
the M0 phase the net macroscopic magnetic moment is known
to be zero [10], which is reflected in the SND data where only
reflections of the three k1−3 propagation vectors exhibit finite
intensities. The onset of the M1 region at ∼0.31 T is marked
by an increasing net magnetic moment along the a direction
in the bulk measurements. This coincides with the appearance
of the k0 order and the initial decay of the intensity of the k2

reflection. The M1 region is thought to represent, at the mea-
surement temperatures of ∼2 K, a transitory metastable region
and no plateau is reported in the magnetization measurements
for this field range [10]. The M2 region begins at ∼0.44 T,
where the k2 intensity fully disappears and the k1 and k3 in-
tensities start to decline. The magnetic k0 intensities exhibit a
different behavior for different reflections. The intensity of the
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FIG. 2. (a) Schematic view of the k1 = ( 1
2 0 0), k2 = (0 1

2 0), and k3 = (− 1
2

1
2 0) propagation vectors in relation to the in-plane direct-space

(a, b) and reciprocal-space (a∗, b∗) lattice vectors. (b) Example of a ∼0.2 g TmAgGe single crystal used for neutron diffraction. (c) Zero-field
temperature dependence of the intensity of the (0 3

2 0) magnetic reflection, alongside a fitted line (red). [(d)–(g)] Field-dependence of the
integrated intensities of select magnetic peaks (left scale) while ramping the magnetic field up with the two principal field configurations. The
data were collected at temperatures of 2 K (θ = 0◦) and 1.7 K (θ = 30◦).

(0 0 1) reflection steadily increases, while the (0 1 0) reflection
peaks in the M2 region and eventually disappears in the M4

region. For H‖[−1 1 0], the k0 intensities monotonically
increase as a function of increasing field strength until they
saturate in the M3 phase [Figs. 2(f) and 2(g)]. The magnetic
intensities of the k1 and k2 reflections decrease at the onset of
the M1 region and vanish in the M3 phase. The intensity corre-
sponding to the third propagation vector k3, which is parallel
to the field direction, maintains finite intensity at the highest
measured field of 6 T. We note that for the both field config-
urations the intensity remains in the k1−3 propagation vectors
that have the largest component parallel to the field direction.

C. Inelastic neutron scattering

Inelastic neutron scattering (INS) data were collected
on the CAMEA multiplexing neutron spectrometer at PSI,
Switzerland [16,17]. In a first zero-field experiment, a ∼2-g

single-crystal TmAgGe sample was inserted into an orange
cryostat. At each incident energy ranging from 5–11 meV the
sample was rotated over 100◦ in one degree steps acquiring
data for about 60 s in two detector settings to gain a broad
overview of the inelastic spectrum (see Fig. 3). The main
characteristic feature of the spectrum is a weakly dispersing
mode at ∼7 meV, which was observed to persist above the
ordering temperature. No low-energy spin-wave excitations
were observed.

A subsequent in-field experiment was pursued to inves-
tigate the 7 meV CEF mode. To improve the signal, we
coaligned two TmAgGe single crystals with a combined sam-
ple mass of ∼3 g and a mosaicity of 1◦. The crystals were
aligned with the a-direction vertical, corresponding to the
θ = 0◦ field configuration, and installed into a vertical 11 T
cryomagnet. Quasielastic spectra were first collected at a base
temperature 2 K and at fields of 0 T and 0.65 T using two
incident energies close to Ei = 5 meV. The resulting elastic
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FIG. 3. Zero-field 2 K QE cuts along the [−1 − 1
2 l] and [2h h

1] directions at the CAMEA multiplexing spectrometer. The data
are shown in Q steps of 0.01 rlu and energy steps of 0.2 meV. The
integration width corresponds to 0.2 rlu perpendicular to Q.

energy and Q resolution was of the order of �E ≈ 0.2 meV
and 0.05 Å−1, respectively. The CEF mode was investigated
using a combination of three incident energies around Ei =
11.3 (�E ≈ 0.5 meV at and excitation energy of 7 meV)
under several different field and temperature conditions rang-
ing from 2–25 K and 0–8 T. The slightly different energy
settings provided coverage of all instrumental black spots and
optimized the signal to noise ratio along the energy.

III. DETERMINATION OF MAGNETIC STRUCTURES

A. Zero-field magnetic structure

Zero-field data sets were collected for all three arms of the
k = ( 1

2 0 0) propagation vector at a temperature of 2 K. As
an initial approach to resolve the magnetic structure, separate
single-k refinements were carried out for each data set by
iterating through the possible magnetic space group (MSG)
solutions, which were derived from the k-SUBGROUPSMAG
program [19] of the Bilbao Crystallographic server [20–22].
These solutions are listed in Fig. 11(b) in Appendix A.
For all three data sets, the best agreements in terms of
goodness-of-fit and fit-parameter uncertainty were found with
the PAnc2 MSG. This model enforces a basal-plane structure
with two orbits; the Tm1 (x,0,0) moments are restricted to the
CEF-anisotropy direction, while the linked Tm2 (0,x,0) and
Tm3 (−x,−x,0) moments can deviate from their respective
anisotropy directions. The refined magnetic solutions were
consistent among all three arms, each structure containing
a partial magnetic ordering with only one site displaying a
moment amplitude larger than its uncertainty, see Fig. 4(a) and
Table IV, where moment values in the range of 6.1(1)–6.8(1)
µB are reported for three different solutions for the sites with
finite moment values.

Since such order is unlikely, multi-k solutions have been
explored. As shown in Fig. 12(b) (see Appendix A) multi-k
structures increase the solution space from 17 to 26 possible
MSGs. Using the simulated annealing option of FullProf [23],
it was possible to refine a single-parameter equal-moment
magnetic structure with 6.3(1) µB per site that is simultane-
ously in agreement with the data sets of all three arms and
which has goodness-of-fit parameters similar to the single-k
refinements, see Fig. 4(a) and Table IV. The simulated anneal-
ing procedure was initially performed in the lowest-symmetry
P1 MSG, while gradually decreasing the number of free pa-
rameters based on the fit performance. The Pm′ subgroup

FIG. 4. In-plane view of the magnetic structures determined by
single crystal neutron diffraction at 2 K and at various field con-
figurations. The nearest-neighbor moments are connected by dotted
grey lines, while the next-nearest neighbors are connected by dashed
black lines. Moments that are flipped in comparison to the zero-field
multi-k structure have been drawn in a dark green color. (a) Best
single-k (k1) and (b) multi-k structures (k1+k2+k3) obtained from
zero-field data (M0). The three colored circles in the lower left corner
indicate the positions of the three magnetically different Tm sites;
Tm1 (green), Tm2 (yellow), and Tm3 (red). (c) Multi-k solution
(k0+k1+k3) obtained with H‖a and μ0H = 0.65 T, corresponding
to the M2 region of the phase diagram. (d) Single-k solution (k0) in
the M4 phase with H‖a and μ0H = 2 T. (e) Multi-k solution (k0+k3)
from data measured with H‖[−110] and μ0H = 1 T (M3). Plots of
the magnetic structures have been generated using the VESTA visual-
ization program [18]. (f) Hc-θ phase diagram computed from Monte
Carlo simulations. The color scale of the phase diagram expresses the
magnetization in units of the saturation magnetization. Yellow stars
indicate field configurations where the magnetic structure has been
characterized with SND.

from Fig. 12(a) in Appendix A is the highest-symmetry space
group that the refined solution maps onto. This subgroup
has 24 free parameters and allows unconstrained in-plane
arrangement of the 12 moments in the magnetic cell. Thus,
the symmetry-derived solution is less restrictive than the final
solution, where the moments are confined to the local CEF-
directions, as described in Refs. [10] and [9].

In an attempt to understand whether TmAgGe can be
a candidate for topological magnetism, we calculate the
vector chirality for each given solution. Interplay between
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conduction electrons and a chiral magnetic structure can result
in the emergence of topological properties such as a spin-
dependent Berry phase. Hence, the spin chirality serves as an
indicator of whether the local magnetic structure or its frag-
ments could be a source of nontrivial topology and anomalous
Hall effect. We calculate the vector chirality κ in the following
way [24]:

κ =
∑
i jk

2

3
√

3
εi jk (m̂i × m̂ j ) (1)

where i, j, k refer to the three different sites in the nearest-
neighbor triangles, εi jk is the Levi-Civita symbol, and m̂i is the
magnetic moment at site i, normalized to 1. The vector chiral-
ity κ is a 3 × 1 vector, which will only have a finite component
in its third row (κc) for a fully basal plane structure. In the case
of the zero-field multi-k structure, 2/3 of the nearest-neighbor
triangles have a κc value of −1/3, while the remaining 1/3
have a κc value of 1. As such, the total chirality of the structure
sums up to 0, implying that topological phenomena are either
nonexistent or restricted to local structures in the zero-field
state.

B. Field along a direction

A data set containing reflections from the k0, k1, and
k3 propagation vectors was collected with H‖a at μ0H =
0.65 T, where the intensity of the (0 1 0) reflection is maximal
[Fig. 2(d)]. Both cases of several simultaneous single-k struc-
tures and a single multi-k structure with all three propagation
vectors participating in the ordering were considered. The
possible magnetic space groups derived from the single-k k0

and multi-k set of propagation vectors are listed in Figs. 11(a)
and 12(b) in Appendix A, respectively. Similarly to the zero-
field case, single-k refinements of the k1 and k3 data sets
resulted in partially ordered magnetic structures belonging
to the PAnc2 MSG. The same was found to be the case for
the single-k treatment of the k0 data set, where the best re-
finement was obtained with the Am′m2′ MSG, which again
resulted in a partially ordered magnetic structure. Both the
k0, k1, and k3 solutions had finite moments on only 2/3
sites with moment amplitudes in the range of 4.6(2)–4.9(1)
µB. A multi-k refinement with all three data sets resulted in
a single-parameter magnetic structure with a moment-value
of 6.7(1) µB per site and similar goodness-of-fit values to the
single-k cases. As for the zero-field case, we give preference
to the multi-k structure, which has fewer free parameters and
shows a better agreement with bulk measurements. For the
single-k k0 structure we calculate a net magnetic moment of
1.7(2) µB/Tm along the field direction. In the multi-k structure
the magnetic moment is 2.23(3)µB/Tm, cf. Table IV, which
is closer to bulk magnetization measurements, reporting a
value of ∼2.36 µB/Tm [10]. The refined multi-k structure
is shown in Fig. 4(c). Compared to the zero-field multi-k
solution some of the Tm1 (x,0,0) moments are flipped, such
that all Tm1 moments now point in the same direction (along
the field-direction and the local CEF direction). Despite this,
the highest-symmetry space group that this solution maps onto
is still the Pm′ MSG [Fig. 12(b) in Appendix A]. The overall
vector chirality sums up to zero, indicating that the small field
did not induce any topological changes.

Another data set was collected with H‖a and μ0H = 2 T,
where only k0 order remains. This field configuration corre-
sponds to the M4 phase in Fig. 2 and has been speculated to
correspond to a crystal-field limited saturated paramagnetic
state (CL-SPM) in literature [9,10]. The best refinement was
obtained with the basal-plane Pm′ MSG, although it was
found that the number of free parameters could be further
reduced from three that is given by symmetry down to one,
corresponding to a moment value of 6.1(1) µB per site. The
obtained magnetic structure is shown in Fig. 4(d). Unlike
the other structures, this magnetic phase does exhibit a finite
overall chirality, with κc = −1/3. As such, this phase would
be interesting for further transport studies to establish whether
topological properties can be established. The net magnetic
moment along the field direction is 3.6(1) µB/Tm, which is
reduced compared to the bulk value of ∼4.6 µB [10].

C. Field along [−1 1 0] direction

A data set containing reflections from the k0 and k3 prop-
agation vectors has been collected with field along [−1 1 0].
The data set was measured at base temperature and at 1 T,
corresponding to the M3 region of the phase diagram, which is
accessible only by rotating the field away from the a direction.
The single-k k3 solution spans only the Tm3 sublattice and
is strongly amplitude modulated, having moment values of
7.9(1) µB per Tm3 site, the k0 model comprises the two other
Tm1, Tm2 sublattices, with moment values of 5.9 µB deter-
mined by a common parameter. Single-k and multi-k attempts
also here return similar goodness-of-fit values. For the multi-k
solution, The Tm3 site featuring a CEF anisotropy direction
normal to the field, contributes to the k3 intensities and has the
largest moment value of 8.2(1) µB/Tm, while two other sites
have moment values of 5.3(2) µB/Tm. Thus, compared to the
multi-k solutions obtained in other field conditions, this solu-
tion has two free parameters and exhibits a slight amplitude
modulation. Allowing the moments to diverge from the CEF
directions did not significantly improve the goodness-of-fit or
increase the Tm1 and Tm2 moment amplitudes, indicating
that the observed amplitude modulation is not an artifact of
the imposed magnetic model. We presume the rather high
moment value at the Tm3 site is due to deficient diffraction
data collected in the nonoptimal geometry in the magnet.
Similar to the other two multi-k solutions, this model maps
onto the Pm′ MSG. The chirality of the proposed multi-k
solution is calculated as −1/3. Of all the investigated phases
in the Hc − θ phase diagram, the M3 region is hence the
only region with a magnetic structure solution that is both
multi-k and exhibits a finite chirality summed over the entire
structure. This region is therefore especially interesting for
further investigations of possible topological effects.

IV. CRYSTAL-FIELD LEVEL SCHEME

A common feature of the magnetic structures in TmAgGe
is the strong alignment of the moments along the local CEF
anisotropy directions, which were initially identified from
bulk measurements [7,9]. In Ref. [9], H‖c magnetization data
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FIG. 5. (a) Pictures of the two TmAgGe samples used for the INS in-field experiment. The crystals were aligned with the a axis along the
field direction. [(b,(c)] Quasielastic scattering of the (0kl) plane measured at 2 K and for fields of 0 T and 0.65 T, respectively, with intensities
integrated over h̄ω = −0.05–0.05 meV. (d) (0kl) scattering plane measured at zero field and a temperature of 2 K, with intensities integrated
over h̄ω = 6–8 meV. The vertical and horizontal boxes indicate the integrated areas for Qω cuts [(e)–(h)] along l and k, respectively. For
(b)–(d) we used a Q binning of 0.03 Å−1. [(e)–(h]) Qω cuts along [0 3

2 l] and [0 k 0] obtained at field and temperature combinations of 0 T,
2 K, and 8 T, 25 K. The data is plotted for every 0.01 rlu along Q and 60 µeV along the energy.

were used to determine the CEF Hamiltonian,

Ĥ =
∑

n=2,4,6

n∑
m=0

Bm
n Ôm

n − gJμ0μBH ·
∑

i

Ĵi (2)

where Bm
n and Ôm

n are Stevens coefficients and operators, re-
spectively [25]. The Hamiltonian has been evaluated for the
orthorhombic C2v (2mm) symmetry of the Tm sites, giving
raise to four finite Stevens coefficients, B0

2 = 1300 mK, B0
4 =

−3.1 mK, B2
4 = 19 mK, and B0

6 = 0.0068 mK. In our current
investigation, we aim to further improve and refine the CEF
Hamiltonian by adding insight via single-crystal inelastic neu-
tron scattering. For all CEF schemes presented in this section,
we choose the local coordinate frame such that x is along the
twofold axis of the Tm3+ ion, z is along the sixfold axis of the
crystal, y completes the right-handed coordinate system.

Figure 5 summarizes the main features of the data collected
during the in-field inelastic neutron scattering study of single
crystalline TmAgGe [panel (a)]. Panels (b) and (c) show the
quasielastic scattering results at base temperature and fields
of 0 and 0.65 T with H‖a. We do not find any signatures of
low-energy spin waves, which is associated to the strong Ising
nature of the Tm3+ moments and explained in Sec. VII.

Figure 5(d) shows the 0kl scattering plane at excitations
energies around the ∼7 meV CEF mode. Panels (e)–(f)
display energy cuts along k and l directions at the two extreme

ends of the investigated fields and temperatures, i.e., T = 2 K
and μ0H = 0 T alongside T = 25 K and μ0H 8 T. We find a
dispersion that is strongest along the l direction, and that field
and/or temperature cause a slight shift of the dispersion and a
decrease of intensity.

After integration of the neutron scattering data over the
observable (0kl) range, we incorporated them into a combined
fit with the H‖c magnetization data, which were weighted
with a cost function,

R2
cost = R2

INS + αR2
mag. (3)

R2
INS and R2

mag are the residuals of the INS and magnetization
fits respectively, and α is a relative weighing factor. For the
presented combined fit, a weighing factor of 2% was used as
this was found to result in a rough agreement with both data
sets. The fits and subsequent CEF calculations were carried
out with the PyCrystalField python package [26]. CEF param-
eters calculated from a point charge model as implemented in
Ref. [26] were used as starting parameters. The resulting fits
are shown in Fig. 6 alongside predictions that are based on the
reported CEF. The INS data provide complementary insight
into the CEF model of the system. This is evident, for instance,
by the fact that the purely magnetization-derived parameters
fail to accurately account for the INS results. In contrast, our
combined fit displays a reasonable agreement with both data
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FIG. 6. [(a)–(d)] INS data from CAMEA (black dots) collected
under four different field and temperature conditions. The experi-
mental intensity cuts were obtained by integrating over Q along l
from [0 3/2 −1/2] to [0 3/2 1] over the observable hk0 range to
obtain quasipowder intensity profiles. The red line are Gaussian fits
to the experimental data, which were used for the CEF determination.
The remaining curves are calculations based on our combined CEF
refinement and the CEF scheme reported in Ref. [9]. [(e)–(f)] Bulk
magnetization data from Ref. [10] (solid lines), presented alongside
predictions of the refined CEF scheme (dashed lines).

sets. It should be noted that, while we believe our fit improves
upon the CEF model of Ref. [9], it is still an approximate
model due to the few peaks in the TmAgGe neutron spec-
tra and the known difficulty of fitting CEF parameters with
limited data [27].

B2
2 is the dominant term in our combined fit model (cf.

Table I). This is similar to what has been observed in the sib-
ling compound YbAgGe, where the magnetic site also bears
a strong B2

2-type crystal field [28]. TmAgGe thus exhibits
similar anisotropic properties than YbAgGe, The anisotropy
is, however, more extreme in TmAgGe, which is reflected in
the anisotropic g tensor,

g =
⎛
⎝13.97 0 0

0 0 0
0 0 0

⎞
⎠. (4)

The g tensor has been calculated [26] on the basis of the CEF
scheme of our fit, Table II, where the two lowest eigenmodes

TABLE I. Crystal field parameters with values �10−6 from our
combined fit alongside the results from Ref. [9].

���������meV
Fits

Combined fit Ref. [9]

B0
2 −5.44 × 10−2 1.12 × 10−1

B2
2 −8.16 × 10−1

B0
4 −6.57 × 10−4 −2.67 × 10−4

B2
4 −1.05 × 10−4 1.60 × 10−3

B4
4 5.70 × 10−3

B0
6

B2
6

B4
6 1.69 × 10−5

B6
6 1.11 × 10−5

are treated as a ground-state doublet due to their small split-
ting. The anisotropic g tensor highlights the Ising-like nature
of TmAgGe, where each moment site has its own local quanti-
zation axis. We make note of the overall symmetry properties
of the eigenstates in Table II. The ground-state quasidoublet
consists of two nonmagnetic singlet states, which combine
to give rise to a magnetic moment with an easy axis along
the local x direction [29]. The calculated CEF wavefunctions
are also consistent with the lack of observed low energy
modes. The spin dynamics of an Ising system is expected to
correspond to localized moment flips. These longitudinal ex-
citations are invisible to neutron scattering as all the transition
dipolar matrix elements are zero.

V. MONTE CARLO SIMULATIONS

The field-induced magnetic moment arrangements of
TmAgGe determined from single crystal neutron diffraction
allow us to extend the modeling of the reported magnetic
exchange Hamiltonian of Ref. [9]. We performed classical
Monte Carlo (MC) simulations using a minimal effective
magnetic Hamiltonian for a single layer of the distorted
kagome lattice. MC simulations using the Metropolis algo-
rithm combining standard temperature dependent changes of
the magnetic moments plus local spin flips (Ising like moves)
and overrelaxation (microcanonical) updates were used to
increase the acceptance rate in the anisotropic local environ-
ment. We used an annealing scheme to lower the temperature
at fixed external magnetic fields. Simulations were performed
for 3 × L2 sites (L = 12 − 48) under periodic boundary con-
ditions. 105–106 MC steps were used for an initial relaxation,
and measurements were taken in twice as many MC steps
for 20 independent realizations. The effective Hamiltonian is
given by

Ĥ = J 2
∑

i j

Ji j Ŝi · Ŝ j + J 2A
∑

i

(n̂i · Ŝi )
2

− gJ J μ0μBH ·
∑

i

Ŝi. (5)

The first term corresponds to the Heisenberg bilinear ex-
change couplings Ji j between sites i and j in the layer, S
is a unitary spin vector. We considered couplings up to the
third nearest neighbor [Fig. 1(b)], i.e., J3a and J3b terms were
added to the Hamiltonian of Ref. [9]. The second term in the
Hamiltonian is the axial local single-ion anisotropy. The last
term is a conventional Zeeman term of a magnetic field H .
The total angular momentum quantum number of the Tm3+

ion is J = 6 and the Landé factor gJ = 7/6.
Using magnetic configurations determined by SND

(Fig. 7), we computed the exact energy of the model in Eq. (5)
as a function of applied magnetic fields at zero temperature.
The critical fields associated with the transitions between the
different magnetic structures were calculated from the rela-
tionships between the exchange constants,

HM0−M2
c = 4 J3b, H‖[100] (6)

HM2−M4
c = J1 + 1

2 J2 + 8 J3b, H‖[100] (7)

HM0−M3
c = 1√

3

(
J1 + 1

2
J2 + 8 J3b

)
. H‖[−110] (8)
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TABLE II. Eigenvalues and wavefunctions of |J 〉 for the TmAgGe CEF scheme determined from measurements at CAMEA with H‖a
and the magnetization measurements from Ref. [9] with H‖c.

Eigenvalue Eigenvectors

E (meV) | − 6〉 | − 5〉 | − 4〉 | − 3〉 | − 2〉 | − 1〉 |0〉 |1〉 |2〉 |3〉 |4〉 |5〉 |6〉
0.0000 0.012 −0.142 −0.491 −0.691 −0.491 −0.142 0.012
0.0094 −0.041 −0.307 −0.636 −0.636 −0.307 −0.041
6.9733 −0.278 −0.448 −0.471 0.471 0.448 0.278
7.4044 −0.293 −0.561 −0.316 0.316 0.561 0.293

10.538 0.607 0.343 0.029 −0.161 0.029 0.343 0.607
13.502 −0.621 0.031 0.337 −0.337 −0.031 0.621
15.679 −0.555 −0.379 0.219 0.219 −0.379 −0.555
23.585 0.355 −0.517 −0.138 0.420 −0.138 −0.517 0.355
25.061 0.614 −0.140 −0.322 0.322 0.140 −0.614
38.171 0.193 −0.546 0.406 −0.406 0.546 −0.193
38.441 −0.436 0.512 −0.219 −0.219 0.512 −0.436
55.189 −0.076 0.308 −0.489 0.566 −0.489 0.308 −0.076
55.208 −0.193 0.408 −0.545 0.545 −0.408 0.193

Here, M0, M2, M4, and M3 correspond to the arrangements
shown in Fig. 7 for M/Ms = 0 [panel (a)], for M/Ms = 1/3
[panel (b)], for M/Ms = 2/3 [panel (c)] and for M/Ms =
1/

√
3 [panel (d)], respectively. The first three arrangements

match the multi-k SND solutions presented in Figs. 4(a)–4(d),
while for the last arrangement we used a simplified equal-
moment approximation of the SND solution from Fig. 4(e).

We notice that (i) the critical fields do not depend on J3a

and (ii) that Eqs. (7) and (8) are not independent. Therefore,
the equations were solved for the critical fields as function

FIG. 7. Spin configurations for each state obtained from MC
calculations to determine the exchange couplings. For H‖[100],
(a) M/Ms = 0, (b) M/Ms = 1/3, and (c) M/Ms = 2/3. For H‖[ −
110], (d) M/Ms = 1/

√
3.

of one exchange coupling, i.e., J2 defines the energy scale.
The sign and size of J3a has consequences on the existence
of a M/Ms = 1/6 energy plateau, whereas J2/J1 influences
the presence of a M/Ms = 1/2 plateau. As these plateaus
were not observed experimentally, energies configurations
with M/Ms = 1/6 and M/Ms = 1/2 have to be much higher
than the M/Ms = 1/3 configuration. These extra conditions
result into the set of inequalities

2 J3a < J2, H‖[100], (9)

−2 J1 < J2, H‖[100]. (10)

A comparison of the critical fields calculated with Eqs. (9)
and (8) and the experimental values from Ref. [9] leads to
the exchange parameters listed in Table III. The calculated
magnetization curves are presented in Fig. 8 matching the
experimental data very well.

We further computed the static magnetic structure factor
S⊥,

S⊥(q) = 1

N

∑
a,b

N∑
i, j=1

(
δab − qaqb

q2

)
eiq·(r j−ri )Sa

i Sb
j (11)

where N is the number of sites and a, b = 1, 2, 3 correspond
to the three components of magnetic moment. Figure 9 pre-
dicts the field dependence of S⊥(q) for several k0 = (0 0 0)

TABLE III. Determined J1,2,3 exchange couplings of the model
in Eq. (5) given in units of J −2 and corresponding distances between
the Tm3+ ions. J = 6 is the total angular momentum quantum
number for the Tm3+ ion. Jc is estimated from the RPA analysis (see
Sec. VI) and A is set by comparing the magnetization curves from
MC and experiments.

J1 J2 J3a J3b A Jc

Value (K) −0.0348 0.075 −0.07 0.0143 −5.55 −0.134
Distance (Å) 3.653 5.121 5.543 5.543 4.17
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FIG. 8. M/Ms predicted by our model for H‖[100] (a) and
H‖[−110] (b) at different temperatures. Panels (c) and (d) show a
comparison with the experimental data at T = 2 K. m′ equals to
1/

√
3.

and k = ( 1
2 0 0) reflections measured in the SND experiment

(Fig. 2). Also here, a good agreement with the experimental
results (Fig. 1) is found. As |J1| is smaller than |J2| we addi-
tionally tried to extend the number of parameters by including
additional couplings with exchange paths of comparable dis-
tances to those already present in our model. These additional
exchange couplings beyond J3a and J3b did, however, not
improve the agreement between MC simulations and exper-
imental data and have therefore not been included in our final
analysis to avoid overparameterization of our effective model.

We note that the single-ion anisotropy should be large
compared to the in-plane exchange couplings, but its precise
value cannot be determined by our MC simulations. Similarly
we could not determine the out-of-plane coupling Jc as we
simulated one distorted kagome layer only.

FIG. 9. Calculated magnetic structure factors for selected k0

and k1−3 reflections as a function of magnetic field applied along
H‖[100] [(a),(b)] and H‖[ − 110] [(c),(d)], respectively.

VI. RANDOM PHASE APPROXIMATION

Random phase approximation (RPA) calculations were
performed to characterize the inelastic neutron scattering
results. Most notably, the CEF level around 7 meV re-
mains dispersive within various magnetic states as shown
in Figs. 4(e)–4(h). While magnetic dispersions are generally
expected in a magnetically ordered state, CEF levels can also
be dispersive in the paramagnetic phase, as for example in
elemental Pr [30]. CEF excitations are typically localized, but
can propagate due to intersite couplings. Their propagation is
coherent and leads to dispersive modes when the temperature
is sufficiently low to have weakly populated excited CEF
states and a dominant population in the ground-state manifold.
In this low-temperature regime, the dominantly populated
ground state acts as an effective order for the coherent prop-
agation of CEF excitations. Magnetic order occurring within
the ground-state manifold, such as the antiferromagnetic or-
der or the field-polarized state of TmAgGe, can modify the
effective order out of which the CEF levels are excited and
affect their dynamics. One of the most obvious effects is the
folding of a dispersion due to a magnetic unit cell larger than
the crystallographic unit cell. In the case of TmAgGe, the
experimental results indicate that magnetic orders have only a
weak effect on the CEF dispersion, which is in agreement with
the RPA calculations presented here. This is consistent with
the fact that the antiferromagnetic unit cell is not extended
along the c axis and thus, there is no folding along l , the
direction exhibiting the dominant CEF dispersion.

We considered the following Hamiltonian in our RPA cal-
culations:

Ĥ =
∑

i j

Ji j Ĵi · Ĵ j + gJμ0μB

∑
i

Ĵi · H +
∑

i

ĤCEF
i , (12)

where Ĵ is the total angular momentum operator. Here, the
CEF wavefunctions from Table II were used as basis functions
with their energy defined by ĤCEF

i . In contrast to the Monte
Carlo Hamiltonian, there is no anisotropic term, because to-
gether with the total angular momentum quantum number it
emerges directly from the CEF wavefunctions. For simplic-
ity, only the ground state and ∼7 meV strong first excited
quasidoublets were included. The energy of the excited quasi-
doublet was fixed at 7.0 meV. Fixing the excited CEF levels
at the precise energies in Table II instead leads to qualitatively
comparable results but with larger shifts of the average CEF
energies with temperature and field. The in-plane coupling
parameters were fixed to the ones determined from the Monte
Carlo calculations (Table III). An additional interaction term
Jc between the nearest neighbors along the c axis is required
to generate the dispersion along l . This value was adjusted to
reproduce the dispersion bandwidth of the experimental data
at T = 2 K and μ0H = 0 T. Calculations were performed
in the zero-field ordered state (M0), the paramagnetic state,
and the field-polarized state (M4). The ground state was ob-
tained through a self-consistent mean field approach, using
the experimentally determined magnetic unit-cell size and is
consistent with the experimental and Monte Carlo results.

The dynamic scattering function S⊥(Q, ω) obtained by
RPA calculations is presented in Figs. 10(a)–10(d) for the
same cuts in reciprocal space, and temperature and field
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FIG. 10. [(a)–(d)] Dynamic scattering function S⊥(Q, ω) ob-
tained by RPA calculations for cuts along [0 3

2 l] and [0k0] obtained
at field and temperature combinations of 0 T, 2 K and 8 T, 25 K. The
results compare well with the corresponding experimental results in
Figs. 5(e)–5(h). [(e)–(f)] Comparison of the experimental (markers)
and calculated (lines) dispersions for various temperature and field
values. The experimental dispersions were obtained from Gaussian
fits of the experimental spectra such as shown in Figs. 5(e)–5(h).
Similarly, the theoretical dispersions were obtained via Lorentzian
fits of the calculated S⊥(Q, ω) in panels (a)–(d).

conditions, as the experimental results in Figs. 5(e)–5(h). The
calculations reproduce the main characteristics of the exper-
imental data. The experimental dispersion bandwidth along
l is 0.25 meV at T = 2 K and μ0H = 0 T, which is well
reproduced by assuming an interaction Jc = −0.134 K along
the c axis. The dispersion along k has a smaller bandwidth and
exhibits a maximum at k = 1.5, both in the experimental and
theoretical results.

The antiferromagnetic, paramagnetic, and field-polarized
states were explored by varying the temperature and magnetic
field. We find that the overall CEF dispersion is only weakly
changed. While at higher temperature the scattering intensity
is slightly reduced due to changes in the ground-state pop-
ulation, the average energy and bandwidth of the dispersion
are also modified. To illustrate this, the extracted experi-
mental and theoretical dispersions are presented together in
Figs. 10(e)–10(f) for various temperatures and fields and ex-
hibit comparable tendencies. We note that our model requires
only one adjustable parameter. A better quantitative agree-

ment is expected only, if additional aspects are considered.
In particular, the anisotropic dipole-dipole interactions, not
included in the model, have an energy scale comparable to
the Heisenberg interactions determined by the Monte Carlo
calculations. Other possibilities for improvement would be
to further refine the CEF wavefunctions or add quadrupolar
and higher order multipolar interactions to the model, which
would create an effective transverse term that leads to propa-
gating flip excitations.

To understand the tendencies observed in TmAgGe, it is
instructive to consider a simple RPA model with a ground-
state singlet |0〉 and an excited singlet |1〉 separated by a gap
� [30]. For a gap much larger than the dispersion bandwidth,
the dispersion is given by

E ≈ � − p01M2
i Jii(q) (13)

where p01 = p0 − p1 is the difference in population factor for
states |0〉 and |1〉, Mi = 〈0|Ji|1〉 is the transition matrix ele-
ment, and Jii(q) is the Fourier transform of the couplings. The
excited state acquires a dispersion corresponding to Jii(q) and
its bandwidth is scaled by the difference in population factors
p01 and the square of transition matrix element Mi. Although
TmAgGe hosts a ground-state quasidoublet and an excited
quasidoublet, these simple ideas remain relevant. Thus, the
temperature and field dependencies of the bandwidth are as-
sociated with changes in the population of these states. A
notable example is the bandwidth reduction from the antifer-
romagnetic (T = 2 K, μ0H = 0 T) to the paramagnetic state
(T = 25 K, μ0H = 8 T), an effect well captured by the RPA
calculations.

The temperature-dependent shift of the average CEF en-
ergies stems from the molecular field that is present inside
the antiferromagnetic phase and absent in the paramagnetic
phase. The shift as a function of field corresponds to the Zee-
man effect. Note that the excited doublet splits, but only one
level reveals a sufficiently large interdoublet transition matrix
element to be observable in the experimental conditions.

VII. DISCUSSION

In TmAgGe the site symmetry and local environment lead
to the quasidoublet ground- and first excited states of the non-
Kramers Tm3+ ions. Our CEF analysis shows that only the Ĵx

dipolar operator attains finite values within each quasidoublet,
because Ĵy and Ĵz are exactly zero due to the symmetry. As a
consequence, the Tm3+ ground state acts as an exact Ising
moment. The experimental evidence for this statement stems
from the INS spectra and the combined refinement of the
magnetization and INS data.

The strong CEF anisotropy and ± 60◦ easy axes rotation
of adjacent Tm3+ moments impose a rigid constraint on the
emergent magnetic arrangements, according to the refine-
ments of our SND data. In contrast to the Ho analogue [8],
where the CEF anisotropy imposes the ice rule on the J1 tri-
angles, in TmAgGe the ice rule is fulfilled for the J2 triangles
(Fig. 4). In TmAgGe the competition among the in-plane cou-
plings leads to a combination of several propagation k vectors,
i.e., the k = ( 1

2 0 0) arms in zero field and the same k as well as
k0 = (0 0 0) in applied magnetic fields. The realized magnetic
structures are multi-k by the virtue of the single k1−3 solutions
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being improbable anisotropic different-moment structures, as
our ND results show. We point out that TmAgGe is a rather
rare example of such multi-k situation.

The zero-field M0 phase hosts a structure with “one-in-
two-out” and “two-in-one-out” J2 triangles. Metamagnetic
transitions occur via reverse flips of the magnetic moments
with orientation adverse to the field direction. For H‖a the
flips occur first to the unfavorable Tm1 moments in the M2

phase. Then the unfavorable Tm2 and Tm3 moments flip, set-
ting up the single-k structure with a single “one-in-two-out”
J2 triangle in the M4 phase. Field along H‖[−110] forces the
unfavorable Tm1 and Tm2 moments to flip, resulting in two
“one-in-two-out” and “two-in-one-out” J2 triangles in the M3

phase. The M3 and M4 arrangements remain stable up to the
highest applied fields of 10 T, as they are the best compro-
mises between the local anisotropy axes and the particular
magnetic field directions.

The moment orientations of the refined structures are in
agreement with the magnetization-derived configurations of
Ref. [10], which were based on the triple coplanar Ising
model. The magnetization- and Monte Carlo-derived Hc-θ
phase diagrams are very similar. The only discrepancy is the
M1 region, which MC results do not identify as a separate
phase. This could arise from the different temperatures—
0.04 K for the calculation and 2 K for the measurement, or
due to additional terms, like dipolar interactions, which are
not included in our model. Our SND data show a coexistence
of the M0 and M1 phases in this region.

We note that in the M3 state the SND refinement sug-
gests two distinct moment values. Here the magnetic moments
canted by 30◦ from the applied field H‖[ − 110] are sig-
nificantly reduced compared to the moments orthogonal to
the field, thus resembling the partially ordered Kagome-ice
phase observed in HoAgGe [8]. We speculate that the missing
part of the ordered moment is dissipated within domain walls
predicted for transverse field Ising models [31].

Our MC simulations of the distorted kagome layer Hamil-
tonian allowed determination of all significant in-plane
exchange couplings: J1 = −0.0348 K, J2 = 0.075 K, J3a =
−0.07 K, J3b = 0.01143 K. The ferro- J1 and antiferromag-
netic J2 couplings were already proposed in Ref. [9]. The
earlier requirement to suppress one J1 coupling is lifted in our
extended model through the introduction of the two relevant
J3 couplings, which feature the same distance between Tm3+

ions but follow different exchange paths. In fact, this differ-
ence have been shown to be important for the formation of
rational plateaux in the kagome lattice [32]. The different sign
of J3a and J3b is essential to stabilize the k = ( 1

2 0 0) multi-k
structure and for the emergence of the plateaus in applied
fields.

The measured INS spectra did not reveal any signatures for
low-energy excitations stemming from exchange couplings
found in the MC simulations that would characterize the
ordered magnetic state. This is in agreement with the Ising
nature of the ordered state anticipating that the spin dynamics
corresponds to localized moment flips. These longitudinal ex-
citations are invisible to neutron scattering as all the transition
dipolar matrix elements are zero. In contrast, our INS data
revealed a transition to the excited quasidoublet, for which
the interdoublet transition matrix elements for Ĵy and Ĵz are

nonzero. These transverse terms, together with the intersite
couplings enable the excited CEF states to propagate on the
lattice, creating the observed dispersion. The determined CEF
scheme and the in-plane couplings are successfully used by
the RPA analysis. With only one adjustable Jc parameter
(Jc= −0.134 K) we find a reasonable agreement between
the calculated and observed spectra. According to the RPA
calculations, the Jc interaction is the dominant coupling. This
suggests that TmAgGe should be understood as a ferromag-
netic Ising chain system that orders in a three-dimensional
antiferromagnetic fashion due to weaker in-plane couplings.
Yet, these in-plane couplings are responsible for the peculiar
field dependence.

Interestingly, some of the magnetically ordered phases, i.e.,
the field-induced M3 and M4 states, are topologically nontriv-
ial, as the total chirality is finite. It remains to be explored
whether the topological arrangement of the local magnetic
moments affects the electronic band structure of TmAgGe. It
is conceivable that the observed multi-k magnetic orders in
TmAgGe ascribe to the Fermi surface nesting between the M
points and M-
 points. This would be in line with topological
predictions [33], suggesting that electronic band structure of
the Kagome lattice has a Fermi surface nesting among the
M points. This nesting combined with a divergent density of
states at certain fillings makes the system unstable towards
development of a triple-k magnetic order. The understanding

FIG. 11. Possible single-k magnetic structure solutions for the
(a) k0 = (0 0 0) and (b) k = ( 1

2 0 0) propagation vector with the
P6̄2m paramagnetic parent phase.
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FIG. 12. Possible magnetic groups for ordering of the Tm moments in different multi-k cases, corresponding to the magnetic propagation
vectors observed at (a) zero field, (b) H along a, μ0H = 0.65 T, and (c) H along [−1 1 0], μ0H = 1 T.

of the band electronic structure of TmAgGe is crucial to dwell
into this speculation.

Finally, we anticipate that the presented study facilitates
the understanding of other, more complex representatives
of the RAgGe family. We find a satisfactory description of
the magnetic properties of TmAgGe representing Ising mo-
ments that interact via bilinear exchange interactions. Yet we
speculate that the localized electrons interact with the itiner-
ant subsystem. While TmAgGe represents a rather localized
member of the RAgGe family, YbAgGe we think is located
at the crossover where the itinerant electron subsystem gains
dominance [34–37]. The strong electronic correlations at this
crossover is often thought to trigger the emergence of un-
conventional quantum phases such as quantum spin liquids,
hidden orders or unconventional superconducting states.
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TABLE IV. Summary of FullProf refinement results for different field condition data sets. For each of the four different configurations,
both single- and multi-k refinements were attempted. The kn → k1 notation indicates that the data set contains reflections from the kn arm,
while the refinement was carried out with the reflections rotated to k1, so that the same magnetic space group formulations could be used for
all arms of the k1−3 star.

M0 0 T M2 H‖a, 0.65 T

single-k multi-k single-k multi-k

k1 k2 → k1 k3 → k1 k1+k2+k3 k1 k3 → k1 k0 k1+k3+k0

Neff 32 16 44 92 17 42 41 100
χ 2 123 76.5 19.0 87.3 8.96 21.0 22.0 17.4
RF2 21.0 17.1 6.53 16.4 13.1 37.7 35.0 32.5
RF2w 23.8 17.1 11.2 22.4 14.0 35.1 37.4 30.1
RF 12.5 12.0 4.70 10.3 6.60 21.5 18.4 17.2
m1 (μB) 0.3(2) 0.9(3) 0.0(1) 6.3(1) 4.9(1) 4.7(1) 4.6(2) 6.7(1)
m2 (μB) 6.1(1) 6.0(1) 6.8(1) 6.3(1) 0.1(3) 0.4(3) 4.6(2) 6.7(1)
m3 (μB) 0.3(2) 0.9(3) 0.0(1) 6.3(1) 4.9(1) 4.7(1) 0.2(5) 6.7(1)
mH (μB/Tm) 0 0 0 0 0 0 1.7(2) 2.23(3)
kc 0 0 0 0 0 0 0 0

M4 H‖a, 2 T M3 H‖[−110], 1 T

single-k single-k multi-k

k0 k3 → k1 k0 k3+k0

Neff 57 74 35 109
χ 2 30.8 6.22 12.5 7.11
RF2 21.4 7.96 30.0 9.41
RF2w 16.0 13.5 28.7 15.0
RF 13.1 5.24 15.8 6.11
m1 (μB) 6.1(1) 0.1(1) 5.9(2) 5.3(2)
m2 (μB) 6.1(1) 7.9(1) 5.9(2) 5.3(2)
m3 (μB) 6.1(1) 0.1(1) 1.1(3) 8.2(1)
mH (μB/Tm) 4.09(4) 0 3.0(1) 3.0(1)
kc −1/3 0 0 −1/3

Basic Energy Science, Division of Materials Sciences and
Engineering. Ames National Laboratory is operated for the
U.S. Department of Energy by Iowa State University under
Contract No. DE-AC02-07CH11358. We acknowledge the
longstanding interest of Prof. Ch. Rüegg in this project, useful
discussions with S. Petit and A. Läuchli. We thank M. P. Avi-
cena for help during the CAMEA experiment and I. Plokhikh
for help during preparation of the crystals for the ZEBRA
experiment.

APPENDIX A: SYMMETRY-ALLOWED
MAGNETIC SPACE GROUPS

Figure 11 lists the possible magnetic space groups that are
compatible with the P6̄2m paramagnetic parent phase and a
single-k propagation vector that is either k0 = (0 0 0) or k = ( 1

2
0 0). These lists were derived from the k-SUBGROUPSMAG
program [19] from the Bilbao Crystallographic server [20–22]
using as input the propagation vector, the paramagnetic space
group P6̄2m (# 189), and the 3g Wyckoff position of the mag-

netic Tm3+ ions. Only solutions that allowed finite magnetic
moments at all Tm sites were generated. The figures them-
selves were generated with SUBGROUPGRAPH [38], also
from the Bilbao Crystallographic server, with ellipses in-
dicating k-maximal symmetries, while squares are possible
subgroups.

Figure 12 shows a similar analysis performed for the dif-
ferent possible multi-k structures, based on the combination of
propagation vectors observed during single-crystal diffraction
experiments under different field configurations.

APPENDIX B: MAGNETIC STRUCTURE
REFINEMENT RESULTS

A summary of the magnetic structure solutions with the
best goodness-of-fit parameters for each collected data set is
shown in Table IV. For each field configuration, both single-
k and multi-k solutions were attempted and were shown to
have similar goodness-of-fit parameters. This highlights how
diffraction alone cannot be used to decipher between the
multi-k and single-k solutions.
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