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We consider the spin-1/2 Heisenberg chain with boundary magnetic fields and analyze it using a combination
of Bethe ansatz and density matrix renormalization group (DMRG) techniques. We show that the system exhibits
several different ground states, which depend on the orientation of the boundary magnetic fields. When both the
boundary fields take equal values greater than a critical field strength, each edge in the ground state accumulates a
fractional spin which saturates to spin 1/4, which is similar to systems exhibiting symmetry protected topological
phases (SPT). Unlike in SPT systems, the fractional boundary spin in the Heisenberg spin chain is not a genuine
quantum number since the variance of the associated operator does not vanish, this is due to the absence of a bulk
gap. The system exhibits high-energy bound states when the boundary fields take values greater than the critical
field. All the excitations in the system can be sorted out into towers whose number depends on the number of
bound states exhibited by the system. As the boundary fields are varied, in addition to the ground-state phase
transition, we find that the system may undergo a boundary eigenstate phase transition (BEPT) where the number
of towers of the Hilbert space changes. We further inquire how the EPT reflects itself on local ground-state
properties by computing the magnetization profile 〈Sz

j〉 using DMRG. We identify a clear qualitative change
from low edge fields to high edge fields when crossing the critical field. We though are unable to conclude on
the basis of our data that EPT corresponds to a genuine phase transition in the ground state.
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I. INTRODUCTION

The Heisenberg model is one of the most celebrated mod-
els in condensed matter and statistical physics. It lies at
the cornerstone of our understanding of many physical phe-
nomenon which, besides magnetism, consists of integrability
[1–3], many body localization [4,5], and out of equilibrium
dynamics [6–8]. Thanks to available analytic and numerical
methods the model is quite well understood in one spatial
dimension. This is partly due to the fact that the one dimen-
sional spin S = 1/2 Heisenberg model, which is also known
as the XXX spin chain, is integrable. At the same time,
the model can be probed experimentaly either in solid-state
compounds comprising quasi-one-dimensional spin chains in
KCuF3 [9–13] or more recently in ultracold atom realizations
of the spinful Bose-Hubbard model [14,15]. Since it was first
solved by Bethe [1], the spin chain with periodic boundary
conditions has been very well studied. Both the ground-state
and the low-energy excitations properties are well understood
[3,16–19]. The system is nonmagnetic and supports massless
spin-1/2 excitations named spinons. Besides this, integral
representations of correlation functions have been obtained
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[20–22]. Spin chains with open boundaries have also been in-
tensely studied after the Yang-Baxter algebra was generalized
to systems with open boundaries by Sklyannin and Chered-
nik [2,23]. For the XXX spin chain with open boundaries
the ground state, bulk excitations and physical boundary S
matrices have been found [24]. More generally the effects of
boundary fields [25–27] have also been investigated and spin
chains with nondiagonal boundary fields have been solved
[28].

In this work, we shall be interested in the XXX spin chain
with magnetic fields at its edges. Although the subject has
been studied to some extent, for a quantum impurity [29]
as well as for a classical one (e.g., with boundary magnetic
fields), we find that some issues remain to be clarified and
explored in the light of new developments related with one di-
mensional topological phases and eigenstate phase transitions.
To the best of our knowledge, the results that will be presented
in this work have not been found before.

The Hamiltonian of the XXX spin chain with boundary
magnetic fields is given by

H =
N−1∑
j=1

∑
α=x,y,z

σα
j · σα

j+1 + hL σ z
1 + hR σ z

N , (1)

where σα
j are the Pauli matrices acting on the spin space at

site j, hL and hR are boundary magnetic fields acting at sites
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FIG. 1. Various ground states occurring for different values of
the boundary magnetic fields for an even number of sites chain in the
thermodynamic limit [34]. The ground state is unique in the second
and fourth quadrants. In the first and third quadrants, the ground state
contains a spinon with infinite rapidity and whose spin is oriented
either in the positive or negative z direction, resulting in a twofold
degenerate ground state.

j = 1 and j = N , respectively, and N is the number of sites.
The boundary magnetic fields break the SU(2) spin symmetry
down to the U(1) group of rotation around the z axis. There
exists no other symmetries except when hL = hR, where the
model displays space parity invariance P. Despite this, the
system possesses a useful isometry obtained by simultane-
ously flipping all spins as well as reversing the orientation of
the boundary fields:

H →
N∏

i=1

σ x
i Hσ x

i , hL → −hL, hR → −hR. (2)

The latter isometry is a symmetry of the phase diagram of the
model in the plane (hL, hR). The Hamiltonian (1) is integrable
by the method of the Algebraic Bethe Ansatz. The Bethe
equations associated with the Hamiltonian (1) and spin-1/2
XXZ chain with boundary fields have been first obtained in
Ref. [30] for special values of the boundary fields using the
method of coordinate Bethe ansatz, and were later obtained
in Ref. [2] using algebraic Bethe ansatz for general diagonal
boundary fields and were analyzed in Refs. [24,31–33]. In
the present work, we shall extend their analysis and present
a more thorough picture of the phase diagram associated with
(1), thus providing important new results that have not been, to
the best of our knowledge, present in the literature. However,
before going into more details let us first discuss qualitatively
our main results.

We first discuss the ground-state properties of the model.
We present in Fig. 1 the ground-state phase diagram in the

plane (hL, hR) and for an even number of sites. A similar
analysis can be made for an odd number of sites as given
in Sec. II. There are four different possible ground states
when labeled by the conserved total z component of the spin
operator,

Sz = 1

2

N∑
j=1

σ z
j . (3)

When hLhR < 0 the ground state is unique and has total spin
Sz = 0 whereas, contrarily to what was found in Ref. [32],
in the quadrants hLhR > 0, we find that the ground state is
doubly degenerated in the thermodynamic limit [34]; each one
having spin Sz = 0 and Sz = +1 or Sz = −1 depending on
whether hL(R) is negative or positive. In the later cases, the
degeneracy is found to be the consequence of the existence of
two static spinons (with infinite rapidity) with spins ±1/2 in
the ground state. To get a better understanding of the ground-
state structure, we have performed extensive density matrix
renormalization group (DMRG) calculations and calculated
the magnetization profile 〈Sz

j〉 in the ground state. Overall we
find that the edge magnetic fields induce a spin polarization
close to the two edges which extends into the bulk in a power-
law fashion. Furthermore, we find that the corresponding spin
accumulations at the edges are fractional and take the val-
ues ±1/4 (opposite to the orientation of the edge field) at
large fields |h| > 2. The situation at hand is similar to what
happens in gapless symmetry protected topological (SPT)
superconductors [35–38] where the edge states Hilbert space
is exhausted by spin-1/4 operators. However, in the present
case, due to the existence of massless spinon bulk excitations,
such an operator do not represent a genuine fractional sharp
quantum observable since, as we show in Sec. IV, its variance
is not zero.

The second topic we shall discuss in this work concerns the
structure of the excited states and its relation to the existence
of bound states localized at the edges. One of the hallmarks
of the boundary physics induced by the edge magnetic fields
is the existence of boundary bound states localized close to
the edges where the fields are applied. As previously found in
Refs. [31,32], when the magnitude of fields are large enough,
i.e., when |hL(R)| � 2, the system hosts bound states with
energy

mL,R = 2π
/

sin

(
π

hL,R

)
, (4)

which carry a spin-1/2, whose spin orientation is along the
boundary fields at each edge. Contrarily to the zero energy
edge states in SPT massless superconductors, the bound states
in the XXX model are high-energy states whose energies
are always above the one spinon branch of massless bulk
excitations, and as we shall see, their existence has impor-
tant consequences on the structure of the Hilbert space. We
present in Fig. 2 the bound state phase diagram of the model
(1). In each quadrant, the different phases are sorted out as
a function of the number of bound states: the A subphases
support two bound states (one at each edge), the B subphases
support one bound state at either the right or the left edge,
whereas in the C subphases there are no bound states. When
compared to the ground-state phase diagram we see that each
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FIG. 2. Various phases occurring for different values of the
boundary magnetic fields. The A subphases exhibit two boundary
bound states, one at each edge. In B subphases, there exists one
boundary bound state at either the left or the right edges. In C
subphases, boundary bound states do not exist.

quadrant is split into three different subphases named A, B,
or C. Although in all these subphases the ground state has
the same total spin Sz, they differ by the structure of the
high-energy states. We show that each bound state generates a
whole tower of excited states that can be built upon it. Hence,
the Hilbert space is comprised of a certain number of towers
which depends on the number of bound states exhibited by
the system. In [39], the author studied a more general spin
1/2-XYZ chain with open boundaries, which includes XXZ
as a special case, where it was demonstrated that in the gapped
regime of the XXZ chain the Hilbert space is comprised
of two towers of degenerate eigenstates which leads to the
emergence of a strong zero energy Majorana operator (which
commutes with the Hamiltonian) which map these pairs of
states.

In each of the A, B, and C subphases, the direct sum of
these towers span the complete Hilbert space. When crossing
the boundaries between any two of these subphases, since the
number of bound states exhibited by the system and hence
the number of towers of the excited states changes, a bound-
ary eigenstate phase transition occurs which involves a full
reorganization of the Hilbert space. A similar phenomenon is
observed in gapless SPT superconductors [38].

In summary, we find that similar to the systems exhibiting
SPT [38] the XXX spin chain exhibits several phases as a
function of edge magnetic fields. We find that the total spin
of the ground state is not enough to completely characterize
these phases which differ also by the structure of the Hilbert
space. The later is linked to the number of bound states at
the edges which generate towers of excited states that to-
gether span the Hilbert space. As a consequence, on top of

the phase transition corresponding to a change in the ground
state, there exists boundary eigenstate phase transitions in-
volving the change in the number of towers of the Hilbert
space.

The paper is organized as follows. We present our re-
sults obtained from the Bethe ansatz for the ground state
and the excited states in Secs. II and III, respectively.
Section IV is dedicated to the DMRG analysis of the
ground-state properties. We finally discuss our results in
Sec. V.

II. GROUND-STATE PHASE DIAGRAM

As said above, Hamiltonian (1) is integrable by the method
of the algebraic Bethe ansatz [24,28] for arbitrary values of
the boundary fields. Its ground state as well as excitations are
obtained from the Bethe equations(

λ j − i/2

λ j + i/2

)2N
(

λ j + i
(

1
2 − pL

)
λ j − i

(
1
2 − pL

)
)(

λ j + i
(

1
2 − pR

)
λ j − i

(
1
2 − pR

)
)

=
M−1∏

j �=k=1

(
λ j − λk − i

λ j − λk + i

)(
λ j + λk − i

λ j + λk + i

)
, (5)

where we have introduced pL/R = 1/hL/R as the boundary
parameters. The eigenstates of the Hamiltonian are labeled by
M ∈ N Bethe roots λ j=1,...,M , which are solutions of Eq. (5)
and have energy

E = −
M∑

j=1

2

λ2
j + 1

4

+ N − 1 + hL + hR. (6)

The corresponding total spin Sz of a state is related to the
integer M through the relation (7)

Sz = ±
(

N

2
− M

)
, (7)

where ± corresponds to reference state with all spin up and
down, respectively. We have obtained from (5) the ground-
state phase diagram as a function of the boundary magnetic
fields hL(R) and for both an even and an odd number of
sites. Before going into more details let us first review
briefly the situation at zero fields. In this case, the ground
state depends on the parity of N as follows. For even N ,
it is nondegenerated and has total spin Sz = 0 whereas for
odd N it is twofold degenerated, each ground state hav-
ing total spin Sz = ±1/2. The latter degeneracy is due to
the presence of spin-±1/2 spinons with rapidity θ , which
have energy

Eθ = 2π

cosh(πθ )
(8)

and is zero in the limit of infinite rapidity θ → ∞. Notice that
the above results have been rigorously proved using Perron-
Frobenius theorem [40,41] in the case of zero edge fields.
We are not aware of the extension of the above theorem to
nonzero edge fields.. We will now show using Bethe ansatz
how this scheme is modified in the presence of nonzero
boundary fields. The situation further depends on the parity
of N .
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FIG. 3. Ground state phase diagram as a function of the boundary
fields for an odd number of sites in the thermodynamic limit [34].
The ground state is unique in the first and third quadrants. In the
second and fourth quadrants, the ground state contains a spinon with
infinite rapidity and whose spin is oriented either in the positive or
negative z direction, resulting in a twofold degenerate ground state.

A. Ground state for the odd number of sites

Since the total number of sites is odd the spins of the
ground states have to be half integers. The phase diagram
can be broadly divided into four quadrants based on the
direction of the boundary magnetic fields as shown in the
Fig. 3. In the upper right quadrant, when both the magnetic
fields point towards the positive z direction, and independently
of their magnitudes |hL(R)|, the ground state is unique and
has a total spin Sz = −1/2. In the ground state, which we
shall label ∣∣− 1

2

〉
, (9)

the total magnetization is due to a static spin configuration
which account for the total spin −1/2. In the lower right
quadrant, in which hL > 0 and hR < 0, the ground state is
doubly degenerated [42] and carry total spins Sz = ±1/2∣∣− 1

2

〉
and

∣∣+ 1
2

〉
. (10)

In contrast with the previous case, the spins of the ground
states here is due to the presence of spin-±1/2 spinons with
infinite rapidity θ → ∞ (8). The situation in the two other
quadrants, i.e., the lower left and upper left ones, can be
obtained by using the isometry (2) and reversing the total spin
quantum number Sz → −Sz. The ground states are then found
to be ∣∣+ 1

2

〉
and

∣∣− 1
2

〉
, (11)

in the upper left quadrant, i.e., when hL < 0 and hR > 0 and∣∣+ 1
2

〉
, (12)

in the lower left quadrant when hL < 0 and hR < 0.

B. Ground state for the even number of sites

In this case, the spins of the ground states are always
integers. As shown in Fig. 1 in the upper right quadrant, i.e.,
when both hL(R) > 0, the ground state is doubly degenerated
[43] and have total spins Sz = 0,−1 represented by

|0〉 and |−1〉. (13)

The double degeneracy of the ground state is due to the
presence of spin-±1/2 spinons with infinite rapidity. These
spinons have to be added on top of a background static
spin configuration contributing to a total spin −1/2 in such
a way that the total spins of the ground states are integers
Sz = 0,−1. Using the isometry (2) we deduce immediately
that in the lower left quadrant the ground states are given by

|0〉 and |+1〉 (14)

and also contain spin-±1/2 spinons with infinite rapidity on
top of a background spin-1/2 configuration. This is to be true
independently of the magnitudes of the fields |hL(R)]. When
the boundary fields point towards opposite direction, like in
the two upper left and lower right quadrants the ground state
is unique with total spin Sz = 0,

|0〉 (15)

and do not contains spinons.
As we have seen the ground-state phase diagram exhibits

four distinct phases depending solely on the orientations of
the boundary fields. In each of the four quadrants defined
by the sign of hL and hR, the ground-state degeneracy depends
on the parity of N . It is twofold degenerate when hLhR < 0 for
N odd and when hLhR > 0 for N even. In all other cases the
ground state is nondegenerate contrary to what was found in
[32]. Overall, our understanding of the spin quantum numbers
in the different phases relies on a static background spin dis-
tribution on top of which spins ±1/2 spinons may or may not
be added. Independently of the parity of the number of sites
N , the background spin distribution contributes to a total spin
Sz

B = −sgn(hL ) 1/2 when hLhR > 0, whereas Sz
B = 0 in the

opposite case when hLhR < 0. Such a background spin struc-
ture is due to the presence of the boundary fields hL and hR,
which are expected to induce a spin accumulation close to the
edges. We shall return to this point in Sec. IV when we shall
study the ground-state properties in more detail. For the time
being, we shall argue that the phase structure induced by the
presence of the boundary fields is much richer than the one we
have just presented. When considering the whole structure of
the Hilbert space, which calls for a detailed description of the
excited states, we shall show that each of the four quadrants,
(hL ≷ 0, hR ≷ 0), splits into four distinct subphases where
the excited states organizes into different towers. This is the
consequence of the well-known fact that the edge fields, when
large enough, induce boundary bound states that are exponen-
tially localized close to the edges.
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III. EXCITED STATES

Before going into the description of the full solution of (5),
let us review quickly how, in the case of a periodic chain with-
out fields, the structure of the excitation spectrum depends
on the parity of the number of sites N . When N is even the
ground state is a singlet and the excitations are obtained by
adding an even number of propagating holes or spinons. The
spinons carry spins ±1/2 and have energy (8). Since physical
excitations correspond to flipping a certain number of spins
in the chain they carry integer spins Sz ∈ Z and therefore the
spinons always come in pairs in an even chain. For the spin
chain with an odd number of sites, the ground state is twofold
degenerate with total spins Sz = ±1/2. Each of the ground
states contains a spinon, with zero energy in the thermody-
namical limit, and rapidity θ → ∞. In contrast with the even
chain case, single spinon excitations with a finite rapidity, i.e.,
θ �= ∞, and energy (8) are allowed when N is odd. All other
excitations are then obtained by adding an even number of
spinons to the above states. Hence the total number of spinons
in the odd spin chain is always an odd integer.

This scheme is to be modified in an open chain with bound-
ary fields for which the ground state and, more importantly,
the very structure of the Hilbert space of excitations strongly
depend on the boundary fields hL/R. As we shall see, when
the boundary fields are strong enough (i.e., when |hL/R| � 2),
their main effect is to stabilize bound states which are local-
ized at either the left or the right edge. These bound states have
a finite, i.e., nonzero, energy above the ground state,

mL,R = 2π

sin
(

π
hL,R

) , (16)

and carry a spin-1/2 which points towards the direction of
the boundary field at each edge. In the one particle (spin flip)
sector, the bound state wave function can be found exactly
[30,31]. We find that the bound states at the left and the right
edges are exponentially localized as ∼e−κLx and ∼e−κR (N−x)

respectively (see Appendix B), where

κ j = ln(h j + 1), j = L, R. (17)

When the bound states exist, they generate independent
towers of excited states on top of the ground-state one. All
these towers of states eventually span the whole Hilbert space.

We distinguish between three regions, or subphases, A, B,
and C depending on the number of localized bound states in
the spectrum. In the region A, both boundary field strengths
exceed a critical value |hL/R| � 2 and there exist two boundary
bound states localized at both ends of the chain. Depending
on the relative orientations of the fields hL/R with respect
to the z axis we further distinguish between four subphases
Aj=(1,2,3,4). In the region B, only one boundary field strength
exceeds the critical value and there exists a single boundstate,
which is localized at either the left or the right edge. Taking
into account the orientations of the fields we end up with
eight subphases Bj j = (1, . . . , 8). Finally in region C, both
|hL/R| < 2 and there are no localized bound states; the four
subphases Cj=(1,2,3,4) account for all possible boundary fields
orientations. The phase diagram is depicted in Fig. 2.

In the following, we shall present our results for the ground
states as well as the Hilbert space structures in each phase.

Since, as with the PBC case discussed above, the spectral
properties are very sensitive to the evenness of the number of
sites N , we shall discuss separately both even and odd chains.

A. A subphases

We start with the A subphases where two boundary bound
states are stabilized. The four Aj=(1,2,3,4) subphases corre-
spond to the domains of boundary fields (hL � 2, hR � 2),
(hL �−2, hR � 2), (hL �−2, hR�−2), and (hL �2, hR�−2),
respectively. In the following we shall distinguish between
odd end even chains and discuss separately the subphases
Aj=(1,3) and Aj=(2,4).

1. Odd number of sites

The A1 and A3 subphases. In these cases, both boundary
magnetic fields point towards the same direction: along the
positive z axis for the A1 subphase and negative z axis for
the A3 subphase. Both cases are related by the isometry (2).
Qualitatively speaking, in the subphases A1,3 and for N odd,
the boundary magnetic fields are not frustrating in the sense
that in the Ising limit of (1) the ground state would exhibit
perfect antiferromagnetic order.

In the A1 subphase, we find that the ground state is unique
and has a total spin Sz = −1/2. We accordingly label the
ground state in this phase by∣∣− 1

2

〉
(18)

and denote by E0 its energy. The expression of E0 as a function
of hL,R is given in the Appendix [see Eq. (A7)]. We notice that
due to the presence of the boundary fields the spin −1/2 of
the ground state is not carried by a spinon in contrast with
the periodic chain with N odd. It is rather the consequence of
a static spin density distribution. We shall discuss this topic
in more detail in the next section. Similarly to the case of
periodic boundary conditions, one can build up excitations in
the bulk on top of this ground state by adding an arbitrary even
number of spinons, bulk strings and quartets [44,45]. These
bulk excitations built on top of the state |− 1

2 〉 form a tower of
excited states that we shall denote the ground-state tower.

As said above in the A subphases, there exists two bound-
ary bound-state solutions exponentially localized at either the
left or the right edge. In the language of the Bethe ansatz,
they correspond to purely imaginary solutions of (5) (see
Appendix A). These bound states carry a spin-1/2, whose spin
orientation is along the boundary fields at each edge, and have
an energy (4) Since the bound states carry a spin half, in order
to add a bound state to the ground-state one also needs to add
a spinon. This spinon may have spin +1/2 or −1/2 and an
arbitrary rapidity θ . The energy cost in the process is

E0 + mL,R + Eθ (19)

and is minimal when θ → ∞. The corresponding states∣∣± 1
2

〉
L and

∣∣± 1
2

〉
R, (20)

have total spins Sz = ±1/2 and energies E0 + mL and E0 +
mR. The lowest excited states above (20) consist of spinon
branches with energies given by (19) and θ �= ∞. On top of
these, the states (20) generate, each, a tower of excited states
obtained by adding an arbitrary even number of spinons, bulk
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FIG. 4. Structure of the Hilbert space in the A subphases. In each
Aj ( j = 1, 2, 3, 4) subphase, there exist four towers of excited states,
each labeled by the bound state parities [PL , PR]. The lowest energy
states in each tower have energies close to the dashed lines corre-
sponding to the energies E0, E0 + mL , E0 + mR, and E0 + mL + mR.

strings, and quartets [45]. In both the left and right towers,
built upon (20), a localized bound state at the left and the
right edges is present and the number of spinon excitations
is always odd.

On top of the above three towers there exists a fourth one
which correspond to states which host two bound states. The
state with the lowest energy in this tower is obtained by adding
a localized bound state at the left and the right edges to the
ground state (18). Since in the process the total spin of the
state is shifted by 1, no spinon is required. The resulting state∣∣ + 1

2

〉
LR, (21)

which has a total spin Sz = 1/2 and an energy E0 + mL + mR,
generates a tower of excited states that comprises an arbitrary
even number of spinons, bulk strings and quartets [45]. The
number of spinon states in the whole tower is always even.
We thus see that, in the A1 subphase, the whole Hilbert space
can be split into four towers generated by the states (18), (20),
and (21) as illustrated in Fig. 4. On top of the ground-state
tower which governs the low-energy physics, the remaining
three towers contain at least one bound state at the edges
and are high-energy states. In particular, we notice that in the
A1 subphase there exists excitations which contain a single
spinon, and although the system is massless, their minimum
energy is greater than the boundary gap mL or mR. These four
towers can be labeled by the bound state parities

PL,R = (−1)NL,R , (22)

where NL,R correspond to number of bound states at the left
and right edges, respectively.

The situation in the A3 subphase can be described in the
very same way as above. Using the isometry (2), we can obtain
all the states in the subphase A3 starting from the states in the
subphase A1 by reversing the sign of the total spin Sz of the
states. Hence, we obtain four towers of states in the subphase

A3 generated by the states | + 1
2 〉, | ± 1

2 〉L,R and | − 1
2 〉LR at

energies E0, E0 + mL,R and E0 + mL + mR.
The A2 and A4 subphases. In these cases the boundary

fields are frustrating for N odd in the sense discussed above.
As we shall see in these subphases the Hilbert space is also
split into four towers of states corresponding to the presence
of boundary bound states. However, since the boundary mag-
netic fields at the two edges point toward opposite directions,
the nature of these towers differ from the ones described
above. Consider for instance the A2 subphase in which the left
boundary field points towards the negative z axis while the one
at the right boundary points in the opposite direction. In this
case we find that the ground state is twofold degenerated, each
one containing a spinon (but no bound state) with spin ±1/2
and rapidity θ → ∞. These two states, i.e.,∣∣± 1

2

〉
, (23)

have total spin Sz = ±1/2 corresponding to the spin of the
spinon, and generate a tower of excited state. It is obtained by
adding an arbitrary even number of spinons, bulk strings, and
quartets [45] on top of the two spin ±1/2 massless spinons
branches with spectrum (8) and rapidity θ �= ∞. In contrast
with the A1,3 subphases, the ground-state tower contains an
odd number of spinons.

Just as in the subphase A1, there exists two boundary
bound-state solutions one at each edge. The bound state’s spin
is always oriented along the boundary magnetic field. Hence,
in the subphase A2 the bound state localized at the left edge
has spin −1/2 whereas the bound state localized at the right
edge has spin +1/2. We find that in order to add the bound
state at the left edge with spin −1/2 one has to remove the
−1/2 spinon at θ = ∞ in the |− 1

2 〉 ground state (23). The
resulting state has total spin Sz = −1/2 and energy E0 + mL.
Similarly adding a spin +1/2 bound state at the right edge
requires to remove the spin-1/2 spinon from the ground state
|+ 1

2 〉 (23). The resulting state has total spin Sz = +1/2 and
energy E0 + mR. The two states with a bound state at either
the left or right edge ∣∣− 1

2

〉
L and

∣∣+ 1
2

〉
R, (24)

generate, each, a tower of excited states upon adding an arbi-
trary even number of spinons, bulk strings and quartets [45].
In these two towers, the number of spinons in every state is
always even.

Finally, the fourth tower is obtained by adding a bound
state at each edge to the two ground states (23). The total spin
of the resulting state does not change since the two, left and
right, bound states have opposite spins. We obtain the states∣∣± 1

2

〉
LR, (25)

which have an energy E0 + mL + mR and generate a tower
of excited states. It is obtained by adding even number of
spinons, bulk strings and quartets [45]. In this tower, the
number of spinons is always odd.

Using symmetry (2), we can obtain all the states in the sub-
phase A4 from the states in the subphase A2 by reversing their
spins. The Hilbert space in the subphase A4 can be similarly
sorted out in terms of four towers of states built upon the states
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|± 1
2 〉, |+ 1

2 〉L, |− 1
2 〉R, and |± 1

2 〉LR with energies E0, E0 + mL,R,
and E0 + mL + mR.

2. Even number of sites

When the number of sites is even the frustrating effect of
the magnetic fields is reversed as compared to the N odd case.
The boundary fields are frustrating in subphases A1,3 while
nonfrustrating in the subphases A2,4.

The A1 and A3 subphases. In the subphase A1, we find that
the ground state is twofold degenerated. It does not contain
bound states but does contain a spinon with rapidity θ → ∞
and spins ±1/2. Despite this, since N is even, the total spins of
the two degenerate ground states have to be integers. Indeed,
as it comes out from our exact solution the two ground states
have total spins Sz = 0 and Sz = −1. Our interpretation of
this fact is that the two ground states with spin Sz = 0 and
Sz = −1 contain a spin +1/2 and a spin −1/2 spinon respec-
tively on top of a static background spin −1/2 distribution
corresponding to the ground state in A1 subphase when N is
odd. In the following, we denote these two ground states by

|0〉 and |−1〉. (26)

The ground-state tower of excitated states comprises spin
±1/2 massless spinon states with energy E0 + mR + Eθ and
finite rapidity θ �= ∞. The rest of the tower is then obtained
by adding an arbitrary even number of spinons, bulk strings,
and quartets [45]. In this tower, the number of spinon states is
always odd.

Starting from one of the two ground states (26), one may
add a bound state at either the left or the right edge. To this
end, one needs to remove the spin ±1/2 spinon. The resulting
total spin is then the sum of the bound-state spin +1/2 with
that of the static background spin −1/2 distribution men-
tioned above. As a result, we end up with two states of total
spin Sz = 0. The corresponding states with the bound state at
the left or the right edge are denoted

|0〉L and |0〉R (27)

and have energies E0 + mL and E0 + mR. Each of these two
states generates a tower of excited states. In these towers the
number of spinon states is always even.

The fourth tower is obtained from the ground states (26)
by adding a bound state at each edge. Since the change of
total spin is 1 there is no need to add or remove a spinon. In
the process, we obtain two degenerate states, with total spins
Sz = 1 and 0 and energy E0 + mL + mR,

|1〉LR and |0〉LR, (28)

that host spin ±1/2 spinons with infinite rapidity as in the
ground states. The fourth tower of excited states comprises,
as in the ground-state tower, spin ±1/2 spinon states. These
states have energy E0 + mL + mR + Eθ and are gapped high-
energy states. The remaining states of this towers are then built
up by adding an even number of spinons, bulk strings, and
quartets [45]. The number of spinon states is always odd.

Similar to the odd number of sites case, using symmetry
(2), we can obtain all the states in the phase A3 starting from
the states in the phase A1 described above.

The A2 and A4 subphases. In the subphase A2, we find that
the ground state is nondegenerated

|0〉 (29)

and has total spin Sz = 0 with energy E0. Starting from this
ground state, we can add a bound state at the left edge with
spin −1/2. As already emphasized one also needs to add a
spinon, with infinite rapidity and zero energy, for the total spin
shift to be an integer. Depending on the spinon spin, which can
be either ±1/2, one ends up with two states

|−1〉L, |0〉L, (30)

which have total spins Sz = −1 and 0 and energy E0 + mL.
One may repeat the same line of arguments with the right edge
paying attention that the bound-state spin in this case is +1/2.
The resulting two states

|+1〉R, |0〉R, (31)

hosting a bound state at the right edge have total spins Sz = 1
and Sz = 0 and energy E0 + mR. Each left and right states (30)
and (31) generate two towers of excited states that comprise
spin ±1/2 spinons with energies E0 + mL,R + E (θ ). The rest
of the towers are obtained by adding even number of spinons,
bulk strings, and quartets [45].

The forth tower is obtained from the ground state (29) by
adding a bound state with spin −1/2 at the left edge and spin
+1/2 at the right edge. No spinons are needed in the process
and one ends up with a single state

|0〉LR, (32)

with total spin Sz = 0 and energy E0 + mR + mL. The latter
state generates also a tower of states with even number of
spinons, bulk strings, and quartets [45].

Using the symmetry (2), similar to the odd number of
sites case, we can obtain all the states in the subphase A4

starting from the states in the subphase A2 described above.
The ground state and the lowest energy state correspond-
ing to each tower in all the A subphases for odd and even
number of sites chain are summarized in Tables I and II,
respectively.

B. B phases

1. Odd number of sites

In the B1 subphase, the ground state has total spin
Sz = −1/2 which corresponds to a static spin distribution and
is represented by ∣∣− 1

2

〉
. (33)

Unlike in the A phases, there exists only a single boundary
bound-state solution corresponding to the bound state at the
left edge. Starting from the ground state, this bound state
can be added (which has spin Sz = 1/2) by adding a spinon
whose spin orientation can be either in the positive or negative
z direction resulting in the state with total spin Sz = ±1/2,
respectively. This state has energy E0 + mL + Eθ and hence
has the lowest energy in the limit θ → ∞. It is represented by∣∣± 1

2

〉
L. (34)
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TABLE I. Energies and bound state parities of the ground state
and the lowest energy states corresponding to each tower in all the
A subphases for odd number of sites is shown below. The subscripts
L, R denote the location of the bound states at the left or the right
boundary.

Phase State Energy-E0 PL PR

|− 1
2 〉 0 (g.s) 1 1

|± 1
2 〉R mR 1 −1

A1 |± 1
2 〉L mL −1 1

| 1
2 〉L,R mL + mR 1 1

| 1
2 〉 0 (g.s) 1 1

|± 1
2 〉R mR 1 −1

A3 |± 1
2 〉L mL −1 1

|− 1
2 〉L,R mL + mR 1 1

|− 1
2 〉L mL −1 1

|± 1
2 〉 0 (g.s) 1 1

A2 |± 1
2 〉L,R mL + mR −1 −1

| 1
2 〉R mR 1 −1

|− 1
2 〉R mR 1 −1

|± 1
2 〉 0 (g.s) 1 1

A4 |± 1
2 〉,L,R mL + mR −1 −1

| 1
2 〉L mL −1 1

In the subphase B2, the state which does not contain a
bound state at either edge contains a spinon whose spin ori-
entation is either in the positive or negative z direction. The
energy of this state is E0 + Eθ and thus forms a continuous
branch parameterized by θ . The ground state is obtained in

TABLE II. Energies and bound state parities of the ground state
and the lowest energy states corresponding to each tower in all the A
subphases for even number of sites is shown below.

Phase State Energy-E0 PL PR

|−1〉, |0〉 0 (g.s) 1 1
|0〉R mR 1 −1

A1 |0〉L mL −1 1
|1〉L,R, |0〉L,R mL + mR 1 1

|1〉, |0〉 0 (g.s) 1 1
|0〉R mR 1 −1

A3 |0〉L mL −1 1
|−1〉L,R, |0〉L,R mL + mR 1 1

|0〉 0 (g.s) −1 −1
|−1〉L, |0〉L mL 1 −1

A2 |1〉R, |0〉R mR −1 1
|0〉L,R mL + mR 1 1

|0〉 0 (g.s) −1 −1
|1〉L, |0〉L mL 1 −1

A4 |−1〉R, |0〉R mR −1 1
|0〉L,R mL + mR 1 1

the limit θ → ∞ and is represented by∣∣± 1
2

〉
(35)

Starting from this ground state, one can add a bound state
at the left edge (which has spin Sz = −1/2) by removing the
existing spinon. The resulting state has energy E0 + mL with
total spin Sz = −1/2 and is represented by∣∣− 1

2

〉
L. (36)

By using the transformation L → R, the states in the phases
B8 and B7 can be obtained by starting with the states in the
phases B1 and B2, respectively. By using the transformation
(2), the states in the phases B5, B6, B3, and B4 can be obtained
from the states in the phases B1, B2, B7, and B8, respectively.

2. Even number of sites

In the phase B1, the state with no bound states at both the
edges is twofold degenerate. It contains a spinon on top of
the static spin distribution of the ground state in the phase B1

corresponding to odd number of sites case. The spin orienta-
tion of the spinon can be either in the positive or negative z
direction which results in a doubly degenerate state with total
spin Sz = 0,−1. This state has energy E0 + Eθ and thus forms
a continuous branch which is parameterized by θ . The ground
state is obtained in the limit θ → ∞ and is represented by

|0〉, |−1〉. (37)

We can add the bound state at the left edge (with spin
Sz = 1/2) to the ground state by removing the existing spinon.
This results in a state

|0〉L (38)

with total spin Sz = 0 with energy E0 + mL.
In the phase B2, the state which does not contain bound

state at either edge has total spin Sz = 0 and has energy E0. It
is represented by

|0〉. (39)

We can add the bound state at the left edge (with spin
Sz = −1/2) by adding a spinon with spin oriented either in
the positive or negative z direction and hence resulting in a
doubly degenerate state with total spin Sz = −1, 0. This state
has energy E0 + Eθ + mL, and hence the lowest energy of this
state corresponds to the limit θ → ∞ and is represented by

|0〉L, |−1〉L. (40)

Similar to the odd number of sites case, the states in the
phases B8 and B7 can be obtained by starting with the states
in B1 and B2, respectively, by making the transformation
L → R. By using transformation (2), the states in the phases
B5, B6, B3, and B4 can be obtained from the states in the
phases B1, B2, B7, and B8, respectively. Unlike in the A sub-
phases where there exists bound states at both the edges, we
have seen that in B subphases there exists only one bound state
at either the left or the right edge. Similar to the A subphases,
excitations can be built up starting from the ground state and
from the state containing a bound state either at the left or
the right edge by adding even number of spinons, strings
and quartets [45]. This leads to the Hilbert space in each B
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TABLE III. Energies and local bound state parities of the ground
state and the lowest energy states corresponding to each tower in all
the B phases for odd number of sites is shown below.

Phase State Energy-E0 PL PR

B1 |− 1
2 〉 0 (g.s) 1 1

|± 1
2 〉L mL −1 1

B8 |− 1
2 〉 0 (g.s) 1 1

|± 1
2 〉R mR 1 −1

B2 |− 1
2 〉L mL −1 1

|± 1
2 〉 0 (g.s) 1 −1

B7 |± 1
2 〉 0 (g.s) 1 1

|− 1
2 〉R mR 1 −1

B4 | 1
2 〉 0 (g.s) 1 1

|± 1
2 〉R mR 1 −1

B5 | 1
2 〉L 0 (g.s) 1 1

|± 1
2 〉L mL −1 1

B3 |± 1
2 〉 0 (g.s) 1 1

| 1
2 〉R mR 1 −1

B6 |± 1
2 〉 0 (g.s) 1 1

| 1
2 〉L mL −1 1

subphase consisting of only two towers. For example, in the
phase B1, the two towers have the bound state parities PL =1,

PR = 1 and PL = −1, PR = 1, whereas in the B8 phase they
correspond to PL = 1, PR = 1 and PL = 1, PR = −1. The
ground states and the lowest energy states corresponding to
the two towers in all the B subphases are summarized in
Tables III and IV.

C. C subphases

Odd number of sites. In the subphases C1 and C3, the
ground state is represented by∣∣ ∓ 1

2

〉
(41)

and have total spin Sz = ∓1/2 respectively, which corre-
sponds to a static spin distribution. In the subphases C2 and C4

the lowest energy state contains a spinon with spin pointing
either in the positive or negative z direction resulting in a
twofold degenerate state parameterized by rapidity θ . The
ground state is obtained in the limit θ → ∞. The spin ori-
entation of the spinon dictates the total spin Sz = ±1/2 of the
state. They are represented by∣∣± 1

2

〉
. (42)

Even number of sites. In the subphase C1, the lowest energy
state contains a spinon with rapidity θ with spin oriented
either in the positive or negative z direction on top of the
static spin distribution of the ground state in the subphase
C1 corresponding to odd number of sites case. This state
is twofold degenerate and is parameterized by rapidity θ .
The ground state is obtained in the limit θ → ∞ and is

TABLE IV. Energies and local bound state parities of the ground
state and the lowest energy states corresponding to each tower in all
the B phases for even number of sites is shown below.

Phase State Energy-E0 PL PR

B1 |−1〉, |0〉 0 (g.s) 1 1
|0〉L mL −1 1

B8 |−1〉, |0〉 0 (g.s) 1 1
|0〉R mR 1 −1

B2 |−1〉L , |0〉L mL −1 1
|0〉 0 (g.s) 1 1

B7 |−1〉R, |0〉R mR 1 −1
|0〉 0 (g.s) 1 1

B4 |1〉, |0〉 0 (g.s) 1 1
|0〉R mR 1 −1

B5 |1〉, |0〉 0 (g.s) 1 1
|0〉L mL −1 1

B3 |1〉R, |0〉R mR 1 −1
|0〉 0 (g.s) 1 1

B6 |1〉L , |0〉L mL −1 1
|0〉 0 (g.s) 1 1

represented by

|0〉, |−1〉 (43)

with total spin Sz = 0 and −1 corresponding to the spin ori-
entation of the spinon which is along the positive and negative
z directions, respectively. Similarly, in the subphase C3, the
lowest energy state contains a spinon with spin pointed either
in the positive or negative z direction with rapidity θ on top
of the static spin distribution of the ground state in the phase
C3 corresponding to odd number of sites case. It is twofold
degenerate and is parameterized by rapidity θ . The ground
state is obtained in the limit θ → ∞ and is represented by

|0〉, |1〉 (44)

with total spin Sz = 0 and 1 corresponding to the spin orienta-
tion of the spinon which is along the negative and positive
z directions, respectively. In the subphases C2 and C4, the
ground state has total spin Sz = 0 and is represented by

|0〉. (45)

Similar to the A and B subphases, in each C subphase,
excitations can be built on top of the ground state by adding
even number of spinons, strings, and quartets [45] generating
a single tower of excited states which can be labeled by
PL = 1,PR = 1.

D. Boundary eigenstate phase transition

After this rather lengthly, but complete, description of the
excited states let us now summarize our results. As we saw
there exists a critical value of the edge fields hc, |hc| = 2,
at each edge associated with the existence of an edge bound
state. When |hi=(L,R)| > 2 a localized bound state is stabilized
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close to the corresponding edge i = (L, R). The three types of
phases Aj , Bj , and Cj distinguish themselves by the number
of bound states they support, i.e., two, one, and zero. Inde-
pendently of the parity of N , we showed that in the A-type
phases the Hilbert space splits into four towers of excited
states while there exists two towers in the B-type phases and
only one tower in the C-type phases. When compared to the
ground-state phase diagrams [see Figs. 1 and 3] each quadrant
splits into one Cj subphase, two Bj subphases and one Aj

subphase as displayed in the Fig. 2. At this point a natural
question arises: what is the nature of the transition that occurs
as one moves from an Aj subphase to a Bj subphase or from a
Bj subphase to a Cj subphase by varying the edge fields.

Without loss of generality let us fix on quadrant with
hL > 0 and hR > 0. Consider first the situation where both
hL,(R) > 2, that is one sits in the A1 subphase. Then let the left
boundary magnetic field hL be fixed while the right boundary
fields hR is decreased. As hR is decreased below the critical
value hc = 2, we move into the subphase B1. The two states
which contain the bound state at the right edge no longer
exist. On the boundary between the A1 and B1 subphases,
the energy of the bound state and energy of the spinon with
zero rapidity coincide mR ∼ 2π = Eθ→0. Hence it is natural
to interpret that the bound state at the right edge leaks into
the bulk by taking the form of a spinon with rapidity θ ∼ 0.
Similarly, moving from A1 to B8 (see Fig. 2), the bound state
corresponding to left boundary leaks into the bulk. Similarly,
moving from B1 to C1, the value of the left boundary field
takes values lesser than critical value, and hence the bound
state present at the left edge leaks into the bulk in a similar
way, resulting in C1 having no bound states at either edge. The
same phenomena of bound states leaking into the bulk occurs
as one moves from any A subphase into the respective B and
C subphases.

More importantly, associated with the appearance or dis-
appearance of localized bound states is the fact that when one
goes from any subphase to another, the whole structure of the
Hilbert space changes. The excited states organize themselves
into towers whose number is different in the A, B, or C type
phases. We saw that the towers are labeled by additional
quantum numbers which are the bound state parities PL,R [see
Eq. (22)]. The four towers in A-type phases are labeled by
(PL,PR) = (±1,±1), the two towers in the B-type phases
by (PL,PR) = (±1,+1) and (PL,PR) = (+1,±1) and the
unique tower of the C-type phases by (PL,PR) = (+1,+1).
It is interesting to notice that one may have also labeled these
towers in the A-type phases by the spinon parity Ps = (−1)n,
where n denotes the number of spinons in a given eigenstate of
the Hamiltonian. The relation between PL,PR and Ps depends
on the phase and the parity of the number of sites N as follows:

PLPR(−1)n(−1)N = (−1)k, (46)

where k labels the different subphases Ak as given in Fig. 2. As
when crossing from an Aj subphase to either a Bj or Cj sub-
phase the structure of the Hilbert space changes, as illustrated
in Fig. 5, and we coin the corresponding phase transition a
boundary eigenstate phase transition. Such transitions might
be probed through dynamical properties at infinite temper-
atures that involve operators localized close enough to the
boundaries. We shall elaborate on this topic in a forthcoming

A phases

B phases

C phases

EPT

EPT

EPT

FIG. 5. Hilbert space in the A phases is comprised of four towers
whereas it is comprised of two towers in the B phases and a single
tower in the C phases. Figure illustrates the boundary eigenstate
phase transitions (BEPT) that occur between A, B, and C type phases,
where the number of towers of the Hilbert space changes.

work. At present, we shall content ourselves, in the next sec-
tion, with the simpler question of how this transition reflects
itself in the ground-state properties of local observables.

IV. GROUND-STATE MAGNETIZATION PROFILE
AND SPIN ACCUMULATION

To this end, we shall be interested in the behavior of the lo-
cal magnetization profile induced by the edge magnetic fields
in the different subphases. We shall use the DMRG method,
which is ideal for one-dimensional systems, to calculate the
ground state of Eq. (1) on finite size systems. In particular, we
considered system sizes up to N = 1600 sites, where a maxi-
mum of 1000 states are kept to keep the truncation error below
10−12. The DMRG calculations in this paper are performed
using the ITENSOR library [46]. Once the ground state is ob-
tained we compute the spin expectation value Sz(xi ) ≡ 〈σ z

i /2〉
as a function of position xi for various edge magnetic fields
hL, hR in the different phases of the problem.

A. Magnetization profile

From the magnetization obtained from the DMRG calcula-
tions, we use the following ansatz for the magnetization near
the boundary:

Sz(xi ) = (−1)i

(
A + B√

xi

+ Ce−xi/ξ

)
+ D

xi
. (47)
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FIG. 6. Magnetization profile of the ground state in (a) A1,
(b) A2, (c) A3, and (d) A4 phases, respectively. The boundary fields
are hL = ±4, hR = ±4 on a chain of length N = 100, and the arrow
indicates the direction of the boundary fields.

We have introduced a constant staggered magnetization (A)
that vanishes in the thermodynamic limit as well as the alter-
nating 1/

√
x and uniform 1/x terms which account, to leading

order, for the gapless bulk. In the bosonization language,
they correspond to the staggered and uniform component of
the magnetization in the long-distance limit. In addition to
the above terms, we have also included a term which goes
like ∼e−xi/ξ to account for any exponentially localized spin
accumulation.

Overall we find excellent agreement between our DMRG
results and its fit (47) for several values of hL and hR. We show
in Fig. 6, as an example, the magnetization profile Sz(xi ) deep
in four A phases for the boundary fields |hL| = |hR| = 4 and
system size N = 100. As expected, the magnetizations at the
boundaries are all opposite to the boundary field directions
and one clearly observes a spin accumulation close to the
edges. We notice though that since the bulk is gapless, the
spin accumulation is not expected to be sharply localized
at the edge. This can be seen in the magnetization profile
which exhibit asymptotic power-law antiferromagnetic decay
sufficiently far away from the edges. Notice that, since in the
A1 and A3 phases, the ground state contains a spinon in the
bulk for even chains, a node in the bulk antiferromagnetic

configuration [Figs. 6(a) and 6(c)] is clearly seen. Alterna-
tively, for odd chain lengths the A1 and A3 phases have no
spinons whereas the A2 and A4 phases do. We now discuss
in more detail about our results for the fit in the particular
case hL = hR = h, where the system exhibits a Z2 space parity
symmetry. As one varies h, this allows us to study the spin
magnetization profile when going from the C1 phase to the
A1 phase (see Fig. 2). We show for example in Fig. 7(a) the
magnetization profile for different values of h in the A1 phase
and the critical point. Fitting the DMRG data with the form
(47), we can extract the parameters A, B, C, and D as well
as the length scale ξ as a function of h. The coefficients C of
the exponential term and D of the uniform component 1/x are
shown in Fig. 7(b). The constant term A and the coefficient B
of the staggered magnetization component 1/

√
x are shown in

Fig. 8(b). Finally ξ is shown in Fig. 8(c).
From our data, we first observe that when h = hc = 2 the

magnetization profile takes a particular simple form in the
thermodynamical limit

Sz(xi ) � (−1)i0.413/
√

xi, (48)

as both C and D are zero (even at a finite size) and A goes to
zero as N → ∞. We display in Fig. 8(a) our best fit for the
magnetization when h = hc = 2 and N = 1000, which shows
an almost perfect ∼1/

√
x behavior asymptotically. It is re-

markable that for this value of the edge field the bulk uniform
component 1/x disappears from the magnetization profile.

This case h = hc = 2 seems to play a special role in the
magnetization profile. Indeed we find that both the coefficient
C and D change sign when going accross the h = hc = 2 point
where they vanish. The change in the sign of C means that
the exponential term enhances (diminishes) its contribution to
Sz(xi ) when h > hc (h < hc). On the other hand the change
of sign of D can be interpreted as a π phase shift of the
uniform component term in Eq. (47). At the transition, both
contributions vanish as we find C, D = 0. Another important
feature is that coefficients A and B saturate as one increases h
above hc = 2 as seen in Fig. 8(b). This means that at magnetic
fields h larger than hc = 2 the constant contribution as well as
the staggered component of the magnetization are insensitive
to the edge magnetic field. As these are the dominant contribu-
tions for large x, this means that the magnetizations far from
the edges are essentially insensitive to the edge fields when

FIG. 7. (a) Magnetization (dots) and its fit to Eq. (47) (dashed lines) for the first 20 sites of N = 1000 chain. (b) The fit parameters C and D
from Eq. (47), as a function of h. Both parameters vanishes at the critical hc = 2. The shaded region is where the fitting to Eq. (47) numerically
fails as it is close to hc = 2. (See Appendix C for more details.)
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FIG. 8. (a) Magnetization for the N = 1000 chain with critical boundary fields (h = hc = 2). The magnetization of a critical chain decays
as ∼1/

√
xi as can be seen from the good agreement with the |Sz(xi )| = 0.413/

√
xi + 0.00385 obtained from fitting the data. (b) The fit

parameters A and B from Eq. (47), as a function of boundary field h. (c) The length scale ξ of the exponentially localized boundary spin, also
from Eq. (47), as a function of h. The critical point is hc = 2 where the length scale diverges.

h > hc, in contrast to low fields h < hc where both A and B
wildly varies.

In the light of the discussion given in the precedent sec-
tion, it seems that at the critical point where the boundary
eigenstate phase transition occurs (here between the A1 and C1

phases on the Z2 symmetric line hL = hR) a qualitative change
also occurs in the magnetization profile in the ground state.
Whether this change corresponds to a genuine critical point
for the ground-state properties (reflecting itself into a singular
behavior of the magnetization profile at hc) is a nontrivial
issue. Indeed, although we find that the length scale ξ di-
verges as h approaches hc, at the same time C, D → 0 and the
numerical fitting overfits the data in the vicinity of the critical
point (h = hc = 2). We mark this region with a grey shade
in Figs. 7(b) and 8(c) (for more detail see Appendix C). We
therefore find it difficult to conclude that these coefficients,
or length scale ξ , serve as order parameters for a genuine
ground-state phase transition.

B. Boundary spin accumulation

Due to the edge magnetic fields we naturally expect that
some amount of spin is getting accumulated close to the edges.
To calculate the spin accumulation associated with the edges
of the system, we use the following definition of the spin
accumulation on the left boundary Sz

L as [47]

Sz
L = lim

α→0
lim

N→∞
Sz

L(α, N ), (49)

where

Sz
L(α, N ) =

∑
i

e−xiαSz(xi ). (50)

Note the order of the limit is relevant and it is important
to take the thermodynamic limit first. Otherwise, the α → 0
limit removes the cutoff and the result becomes merely the
total Sz of the system. Also, α  1/L should be satisfied for
the cutoff to be meaningful. In the following we shall compute
Sz

L in both the C2 and A2 phases where hL = −hR = −h. The
reason for this is to keep the odd parity of the system which
simplifies the finite-size conjectures which will follow.

To obtain Sz
L systematically, we infer limN→∞ Sz

L(α, N ) ≡
Sz

L(α) from the finite size calculations. Figure 9(a) shows the
Sz

L(α, N ) as a function of α for different system sizes, when
h = 4. One important observation is that, as the system size
grows Sz

L(α, N ) converges to the Sz
L(α) curve. Therefore, each

Sz
L(α, N ) is converged to Sz

L(α) for α larger than a certain
value of αN , which limN→∞ αN = 0. We conjecture the lead-
ing difference of the finite Sz

L(α, N ) and infinite Sz
L(α) as

Sz
L(α) = Sz

L(α, N ) − 1

4
e−Nα + · · · , (51)

for h � hc. This equation is suggestive that it consists of the
proposed spin (1/4) and the only length scale (N) and directly
implies the fractional 1/4 spin. Taking the α → 0 limit to
Eq. (51), the first term vanishes because Sz

L(0, N ) = ∑
i Sz(xi )

for any finite N and the total Sz is zero for the even chain in
A2 phase. The remaining terms give the fractionalized Sz

L =
±1/4 per Eq. (49) where the sign depends on the direction of
the boundary field.

To see how this work let us give an example of our fi-
nite size scaling procedure in the particular case h = 4. In
Fig. 9(b), we plot Sz

L(α, 300) − Sz
L(α, N ) for various N for

the same parameters in Fig. 9(a). As we expect from our con-
jecture [Eq. (51)], the difference converges to 1

4 e−Nα (dashed
line) for large N . To quantify the numerical value of Sz

L, we
find the best exponential fit to the plots similar to Fig. 9(b) for
different h values, and obtain the spin accumulation Sz

L(h) as
the overall coefficient.

Our final result for the spin accumulation Sz
L as a function

of h is shown in Fig. 9(c). Our results for Sz
L are consistent with

Sz
L = 1/4 for h � hc = 2 and decreases for smaller values of

h. We thus find that at large fields h � hc = 2 a fractional
quarter spin is likely to be accumulated at the edge in the
A2 phase. The situation at hand is similar to what happens
in topological one dimensional gapless Spin Triplet Super-
conductors (STS) where there also a fractional spin 1/4 is
getting localized at the edge. However, in the present case,
we do not expect Sz

L to be a sharp quantum observable in
contrast with the STS case where eigenvalues of Sz

L label the
different edge states of the system. The reason for this stems
from the absence of a gap in the bulk of the Heisenberg chain
in contrast with STS. The best way to check this is to compute
the variance of the operator Sz

L [Eq. (49)]

σ 2
S = lim

α→0
lim

N→∞
σ 2

S (α, N ),

σ 2
S (α, N ) = 〈(

Sz
L(α, N )

)2〉 − 〈
Sz

L(α, N )
〉2

. (52)

We show in Fig. 10(a) σ 2
S (α, N ) for different system sizes

and h = 4. We observe the σ 2
S (α, N ) converges to σ 2

S (α) as
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FIG. 9. (a) Spin accumulation Sz
L (α, N ) for various system sizes when hL = −hR = 4. The inset is a blowup near α = 0. (b) The difference

between the spin accumulation for system size N and that of the system of N = 300. The inset is the same plot in linear scale, and the gray
dashed lines are the conjectured (1/4)e−300α . (c) The boundary spin accumulation obtained from the linear fit of (b) to Ae−300α as a function of
boundary field hL .

system size increases. We are thus led to conjecture the lead-
ing finite-size correction to the infinite N limit:

σ 2
S (α) = σ 2

S (α, N ) + a

(Nα)2 + b
+ · · · . (53)

This conjecture is based on the empirical observation that the
difference of two curves in Fig. 10(a) follows 1/α2 for large α

and remains finite at α = 0, which is qualitatively reminiscent
of how the connected spin-spin correlation function (that the
variance is related to) vanishes for large momentum (repre-
sented by α). Figure 10(b) shows 	σ 2

S (α, N ) ≡ σ 2
S (α, N ) −

σ 2
S (α, 300), together with the fitted equations using Eq. (53).

Importantly, we find that a and b are essentially independent
of N (with discrepancies within 1.61%) demonstrating the
quality of the conjectured functional form with only two fit
parameters.

We again take the α → 0 limit of Eq. (53) and obtain
σ 2

S . Using the fitted parameters a and b from σ 2
S (α, 600) −

σ 2
S (α, 300), we get σ 2

S = σ 2
S (0, N ) + a/b. Since σ 2

S and a/b
does not depend on N , the remaining term σ 2

S (0, N ) should
also be N independent. We indeed find that σ 2

S (0, N ) is nearly
zero, and three orders of magnitude smaller than a/b. From
this, we plot σ 2

S (≈ a/b) as a function of h in Fig. 10(c).
Although the variance decrease as h increase and crosses the
phase transition, it remains nonzero. This means that Sz

L does
not represent a sharp quantum observable, and as such, we
cannot, in contrast with topological STS superconductor; label
the states according to the value of the spin accumulations at
the edges.

Overall we find that the ground-state properties, as probed
by the magnetization profile, displays interesting and nontriv-
ial behavior as a function of the edge fields h. In particular
we observe that above the critical value h > hc = 2 a frac-
tional spin 1/4 is likely to be accumulated at the edge of the
chain. However, in contrast with what happens in topological
spin triplet superconductor, this fractional spin is not a sharp
quantum observable and cannot be used as a genuine quantum
number. The reason for this stems from the absence of a gap in
the bulk. Nevertheless, the behavior of the spin accumulation
as well as the change of the magnetization profile in the
ground state might reflect, at least qualitatively, the boundary
eigenstate phase transition between phases A and C discussed
in the previous section.

V. DISCUSSION

We considered spin-1/2 Heisenberg chain with boundary
magnetic fields and analyzed it analytically using Bethe ansatz
and also numerically using DMRG. Although the Heisenberg
chain has been immensely studied and is very well under-
stood, the results that we have presented in this work have
not been found before. We find that the system exhibits four
different ground states for four different orientations of the
boundary fields. The total spin Sz in each ground state may
differ, which depends on the orientation of the boundary fields
and also depends on the evenness or oddness of the number of
sites of the chain. As the orientation of the magnetic fields is
changed, the system undergoes a phase transition where the

FIG. 10. (a) Variance of Sz
L (α, N ) for various system sizes when hL = −hR = 4. (b) The difference between the variance for system size

N and that of the system of N = 300. The linear behavior for large α in this log-log plot suggests the difference is asymptotically ∼α−2. The
solid lines are the result of a fit based on Eq. (53). The discrepancies at large α are exaggerated due to the logarithmic scale. The inset is the
same figure in linear scale which shows good agreement between data and fit. (c) The variance obtained by the fit parameters of (b). Variance
remains nonzero beyond the phase transition. Inset is the same quantity plotted in a y-axis range down to zero.
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ground state of the system changes. The nature of this phase
transition is currently unknown to us and will be analyzed in
the future work.

For a given orientation of the boundary fields, the system
exhibits a high-energy bound state exponentially localized at
an edge when the boundary magnetic field takes values greater
than the critical field hc. Every phase corresponding to a cer-
tain ground state can be further divided into four subphases.
In one of the subphases, the system exhibits bound states
at both edges, and in one subphase the system exhibits no
bound states while in the remaining two subphases the system
exhibits a bound state at the left or the right edges.

Starting from the ground state, one can build up excitations
in the bulk by adding spinons, strings, quartets [45], etc., and
one obtains a tower of excited states. Similarly, starting from
either the state which contains one bound state at the left or the
right edge or from the state which contains two bound states,
one can build up excitations in the bulk and one obtains differ-
ent towers of excited states. Hence in the region where the sys-
tem exhibits two bound states, the Hilbert space is comprised
of four towers and in the regions where the system exhibits
one bound state, the Hilbert space is comprised of two towers
and in the regions where there exists no bound states, the
Hilbert space is comprised of a single tower of excited states.

For a particular orientation of the boundary fields where
the system exhibits a certain ground state, as the values of the
magnetic fields is changed, the system undergoes a boundary
eigenstate phase transition, where the system may gain or lose
a bound state at a particular edge which results in the change
in the number of towers in the Hilbert space. Across this
phase transition line where the structure of the Hilbert space
changes, the total spin Sz of the ground state of the system
remains unchanged. To analyze the properties of the ground
state across this phase transition, we chose the Z2 symmetric
point where the values of the magnetic fields at the edges
take equal values. By using DMRG we obtained the edge
magnetization profile in the regions where the magnetic fields
take values greater than and lesser than the critical field hc.
We find that when both the magnetic fields take values greater
than the critical field, the total spin accumulation at each edge

saturates to 1/4. To check whether this fractional spin is a
genuine quantum observable, we calculated the variance and
found that although it saturates to a small value, it remains
nonzero, indicating that the fractional spin 1/4 is not a gen-
uine quantum number. Nevertheless, in the region where both
the magnetic fields take values greater than the critical field,
there exists nonzero probability to observe a nonzero spin Sz

close to each edge. This suggests that one might observe a
difference in the spin dynamics at the boundary across the
phase transition line. Recently, such an effect was observed
in the transverse field Ising model, where the dynamics of the
spin at the edge depends on the number of edge states [48].

Although there exist no genuine spin fractionalization in
the ground state, the structure of the Hilbert space and the
boundary eigenstate phase transition the system exhibits are
also found in the gapless superconductors which exhibit SPT.
Even though the Hilbert space is comprised of towers of
excited states, unlike the gapped regime of the XXZ spin-1/2
chain which exhibits SSB, degenerate pairing in the spec-
trum is not apparent due to the gapless nature of the bulk
excitations. Although the model we considered is integrable,
the structure of its Hilbert space and the boundary eigenstate
phase transition it exhibits might provide insight into systems
with disorder which exhibit phenomena such as many body
localization.

ACKNOWLEDGMENTS

J.H.P. thanks W. Ketterle for useful discussions about
realizing boundary fields in experiment. P.A. and P.R.P
thank F. H. L. Essler for very helpful discussions. J.L. and
J.H.P. are partially supported by the Air Force Office of Sci-
entific Research under Grant No. FA9550-20-1-0136 and the
Alfred P. Sloan Foundation through a Sloan Research Fel-
lowship. J.H.P. acknowledges the Aspen Center for Physics,
where some of this work was discussed, which is supported by
National Science Foundation Grant No. PHY-1607611. P.R.P.
acknowledges support from Rutgers HEERF Fellowship dur-
ing the stay at Rutgers University, where most part of the work
was done.

APPENDIX A: SOLUTION OF BETHE ANSATZ EQUATIONS

In this section, we provide a detailed calculation of the ground state and the boundary excitations for chains with both odd and
even numbers of sites chain in the phases A1, B1, and C1 and describe how the solution in all the other phases can be constructed
using the solution obtained in these phases.

1. A phases

Consider the phase A1. In this phase both the magnetic fields point in the positive z direction and take values hL, hR > hC ,
(hC = 2), which translates to the boundary parameters taking values 0 < pL, pR < 1/2. The Bethe equations corresponding to
Bethe reference state with all down spins are [2,28](

λ j − i
2

λ j + i
2

)2N(
λ j + i

(
1
2 + pL

)
λ j − i

(
1
2 + pL

)
)(

λ j + i
(

1
2 + pR

)
λ j − i

(
1
2 + pR

)
)

=
M−1∏

j �=k=1

(
λ j − λk − i

λ j − λk + i

)(
λ j + λk − i

λ j + λk + i

)
. (A1)

The eigenvalues of the Hamiltonian are given by

E = −
M∑

j=1

2

λ2
j + 1

4

+ N − 1 − 1

pL
− 1

pR
. (A2)
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a. A1: odd number of sites

Let us first consider a state with all real Bethe roots. By applying logarithm to (A1), we obtain

(2N + 1)
(2λ j ) − 


(
λ j

1
2 + pL

)
− 


(
λ j

1
2 + pR

)
=

∑
σ=±

M∑
k=1


(λ j + σλk ) + πν(λ j ), (A3)

where 
(x) = arctan(x). We introduced the counting function ν(λ), where ν(λ j ) = I j . The constraint j �= k in the sum on the
right side is lifted by introducing the term 
(2λ j ) on the left side, which exactly cancels with the term corresponding to λ j = λk

in the sum on the right side. Also note that due to the reflection symmetry of the Bethe equations (A1), if λk is a solution to the
Bethe equations then −λk is also a solution. To avoid the double counting, we associate both the roots λ j,−λ j with the same
integer I j . Differentiating (A3) and noting that ρ(λ) = ρ(−λ) and 2ρ(λ) = d

dλ
ν(λ), we obtain

(2N + 1)a 1
2
(λ) − a 1

2 +pL
(λ) − a 1

2 +pR
(λ) = πδ(λ) + 2πρ|− 1

2 〉(λ) + 2
∫ ∞

−∞
ρ|− 1

2 〉(μ)a1(λ − μ)dμ, (A4)

where an(x) = n
n2+x2 . A hole at λ = 0 is added as λ = 0 is a trivial solution to the Bethe equations (A1) and leads to a zero wave

function [28]. The reason for the subscripts for the density distribution will become evident soon.
Taking Fourier transform, we obtain

ρ̃|− 1
2 〉(ω) = (2N + 1)e− |ω|

2 − e−
(

1
2 +pL

)
|ω| − e−

(
1
2 +pR

)
|ω| − 1

2(1 + e−|ω|)
. (A5)

The total number of Bethe roots is M|− 1
2 〉 = ρ̃|− 1

2 〉(0) = N−1
2 , hence Sz = −1/2. We represent this state by |− 1

2 〉. Notice that the
number of roots is an integer only for a spin chain with odd number of sites.

Using (A2), one can find the energy of the states. Equation (A2) can be written as

E = −4
∫ ∞

−∞
dλ a 1

2
(λ)ρ(λ) + N − 1 − 1

pL
− 1

pR
. (A6)

Using the density distribution (A5) in the above equation, we obtain

E|− 1
2 〉 = E0 = −(2N + 1) ln(4) + N − 1 + π +

∑
i=L,R

�
( pi

2

)
− �

(
pi − 1

2

)
− 1

pi
, (A7)

where � is the digamma function. There exists two boundary string solutions λp′
L

= ±i( 1
2 + pL ), λpR = ±i( 1

2 + pR) to the Bethe
equations corresponding to all spin down Bethe reference state (A1). Adding λpL , we have

(2N + 1)a 1
2
(λ) − a 1

2 +pL
(λ) − a 1

2 +pR
(λ) − a 3

2 +pL
(λ) − a 1

2 −pL
(λ) = πδ(λ) + 2πρ|0〉p′L

(λ) + 2
∫ ∞

−∞
ρ|0〉p′L

(μ)a1(λ − μ)dμ.

Taking Fourier transform, we obtain

ρ̃|0〉p′L
(ω) = ρ̃|− 1

2 〉(ω) + 	ρ̃p′
L
(ω), 	ρ̃p′

L
(ω) = −e

(
3
2 +pL

)
|ω| + e

(
1
2 −pL

)
|ω|

2(1 + e−|ω|)
. (A8)

The number of real roots is given by M|0〉p′
L
− 1 = ρ̃|0〉p′L

(0). From this, we obtain the total number of roots M|0〉p′
L

= N/2, hence
Sz = 0. We observe that the number of roots is an integer only if the number of sites is even. Since we have a chain with odd
number of sites, in order for one to add a boundary string to the state |− 1

2 〉, a propagating hole (spinon) needs to be added as
well. Adding a spinon with rapidity θ , to the state |− 1

2 〉 in addition to the boundary string λp′
L
, we have

(2N + 1)a 1
2
(λ) − a 1

2 +pL
(λ) − a 1

2 +pR
(λ) − a 3

2 +pL
(λ) − a 1

2 −pL
(λ) (A9)

= πδ(λ) + πδ(λ − θ ) + πδ(λ + θ ) + 2πρ|− 1
2 〉(θ,p′L )

(λ) + 2
∫ ∞

−∞
ρ|− 1

2 〉(θ,p′L )
(μ)a1(λ − μ)dμ. (A10)

Taking Fourier transform, we obtain

ρ̃|− 1
2 〉(θ,p′L )

(ω) = ρ̃|− 1
2 〉(ω) + 	ρ̃p′

L
(ω) + 	ρ̃θ (ω), 	ρ̃θ (ω) = − cos(θω)

(1 + e−|ω|)
. (A11)

The number of real roots is given by M|0〉(θ,p′
L ) − 1 = ρ̃|0〉(θ,p′L )

(0). From this, we find that the total number of Bethe roots is

M|− 1
2 〉(θ,p′L )

= N−1
2 , hence Sz = −1/2. We represent this state by |− 1

2 〉(θ,L). We can calculate the energy of this state using (A6),
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we have

E|− 1
2 〉(θ,p′L )

= −4
∫ ∞

−∞
dλ a 1

2
(λ)ρ|− 1

2 〉(θ,L)
(λ) + N − 1 − 1

pL
− 1

pR
− 2

1
4 + (

i
(

1
2 + pL

))2 . (A12)

Using (A14), in the above equation, we obtain

E|− 1
2 〉(θ,L)

= E0 + 2π

sin(π pL )
+ 2π

cosh(θ )
. (A13)

The first term is just the energy of the ground state |− 1
2 〉. The second term is the energy of the bound state at the left edge and

the third term is the energy of the spinon with rapidity θ . The energy of both the spinon and the bound state are strictly positive
with

0 < Eθ < 2π, Ebound state > 2π.

Similarly we can add the boundary string corresponding to the right boundary λp′
R

along with a spinon and obtain the state
|− 1

2 〉(θ,R) with total spin Sz = −1/2 described by the following density distribution

ρ̃|− 1
2 〉(θ,p′R )

(ω) = ρ̃|− 1
2 〉(ω) + 	ρ̃p′

R
(ω) + 	ρ̃θ (ω), 	ρ̃θ (ω) = − cos(θω)

(1 + e−|ω|)
(A14)

with energy

E|− 1
2 〉(θ,R)

= E0 + 2π

sin(π pR)
+ 2π

cosh(θ )
. (A15)

Now consider the Bethe equations corresponding to all spin up reference state which can be obtained by taking pL → −pL,
pR → −pR [2] in Eqs. (A1) and (A2).(

λ j − i/2

λ j + i/2

)2N
(

λ j + i
(

1
2 − pL

)
λ j − i

(
1
2 − pL

)
)(

λ j + i
(

1
2 − pR

)
λ j − i

(
1
2 − pR

)
)

=
M−1∏

j �=k=1

(
λ j − λk − i

λ j − λk + i

)(
λ j + λk − i

λ j + λk + i

)
.

The eigenvalues of the Hamiltonian are given by

E = −
M∑

j=1

2

λ2
j + 1

4

+ N − 1 + 1

pL
+ 1

pR
. (A16)

By applying logarithm and following the same procedure as above, we obtain the following distribution for the state with all
real Bethe roots:

ρ̃| 1
2 〉(ω) = (2N + 1)e− |ω|

2 − e−
(

1
2 −pL

)
|ω| − e−

(
1
2 −pR

)
|ω| − 1

2(1 + e−|ω|)
. (A17)

The total number of roots is given by M| 1
2 〉 = ρ̃| 1

2 〉(0). Using which we obtain M| 1
2 〉 = N−1

2 . Using this we obtain Sz = 1/2. We

represent this state by | 1
2 〉. By using (A16) and (A17), we obtain the following expression for the energy of the state | 1

2 〉:

E| 1
2 〉 = 2π

sin(π pL )
+ 2π

sin(π pR)
+ E|− 1

2 〉. (A18)

Hence we find that this state contains bound states at the left and right edges, hence we represent this state by | 1
2 〉L,R.

There exists states | 1
2 〉(θ,L), | 1

2 〉(θ,R) that are degenerate (in thermodynamic limit) to the states |− 1
2 〉(θ,L), |− 1

2 〉(θ,R) respectively
obtained above. The state | 1

2 〉(θ,L) contains a bound state at the left edge and a spinon. This state is obtained by adding the
boundary string λpR = ±i( 1

2 − pR) which is a solution to (A16) and a spinon with rapidity θ . Following the same procedure as
above, we obtain the following density distribution:

ρ̃| 1
2 〉(θ,pR )

(ω) = ρ̃| 1
2 〉(ω) + 	ρ̃pR (ω) + 	ρ̃θ (ω), 	ρ̃pR (ω) = −e

(
3
2 −pR

)
|ω| + e

(
1
2 +pR

)
|ω|

2(1 + e−|ω|)
. (A19)

The number of roots is given by M| 1
2 〉(θ,pR )

= ρ̃| 1
2 〉(θ,pR )

(0). Using which we obtain M| 1
2 〉(θ,pR

= N−1
2 . Using this, we obtain

Sz = 1/2. The energy of this state can be obtained following the same procedure as above, we obtain

E| 1
2 〉(θ,L)

= E| 1
2 〉 − 2π

sin(π pR)
+ 2π

cosh(θ )
≡ E−| 1

2 〉 + 2π

sin(π pL )
+ 2π

cosh(θ )
. (A20)
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Hence it contains a bound state at the left edge and is degenerate with the state |− 1
2 〉(θ,L) obtained previously. We represent

this state by | 1
2 〉(θ,L). Similarly, by adding the boundary string λpL = ±i( 1

2 − pL ) and a spinon to the state | 1
2 〉, we obtain the state

| 1
2 〉(θ,R).

Note that the bound state and the spinon both carry spin-1/2. When a bound state at either the left or the right edge is added to
the state which has spin Sz = −1/2, the bound state’s spin is oriented in the positive z direction. Now when a spinon is added it is
spin can be oriented along or opposite to that of the bound state, and hence the final resulting state |± 1

2 〉(θ, j), where j = L and R,
has total spin Sz = ±1/2 depending on the spin orientation of the spinon.

From the above analysis, we see that for the odd chain, |− 1
2 〉 is the ground state. One can add one bound state at either the

left edge or the right edge accompanied by a spinon and one obtains the states |± 1
2 〉(θ, j), where j = L and R. On can also add

two bound states one at each edge and one obtains the state | 1
2 〉L,R. Starting from either of these six states, one can build up

excitations in the bulk by adding even number of spinons and other type of Bethe roots such as 2-strings and quartets [44,45].

2. Summary of the results in the A1 phase for a chain with the odd number of sites

Here we summarize the construction of the ground state and the excited states in the phase A1 for odd number of sites. In the
region A1, magnetic fields at both the boundaries point in the positive z direction.

Ground state. The ground state has total spin Sz = −1/2 with energy E0, exact expression of which is given by (A7) and is
represented by |− 1

2 〉. It contains (N − 1)/2 all real Bethe roots and is constructed by starting with all spin down reference state.
Excitation with two boundary bound states. There exists a state | 1

2 〉L,R with total spin Sz = 1/2 which contains one
exponentially localized spin Sz = 1/2 boundary bound state at each edge. It contains (N − 1)/2 all real Bethe roots and is
constructed by starting with reference state with all spin up. This state has energy E0 + mR + mL, where mi = 2π

sin(π pi )
is the

energy of the bound state.
Excitation with boundary bound state at the right edge. There exists a state with a bound state only at the right edge, represented

by |− 1
2 〉(θ,R). It has total spin Sz = −1/2 and is obtained from the state |− 1

2 〉 by adding imaginary Bethe root λpR′ = ±i( 1
2 + pR),

which is called a boundary string. One also needs to add a spinon with rapidity θ in order to include the boundary string.
There exists another state with a bound state at the right edge represented by | 1

2 〉(θ,R). This state has total spin Sz = 1/2, and is
obtained from the state | 1

2 〉L,R by adding the boundary string λpL = ±i( 1
2 − pL ) and also a spinon with rapidity θ . The two states

| 1
2 〉(θ,R), |− 1

2 〉(θ,R) are degenerate in the thermodynamic limit and have energy E0 + Eθ + ER but differ in the spin orientation of
the spinon which has spin Sz = ±1/2 respectively. Here Eθ = 2π

cosh(πθ ) is the energy of the spinon with rapidity θ .
Excitation with boundary bound state at the left edge. There exists two degenerate states with a bound state at the left edge

represented by |± 1
2 〉(θ,L), with energy E0 + mL + Eθ . The state |− 1

2 〉(θ,L) has total spin Sz = −1/2 and can be obtained from the
state |− 1

2 〉 by adding the boundary string λpL′ = ±i( 1
2 + pL ) and a spinon with rapidity θ , whose spin is Sz = −1/2. The state

| 1
2 〉(θ,L) has total spin Sz = 1/2 and is obtained from the state | 1

2 〉 by adding the boundary string λpR = ±i( 1
2 − pR) and a spinon

with rapidity θ whose spin is Sz = 1/2.

a. A1: even number of sites

Now consider the spin chain with even number of sites. As seen in the previous section, starting with all spin down reference
state and considering a state with all real roots one obtains the ground state |− 1

2 〉. The number of roots in this state is M =
(N − 1)/2. N has to be odd in order for the number of roots to be an integer. To obtain the ground state for even number of sites,
one needs to consider a state with one less Bethe root compared to the state |− 1

2 〉, that is starting with all spin down reference
state we need to include one spinon in addition to all real Bethe roots. Following the procedure described in the previous section,
we obtain the following distribution:

ρ̃|−1〉θ (ω) = (2N + 1)e− |ω|
2 − e−

(
1
2 +pL

)
|ω| − e−

(
1
2 +pR

)
|ω| − 1

2(1 + e−|ω|)
+ 	ρ̃θ (ω), 	ρ̃θ (ω) = − cos(θω)

(1 + e−|ω|)
. (A21)

The total number of Bethe roots is M|−1〉θ = (N − 2)/2, hence Sz = −1. The number of roots is an integer only for a spin
chain with even number of sites as desired. Note that the first term is same as the density distribution describing the state |− 1

2 〉,
with N now being even. The energy of this state can be calculated using (A2), we obtain

E|1〉θ = E0 + 2π

cosh(θ )
. (A22)

Hence in A1, the lowest energy state for even number of sites chain is parametrized by the rapidity of the spinon θ . The ground
state is obtained in the limit where θ → ∞. Starting with all spin up reference state and considering a state with all real roots
and a spinon we obtain

ρ̃|1〉θ (ω) = (2N + 1)e− |ω|
2 − e−

(
1
2 −pL

)
|ω| − e−

(
1
2 −pR

)
|ω| − 1

2(1 + e−|ω|)
+ 	ρ̃θ (ω). (A23)
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The total number of Bethe roots is M|1〉θ = (N − 2)/2, hence Sz = 1. The energy of this state can be calculated using (A16),
we obtain

E|1〉θ = E0 + 2π

sin(π pL )
+ 2π

sin(π pR)
+ 2π

cosh(θ )
. (A24)

This state contains bound states at both the edges, and hence we represent this state by |1〉(θ,L,R). Starting with all spin down
reference state, consider a state with all real roots and the boundary string λp′

L
= ±i( 1

2 + pL ). Following the similar procedure
described in the previous section, we obtain

ρ̃|0〉p′L
(ω) = (2N + 1)e− |ω|

2 − e−
(

1
2 +pL

)
|ω| − e−

(
1
2 +pR

)
|ω| − 1

2(1 + e−|ω|)
+ 	ρ̃p′

L
(ω), 	ρ̃p′

L
(ω) = −e

(
3
2 +pL

)
|ω| + e

(
1
2 −pL

)
|ω|

2(1 + e−|ω|)
. (A25)

The total number of roots is M|0〉p′L
= N/2, and hence Sz = 0. We represent this state by |0〉L. The energy of this state can be

calculated using the procedure described in the previous section. We obtain

E|0〉L = E0 + 2π

sin(π pL )
. (A26)

Similarly we can add the boundary string λp′
R

= ±i( 1
2 + pR) and obtain the state |0〉R which has energy E|0〉R = E0 + 2π

sin(π pR ) .
These states can also be obtained by starting with all spin up reference state, in which case, |0〉R and |0〉L contain all real roots
and the boundary strings λpL = ±i( 1

2 − pL ) and λpR = ±i( 1
2 − pR), respectively.

Starting with all spin down reference state, one can add both the boundary strings λp′
R
, λp′

L
to the state with all real roots and

one spinon. Following the regular procedure, we obtain the following density distribution

ρ̃|0〉(θ p′L ,p′R )
(ω) = (2N + 1)e− |ω|

2 − e−
(

1
2 +pL

)
|ω| − e−

(
1
2 +pR

)
|ω| − 1

2(1 + e−|ω|)
+ 	ρ̃p′

L
(ω) + 	ρ̃p′

R
(ω) + 	ρ̃θ (ω). (A27)

The number of real roots is given by M|0〉(θ p′L ,p′R )
− 2 = ρ̃|0〉(θ p′L ,p′R )

(0). From this we obtain that the total number of roots is
M|0〉(θ p′L ,p′R )

= N/2. This results in Sz = 0. We represent this state by |0〉(θ,L,R). Calculating the energy we find that this state is
degenerate with the state |1〉(θ,L,R). Similarly, we can add both the boundary strings λpR , λpL to the state |1〉θ and obtain the state
|0〉θ , which is degenerate with the state |−1〉θ .

3. Summary of the results in the A1 phase for a chain with the even number of sites

Here we summarize the construction of the ground state and the excited states in the phase A1 for even number of sites.
Ground state. In the phase A1, the ground state |−1〉θ has total spin Sz = −1. It is constructed by starting with all spin down

reference state and contains (N − 2)/2 real roots and a spinon with rapidity θ . In the thermodynamic limit, there exists another
state |0〉θ with total spin Sz = 0 which is degenerate with the ground state. This state is obtained by starting with all spin up
reference state and in addition to (N − 4)/2 real roots it contains two boundary strings λpR , λpL and a spinon with rapidity θ . The
spin orientation of the spinon in the two ground states |−1〉θ , |0〉θ is along the negative and positive z directions, respectively.

Excitation with a boundary bound state at the left edge. There exists a state represented by |0〉L which contains a bound state at
the left edge and has total spin Sz = 0. This is constructed from the reference state with all spin down. In addition to (N − 2)/2
real roots, it contains one boundary string λpL′ and has energy E0 + mL. This state can also be constructed from the reference
state with all spin up and is made up of (N − 2)/2 real roots and one boundary string λpR .

Excitation with a boundary bound state at the left edge. There exists a state |0〉R which contains a bound state at the right edge
and has total spin Sz = 0. It is constructed from the reference state with all spin down and in addition to (N − 2)/2 real roots it
contains one boundary string λpR′ and has energy E0 + mR. This state can also be constructed from the reference state with all
spin up and in addition to (N − 2)/2 real roots it contains one boundary string λpL .

Excitation with two boundary bound states. There also exists a state |0〉(θ,L,R) with total spin Sz = 0 which contains one bound
state at each edge. It is constructed by starting with all spin down reference state and contains (N − 4)/2 real roots and two
boundary strings λpL′ , λpR′ and a spinon. The energy of the state is E0 + mR + mL + Eθ . In the thermodynamic limit, there exists
another degenerate state |1〉(θ,L,R) with total spin Sz = 1 that contains one bound state at each edge. This state is constructed by
starting with all spin up reference state and contains (N − 2)/2 real roots and a spinon. The spin orientation of the spinon in the
two states |0〉(θ,L,R) and |1〉(θ,L,R) is in the negative and positive z directions, respectively.

a. A2: odd number of sites

Construction of the states in the phase A2 is similar to that in the A1 phase, hence we skip the details of the calculation and
provide an overview of how the ground state and boundary excited states are constructed in A2 phase. The Bethe equations for
all down and up reference states are obtained from (A1), (A2) and (A16), (A16) by making the transformation pL → −pL.

Ground state. The ground state is twofold degenerate with energy E0 + Eθ and is represented by |± 1
2 〉θ with total spin

Sz = ±1/2, respectively. |− 1
2 〉θ is constructed from all spin down reference state. It contains the boundary string λpL and a

224412-18



BOUNDARY QUANTUM PHASE TRANSITIONS IN THE … PHYSICAL REVIEW B 107, 224412 (2023)

spinon in addition to (N − 3)/2 real roots. The state | 1
2 〉θ is constructed by starting with all spin up reference state. It contains

the boundary string λpR and a spinon in addition to (N − 3)/2 real roots.
Excitation with a boundary bound state at the left edge. The state with a bound state at the left edge is represented by |− 1

2 〉L

and has total spin Sz = −1/2 and energy E0 + mL. It is constructed by starting with all spin down reference state and contains
(N − 1)/2 all real roots.

Excitation with a boundary bound state at the right edge. The state with a bound state at the right edge is represented by
| 1

2 〉R and has total spin Sz = 1/2 and energy E0 + mR. It is constructed by starting with all spin up reference state and contains
(N − 1)/2 all real roots.

Excitation with two boundary bound states. The state with bound states at both the edges is twofold degenerate with energy
E0 + mL + mR + Eθ and is represented by |± 1

2 〉(θ,L,R) with total spin Sz = ±1/2, respectively. | 1
2 〉(θ,L,R) is constructed by starting

with all spin up reference state and contains the boundary string λp′
L

and a spinon in addition to (N − 3)/2 real roots. |− 1
2 〉(θ,L,R)

is constructed by starting with all spin down reference state and contains the boundary string λp′
R

and a spinon in addition to
(N − 3)/2 real roots.

b. A2: even number of sites

Ground state. The ground state is represented by |0〉 and has energy E0 and total spin Sz = 0. It is constructed by starting with
all spin up reference state and contains the boundary string λpR in addition to (N − 2)/2 real roots. It can also be constructed by
starting with all spin down reference state and contains the boundary string λp′

L
in addition to (N − 2)/2 real roots.

Excitation with a boundary bound state at the left edge. The state which contains a bound state at the left edge is
twofold degenerate with energy E0 + mL + Eθ and is represented by |0〉(θ,L) and |−1〉(θ,L) with total spin Sz = 0 and Sz = −1,

respectively. The state |0〉(θ,L) is constructed by starting with all spin up reference state. It contains the boundary strings λpR , λp′
L

and a spinon in addition to (N − 4)/2 real roots. The state |−1〉(θ,L) is constructed by starting with all spin down reference state
and contains a spinon and (N − 2)/2 real roots.

Excitation with a boundary bound state at the right edge. The state which contains a bound state at the right edge is twofold
degenerate with energy E0 + mR + Eθ and is represented by |0〉(θ,R) and |1〉(θ,R) with total spin Sz = 0 and Sz = 1 respectively.
The state |0〉(θ,R) is constructed by starting with all spin down reference state. It contains the boundary strings λp′

R
, λpL and a

spinon in addition to (N − 4)/2 real roots. The state |1〉(θ,R) is constructed by starting with all spin up reference state and contains
a spinon and (N − 2)/2 real roots.

Excitation with two boundary bound states. The state with bound states at both the edges is represented by |0〉L,R and has total
spin Sz = 0 and energy E0 + mL + mR. It is constructed by starting with all spin up reference state and contains the boundary
string λp′

L
in addition to (N − 2)/2 real roots. It can also be constructed by starting with all spin down reference state and contains

the boundary string λp′
R

in addition to (N − 2)/2 real roots.

c. Phase A3 and A4

In phases A3 and A4, both the boundary magnetic fields point in the direction opposite that of phases A1 and A2, respectively.
Using the property (2), we can obtain all the states in phases A3 and A4 from the states obtained in phases A1 and A2, respectively.
In constructing a state in phase A3 or A4, we can use the construction of the respective state in phase A1 or A2, respectively, and
use the following transformation:

| ↑↑ . . . ↑〉 ↔ | ↓↓ . . . ↓〉, pL → −pL, pR → pR (A28)

where the all spin up and all spin down reference states are interchanged and the boundary magnetic fields change sign.

4. B phases

Consider phase B1. In this phase, both the magnetic fields point in the positive z direction and take the values 0 < hR < hC

and hL > hC , which corresponds to the values pR > 1/2 and 0 < pL < 1/2.

a. B1: odd number of sites

Consider the chain with odd number of sites. The Bethe equations corresponding to all spin down reference state are given
by (A1). The eigenvalues of the Hamiltonian are given by (A2). The ground state contains all real roots and we obtain the
distribution (A5) with energy E0 and spin Sz = −1/2. Now by adding the boundary string λp′

L
along with a spinon, we obtain

the state |− 1
2 〉(θ,L) which contains a bound state at the left edge. This state has total spin Sz = −1/2 and energy E0 + mL + Eθ .

Now consider all spin up reference state. The eigenvalues are given by (A16) where as the Bethe equations (A16) take the
form (

λ j − i/2

λ j + i/2

)2N
(

λ j + i
(

1
2 − pL

)
λ j − i

(
1
2 − pL

)
)(

λ j − i
(
pR − 1

2

)
λ j + i

(
pR − 1

2

)
)

=
M−1∏

j �=k=1

(
λ j − λk − i

λ j − λk + i

)(
λ j + λk − i

λ j + λk + i

)
.
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Considering the state with all real roots and following the same procedure as in the previous section, we obtain

ρ̃|0〉(ω) = (2N + 1)e− |ω|
2 − e−

(
1
2 −pL

)
|ω| + e−

(
pR− 1

2

)
|ω| − 1

2(1 + e−|ω|)
. (A29)

The total number of roots given by M = ρ̃|0〉(0) = N/2. Hence we find that the number of roots is not an integer for odd
number of sites. Hence we need to consider the state with one spinon along with real roots. We obtain

ρ̃| 1
2 〉θ (ω) = (2N + 1)e− |ω|

2 − e−
(

1
2 −pL

)
|ω| + e−

(
pR− 1

2

)
|ω| − 1

2(1 + e−|ω|)
+ 	ρ̃θ (ω). (A30)

The number of roots is given by M = ρ̃| 1
2 〉θ (0) = (N − 1)/2, and hence the number of roots is an integer for odd number of

sites and we obtain Sz = 1/2. The energy of this state can be calculated using (A16). Following the procedure described in the
previous section, we obtain E| 1

2 〉θ = E0 + mL + Eθ . Hence this state contains a bound state at the left edge and is degenerate with

the state |− 1
2 〉(θ,L) obtained above. We represent this state by | 1

2 〉(θ,L).

5. Summary of the results in the B1 phase for a chain with the odd number of sites

Ground state. The ground state has total spin Sz = −1/2 and is represented by |− 1
2 〉. This state is constructed by starting with

all spin down reference state and contains (N − 1)/2 real roots and has energy E0.
Excitation with bound state at the left edge. There exists a state which contains a bound state at the left edge, which is

represented by |− 1
2 〉(θ,L) and has total spin Sz = −1/2 and energy E0 + Eθ + mL. This state is obtained from the state |− 1

2 〉 by
adding the boundary string λpL′ and a spinon with rapidity θ . There exists a degenerate state | 1

2 〉(θ,L) which contains a bound state
at the left edge and has total spin Sz = 1/2. This state is obtained by starting with reference state with all spin up. It contains
(N − 1)/2 real roots and a spinon with rapidity θ .

a. B1: even number of sites

Now consider the chain with even number of sites. The Bethe equation corresponding to all spin up reference state have the
boundary string solution λpL . Consider a state with this boundary string and a spinon in addition to real roots. By following the
usual procedure, we obtain the following distribution:

ρ̃|0〉(θ,pL ) (ω) = (2N + 1)e− |ω|
2 − e−

(
1
2 −pL

)
|ω| + e−

(
pR− 1

2

)
|ω| − 1

2(1 + e−|ω|)
+ 	ρ̃pL (ω) + 	ρ̃θ (ω). (A31)

The number of real roots is given by M|0〉(θ,pL ) − 1 = ρ̃|0〉(θ,pL ) (0) = (N − 2)/2, hence we obtain that the total number of roots
is M|0〉(θ,pL ) = N/2 and hence Sz = 0. The energy can be calculated using (A16), we obtain E|0〉(θ,pL ) = E0 + Eθ . Starting with the
spin down reference state, consider the state with one spinon in addition to real roots. We obtain the following distribution:

ρ̃|−1〉θ (ω) = (2N + 1)e− |ω|
2 − e−

(
1
2 −pL

)
|ω| − e−( 1

2 −pR )|ω| − 1

2(1 + e−|ω|)
+ 	ρ̃θ (ω). (A32)

The number of roots is given by M|−1〉θ = (N − 2)/2, hence Sz = −1. The energy of this state can be calculated using (A2),
and we obtain E|−1〉θ = E0 + Eθ . Hence the ground state is twofold degenerate with energy E0 + Eθ . It is represented by |0〉θ
and |−1〉θ with total spin Sz = 0 and −1, respectively.

Starting with all spin up reference state, consider the state with all real roots. We obtain the following distribution:

ρ̃|0〉(ω) = (2N + 1)e− |ω|
2 − e−

(
1
2 −pL

)
|ω| + e−

(
pR− 1

2

)
|ω| − 1

2(1 + e−|ω|)
. (A33)

The number of roots is given by M|0〉 = ρ̃|0〉(0) = N/2, and hence it has total spin Sz = 0. The energy of this state can be
calculated using (A16), we obtain E|0〉 = E0 + mL. Hence it has a bound state at the left edge. This state is represented by |0〉L.

6. Summary of the results in the B1 phase for a chain with the even number of sites

Ground state. The ground state is twofold degenerate. The ground state |−1〉θ , with total spin Sz = −1 is constructed by
starting with all spin down reference state and contains (N − 2)/2 real roots and a spinon with rapidity θ . The ground state |0〉θ
with total spin Sz = 0 is constructed by starting with all spin up reference state. It contains a spinon and the boundary string
λpL in addition to (N − 2)/2 real roots. The spin orientation of the spinon in the states |−1〉θ and |0〉θ is along the negative and
positive z directions, respectively.

Excitation with a boundary bound state at the left edge. There exists a state |0〉L with a bound state at the left boundary. It
has total spin Sz = 0 and is constructed by starting with all spin up reference state and contains N/2 real roots. It can also be
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constructed by starting with all spin down reference state and it includes the boundary string λpL′ in addition to (N − 2)/2 real
roots.

a. Phase B2: odd number of sites chain

The construction of the state in phase B2 is similar to that in phase B1, hence we skip the details of the calculation and provide
an overview of how the ground state and boundary excited states are constructed in phase B2.

Ground state. The ground state is twofold degenerate with energy E0 + Eθ . It is represented by |± 1
2 〉θ with total spin Sz =

±1/2. The state | 1
2 〉θ is obtained by starting with reference state with all spin up and it contains a spinon in addition to (N − 2)/2

real Bethe roots. The state |− 1
2 〉θ is obtained by starting with all spin down reference state and contains the boundary string λpL

and a spinon in addition to real roots.
Excitation with a boundary bound state at the left edge. The state with the bound state at the left edge has energy E0 + mL and

total spin Sz = −1/2. It is represented by |− 1
2 〉L and is constructed by starting with all spin down reference state and contains

all real roots.

b. Phase B2: even number of sites chain

Ground state. The ground state |0〉 has energy E0 and total spin Sz = 0. It is obtained by starting with reference state with all
spin up and it contains N/2 all real roots. It can also be obtained by starting with all spin down reference state and it contains the
boundary string λpL in addition to (N − 2)/2real roots.

Excitation with a boundary bound state at the left edge. The state with the bound state at the left edge is doubly degenerate
with energy E0 + mL + Eθ and is represented by |−1〉(θ,L) and |0〉(θ,L) with total spin Sz = −1 and 0, respectively. The state
|−1〉(θ,L) is obtained by starting with all spin down reference state and contains one spinon in addition to (N − 2)/2 real roots.
The state |0〉(θ,L) is obtained by starting with all spin all reference state. It contains the boundary string λp′

L
and a spinon in

addition to (N − 2)/2 real roots.

c. Other B phases

The states in phases B8 and B7 can be obtained from the states in phases B1 and B2 respectively by the transformation
pL ↔ pR. The states in phases B5, B6, B3, and B4 can be obtained from the states in phases B1, B2, B7, and B8 respectively by
the transformation (A28).

7. C phases

a. Odd number of sites

In subregion C1, the ground state is |− 1
2 〉 with total spin Sz = −1/2. This state is constructed from the reference state with all

down spins and contains (N − 1)/2 real roots. In C3, the ground state is | 1
2 〉 with total spin Sz = 1/2. This state is constructed

from the reference state with all up spins and contains (N − 1)/2 real roots. In subregions C2 and C4, the ground state is twofold
degenerate and contains a spinon with rapidity θ . The spin orientation of the spinon dictates the total spin Sz = ±1/2 of the
state. They are represented by |± 1

2 〉(±,θ ), and contain (N − 1)/2 real roots and a spinon with rapidity θ , and constructed from
either all spin up or down reference states and contain all real roots and a spinon with rapidity θ .

b. Even number of sites

In subregion C1, the ground state is twofold degenerate in thermodynamic limit and is represented by |0〉θ , |−1〉θ with total
spin Sz = 0 and −1, respectively. The state |0〉θ is constructed from the reference state with all up spin and contains N/2 real
roots and a spinon with rapidity θ . the state |−1〉θ is constructed with the reference state with all down spins and contains
(N − 2)/2 real roots and a spinon with rapidity θ . The spin orientation of the spinon is in the negative and positive z directions
in the states |−1〉θ and |0〉θ , respectively. In subregion C3, the ground state is twofold degenerate and is represented by |0〉θ , |1〉θ
with total spin Sz = 0 and 1, respectively. |0〉θ contains a spinon with rapidity θ , the spin orientation of which is in the negative
z direction. It is constructed from the reference state with all spin down and contains N/2 real roots and a spinon with rapidity θ .
|1〉θ is constructed with the reference state with all spin up and contains (N − 2)/2 real roots and a spinon with rapidity θ with
spin oriented in the positive z direction. In subregions C2 and C4, the ground state has total spin Sz = 0 and is represented by |0〉.
It can be constructed from the reference state with all spin up or all spin down and contains N/2 real roots.

APPENDIX B: BOUND STATE WAVE FUNCTION

In this section, we provide the bound state wave function corresponding to the boundary string in one particle sector (one
flipped spin). Let us consider the subphase A1. The Bethe equations corresponding to all spin down reference state in one particle
sector are given by (

λ − i
2

λ + i
2

)2N(
λ + i

(
1
2 + pL

)
λ − i

(
1
2 + pL

)
)(

λ + i
(

1
2 + pR

)
λ − i

(
1
2 + pR

)
)

= 1. (B1)
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The wave function is given by [30,31]

f (x) =
(

λ + i
2

λ − i
2

)N−x(
λ − i

(
1
2 + pR

)
pR

(
λ − i

2

)
)

−
(

λ − i
2

λ + i
2

)N−x(
λ + i

(
1
2 + pR

)
pR

(
λ + i

2

)
)

. (B2)

When λ = ±i( 1
2 + pR), which is the boundary string associated with the right edge, we readily obtain the wave function for the

bound state localized at the right edge

fR(x) = ±
(

1 + 2pR

pR(1 + pR)

)(
1 + pR

pR

)−(N−x)

. (B3)

To obtain the bound state wave function associated with the left edge, we multiply the wave function (B2) with a normalization
constant

A =
(

pR

pL

)(
λ + i

(
1
2 + pL

)
λ + i

(
1
2 + pR

)
)(

λ − i
(

1
2 + pL

)
λ − i

(
1
2 + pR

)
)

(B4)

and use the one particle Bethe equation (B1). We obtain

A f (x) =
(

λ + i
2

λ − i
2

)−x(
λ + i

(
1
2 + pL

)
pL

(
λ − i

2

)
)

−
(

λ − i
2

λ + i
2

)−x(
λ − i

(
1
2 + pL

)
pL

(
λ + i

2

)
)

. (B5)

When λ = ±i( 1
2 + pL ), which is the boundary string associated with the left edge, we obtain the bound state wave function

localized at the left edge

fL(x) = ±
(

1 + 2pL

p2
L

)(
1 + pL

pL

)−x

. (B6)

Hence, we find that the two boundary string solutions correspond to exponentially localized bound states ∼e−κLx and ∼e−κR (N−x),
where

κ j = ln(h j + 1), j = L and R. (B7)

Note that when the magnetic fields at the edges take equal values hL = hR = h (pL = pR = p), the normalization constant A = 1.
To obtain the bound state wave functions in this case, consider

f (x) ±
(

p

1 + p

)
f (x). (B8)

In this limit, we only have one boundary string solution λ = ±i( 1
2 + p), corresponding to the double pole of the Bethe

equations (B1). Using this in (B8), we obtain

f (x)± = −
(

1 + 2p

p(1 + p)

)[(
1 + p

p

)−(N−x)

±
(

1 + p

p

)−x
]

(B9)

Hence, we find that when hL = hR, in contrast to [31], there exist two bound states solutions simultaneously localized at both
the edges

f (x)± ∼ (e−κ (N−x) ± e−κx ), κ = ln (h + 1). (B10)

APPENDIX C: DETAILS AND VALIDITY OF THE FITTING

In Figs. 7(b) and 8(c), we have indicated the region where the fitting to Eq. (47) numerically fails with a shade. Here, we
show that this is merely due to numerical overfittings and is not of physical consequence.

First, we interpolate the data in Fig. 7(b) through the missing region. Some data points in the figure near hc = 2 are
additionally excluded in the interpolation to make the interpolated function smooth. The results, together with the original
Fig. 7(b), are plotted in Fig. 11(a). Now we take the values from the interpolated function for C and D and refit to Eq. (47) to
obtain A and B. This results are shown in Figs. 11(b) and 8(b) in the main text. For the special point h = 2, C = D = 0 is used
in the fit, and note that the resulting A and B fit parameters are smooth near h = 2. The A, B data away from h = 2 in Fig. 11(b)
are identical to that obtained from the calculation in Figs. 7(b) and 8(c).

Finally, we use the newly fitted parameters A to D from Figs. 11(a) and 11(b) and compare with the original Sz(xi ) data for the
shaded region, which are h = 1.90, 1.95, 2.05, in Fig. 11(c). [h = 2.00 data are included in Fig. 7(a).] The agreement between
the data and fit is excellent in all three values of h. This demonstrates that the fitting failure at the shaded region is because of
overfitting, and the true physics in those parameters connect smoothly to the behavior outside the region. We also claim that
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FIG. 11. (a) The same figure from Fig. 7(b) together with the smooth interpolating function through the missing region. (b) Fitting
parameters A and B [see Eq. (47)] with the substitution of C and D with the interpolated function obtained in (a). (c) Magnetization data
(dots) and its fit to Eq. (47) (dashed lines) of the h values of the shaded region using the parameters obtained in (a), (b) for the first 20 sites of
the N = 1000 chain. The good agreement between the data and fit demonstrates the interpolation in (a) is valid.

small deviations from the interpolated function and data (for example, C near h = 1.8) are also the result of such numerical
issues of overfit, while less serious than that more closer to h = 2.
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