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Low-energy tail of the spectral density for a particle interacting with a quantum phonon bath
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We describe two approximation methods designed to capture the leading behavior of the low-energy tail of the
momentum-dependent spectral density A(k, E ) and the tunneling density of states D(E ) for an injected particle,
such as an electron or an exciton, interacting with a bath of phonons at a nonzero initial temperature T , including
quantum corrections due to the nonzero frequencies of the relevant phonons. In our imaginary-time-dependent
Hartree (ITDH) approximation, we consider a situation in which the particle is injected into a specified coherent
state of the phonon system, and we show how one can use the ITDH approximation to obtain the correlation
function C(τ ) for that initial state. The thermal average C(τ ) is obtained, in principle, by integrating the result
over all possible initial phonon coherent states, weighted by a thermal distribution. However, in the low-energy
tail, one can obtain a good first approximation by considering only initial states near the one that maximizes
the integrand. Our second approximation, the fixed-wave-function (FWF) approximation, assumes that the wave
function of the injected particle evolves instantaneously to a wave function which then is independent of time,
while the phonon system continues to evolve due to interaction with the particle. We discuss how to invert the
Laplace transform and how to obtain A(k, E ) as well as D(E ) from the imaginary-time analysis. The FWF
approximation is used to calculate D(E ) for a one-dimensional continuum model of a particle interacting with
acoustic phonons, and effects due to the quantum motion of phonons are observed. In the classical phonon limit,
where the nuclear mass is taken to infinity while the elastic constants and other parameters are held fixed, the
dominant behaviors of both the ITDH and FWF approximations in the low-energy tail reduce to that found in
the past for a particle in a random potential with a Gaussian statistical distribution.
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I. INTRODUCTION

In 1957, Rashba and Davidov published an article in
Ukrainian in the Ukrainian Physical Journal on optical absorp-
tion in a molecular crystal with a weak interaction between
excitons and phonons [1]. Also in 1957, Rashba published a
pair of articles in the Russian journal Optika i Spektroskopiya
on the theory of electronic excitations interacting with lattice
vibrations in a molecular crystal [2,3]. These articles consid-
ered cases of both light and heavy excitons, distinguishing
excitons whose bandwidth in the absence of lattice distortions
is large or small on a scale depending on the strength of
the particle-phonon interactions, with particular attention to
the case of strong interactions. The three papers considered
one-dimensional chains as well as three-dimensional crystals.

An important question, addressed in Ref. [1], was how do
phonons affect the line shape for optical absorption associated
with the creation of an exciton, at finite temperatures as well
as at T = 0? In simple cases, the optical absorption for a
photon of frequency ω will be proportional to the momentum-
resolved spectral density A(k, E ) at energy E = h̄ω for an
exciton injected with momentum k = 0. A related quantity is
the tunneling density of states D(E ) for a particle such as an

*halperin@g.harvard.edu

exciton or an electron injected at a single point, which is equal
to the integral of A(k, E ) over all values of the momentum k.

Reference [1] and many subsequent works have examined
the absorption line shape near the peak of the spectrum, where
the absorption is relatively large, or in the high-energy tail,
where the absorption falls off as an inverse power of the
energy. In general, these regions of the spectrum can be un-
derstood by using perturbation theory or related diagrammatic
methods to treat exciton-phonon interaction. In the present
paper, however, we shall be concerned with the low-energy
tail of the spectrum, where the density of states is very small
and the absorption is very weak. This is a region where meth-
ods based on perturbation theory are generally inadequate and
other approaches must be used.

In many insulating materials, particularly alkali halides and
other materials with a relatively large band gap and tightly
bound excitons, the optical-absorption coefficient at photon
energy E , for a range of temperatures T , has been fit by the
empirical Urbach formula:

α(E ) = α0e−σ (E0−E )/T , (1)

where α0, σ, E0 are material parameters, with, typically,
σ ≈ 1. (See, e.g., [4–6] and references therein. We use units
where kB = h̄ = 1.)

Attempts to explain (1) have generally treated the phonon
bath as giving rise to lattice distortions that can be treated as
static on the timescale of interest for the absorption process.
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In this case, the problem reduces to the model of a parti-
cle interacting with a potential that obeys Gaussian statistics
with variance that will be proportional to T , for T � ωph/2,
where ωph is a characteristic phonon frequency [7–9]. The
low-energy tail is then produced by processes in which the
exciton is injected in a region where a thermal distortion has
led to a reduction in the local energy gap.

For T � ωph/2, it is clear that quantum motion of the
lattice should be taken into account, and one might expect
significant corrections to the classical phonon picture. Indeed,
observations do not necessarily conform to Eq. (1) at low
temperatures. In some cases, the law has been seen to apply
with the replacement of T by an effective temperature T ∗ that
is of the order of ωph/2 at low temperatures. However, it is
not clear whether the observed low-temperature behavior is
controlled by phonons or whether the effects of impurities
must be taken into account.

Explanations of Urbach’s rule have been only partially
successful, even at high temperatures where the classical
phonon approximation is presumably valid. Typically, theo-
retical analyses predict an absorption tail of the form

α(E ) ∼ α1eh(E )/T , (2)

where the function h is independent of T , and α1 varies
relatively slowly with E and T [8,10,11]. However, h is not
a perfectly linear function of E in any obvious model, and
there is no clear reason why dh/dE should turn out to be
very close to 1. Nevertheless, numerical calculations have
produced absorption curves that are in rather good agreement
with (1) in at least some instances [5,6].

In the present paper, we shall not attempt to provide
further insight into the remarkable validity of (1) in the high-
temperature regime. Rather, we wish to explore methods for
including the dynamic effects of lattice vibrations at tem-
peratures where they might become important. We introduce
two related approximations, which we expect will describe
the most important dependences of the spectral density and
tunneling density of states (on a logarithmic scale), in the
region of the low-energy tail, in a system without impurities.
We note that impurities may well be important in many cases,
and indeed there have been many theoretical investigations
of low-energy behavior of D(E ) and A(k, E ) for particles
in a random potential due to impurities [8,10,12–16]. Nev-
ertheless, we believe that it is important at least as a matter
of principle to understand the effects of phonons in an ideal
system.

The effects of phonon interactions on the behavior of
an isolated electron or exciton have been studied exten-
sively over the years in the context of the polaron problem.
These investigations have largely concerned such questions
as the phenomenon of self-trapping in the presence of strong
particle-phonon interactions, and the binding energy and ef-
fective mass of the resulting polaron, as well as polaron
mobility at low temperatures, rather than the spectral proper-
ties of interest to us here (cf. [17–19] and references therein).
The concept of self-trapping will play a role in the discussion
below, however.

Our principal approach to the low-energy tail problem
makes use of correlation functions in imaginary time of the
particle creation and annihilation operators, which are Laplace

transforms of the density of states and spectral densities in
which we are interested. After defining our model in the
following section, we discuss a procedure for inverting the
Laplace transform that is applicable to the low-energy be-
havior of the functions we wish to calculate. In Sec. IV we
describe our principal approximation, which we denote as the
imaginary-time-dependent Hartree (ITDH) approximation. In
Sec. V we describe a fixed-wave-function (FWF) approxi-
mation, which we expect to be less accurate than the ITDH
approximation but easier to apply. In Sec. VI we discuss
the behavior of these approximations in the classical phonon
limit, where we find that the two approximations are essen-
tially equivalent and are closely related to previous studies of
the low-energy tail in a Gaussian random potential. The FWF
approximation is applied in Sec. VII to a one-dimensional
model of a particle interacting with quantum-mechanical
acoustic phonons in the continuum limit. While the bulk of
our paper is focused on obtaining an optimum estimate of
the tunneling density of states D(E ), the analysis is easily
extended to predict the momentum-dependent spectral density
A(k, E ). This is discussed in Sec. VIII A.

Although our paper is presented largely in the context of
one-dimensional models, the methods should be useful, with
some possible modifications, for three-dimensional problems.
These are discussed in Sec. VIII B.

In Appendix A, we present a derivation of the imaginary-
time-dependent Hartree equations of motion. Some higher-
order corrections, which contribute preexponential correc-
tions to the density of states in the classical phonon limit, are
discussed in Appendix B. Other Appendixes discuss details
of the density of states maximization related to a modified
form of the FWF, statistics of the potential fluctuations in
a thermal ensemble with and without quantum corrections,
and an additional method for obtaining D(E ) in the FWF
approach.

Our principal results are summarized in Sec. IX.

II. MODEL

We consider here a one-dimensional model of particles
and phonons on a lattice. We assume lattice constant a, with
periodic boundary conditions and N � 1 sites, giving total
length L = Na. We assume a Hamiltonian of the general form

H = He + Hp + Hep, (3)

He =
∑

k

εkc†
kck, (4)

Hp =
∑

k

ωka†
kak, (5)

Hep = a
∑

k

∑
x

ψ†
x ψx(λka†

k + λ∗
−ka−k )e−ikx, (6)

where εk and ωk are dispersion relations for particles and
phonons, respectively, ck (ak) and c†

k (a†
k) are annihilation and

creation operators for a particle (a phonon) with momentum
k, while λk is the coupling strength for interaction between a
particle and a phonon with momentum k, and ψ†

x is a creation
operator for a particle on a lattice site at position x = na, with
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n an integer:

ψ†
x = L−1/2

∑
k

e−ikxc†
k . (7)

We are using a normalization such that

[ψx, ψ
†
x′ ]∓ ≡ ψxψ

†
x′ ∓ ψ

†
x′ψx = a−1δxx′, (8)

with − for a boson and + for a fermion, which will facilitate
passing to the continuum limit, replacing a

∑
x by

∫
dx. We

shall assume the Hamiltonian is time-reversal invariant, so
λ−k = λ∗

k .
It will be helpful to rewrite the coupling constants λk as

λk = (2NMωk )−1/2γk, (9)

where M is the nuclear mass. Then γk will remain constant
if we vary M while keeping fixed the elastic constants Mω2

k
and keeping fixed the deformation potential felt by a particle
for a given displacement of the atoms. The classical phonon
model can then be described by taking M to infinity and ωk →
0, keeping γk fixed. The coefficients λk have dimensions of
energy, while γk has dimensions of energy per unit length.

We wish to calculate the low-energy tail of the particle
density of states D(E ). Specifically, we consider an initial
state described by a thermal distribution of phonons, with no
particle present, described by the initial density matrix

w = Z−1e−Hp/T , (10)

where Z = tr e−Hp/T , and we wish to calculate the distribution
of possible energy changes produced by the added particle. If
we work in the basis of exact eigenstates of H , then we may
write

D(E ) = Z−1
∑

f

∑
i

|〈 f |ψ†
x0
|i〉|2δ(E − E f + Ei )e

−Ei/T ,

(11)

where x0 is an arbitrary point on the lattice, and the sum is
over eigenstates of the Hamiltonian with no particle present
for the state i with energy Ei and one particle present for the
state j with energy Ej . The result will be independent of the
choice of x0, as the model is translationally invariant.

Alternatively we may calculate the correlation function

C̃(t ) = tr (eiHtψx0 e−iHtψ†
x0

w) =
∫ ∞

−∞
e−itE D(E )dE , (12)

or its imaginary-time version

C(τ ) ≡ C̃(−iτ ) = tr (eHτψx0 e−Hτψ†
x0

w)

=
∫ ∞

−∞
e−τE D(E )dE . (13)

In principle, if C(τ ) is accurately known, it can be analytically
continued to obtain C̃, which can then be Fourier-transformed
to obtain D(E ). However, an approximate solution at real
times would not be useful for obtaining the low-energy tail
because the Fourier transform would be very unstable to small
errors due to the oscillating nature of the integrand. In the
following section, we argue that knowing C(τ ), we can in fact
directly obtain a good estimate of the low-energy tail of D(E )
under appropriate circumstances.

The momentum-dependent spectral density A(k, E ) is de-
fined by replacing the operator ψ†

x0
in Eq. (11) with the

operator c†
k :

A(k, E ) = Z−1
∑
i, f

|〈 f |c†
k |i〉|2δ(E − E f + Ei )e

−Ei/T .

Similarly we may define a momentum-dependent correlation
function C(k, τ ) by replacing ψx0 and ψ†

x0
in (13) by ck and c†

k .
The function C(k, τ ) will be the Laplace transform of A(k, E ):

C(k, τ ) = tr (eHτ cke−Hτ c†
k w) =

∫ ∞

−∞
e−τE A(k, E )dE .

III. INVERTING THE LAPLACE TRANSFORM

Let us write C(τ ) and D(E ) in the form

C(τ ) = eg(τ ), D(E ) = E−1
0 e f (E ), (14)

where E0 is a characteristic energy, such as the width of the
peak of the spectral density A(k, E ) at k = 0. The low-energy
tail is a region of energies less than some energy E1 that is
of order E0 below the nominal bottom of the band where
we have f (E ) < −1 [such that D(E ) is small enough] and
f ′(E ) > E−1

0 [such that D(E ) decreases rapidly with decreas-
ing E ]. We shall make the additional assumption here that
f ′′(E ) < 0 for all E < E1, which, following a Halperin-Lax-
type analysis, should be a good assumption for d = 1 and
marginally valid for d = 2, but generally false for d = 3.
(Possible modifications to handle the case of d = 3 will be
discussed in Sec. VIII B.)

Under these circumstances, Laplace’s method can be used
to evaluate the integral (13); the integral should be dominated
by the region near the maximum of the integrand, where E
takes on the value Eτ , for the given τ , such that

f ′(Eτ ) = τ. (15)

In the neighborhood of Eτ , we can expand f as

f (Eτ + δE ) = f (Eτ ) + τδE + (δE )2(dτ/dEτ )/2 + · · · ,

(16)

with dτ/dEτ = f ′′(Eτ ) < 0. If we ignore terms higher-order
in δE , we may evaluate the integral in (13) with the result

C(τ ) ≈ D(Eτ )e−τEτ

∣∣∣∣2π
dEτ

dτ

∣∣∣∣
1/2

. (17)

Defining τE by the equation τE = f ′(E ), we may invert the
above equation to give

D(E ) ≈ (2π )−1/2C(τE )eτE E

∣∣∣∣dτE

dE

∣∣∣∣
1/2

. (18)

In the low-energy tail, we expect that the last factor in the
above equation should have a weaker dependence on E than
the earlier factors, because τ depends linearly on f ′, whereas
the other factors depend exponentially on f . Ignoring the last
factor, we see that if the function C(τ ) is known, then τE can
be obtained from the requirement that at τ = τE ,

E = −d ln C

dτ
. (19)
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Also,

dτE

dE
= −

(
d2 ln C

dτ 2

)−1

. (20)

If the zero of energy is chosen at the bottom of the unper-
turbed electron energy band, then E will be negative in the
low-energy tail, and dC/dτ will be positive. Moreover, large
negative values of E will correspond to large positive values
of τ .

The above arguments can be made more precise if one can
define a small parameter ζ , such that in the limit ζ → 0, with
E held fixed,

ζ ln D(E ) → f̃ (E ), (21)

where f̃ (E ) is independent of ζ . Laplace’s method becomes
exact in the limit ζ → 0.

For the systems we consider here, we find that for E
lower than the minimum of the unperturbed spectrum εk , the
function D(E ) can be written a form similar to (21) in the
limit where T and M−1 are small, while material parameters
such as γk , εk , and Mω2

k are held fixed. Note that the phonon
frequencies will be proportional to M−1/2. In the case in which
T is comparable to or larger than the typical frequency ωph of
the phonons most important for states in the low-energy tail,
the parameter ζ will scale proportional to γ̃ 2T , where γ̃ is a
typical value of the coupling constant γk . In the limit where
T → 0, with ωph small but finite, we find that ζ ∝ γ̃ 2ωph,
provided that E is larger than Emin, the ground-state energy for
a single particle coupled to the phonons. Quantum corrections
will be most important when T � ωph.

Of course, the actual value of T or ωph necessary to be
in the low-energy tail will depend on details of the system,
including the energy in question. In experiments, one may
enter the low-energy tail region by varying the measurement
energy rather than the temperature.

The approximations employed in this paper are intended
to give a good approximation to the function f̃ (E ), which
means that they should give a good approximation to the
leading exponential behavior of D(E ) and A(k, E ) in this
limit. However, they are not expected to give correctly the
preexponential factors.

An important caveat is that in some situations, we may
encounter examples in which f ′′(E ) > 0 for an energy range
of interest, Eb < E < Ea. In such cases, the Laplace transform
cannot be inverted in this simple way. However, we should
get a warning of this problem from studying C(τ ) because as
τ is varied, the maximum of the integrand in (13) will jump
rapidly between an energy Ec > Ea to an energy Ed < Eb, so
that Eq. (19) will move rapidly through the energy range of
interest. We shall return to this issue in Sec. VIII B, but at least
in the one-dimensional models we focus on here, this problem
will not arise.

IV. IMAGINARY-TIME-DEPENDENT HARTREE
APPROXIMATION

A. Coherent state representation

Let |{αk}〉 = |α〉 denote a coherent phonon state with
〈ak〉 = αk , and the value of αk is specified for every wave

vector k. The initial density matrix w may be written as

w =
∫

dα wα |α〉〈α|, (22)

where the integral is over the real and imaginary parts of the
variables in α, i.e., dα = ∏

k[d (Reαk )d (Imαk )],

wα = Z−1
coh exp

[
−

∑
k

(|αk|2/nk )

]
, (23)

nk ≡ 1

eωk/T − 1
, (24)

and

Zcoh =
∏

k

(πnk ). (25)

We may now write (13) as

C(τ ) =
∫

dαwαCα(τ ), (26)

where

Cα(τ ) = 〈α|eHτψx0 e−Hτψ†
x0
|α〉. (27)

B. Factorization approximation

We next make the factorization approximation

e−Hτψ†
x0
|α〉 ≈ a−1/2R(τ )
†

τ |β(τ )〉 ≡ |�(τ )〉, (28)

where |{βk (τ )}〉 = |β(τ )〉 is a (normalized) coherent phonon
state, 
†

τ creates a particle in a state with a normalized wave
function φ(x, τ ):


†
τ = a

∑
x

φ(x, τ )ψ†
x , (29)

and R(τ ) is a renormalization factor, chosen as a positive real
number depending on τ , made necessary by the imaginary-
time propagation. [Our normalization convention is such that
a

∑
x |φ(x)|2 ≡ 〈φ|φ〉 = 1.]

At time τ = 0, we set R = 1, φ(x) = a−1/2δxx0 , and βk =
αk . The parameters should then evolve in time according to
the equations of motion, which are derived in Appendix A:

∂φ/∂τ = −[He + V (x, τ ) − Eφ (τ ) − iQ(τ )]φ, (30)

V (x, τ ) =
∑

k

(λkβ
∗
k + λ∗

−kβ−k )e−ikx, (31)

Eφ (τ ) = 〈φ(τ )|He + V (x, τ )|φ(τ )〉, (32)

Q(τ ) = Im

[∑
k

β∗
k (τ )λk|φ2|k

]
, (33)

where

|φ2|k ≡ a
∑

x

|φ(x, τ )|2e−ikx (34)

and

dβk/dτ = −ωkβk − λk|φ2|k, (35)

dR/dτ = −R

(
Eφ +

∑
k

ωk|βk|2
)

. (36)
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Without the particle, one obtains

e−Hτ |α〉 = R0(τ )|β0(τ )〉, (37)

where parameters evolve in time according to the equations of
motion

dβ0k/dτ = −ωkβ0k, (38)

dR0/dτ = −R0

∑
k

ωk|β0k|2, (39)

whose solutions are

β0k (τ ) = αke−ωkτ , (40)

R0(τ ) = e− ∑
k |αk |2(1−e−2ωk τ )/2. (41)

Thus, we find

Cα(τ ) ≈ a−1/2 R(τ )

R0(τ )
φ(x0, τ )

∏
k

〈β0k (τ )|βk (τ )〉, (42)

where for complex numbers z1 and z2, the inner product of the
corresponding coherent states is

〈z1|z2〉 = exp{z∗
1z2 − |z1|2/2 − |z2|2/2}. (43)

Now, in principle, we should solve equations of motion
for all possible choices of the initial variables α and carry
out the integration (26). However, in order to get a binding
energy in the low-energy tail, one needs an initial phonon
configuration with a large distortion, costing an energy large
compared to T . The density of states will then be dominated
by the configuration that achieves the binding with minimum
energy cost. [For example, for the one-dimensional continuum
model considered in [8], in the classical phonon limit, the
optimum distortion is proportional to sech2κ (x − x0), with
κ = (2m|E |)1/2.] Relatively small departures that still pre-
serve the binding energy will cost energies larger than T , so
their probability will diminish rapidly. Correspondingly, we
expect that the integral (26) for the Laplace transform will
be dominated by a region near the optimal phonon configura-
tion where the product wαCα(τ ) is a maximum. Thus, using
Laplace’s method, we may make the further approximation

C(τ ) ≈ S(τ )Cmax(τ ), (44)

where

Cmax(τ ) = maxα[Zcohwα|Cα(τ )|], (45)

and the prefactor S(τ ) should be evaluated using a perturbative
expansion about the maximizing phonon configuration. Es-
sentially, the factor S represents something like the difference
in the entropies of initial and final states. [We assume that
there is a single α that maximizes wα|Cα(τ )| and the corre-
sponding Cα(τ ) is real. See Appendix A.] In practice, it may
be a good first approximation to set S = 1. Finally, we should
use the procedures of Sec. III to invert the Laplace transform
and calculate D(E ).

V. FIXED-WAVE-FUNCTION APPROXIMATION

We may simplify the analysis by ignoring the equation of
motion (30) for the wave function φ(x, τ ) and simply take
φ to be a time-independent trial wave function φtr (x), which

will depend on the energy E of interest, and which we will
eventually choose to optimize our estimate of D(E ). We retain
Eqs. (31)–(41) for the time evolution of βk and R(τ ); however,
we employ the initial condition

R(τ = 0) = φtr (x0) (46)

rather than R(0) = 1.
For a given choice of φtr , the problem now reduces to the

Franck-Condon problem of a localized electronic excitation
linearly coupled to a phonon bath, which was studied, for
example, by Lax and Hopfield [20,21]. In particular, using the
solution of Lax with t = −iτ , we find

Cφtr (τ ) ≈ |φtr (x0)|2e−τEφ
e eF (τ ), (47)

Eφ
e = 〈φtr|He|φtr〉, (48)

F (τ ) =
∑

k

|Ck|2
ω2

k

[(nk + 1)e−ωkτ + nkeωkτ

+ ωkτ − (2nk + 1)], (49)

Ck = λk|φ2|k . (50)

Now, we approximate C(τ ) by choosing the trial function
φtr so as to maximize the value of Cφtr (τ ), as given by (47) and
(49), for the given τ :

C(τ ) ≈ maxφtr [Cφtr (τ )]. (51)

After repeating this for a suitable range of values of τ , one can
then invert the Laplace transform using the methods we have
described.

Presumably the FWF estimate will be less accurate than
the ITDH approximation, defined in the previous section.
However, it should be easier to compute, and the two approx-
imations may not differ much in practice.

VI. CLASSICAL PHONON LIMIT

As mentioned above, in the limit where the masses of the
nuclei are taken to infinity, while the elastic constants and the
temperature are held fixed, the problem we are considering
reduces to a calculation of the density of states of a parti-
cle moving in a static random potential V (x) = ∑

k (λkα
∗
k +

λ∗
−kα−k )e−ikx.

At temperature T , the potential obeys Gaussian statistics,
with 〈V (x)〉T = 0 and a correlation function

〈V (x)V (x′)〉T = W (x − x′), (52)

where 〈·〉T is the thermal average and [cf. Eq. (C7)]

W (x − x′) = T
∫ π/a

−π/a

dk

2π

|γk|2
ρω2

k

e−ik(x−x′ ). (53)

If the function V (x) is specified, the combinations αk + α∗
−k

are thereby determined, but no information is gained about
the quantities ηk = αk − α∗

−k . If we integrate wα over the vari-
ables ηk , we obtain a probability distribution for the function
V (x) (see Appendix C 3):

wcl = Z−1
cl exp

[
−a2

2

∑
xx′

V (x)G(x − x′)V (x′)

]
, (54)
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where

Zcl =
∫

DV exp

[
−a2

2

∑
xx′

V (x)G(x − x′)V (x′)

]
(55)

is a normalization constant, the integral is over all possible
configurations of V (x), and G is the matrix inverse of W :

a
∑

x′′
G(x − x′′)W (x′′ − x′) = a−1δxx′ . (56)

A. ITDH approximation

We now apply these results to the ITDH approximation.
The particle wave function at imaginary-time τ in a static
potential configuration V (x) can be expressed in terms of the
energies En and eigenstates φn(x) of a particle moving in this
potential as

φ(x, τ ) = a1/2 R0(τ )

R(τ )

∑
n

φn(x)φ∗
n (x0)e−Enτ , (57)

where the eigenstates are normalized such that

a
∑

x

φ∗
n (x)φn′ (x) = δnn′ ,

∑
n

φ∗
n (x)φn(x′) = a−1δxx′ . (58)

Then, at large τ , we obtain from (42)

Cα(τ ) ≈ |φB(x0)|2e−E0
V τ , (59)

where E0
V is the energy of the lowest-energy eigenstate in the

potential V that has significant weight at the injection point
x0, and φB is the corresponding wave function. Here we have
used the fact that in the classical phonon limit, βk = β0k = αk .
Also, since there is an energy gap separating the lowest state
in a potential well from all higher-energy states, we should be
justified in ignoring the contributions of those states at large
τ .

Typically, one finds that for the optimum well shape, the
minimum excitation energy for a particle in the well will be
of the order of E0

V . Thus the condition for (59) to hold will be
τ > 1/E0

V . We shall also require that the temperature satisfies
T < E0

V . According to [8], in the classical phonon limit, one
finds ln D(E ) ∼ h̃(E )/γ 2T , where γ measures the strength of
the electron-phonon coupling, and h̃ < 0 is a function that de-
pends on the energy but is independent of γ and T . According
to (15), the interesting values of τ will be related to the en-
ergy E by τ = h̃′(E )/γ 2T . Thus τ will satisfy the inequality
τ > 1/E0

V if T is sufficiently small, and it will satisfy it for all
temperatures of interest (T < E0

V ) if γ 2 < h̃′(E ).
Now, in principle, we should compute C(τ ) from

C(τ ) →
∫

DV wcl |φB(x0)|2e−E0
V τ , (60)

where the integral is over all possible configurations of V (x).
However, as explained previously, in the low-energy tail, the
integral will be dominated by configurations close to the one
that maximizes the integrand. Thus, ignoring the correction
factor S(τ ) in Eq. (44), we may approximate (60) as

C(τ ) ≈ max[Zclwcl |φ(x0)|2e−Eφτ ], (61)

where Eφ is given by (32) and the maximum is taken over all
choices of φ as well as of V (x). If we ignore, for the moment,

the factor |φ(x0)|2, then setting δC/δφ = 0 leads to the results
that φ is indeed an energy eigenstate in the potential V , which
we identify with φB and Eφ = E0

V . Now setting δC/δV = 0
gives the result

V (x) = Vopt (x) = −τU (x), (62)

U (x) ≡ a
∑

x′
W (x − x′)|φB(x′)|2, (63)

where we made use of Eq. (56).
Although Eqs. (62) and (63) are invariant under translation

of the center position of φ and do not specify it, maximiz-
ing the prefactor in (61) dictates that we choose φ(x) to be
centered at x0. However, other than this, taking into account
contributions to the variational derivative from the factor
|φ(x0)|2 would change these results by an amount that is small
and can be neglected in the low-energy tail.

For an arbitrary wave function φ centered at x0 and an
arbitrary potential V , we may define a smoothed potential by

Vs(x0) = a
∑

x

|φ(x)|2V (x). (64)

Let us define V opt
s as the value of Vs(x0) when V = Vopt and

φ = φB. Let θ = 〈φB|He|φB〉 be the particle kinetic energy in
the state φB. Then at the optimum point, we have

Eφ = θ + V opt
s . (65)

Using (54), (61), and (62), we then obtain

C(τ ) ≈ |φB(x0)|2e−τ (θ+V opt
s )e−τ 2σ 2

0 /2, (66)

where

σ 2
0 = a2

∑
xx′

|φB(x)|2W (x − x′)|φB(x′)|2. (67)

Also, we have V opt
s = −τσ 2

0 .

B. FWF approximation

We now turn to the FWF approximation. In the classical
phonon limit, the exponent F (τ ) in Eq. (49) may be written as

F (τ ) = τ 2σ 2
φtr

/2 (68)

with

σ 2
φtr

= 2T
∑

k

|Ck|2
ωk

= a2
∑
xx′

|φtr (x)|2W (x − x′)|φtr (x
′)|2,

(69)

where we made use of Eq. (53). Also, we may identify Eφ
e

with θ . Then, Eq. (47) becomes

Cφtr (τ ) ≈ |φtr (x0)|2e−τθ eτ 2σ 2
φtr

/2. (70)

To find the trial wave function that maximizes this function,
we ignore the preexponential factor and set equal to zero the
variational derivative of the exponent with respect to φtr (x).
This gives the equation

Heφtr (x) + Vφ (x)φtr (x) = μφtr (x), (71)

Vφ (x) ≡ −τa
∑

x′
W (x − x′)|φtr (x)|2, (72)
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where μ is a Lagrange multiplier necessary to enforce the
constraint that φtr is properly normalized. We see that these
are the same equations as the ones we used to determine the
optimum potential Vopt and the corresponding wave function
φ in the ITDH. Moreover, when we identify φtr with the
wave function φ obtained in the ITDH approach, we find that
σφtr = σ0 and the value of C(τ ) obtained from (70) coincides
with (66).

Thus, the FWF and ITDH approximations give equivalent
predictions in the regime under discussion. We shall see that
these results also agree, as far as the exponential factors are
concerned, with the predictions of [8] for the low-energy tail
of the density of states in a Gaussian random potential.

VII. CONTINUUM WITH ACOUSTIC PHONONS

For a system of particles interacting with acoustic phonons,
a continuum model can be considered when the relevant par-
ticle wavelength is far larger than the lattice spacing a. The
Hamiltonian for such a system is

H =
∫

dx

[
ψ†(x)

(
− 1

2m

d2

dx2

)
ψ (x) + γ

∂u

∂x
ψ†(x)ψ (x)

+ 1

2
K

(
∂u

∂x

)2

+ 1

2ρ
�(x)2

]
, (73)

where ψ (x) and ψ†(x) are particle annihilation and creation
operators at a position x, with [ψ (x), ψ†(x′)]∓ = δ(x − x′)
(− for bosons, + for fermions), m is the particle mass, γ

is the particle-phonon coupling strength, u(x) is the nuclear
displacement field, K is a bulk modulus, ρ is nuclear mass
density, and � is nuclear momentum density (momentum per
unit length). The strain ε(x) ≡ ∂u(x)

∂x is assumed to be small,
|ε(x)| � 1, and the commutation relation for the nuclear dis-
placement and momentum density is[

u(x),�(x′)
] = iδ(x − x′).

The phonon-dispersion relation for the one-dimensional har-
monic chain is given in the continuum limit by

ωk = 2

a

(
K

ρ

)1/2

sin
|k|a

2
→ |k|

(
K

ρ

)1/2

. (74)

Note that the Hamiltonian in Eq. (73) is the special case of
the more general Hamiltonian in Eq. (3) with ωk given by
Eq. (74), ε(k) = k2

2m , and γk = γ |k|.

A. Classical self-trapping ground state

In the classical phonon limit ρ → ∞ while keeping the
other parameters fixed, the Hamiltonian (73) becomes

H =
∫

dx

[
ψ†(x)

(
− 1

2m

d2ψ (x)

dx2

)
+ γ ε(x)ψ†(x)ψ (x)

+ K

2
ε(x)2

]
, (75)

where ε(x) may be considered as a fixed classical function of
position.

We wish to find a strain configuration ε(x) and a single-
particle wave function φ(x) which gives the lowest possible

expectation value of the Hamiltonian in the single-particle
subspace. First, the minimum with respect to ε(x) is found
by taking the functional derivative

δ〈H〉
δε(x)

= γ |φ(x)|2 + Kε(x) = 0.

Thus, we require

ε(x) = −γ |φ(x)|2/K. (76)

Note that larger local particle density |φ(x)|2 induces more
strain ε(x). Substituting this back into the Hamiltonian (75) in
the single-particle subspace, one obtains a lattice-relaxed total
energy

〈H〉LR =
∫

dx

(
1

2m

∣∣∣∣dφ(x)

dx

∣∣∣∣
2

− γ 2|φ|4
2K

)
, (77)

where integration by parts was used for the kinetic energy
term. Next, we minimize 〈H〉LR with respect to φ∗(x) with
the constraint

∫
dx|φ|2 = 1 using Lagrange multiplier μ:

δ

δφ∗(x)

(
〈H〉LR − μ

∫
dx|φ(x)|2

)

= − 1

2m

d2φ(x)

dx2
− γ 2|φ(x)|2φ(x)

K
− μφ(x) = 0. (78)

This is a nonlinear Schrödinger equation for a particle in the
effective potential − γ 2|φ|2

K with particle energy eigenvalue μ.
Since any position-dependent phase factor of φ(x) leads to
higher kinetic energy, the ground state should have a global
(position-independent) phase factor. Thus, the ground state
can be chosen to be real, and Eq. (78) becomes

−1

2

d2φ(x)

dx2
− 1

2
νφ(x)3 = −κ2

H

2
φ(x), (79)

where ν = 2mγ 2

K and κH = (−2mμ)1/2. Since Eq. (79) is trans-
lationally invariant, it has degenerate solutions, which have
the form (cf. Ref. [8], Appendix B)

φ(x) = (κH/2)1/2sech(κH (x − x0)) (80)

with arbitrary center position x0. The wave function in
Eq. (80) is normalized, and its normalization condition gives

κH = ν/4 = mγ 2

2K
. (81)

The particle energy of the ground state is

μ = − κ2
H

2m
= −mγ 4

8K2
, (82)

and the total energy of the ground state (minimum energy) is
obtained by substituting (80) into (77):

Emin = − κ2
H

6m
= − mγ 4

24K2
. (83)

Note that the difference between the total and particle ener-
gies,

Emin − μ = κ2
H

3m
= − mγ 4

12K2
, (84)

is the elastic energy.
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We remark that if ρ is not infinite, the quantum ground state
of the system with one particle present will not be localized
but will be a polaron with total momentum k = 0. This state
may be considered as a linear superposition of the self-trapped
particle with arbitrary center positions x0. In the limit ρ → ∞,
polaron energy approaches Emin (83) and the energy becomes
independent of the polaron momentum as the polaron mass
becomes infinite.

In summary, in the classical phonon limit ρ → ∞, the
ground state for the system of a single particle interacting
with acoustic phonons in one dimension is described by a
self-trapped particle state (80) with lattice relaxation (76).
The self-trapping energy |Emin| is nonzero for any nonzero γ ,
although it can be very small when γ is small.

B. Application of the fixed-wave-function approximation

Now the FWF approximation introduced in Sec. V can be
implemented. We choose a trial wave function of the form

φκ (x) = (κ/2)1/2sech(κx), (85)

with a single variational parameter κ . This seems like a good
choice, since it is the correct form in the classical phonon
limit ρ → ∞, where it coincides with the results of [8] for
the Gaussian white noise potential, and it happens to coincide
with the form of the self-trapped ground state at T = 0. We
will eventually choose κ to maximize the correlation func-
tion C as in Eq. (51) [or to maximize the density of states
D(E ) as in Eq. (119) in the modified FWF approximation, cf.,
Sec. VIII B 1]. In the continuum, Eq. (49) becomes

F (τ ) =
∫ π/a

−π/a

dk

2π

L|Ck|2
ω2

k

[(nk + 1)e−ωkτ + nkeωkτ

+ ωkτ − (2nk + 1)], (86)

where Ck is defined in Eq. (50), with

λk =
√

1

2ρLωk
γ |k|,

|φ2|k =
∫

dxe−ikx|φκ (x)|2 = kπ

2κ
csch

(
kπ

2κ

)
.

Note that |φ2|k is a smooth function, with |φ2|k → 1 for k �
κ and |φ2|k → 0 for k � κ , and |φ2|k is significant only for
|k| � κ . Furthermore,

φκ (x0) = (κ/2)1/2 for x0 = 0, (87)

Eφκ

e = 〈φκ |He|φκ〉 = κ2

6m
. (88)

Thus, using the FWF approximation, Cφκ
(τ ) [Eq. (47)] is

essentially obtained by performing the numerical integration
in Eq. (86). Then, Cφκ

(τ ) is maximized with respect to κ

[Eq. (51)], and the density of states D(E ) is obtained from
C(τ ) by inverting the Laplace transform (13) as described in
Sec. III.

We first consider two special limits, namely the classical
phonon limit and the quantum zero temperature, in order to
obtain further insights.

1. Classical phonon limit

The classical phonon limit is achieved by taking ρ → ∞
while keeping the temperature T fixed. This reduces to the
case of a particle in a static Gaussian white noise potential,
which was considered in Halperin-Lax analysis [8,10] where
the optimal κ maximizing the density of states as in Eq. (119)
was given by κE = (−2mE )1/2. We would like to compare this
Halperin-Lax result to the FWF approximation.

In the classical phonon limit, ωk → 0 [cf. Eq. (74)] and
ωkτ � 1, which simplifies Eq. (86) to

F (τ ) =
∫ π/a

−π/a

dk

2π/L
|Ck|2(nk + 1/2)τ 2.

Since ωk/T � 1, the above expression is further reduced to

F (τ ) ≈ γ 2T

2ρ

∫ π/a

−π/a

dk

2π

k2

ω2
k

|φ2|2kτ 2. (89)

The integrand of Eq. (89) is significant for |k| � κ , due to
|φ2|k , and in this interval, ωk can be approximated as a linear
dispersion ωk ≈ √

K/ρ|k|, since κa � 1 in the continuum
limit. In addition, for κa � 1, the integral can be evaluated,
since ∫ π/a

−π/a

dk

2π
|φ2|2k ≈

∫ ∞

−∞

dk

2π
|φ2|2k = κ/3. (90)

Thus, one obtains

F (τ ) ≈ γ 2T

2K

κ

3
τ 2 ≡ σ 2

φκ
τ 2/2. (91)

Thus, from Eq. (47), one gets

Cφκ
(τ ) = |φκ (x0)|2e−τEφκ

e +σ 2
φκ

τ 2/2. (92)

Now the correlation function must be maximized with
respect to the variational parameter κ . The value of κ that
maximizes the correlation function is found by solving the
equation

d ln Cφκ
(τ )

dκ
= d

dκ

[
ln κ − τEφκ

e + σ 2
φκ

τ 2/2
] = 0, (93)

which, for κ > 0, gives

κτ = mγ 2T τ

4K
+

√(
mγ 2T τ

4K

)2

+ 3m

τ
. (94)

The asymptotic form of D(E ) can now be obtained using
the inversion formulas described in Sec. III. Using the optimal
κ , given by (94), Eq. (19) gives

E = − κ2

6m
−

√(
κ2

3m

)2

− 2γ 2T

3K
κ. (95)

For low energy E � 0, one obtains the Halperin-Lax result
κ = (−2mE )1/2 [cf. Eq. (95)]. The resulting approximation
for D(E ) is

DFWF(E ) ≈
(

κE

2πξ

)1/2

e
− 4κ3

E
3m2ξ for E � 0, (96)
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FIG. 1. Comparison of different approximations to the density
of states in the Gaussian white noise potential. The exact Dexact (E )
(98) and exact asymptotic form (100) are denoted as exact (black
solid curve) and As (black dashed curve), respectively. The FWF
asymptotic form (96) and its form with the higher-order correction
(101) are denoted as FWF (red solid curve) and FWF × S1 (red
dotted curve), respectively. We use K = 1, m = 1, T = 0.1, and
γ = 1.

where ξ is introduced to make a connection to the Gaussian
white noise model [cf. Eq. (C10)]

ξ

2
= γ 2T

K
. (97)

[See also the discussion in Appendix D of the modified FWF
approximation, which maximizes D(E ) rather than the corre-
lation function C(τ ).]

Our approximate density of states from classical acoustic
phonons DFWF(E ) can be compared to the exact density of
states for the Gaussian white noise potential [8,22]

Dexact (E ) = (m2ξ )−1/3N ′[E (m2ξ )−2/3], (98)

where N , which may be expressed in terms of Airy functions
as

N (ε) = π−2{[Ai(−2ε)]2 + [Bi(−2ε)]2}−1, (99)

is the cumulative density of states as a function of unitless en-
ergy ε = Em−4/3ξ−2/3. This gives rise to the exact asymptotic
form,

DAs(E ) ≈ 4κ2
E

πmξ
e
− 4κ3

E
3m2ξ for E � 0. (100)

Note that Eqs. (96) and (100) have the same exponential
factor, but different prefactors. The difference in the prefactors
can be reduced by considering higher-order corrections, as
discussed in Appendix B. The correction factor S1(E ) is given
in Eq. (B15), which gives the corrected density of states to the
FWF approximation:

DFWF(E ) S1(E ) ≈
(

2

15

)1/2 4κ2
E

πmξ
e
− 4κ3

E
3m2ξ for E � 0. (101)

The comparison of different approximations to the density of
states in the Gaussian white noise potential is given in Fig. 1,
where we use K = 1, m = 1, T = 0.1, and γ = 1.

2. Quantum zero temperature

Zero temperature can be considered instead of the classical
phonon limit. At zero temperature T = 0, all Bose occupation
numbers nk are set to zero. Then, Eq. (86) becomes

FT =0(τ ) =
∫ π/a

−π/a

dk

2π

L|Ck|2
ω2

k

[e−ωkτ + ωkτ − 1].

For ωkτ � 1, FT =0(τ ) is quadratic in τ ,

FT =0(τ ) ≈
∫ π/a

−π/a

dk

4π
L|Ck|2τ 2 (102)

≈ 3γ 2ζ (3)κ2

2π3(ρK )1/2
τ 2, (103)

where similar approximations were used as in Eq. (91), and ζ

is the Riemann zeta function. For ωkτ � 1,

dFT =0(τ )

dτ
≈

∫ π/a

−π/a

dk

2π

L|Ck|2
ωk

≈ γ 2κ

6K
, (104)

where, again, similar approximations were used as in Eq. (91).
According to Eq. (19), this implies that for a fixed value of
κ , the computed density of states vanishes below a minimum
energy

Emin,κ = Eφκ

e − dFT =0(τ )

dτ
= κ2

6m
− γ 2κ

6K
, (105)

which implies that D(E ) = 0 for

E < Emin = minκ (Emin,κ ) = − mγ 4

24K2
. (106)

This agrees with the result (83) for the ground-state energy of
the self-trapped particle in the limit ρ → ∞.

We note that in Eq. (105), the first term is the kinetic energy
of the FWF [cf. Eq. (88)], and the second term is the particle-
phonon interaction and the elastic energy of the FWF after
lattice relaxation [cf. the second term of Eq. (77) for φ = φκ ].

C. Numerical results

We now turn to situations in which neither T nor ρ−1 is
zero. Here we use numerical methods to compute F (τ ) for
various choices of the parameter κ and to find the value of κ

that maximizes the resulting estimate of C(τ ). Finally, we use
the method of Sec. III to obtain the density of states D(E ).

The ratio of the thermal energy to the energy of a phonon
α = T/ωκH is a useful parameter for understanding the im-
portance of quantum phonon effects. The limit α � 1 will
approach the classical phonon limit, and small α will show
the effects of quantum motion of the nuclei.

To study how the density of states depends on this param-
eter α, we can either (i) vary ρ while fixing the temperature
T , or (ii) vary T while fixing ρ. We use a = 0.1, K = 1, and
m = 1, and we vary ρ, T , and γ for the following calculations.
Equivalently, we are measuring E in units of ( K2

m )1/3, and

D(E ) in units of ( m2

K )1/3.

1. Varying ρ while fixing T

The dependence of the density of states on α by changing ρ

is shown in Figs. 2 and 3 for γ = 1 and 0.5, respectively. For
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FIG. 2. Densities of states in the FWF approximation, DFWF(E ),
with trial wave functions of the form (85), for different α values
achieved by varying ρ for fixed T = 5 × 10−4, and γ = 1. Param-
eters m and K have been set equal to unity. Emin is the minimum
energy (83) of the self-trapped particles at T = 0 for ρ → ∞.

smaller α, the density of states is larger, meaning the nuclear
quantum effect increases the density of states. The limit α →
∞, achieved by ρ → ∞, corresponds to the classical phonon
limit considered by Halperin and Lax [8]. It is also seen that
the different γ values change the overall energy scale.

2. Varying T while fixing ρ

The dependence of the density of states on α by changing
T is shown in Figs. 4 and 5 for γ = 1 and 0.5, respectively.
For larger values of α, the density of states increases, which
implies that a higher temperature leads to a larger density of
states. Note that at zero temperature α = 0, there exists an
energy minimum given by Eq. (105) below which the density
of states completely vanishes. Comparing with Figs. 2 and 3,
we see that the curves for α = 0.25 and 0.5 would be almost
indistinguishable from the classical phonon limit ρ → ∞ at
the given temperatures, which was discussed in [8].

If we restore the parameters m and K , the density of states
can be written in the form

D(E , T, ρ, γ ) =
(

m

Eγ

)1/2

D̃, (107)

FIG. 3. Densities of states DFWF(E ) for different α values
achieved by varying ρ for fixed T = 1.25 × 10−4, and γ = 0.5.
Other parameters are the same as in Fig. 2.

FIG. 4. Densities of states DFWF(E ) for different α values
achieved by varying T , for fixed ρ = 104, and γ = 1. Other param-
eters are the same as in Fig. 2.

where Eγ ≡ γ 4mK−2 = 24|Emin|, and D̃ depends only on
the dimensionless variables E/Eγ , T/Eγ , and ρEγ /mK . This
means that plots of D(E , T, ρ, γ ) for γ = 0.5 and γ = 1
would coincide if we change variables accordingly. That is,

D(E , T, ρ, γ = 0.5) = 4D(E ′, T ′, ρ ′, γ = 1) (108)

with E ′ = 16E , T ′ = 16T, ρ ′ = ρ/16. The value of
D(E , T, ρ, γ ) is independent of the remaining dimensionless
quantity γ̃ ≡ γ 3mK−2 because if we rescale the field u(x)
by a factor of λ, the coefficients in the Hamiltonian (73) will
be modified and γ̃ will be changed by a factor of λ, but the
energy eigenvalues are unchanged. However, du/dx would
no longer be the strain. The Hamiltonian (73) will actually
become unphysical for sufficiently large values of γ , because
the resulting strains can be larger than 1.

3. Relation between κ and energy

Figure 6 shows the relation between energy E and optimal
κ that maximizes the correlation function Cφtr (τ ) for different
α values, achieved by varying T for fixed ρ = 104, and γ =
1. We find that the α = 0 (zero-temperature) curve follows
κ = (−6mE )1/2 for energies above the minimum energy Emin,
while the curves for α = 0.25 and 0.5 are close to the classical
phonon limit result, κ = (−2mE )1/2. The curves for α = 0.05
and 0.1 exhibit a more complicated behavior.

FIG. 5. Densities of states DFWF(E ) for different α values
achieved by varying T , for fixed ρ = 104, and γ = 0.5. Other pa-
rameters are the same as in Fig. 2.
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FIG. 6. Energy E and optimal κ relation for different α values
achieved by varying T for fixed ρ = 104, and γ = 1. α = 0 (zero
temperature) curve follows κ = (−6mE )1/2, and α = 0.25 and 0.5
curves follow the classical phonon limit result, κ = (−2mE )1/2.

We can understand the result κ = (−6mE )1/2 for Emin <

E < 0 for α = 0, and κ = (−2mE )1/2 for the classical
phonon limit (large α) as follows. Ignoring the |φκ (x0)|2 factor
in Eq. (47), one obtains

Cφκ
(τ ) ≈ e−τEφκ

e +F (τ ), (109)

where, according to Eq. (103), at T = 0, for τ in the range of
interest, F has the form

F (τ ) ≈ Aκ pτ 2 (110)

with A a constant and p = 2. In the classical phonon limit, F
has a similar form but with p = 1 [cf. Eq. (91)]. In either case,
the optimal κ that maximizes C can be obtained from

d ln Cφκ
(τ )

dκ
≈ −τ

κ

3m
+ pAκ p−1τ 2 = 0. (111)

For this optimal κ , Eq. (19) gives the relation between E
and κ:

E = κ2

6m
− 2Aκ pτ = κ2

m

[
1

6
− 2

3p

]
. (112)

This leads to the result κ = (−6mE )1/2 for T = 0 (p = 2)
as well as the known result κ = (−2mE )1/2 for the classical
phonon limit (α large, p = 1).

VIII. ADDITIONAL REMARKS

A. Momentum-dependent spectral density

Using either the ITDH or FWF approximation, one finds
that for a given energy E in the low-energy tail, the tunneling
density of states is dominated by a particle wave function of
the form φ(x) = f (x − x0), where f has a fixed shape, and x0

is the position of a local minimum of the fluctuating potential.
As noted in Refs. [8,10], this suggests a simple approximation
for the momentum-dependent spectral density

A(1)(k, E ) ≈ | f̃ (k)|2D(E ), (113)

where f̃ is the Fourier transform of f (x):

f̃ (k) =
∫

dxe−ikx f (x). (114)

(Here we use the continuum normalization, with
∫ | f |2dx =

1.) As in the case of a random potential due to impurities, how-
ever, this approximation breaks down if k becomes too large.
Because f (x) is an analytic function of position, its Fourier
transform will fall off exponentially for |k| > l−1, where l is
a measure of the spatial width of the wave function. Then for
sufficiently large k, we can obtain a larger contribution to the
spectral density from processes in which the injected particle
emits or absorbs a phonon with wave vector ≈ ±k in order to
bring it into the momentum region where A(1) is largest. The
contributions of these processes to the imaginary part of the
particle self-energy may be written as

Im�(k, E ) = L

2π2

∫
dk′|λk′ |2

× [(nk′ + 1)A(1)(k − k′, E − ωk′ )

+ n−k′A(1)(k − k′, E + ω−k′ )]. (115)

Because the integrand will be significant only when |k′ − k| �
κ � |k|, we may replace k′ by k in ωk′ , etc., and we may bring
these factors outside the integral. This leads to a contribution

A(2)(k, E ) = π−1Im[E − εk − �(k, E )]−1

= γ 2
k [(1 + nk )D(E − ωk ) + nkD(E + ωk )]

2ρωk (εk − E )2
.

(116)

For intermediate values of k, we should approximate the spec-
tral density by the larger of (113) and (116).

Approximation (116) will be particularly important in the
case of an indirect absorption edge. For a semiconductor
with an indirect band gap, such as Si, where the exciton
binding energy is small and the electron-phonon interaction
is too weak to produce self-trapping, the low-energy tail of
the indirect optical absorption edge can be reproduced by an
analogous formula involving a transition of an electron from
a state near the valence-band maximum to a state near the
conduction-band minimum, with emission or absorption of a
single phonon [17].

B. Three-dimensional systems

Three-dimensional systems can differ from one-
dimensional systems in several ways, which may require
adjustments to the methods described above. One important
difference is that in three dimensions, it is necessary for
the particle-phonon coupling to exceed a critical value in
order for self-trapping to occur in limit of large nuclear
masses, whereas in one dimension, self-trapping occurs for
arbitrarily weak coupling. As in one dimension, we expect
that important quantum corrections will appear primarily in
the energy range Emin < E < E0, where E0 is the nominal
bottom of the free-particle band, and EB = E0 − Emin is the
binding energy due to self-trapping. Further, we want to have
EB > ωph > T for our methods to apply and for quantum
corrections to be important. If the coupling is below the
critical value, one obtains EB = 0, so these conditions cannot
be satisfied.

Another issue concerns the contribution of short-
wavelength phonons. In three dimensions, the phonon con-
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tribution to the particle self-energy has a strong ultraviolet
divergence in the continuum limit, so the contribution of
short-wavelength phonons may need to be taken into account
even in situations in which the width of a typical particle wave
function φ(x) at the energy of interest is large compared to
the lattice constant. (When quantum fluctuations are taken
into account, there is also an ultraviolet divergence in one
dimension, as discussed in Appendix B, but that divergence
is logarithmic and is unlikely to be important in practice.)
Because the ultraviolet-divergent contribution is only weakly
dependent on the particle energy, we may treat it, to a first
approximation, as a constant downward shift in the particle
energies, which can be taken into account by a (temperature-
dependent) redefinition of the threshold energy E0. A more
detailed discussion of how to treat this energy shift may be
found in [10], where a similar ultraviolet divergence was
encountered in their analysis of the density of states for an
electron in a three-dimensional Gaussian white noise poten-
tial.

Additional problems may arise when one tries to extract
the density of states D(E ) from the imaginary-time correla-
tion function C(τ ) obtained from either the ITDH or FWF
approximation, using the procedure discussed in Sec. III.
At least in the classical phonon limit, we know from the
Halperin-Lax analysis that at least in the limit of classical
phonons and wave functions wide on the scale of the lattice
constant, there will be a region of energy in the low-energy
tail where ln D(E ) ∝ −|E − E0|1/2, so d2[ln D(E )]/dE2 > 0,
which violates the requirements of Sec. III. This difficulty
may be avoided, however, if one adopts a modified procedure,
described below, where the Laplace transform is inverted at an
earlier stage of the calculation.

In two dimensions, for Gaussian white noise in the contin-
uum limit, the HL analysis predicts ln D(E ) ∝ −|E − E0|, so
that d2 ln D/dE2 ≈ 0. This case is marginal, and it is unclear
whether one can apply directly the ITDH method to this case.
In Ref. [9], results of a numerical calculation were presented
for D(E ) of a two-dimensional model of a particle interacting
with quasiclassical frozen acoustic phonons. However, that
calculation did not extend far enough into the low-energy tail
to warrant comparison with an analysis using the methods of
the present paper.

1. Modified procedures

In the modified ITDH procedure, one chooses an arbitrary
initial phonon configuration α and uses the imaginary-time-
dependent Hartree equations to calculate the function Cα(τ )
as described Sec. IV. Now, however, we use the procedure of
Sec. III to find the inverse Laplace transform of Cα(τ ) at fixed
α, which gives the conditional density of states,

Dα(E ) =
∑
mn

〈α|m〉〈m|ψx0 |n〉〈n|ψ†
x0
|α〉

× δ(E − En + Em), (117)

where the sum is over eigenstates of the Hamiltonian with
one particle present for the state n and no particle present for
the state m. We expect that the conditions of Sec. III will be
satisfied by Cα(τ ) for fixed α, so there should be no difficulty

inverting the Laplace transform at this stage. We now have

D(E ) =
∫

dαwαDα(E ). (118)

Then, we may approximate the density of states by the value
of the integrand in this equation when α is chosen to maximize
its value. [Alternatively, we may approximate the density of
states choosing α in a way that maximizes wαCα(τ ) for the
value of τ that corresponds to the target value of E .] We expect
that in most cases either of these choices will lead to a good
approximation for D(E ) in the low-energy tail, and in cases
in which the averaged correlation function C(τ ) satisfies the
conditions for the procedure of Sec. III, there should be close
agreement between the modified ITDH and the original ITDH
approximations. It appears that the difference between the two
procedures will affect only the preexponential factors. As in
the previous sections, one should properly include an entropy
prefactor S(E ), which here we have set equal to 1.

We may proceed in a similar manner when employing the
FWF. The function Cφtr (τ ) defined by (47) is the Laplace
transform of a function Dφtr (E ), which we may consider to
be an approximation to the actual density of states D(E ). One
should be able to obtain the function Dφtr (E ) from Cφtr (τ )
with good accuracy and without much difficulty, using the
procedure outlined in Sec. III.

Having obtained the estimated density Dφtr (E ) for various
choices of the wave function φtr , we choose, for each E , the
wave function that maximizes the estimate for that energy.
This defines a modified FWF approximation:

D(E ) = maxφtr [Dφtr (E )]. (119)

This should be compared to the FWF approximation of
Sec. V, where we did not compute the functions Dφtr (E ) but
rather obtained the density of states by taking the inverse
Laplace transform of the entire function C(τ ). Again, one
should get more accurate results if one can include an estimate
of the entropy prefactor S(E ), which here we have set equal
to 1.

As an alternative to inverting the Laplace transform in the
modified FWF procedure, if one wishes to obtain a more
accurate value for the function Dφtr (E ), one may work directly
in the energy regime, following the prescription of Hopfield
[21], which is described in Appendix E below. This method
is not restricted to the low-energy tail, and it can achieve,
in principle, an arbitrary degree of accuracy. However, in the
low-energy tail, an approximate inversion of the Lax formula
using the method of Sec. III is simpler and probably adequate
for the level of approximation already implicit in the FWF
method.

We remark that there is at least one case in which the
modified FWF approximation taken literally will lead to non-
sensical results. In a model in which the lattice vibrations
are dispersionless optical phonons, with a single frequency
ω0, the function D0

tr (E ) will contain a series of δ-functions at
energies separated by multiples of ω0. Choosing φtr at each E
to maximize D0

tr (E ) will simply give an estimated density of
states that is infinite at all energies. However, we expect that
this pathology will not be a cause for worry when there is at
least a moderate amount of dispersion in the phonon spectrum.
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We expect that in most cases, when D(E ) satisfies the
condition d2 ln D/dE2 < 0, the difference between the modi-
fied procedures and the original ITDH or FWF approximation
will not be too great. For the one-dimensional continuum
model studied above, we find that the modified FWF result
for D(E ) only differs from the result of the original FWF
approximation by a constant preexponential factor of (3/2)1/2

(see Appendix D).

IX. SUMMARY

In Secs. III–VI of this paper, we introduced two re-
lated approximation schemes for calculating the momentum-
dependent spectral density A(k, E ) and the tunneling density
of states D(E ) in the low-energy tail for the model of a single
injected particle coupled to a thermal bath of phonons. In both
schemes, we developed an approximation for imaginary-time
correlation function C(τ ), which is the Laplace transform of
D(E ), and we discussed how D(E ) can be efficiently extracted
from C(τ ) for energies E in the low-energy tail. In particular,
we obtained a one-to-one relation between energies E and
imaginary times τE such that D(E ) is determined by C(τ ) and
its first two derivatives at τ = τE .

In the ITDH approach, defined in Sec. IV, we proposed
a imaginary-time-dependent Hartree approximation to cal-
culate the imaginary-time correlation function starting from
an initial state that is in an arbitrary coherent phonon state
before the particle is injected. To obtain C(τ ), one should then
calculate the weighted average of this correlation function
over a thermal distribution of initial states. However, in the
low-energy tail, corresponding to large values of τ , we can
get a good first approximation to C(τ ) considering only the
single initial state that gives the largest contribution to the
average. In principle, corrections to this approximation can be
obtained by using second-order perturbation theory to account
for deviations of the initial phonon configuration from the
optimal coherent state, as well as corrections arising from
the difference between the full Hamiltonian and the Hartree
approximation used to calculate the imaginary-time evolution.

The FWF approximation, introduced in Sec. V, is a sim-
plification of the ITDH, in which for a given choice of τ , we
ignore the time dependence of the particle portion of the wave
function for imaginary times τ ′ < τ by assuming a fixed trial
wave function φtr (x). The phonon configuration is assumed
to vary with τ ′, however, driven by the coupling to the mean
particle density |φtr (x)|2. Then, for each value of τ , we choose
a trial wave function that maximizes the estimate of C(τ ). The
FWF approach may be further simplified by restricting the
trial wave function to a form controlled by a small number of
variational parameters and then choosing the values of these
parameters so as to maximize C(τ ).

As noted in Sec. VI, in the classical phonon limit, where the
nuclear mass is taken to infinity, so that the relevant phonon
frequencies are small compared to the temperature T , the
problems under consideration reduce to calculations of the
density of states or the spectral density for a particle in a
random potential with a Gaussian statistical distribution. In
the low-energy tail, to leading order (on a logarithmic scale),
the ITDH and FWF approximations become equivalent to
each other in the classical limit, and their results coincide, at

this level, with the results obtained more than five decades ago
for a particle in a random potential.

In Sec. VII, we presented an application of these methods
to a one-dimensional model of a particle interacting via a
deformation potential with acoustic phonons in the continuum
limit. We presented results of numerical calculations using
the FWF approximation for a selected set of parameters—γ ,
ρ, and T —controlling the particle-phonon coupling strength,
the nuclear mass density, and the temperature. The parameters
were chosen such that the phonon frequencies were small
compared to the self-trapping energy for the particle in the
classical phonon limit, but the ratio between T and the rele-
vant phonon frequencies could take various values. Indeed, it
is under these conditions that we expect the ITDH and FWF
approximations to be most interesting. At least in this param-
eter region, we found that quantum fluctuations arising from a
finite nuclear mass had little effect when the relevant phonon
frequencies were small compared to T , but they tended to
increase the density of states at low energies when the phonon
frequencies were larger than T . In the case in which the mass
density is held fixed and T is decreased, we found that D(E )
remains finite in the limit T → 0 for E greater than Emin, the
ground-state energy of a self-trapped particle in the classical
phonon limit, but D(E ) = 0 at T = 0 for E < Emin. We intend
to present results of an application of the ITDH to the one-
dimensional continuum model in a future publication.

The calculations presented in Sec. VII were confined to ex-
amples with relatively strong particle-phonon coupling, where
it was sensible to consider a case in which the self-trapping
energy is large compared to the relevant phonon frequencies.
In the opposite case, where the phonon frequencies are large
compared to the self-trapping energy, the description may be
quite different. In this case, the quantum ground state will be a
lightly bound polaron, which is highly mobile with a slightly
renormalized effective mass, and its kinetic energy must be
taken into account at low temperatures. At high temperatures,
the classical phonon approximation can still be made, and the
methods for treating a particle in a Gaussian random poten-
tial could be used. However, a good description of quantum
corrections to the low-temperature low-energy tail for weak
particle-phonon interactions requires further investigation.

Several additional topics were discussed in Sec. VIII. In
Sec. VIII A we showed how the momentum-dependent spec-
tral density A(k, E ) can be obtained along with D(E ) in either
the ITDH or FWF approximation. In Sec. VIII B we discussed
the modifications that must be made if one wishes to apply
either the ITDH or FWF approximation to a three-dimensional
system.

In Appendix A below, we present a detailed derivation
of the imaginary-time-dependent Hartree equations of motion
used in the ITDH approximation. In Appendix B, we discuss
corrections to the ITDH that affect the preexponential factors
in D(E ). In particular, we discuss the correction that is of
greatest importance in the case of a continuum system in the
classical phonon limit. This correction arises from fluctuations
of the frozen phonon state in which the potential well retains
its optimum form but the center of the well is displaced
slightly from the position of the injected particle. Several other
topics are treated in additional Appendixes.

Although our study of A(k, E ) and D(E ) was largely mo-
tivated by the problem of optical absorption by an exciton in
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the presence of a bath of phonons, there are other applications,
at least in principle. As one example, the tunneling density
of states measured in an ideal scanning tunneling microscopy
(STM) experiment for an electron injected into an empty band
in a two-dimensional insulator should be proportional to the
quantity D(E ) calculated for that system. Similarly, an inverse
angle-resolved photoemission spectroscopy (ARPES) experi-
ment could give a measure of A(k, E ). As a practical matter,
however, it is not clear whether one can achieve the sensitivity
and energy resolution necessary to probe the low-energy tail
region where the methods described above would be directly
applicable. Of course, one must also contend with the influ-
ence of impurities in this region, and in the case of a STM
measurement, one would have to account for the perturbation
caused by the presence of a scanning tip. In addition, it is
difficult to perform an STM measurement in a completely
empty band, as it is necessary for the target to have at least
some lateral conductivity.

The spectral density A(k, E ) or the tunneling density of
states D(E ) for an occupied electron band can be measured,
respectively, by an ARPES or STM experiment. The problem
in this case is that the effects of electron-electron interactions
are likely to be larger than the effects of electron-phonon
interactions.

A quantity analogous to the spectral density of a particle
interacting with phonons in a crystal can arise for an impurity
atom injected into an atomic Bose condensate [23]. At low
energies, the important excitations of the Bose condensate are
phonons, and their interaction with the impurity atom may
have a form similar to the one considered here, at least in the
case of weak coupling. However, the analogy breaks down
when coupling to the impurity is strong [24], and it is not
clear whether one can achieve a regime where a low-energy
tail exists and our methods could be directly applicable.

More generally, however, we expect that the type of analy-
sis exemplified by our ITDH procedure may have applicability
to a variety of problems where coupling of a particle to de-
grees of freedom other than phonon modes is important. For
example, excitations about a Fermi sea of electrons may be
treated as a set of harmonic-oscillator modes in some circum-
stances. Also, magnetic excitations in spin systems may often
be treated as independent harmonic oscillators. Appropriate
generalizations of the ITDH procedure might be useful for
calculations outside the low-energy tail, which would accord-
ingly extend the applicability of the general approach.

In principle, our methods could be used when the initial
phonon state is not a state of thermal equilibrium, provided
it can be described by a density matrix that commutes with
the Hamiltonian in the absence of the injected particle and is,
therefore, independent of time.
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APPENDIX A: EQUATIONS OF MOTION FOR THE
IMAGINARY-TIME-DEPENDENT HARTREE

APPROXIMATION

The unnormalized many-body state |�(τ )〉 must satisfy the
imaginary-time-dependent Schrödinger equation

∂|�〉
∂τ

= −H |�〉. (A1)

Assuming that the factorization approximation is valid, the
state |�(τ )〉 = a−1/2R(τ )
†

τ |β(τ )〉 should satisfy〈
�

∣∣∣∣∂�

∂τ

〉
=

〈
∂�

∂τ

∣∣∣∣�
〉

= −〈�|H |�〉 (A2)

and 〈�|�〉 = a−1(R(τ ))2. Then, one obtains

∂

∂τ
ln[(〈�|�〉)−1/2] = 〈�|H |�〉

〈�|�〉 = Eφ +
∑

k

ωk|βk|2,

(A3)

which gives

dR

dτ
= −R

(
Eφ +

∑
k

ωk|βk|2
)

. (A4)

The Heisenberg equation of motion for ak gives

dak/dτ = −[ak, H] = −ωkak − a
∑

x

ψ†
x ψxλke−ikx. (A5)

Then, in the presence of a particle,

dβk/dτ = −ωkβk − λk|φ2|k . (A6)

Without a particle,

dβ0k/dτ = −ωkβ0k . (A7)

Multiplying the Schrödinger equation (A1) by 〈β(τ )|ψx,
and using Eq. (A4) for dR/dτ , one obtains

dφ(x, τ )

dτ
= − [He(x) + V (x, τ ) − Eφ (τ ) − iQ(τ )]

× φ(x, τ ), (A8)

where He(x) is a position representation of the electronic
kinetic energy operator, and

Q(τ ) = i〈β(τ )| d

dτ
|β(τ )〉

= −Im
∑

k

β∗
k (τ )

dβk (τ )

dτ

= Im
∑

k

β∗
k (τ )λk|φ2|k, (A9)

where we have used |βk (τ )〉 = e−|βk (τ )|2/2eβk (τ )a†
k |0〉k and

Eq. (35).
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Note that λ−k = λ∗
k due to time-reversal symmetry and

|φ2|−k = |φ2|∗k since φ(x)2 is real. If we choose an initial
configuration such that α−k = α∗

k , then β−k (τ ) = β∗
k (τ ) and

β0,−k (τ ) = β∗
0k (τ ) since the equations of motion preserve

the relations. Then, the purely imaginary term vanishes, i.e.,
Q(τ ) = 0, meaning that the propagated electronic wave func-
tion φ(x0, τ ) is real if the initial wave function φ(x0, 0) is
real. Furthermore, the inner product

∏
k〈β0k (τ )|βk (τ )〉 is real

for this initial configuration. Thus, Cα(τ ) is real for the initial
configuration.

If we choose an initial configuration such that Cα(τ ) is
complex, there will be a complex-conjugate initial configu-
ration, with the same weight wα, which will give rise to the
complex-conjugate value of Cα(τ ). Therefore, if there is a
unique initial configuration that maximizes wα|Cα(τ )|, it must
be real, with an initial condition that satisfies α−k = α∗

k . We
believe that this will generally be the case.

We expect that the imaginary-time-dependent Hartree ap-
proximation should become asymptotically exact in the limit
where T and the phonon frequencies (∝ M−1/2) go to zero.
In this limit, evolution of the phonon coordinates is slow,
and the particle wave function will adiabatically follow the
ground-state wave function for a particle in the potential well
produced by the phonon configuration. This is the limit where
a Born-Oppenheimer separation is valid, and corrections to
the Hartree approximation become small, despite the fact that
the imaginary times τ of interest grow proportional to T −1

or M1/2. (Note that there is no Fock exchange term in our
problem, since we have only one mobile particle.)

APPENDIX B: HIGHER-ORDER CORRECTIONS

To improve our estimates of the density of states in
the low-energy tail, we need to examine the preexponen-
tial factors S(τ ), introduced in earlier sections, which we
have so far ignored. As mentioned previously, the most
important corrections to the ITDH approximation can be
calculated, in principle, by treating the difference between
the actual Hamiltonian and the imaginary-time-dependent
Hartree approximation and the deviation of the actual starting
configuration α from the optimum configuration as small per-
turbations, whose effects one can estimate using second-order
time-dependent perturbation theory. We will not attempt to
implement this procedure in the present paper.

In the classical phonon limit, the analysis is simplified,
because for long times τ , for a given potential configura-
tion V (x), the correlation function CV (τ ) is determined by
properties of the electronic ground state in this potential.
Then, the corrections to the ITDH estimation of C(τ ) can
be calculated using time-independent perturbation theory to
account for deviations of the actual potential V (x) from its
optimum form. For a continuum model, it turns out that the
most important correction arises from fluctuations where the
potential well retains its ideal form but where the center of
the well is displaced slightly from the position x0 where the
particle is injected.

To be more precise, let us assume that for a given value of
τ , the optimum potential has a form

Vopt (x) = u(x − x0), (B1)

where the shape of u is independent of x0, and let us write the
ground-state wave function as

φB(x) = f (x − x0). (B2)

The ground state in a potential well can always be chosen to
be a real-valued function with no nodes, and it is necessarily
nondegenerate. Moreover, we expect by symmetry that the
optimum potential will have a minimum at x = x0 and will
be symmetric about that point, so that the ground-state wave
function in the well will have a maximum at x0.

Let C0(τ ) be the estimate of C(τ ) obtained from (61)
with the optimum choice of V . We may now estimate the
contribution to C(τ ) from a displaced potential of the form
V (x) = u(x − x0 − s) for s �= 0. The displacement s will have
no effect on the weight factor wα in Eq. (55) nor on the binding
energy EB, but it will reduce the value of |φB(x0)|2 by a factor
| f (s)/ f (0)|2. We may obtain an improved estimate of C(τ ) by
integrating over the displacement s, namely

C1(τ ) = S1(τ )C0(τ ), (B3)

S1(τ ) = ν0

∫
ds| f (s)/ f (0)|2, (B4)

where ν0 is the density per unit length of independent choices
of s. (Here, we have assumed that the bound-state wave func-
tion is broad on the scale of the lattice constant a, so we have
taken the continuum limit a → 0, and we have replaced the
sum over positions by an integral.)

We may determine ν0 as follows. Consider a set of poten-
tials of the form

Vη(x) = u(x − x0) − ηu′(x − x0), (B5)

with a parameter η. Since the probability of Vη is controlled
by the weight function wα, the variable η will have a Gaussian
distribution of the form

p(η) = (
2πσ 2

η

)−1/2
e−η2/2σ 2

η , (B6)

with

σ−2
η =

∫
dxdx′u′(x)G(x − x′)u′(x′) (B7)

=
∫ π/a

−π/a

dk

2π

ρωk

|γk|2(nk + 1/2)
k2|ũ(k)|2, (B8)

where, as was defined in Eq. (56),

G(x − x′) =
∫ π/a

−π/a

dk

2π

ρωk

|γk|2nk
eik(x−x′ ), (B9)

and ũ(k) = ∫
dxe−ikxu(x). But a small nonzero value of η is

equivalent to a displacement of the potential by an amount
s = η, so we must have

ν0 = lim
η→0

p(η) = (
2πσ 2

η

)−1/2
. (B10)

Since the wave function f (s) is normalized to unity, we obtain

S1(τ ) = [
2πσ 2

η | f (0)|4]−1/2
. (B11)

The corrected correlation function C1 leads to a density of
states similar to that obtained in Ref. [8] using a minimum
counting procedure, which approximated D(E ) by the density
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of local minima of the smoothed potential Vs with Vs(x) =
θ − E . The factor S1 represents the correction imposed by the
requirement that Vs is a local minimum at a point x, on top of
the requirement that the value of Vs(x) is equal to θ − E .

For the acoustic phonon model discussed in Sec. VII,

u(x) = −κ2

m
sech2(κx), (B12)

ũ(k) = −kπ

m
csch

(
kπ

2κ

)
, (B13)

and γk = γ |k|. For a classical phonon, nk ≈ T/ω � 1, so
Eq. (B8) gives

σ−2
η ≈ K

γ 2T

∫ ∞

−∞

dk

2π
k2|ũ(k)|2 = K

γ 2T

16κ5

15m2
, (B14)

where similar approximations were used as in Eq. (91). Then,
in Eq. (B11) using f (0) = (κ/2)1/2 [cf. Eq. (85)], one finds

S1 =
(

32Kκ3

15πm2γ 2T

)1/2

. (B15)

Although the correction S1 was derived for the ITDH ap-
proximation, it seems reasonable to apply it also to the FWF
approximation. Doing this, one obtains Eq. (101), which only
differs from the exact asymptotic value (100) by a constant
factor of (2/15)1/2. If one applies the correction to the mod-
ified FWF approximation, then, from (B15) and (D5), one
obtains

S1(E ) DMFWF(E ) = 1√
5

4κ2

πmξ
e
− 4κ3

3m2ξ , (B16)

which differs from the exact asymptotic value (100) by a
factor of 1/

√
5 and is the same as the density of states in

Gaussian white noise obtained in Eq. (4.9) of Ref. [8] using
the approximation that counted the minima of the smoothed
potential.

Contributions to the preexponential factor beyond those
included in S1 come from fluctuations in V (x) that are or-
thogonal to u(x − x0) and u′(x − x0). As discussed in [10],
for the Gaussian white noise potential, these corrections lead
to a finite numerical correction S2 to the density of states in
the low-energy tail, which is independent of the energy or
the strength of the disorder potential. Moreover, a calculation
based on second-order perturbation theory is sufficient to ob-
tain results that coincide with the exact asymptotic form of the
density of states (100) [14].

When quantum fluctuations are taken into account, cor-
rections arising from short-wavelength phonons need to be
handled with additional care. As mentioned above, these fluc-
tuations lead to an ultraviolet divergence in the self-energy in
the continuum model, even in one dimension. Specifically, in
second-order perturbation theory, one obtains a self-energy

�(k, E ) ≈ −
∫

dk
(2nk + 1)|γk|2

4πρωk (εk − E )
. (B17)

In the classical phonon limit, where 2nk + 1 → 2T/ωk , the
integral converges at large k. When quantum fluctuations are
included, however, the integral has a logarithmic divergence
at large k, giving a contribution to the self-energy of form

(mγ 2/πρcs) ln a, where cs ∝ ρ−1/2 is the sound velocity and
a is the short-distance cutoff.

In situations in which the resulting self-energy is large,
it may be most convenient to treat the contribution from
short-wavelength fluctuations as a downward shift of the bare
energy spectrum εk , while including the remaining fluctu-
ations in a calculation of the preexponential factors in the
density of states.

APPENDIX C: POTENTIAL FLUCTUATIONS
AND GAUSSIAN WHITE NOISE

From Eq. (6), one obtains the operator-valued potential

V̂ (x) =
∑

k

(λka†
k + λ∗

−ka−k )e−ikx, (C1)

and the result

〈V̂ (x)V̂ (x + δx)〉x ≡ L−1
∫

dxV̂ (x)V̂ (x + δx)

=
∑

k

|γk|2
2ρLωk

(ak + a†
−k )(a†

k + a−k )e−ikδx.

Then, the average of the correlation function over the thermal
ensemble of phonons at temperature T is

〈V̂ (x)V̂ (x′)〉T =
∑

k

|γk|2
2ρLωk

(2nk + 1)e−ik(x−x′ ) (C2)

=
∫ π/a

−π/a

dk

2π

|γk|2
2ρωk

(2nk + 1)e−ik(x−x′ ). (C3)

If one uses the quasiclassical potential

Vqc(x) = 〈α|V̂ (x)|α〉 =
∑

k

(λkα
∗
k + λ∗

−kα−k )e−ikx, (C4)

its spatial autocorrelation function averaged over the thermal
ensemble of phonons is

〈Vqc(x)Vqc(x′)〉T =
∑

k

|γk|2
ρLωk

nke−ik(x−x′ ) (C5)

=
∫ π/a

−π/a

dk

2π

|γk|2
ρωk

nke−ik(x−x′ ), (C6)

missing the quantum fluctuation contribution to Eq. (C3) [9].
In the classical phonon limit, ρ → ∞ while fixing T ,

nk = 1

eωk/T − 1
≈ T

ωk
∝ √

ρ � 1,

which gives

〈V̂ (x)V̂ (x′)〉T ≈
∫ π/a

−π/a

dk

2π

|γk|2T

ρω2
k

e−ik(x−x′ ). (C7)

1. Continuum acoustic phonon model

For the continuum acoustic phonon model in Sec. VII,
γk = γ |k| and ωk given by Eq. (74), the autocorrelation in the
classical phonon limit [Eq. (C7)] becomes

〈V̂ (x)V̂ (x′)〉cont
T ≈ γ 2T

K

∫ π/a

−π/a

dk

2π

(ka/2)2

sin2(ka/2)
e−ik(x−x′ ).
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Then, its integration gives∫ ∞

−∞
d (x − x′)〈V̂ (x)V̂ (x′)〉cont

T = γ 2T

K
. (C8)

2. Gaussian white noise

For Gaussian white noise, the potential spatial autocorrela-
tion is given by

〈V (x)V (x′)〉 = ξ

2
δ(x − x′).

Then, its integration gives∫ ∞

−∞
d (x − x′)〈V (x)V (x′)〉 = ξ

2
. (C9)

By comparing Eqs. (C8) and (C9), one obtains the relation
between the parameters in the Gaussian white noise model
and the continuum model,

ξ

2
= γ 2T

K
. (C10)

3. Gaussian statistics

The Fourier component of the quasiclassical potential (C4)
is

Ṽ (k) =
∫

dxe−ikxVqc(x) = Lλ∗
k (αk + α∗

−k ). (C11)

Thus, if the function V (x) is specified, the combinations
αk + α∗

−k are thereby determined, but no information is gained
about the quantities ηk = αk − α∗

−k . Note that

∑
k

|αk|2
nk

=
∑

k

|αk + α∗
−k|2 + |αk − α∗

−k|2
4nk

(C12)

=
∑

k

[
G̃(k)|Ṽ (k)|2

2L
+ |ηk|2

4nk

]
, (C13)

where we made use of Eqs. (B9) and (C11), and G̃(k) =∫
dxe−ikxG(x). Then, wα [cf. Eq. (23)] can be decomposed

into the product of functions of Ṽ (k) and ηk , meaning Ṽ (k)
and ηk are independent random variables. If we integrate wα

over the variables ηk , we obtain a probability distribution for
the function V (x):

wqc = Z−1
qc exp

[
−

∑
k

G̃(k)|Ṽ (k)|2
2L

]
(C14)

= Z−1
qc exp

[
− a2

2

∑
x,x′

V (x)G(x − x′)V (x′)
]
, (C15)

where Zqc is a normalization constant.

APPENDIX D: MODIFIED FWF APPROXIMATION

If we apply the modified FWF approximation to the one-
dimensional Gaussian white noise potential, the imaginary-
time correlation function Cφκ

(τ ) can be analytically continued
to the real-time correlation function through the relation
τ = it :

C̃φκ
(t ) = Cφκ

(it ) = |φκ (x0)|2e−itEφκ
e −σ 2

φκ
t2/2.

Since this is a simple Gaussian form, we can easily take the
Fourier transform to obtain the corresponding estimate of the
density of states [cf. Eq. (12)]:

Dφκ
(E ) = κ

2
e−3(E−κ2/6m)2/ξκ

(
3

πξκ

)1/2

. (D1)

We get precisely the same result if we use Laplace’s method
to obtain the inverse Laplace transform of Cφκ

(τ ) directly [cf.
Eq. (13)]. Note that Eq. (19) predicts E = Eφκ

e − σ 2
φκ

τE , giv-
ing a linear relation between τE and E : τE = (Eφκ

e − E )/σ 2
φκ

.
Now the density of states Dφκ

(E ) can be maximized with
respect to the variational parameter κ . The value of κ that
maximizes the density of states is found from

d ln Dφκ
(E )

dκ
= d

dκ

[
ln κ − 1

2
ln σ 2

φκ
−

(
E − Eφκ

e

)2

2σ 2
φκ

]
= 0.

(D2)

Since this equation is second order in E , it can be solved for
E < 0:

E = − κ2

6m
−

√(
κ2

3m

)2

− γ 2T

3K
κ. (D3)

Inverting this equation for κ gives the optimal κo(E ) that
maximizes the density of states for the given energy E , from
which we obtain

DMFWF(E ) ≡ maxκ [Dφκ
(E )] = Dκo(E )(E ). (D4)

In the low-energy limit E → −∞, the optimal κo(E ) re-
duces to the Halperin-Lax result κo(E ) → κE = (−2mE )1/2

[8]. Then, the asymptotic form of DMFWF can be obtained:

DMFWF(E ) ≈
(

3κE

4πξ

)1/2

e
− 4κ3

E
3m2ξ for E � 0. (D5)

This result differs from DFWF(E ), given by Eq. (96), by a
factor of (3/2)1/2.

APPENDIX E: HOPFIELD’S METHOD FOR TREATING
THE FRANCK-CONDON PROBLEM

An application of Hopfield’s method to our problem pro-
ceeds by introducing a function Dη

φtr
(E ), which is equal to

the trial density of states Dφtr (E ) for a problem where all
the coupling constants Ck are multiplied by a constant η1/2,
with 0 � η � 1. Following Hopfield’s arguments, Dφtr may be
obtained by solving the “transport equation”

∂Dη

φtr
(E )

∂η
=

∫
dE ′K̃ (E − E ′)Dη

φtr
(E ′), (E1)
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with the kernel

K̃ (ε) =
∑

k

|Ck|2
ω2

k

[
(nk + 1)δ(ε − ωk )

+ nkδ(ε + ωk ) +
(

ωk
∂

∂ε
− 2nk − 1

)
δ(ε)

]
(E2)

and the initial condition

D0
φtr

(E ) = |φtr (x0)|2δ(E − Eφ
e

)
. (E3)

One then identifies Dφtr (E ) with D1
φtr

(E ).
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