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Unruh effect and Takagi’s statistics inversion in strained graphene
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We present a theoretical study of how a spatially varying quasiparticle velocity in honeycomb lattices,
achievable using strained graphene or in engineered cold-atom optical lattices that have a spatial dependence
to the local tunneling amplitude, can yield the Rindler Hamiltonian embodying an observer accelerating in
Minkowski space-time. Within this setup, a sudden switch on of the spatially varying tunneling (or strain)
yields a spontaneous production of electron-hole pairs, an analog version of the Unruh effect characterized
by the Unruh temperature. We discuss how this thermal behavior, along with Takagi’s statistics inversion, can
manifest themselves in photoemission and scanning tunneling microscopy experiments. We also calculate the
average electronic conductivity and find that it grows linearly with frequency ω. Finally, we find that the total
system energy at zero environment temperature looks like Planck’s blackbody result for photons due to the
aforementioned statistics inversion, whereas for an initial thermally excited state of fermions, the total internal
energy undergoes stimulated particle reduction.
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I. INTRODUCTION

Quantum field theory in curved space-time [1–6] is an
exciting arena in which two cornerstones of modern physics,
quantum field theory and general relativity, merge to produce
surprising results. One classic prediction at this crossroads
is that a quantum field in an initial vacuum state, under the
influence of space-time curvature (or gravity), leads to a spon-
taneous generation of particles associated with that field. This
was first realized by Schrödinger [7] in the context of rela-
tivistic quantum mechanics in an expanding universe and later
by Parker [8,9] who independently showed this in the context
of general quantum fields in cosmological space-times. One
such class of space-times is the one experienced by an ac-
celerating observer: The Rindler space-time [10]. However,
this space-time is special because it creates particles with a
thermal spectrum [11–13], i.e., an accelerating (or Rindler)
observer sees the Minkowski (or flat) space-time vacuum as
a thermal bath of particles. This phenomenon is called the
Fulling-Davies-Unruh effect (also known as the Unruh effect).
Here, the thermality emerges due to two reasons. The first
is the appearance of a horizon that splits the entire space-
time into two mutually inaccessible regions (corresponding to
observers accelerating in opposite directions) and thus vac-
uum expectation values in one region lead to tracing over
the degrees of freedom of the other region, thus yielding a
mixed state. The second reason is that the response function
of an accelerating particle detector follows the principle of
detailed balance or, in other words, satisfies the Kubo-Martin-
Schwinger (KMS) condition [14,15], which is a sufficient
condition for a spectrum to be called thermal.
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Similar horizons and therefore their associated thermal be-
havior also emerge in other space-times, such as black holes
[16,17] where this behavior is known as Hawking radiation,
and the Gibbons-Hawking effect in de Sitter cosmologies
[18]. A surprising result that appears here is that the power
spectrum, which depends on the density of states and the
statistics, is sensitive to the dimensions of space-time. In odd
space-time dimensions, the power spectrum of fermions has
a Bose-Einstein distribution, whereas bosons follow a Fermi-
Dirac distribution. This is the well-known “apparent inversion
of statistics” due to Takagi [19] which is linked to the violation
of Huygens’ principle in odd space-time dimensions [20–26].

There have been various proposals to detect the Unruh
effect in accelerating systems [27–30], for example, using
Bose-Einstein condensates [31,32]. However, observing this
effect is challenging as an acceleration of about 1021 m/s2

is required to generate a temperature of 1 K [5] which is
likely beyond the reach of current technology. In such a
situation, analog gravity [33] offers an alternative arena for
observing relativistic phenomena, in which condensed matter
or cold-atom systems are engineered to mimic the behavior of
relativistic systems. This area emerged in 1981 when Unruh
showed [34] how water ripples in a draining bathtub can
mimic the Klein-Gordon equation for a scalar field near a
black-hole horizon. This led to the prediction of analog Hawk-
ing radiation which was realized in a series of experiments
[35–38]. On the other hand, particle creation in the context
of the inflationary early universe was recently observed in
toroidal Bose-Einstein condensates [39,40] and studied theo-
retically in Refs. [41–43]. More recently, it has been proposed
in Refs. [44,45] that analog gravitational lensing could be
realized in Dirac materials.

Such analog platforms can be used to mimic the Unruh
effect, as was recently observed in Bose-Einstein conden-
sates [46] by modulating the scattering length that determines
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the interactions between ultracold bosonic atoms. Various
proposals have also been made to detect the analog Unruh
effect in ultracold Fermi gases in square lattices [47–49], in
graphene [50–52], in quantum Hall systems [53,54], and in
Weyl semimetals [55].

Here our main interest is in exploring analog Rindler
physics, and the analog Unruh effect, in graphene and re-
lated cold-atom systems (i.e., fermionic atoms in honeycomb
lattices. Indeed, the status of graphene as an analog rela-
tivistic system has been long recognized [56,57], and the
fact that graphene’s low-energy excitations obey the Dirac
equation was established even from the earliest experimental
work on these systems [58,59]. As is well known, the effective
“speed of light” characterizing the Dirac quasiparticles in
graphene takes a value v � c/300 (with c the actual speed
of light). To achieve the Rindler Hamiltonian in graphene re-
quires engineering a spatial variation in v along one direction.

In this paper, our aim is to discuss how the Unruh effect
would be manifested in honeycomb systems such as mechan-
ically strained graphene or in an appropriately engineered
cold-atom optical lattice system [60–64]. In either case what
is needed is a spatial variation in the local tunneling matrix
elements between sites. The basic idea is to start with un-
strained graphene, in equilibrium at low temperature T (that
we will usually assume to be T = 0). As mentioned above,
fermionic excitations in unstrained graphene obey the conven-
tional Dirac equation, i.e., the Dirac equation in Minkowski
(flat) space-time. The next step is to suddenly switch on the
strain field, changing the system Hamiltonian to the Rindler
Hamiltonian, with excitations described by a Rindler Dirac
equation. The Unruh effect emerges because a vacuum initial
(Minkowski) state becomes, after the strain, an effective ther-
mal distribution of Rindler quasiparticles characterized by the
strain-dependent Unruh temperature.

Earlier theoretical work by Rodríguez-Laguna and collab-
orators showed [47], in the context of square optical lattices,
that such a sudden quench should indeed yield the Unruh
effect, provided that the timescale of the switching process is
much faster than the timescale at which the electron dynamics
operates (governed by the inverse tunneling rate). Here we
assume the switching on is sufficiently rapid so that, invoking
the sudden approximation of quantum mechanics, the correct
procedure is to obtain observables by calculating the expecta-
tion values of operators in the strained system with respect to
states of the unstrained lattice (i.e., the Minkowski vacuum or,
at finite real temperature, a Fermi gas of Dirac quasiparticles
and holes).

The rest of the paper is organized as follows. In Sec. II,
we describe how the Rindler Hamiltonian can be realized for
low-energy and long-wavelength fermions in mechanically
strained graphene. Since the basic effect relies only on en-
gineering a spatially varying tunneling matrix element, we
expect it should be similarly possible to engineer the Rindler
Hamiltonian in cold-atom systems. In Sec. III, we revisit the
Hamiltonian for fermions in flat space-time (or flat graphene
sheet) and identify the normal modes of this system that cor-
respond to particle and hole excitations. In Sec. IV, we derive
the Dirac equation due to the Rindler Hamiltonian, obtaining
a similar mode expansion for the strained case. In Sec. V,
we use the mode expansions in flat and strained (Rindler)

honeycomb lattices to derive how a sudden strain can in-
duce spontaneous electron-hole creation with an emergent
Fermi-Dirac distribution, which is the analog Unruh effect.
In Sec. VI we analyze the Green’s functions after such a
sudden strain, showing how signatures of the analog Unruh
effect may be measured in observables such as photoemission
spectroscopy and scanning tunneling microscopy and how the
form of the emergent thermality is connected to the violation
of Huygens’ principle. In Sec. VII, we study the frequency-
dependent optical conductivity of this system, which we find
to increase approximately linearly with increasing frequency,
in contrast to flat graphene, where it is known to be nearly
constant (i.e., frequency independent) [65–68]. In Sec. VIII,
we discuss the effects of this sudden switching on of the
Rindler Hamiltonian on the total internal energy of fermions
at finite environment temperature. In Sec. IX we provide brief
concluding remarks. In Appendix A, we give details on the
Dirac equation in curved space-time, and in Appendix B,
we give details of how a Rindler horizon forms in strained
graphene.

II. CREATING THE RINDLER HAMILTONIAN

In this section, we will show how the Rindler Hamiltonian
can be realized via graphene with a spatially varying strain
that yields a Hamiltonian with a spatially varying Fermi veloc-
ity. This is in contrast to the low-energy theory of conventional
graphene that exhibits a spatially uniform Fermi velocity.

To see how such a spatially varying Fermi velocity can be
engineered, we start with the tight-binding Hamiltonian for
graphene which involves (π orbital) electrons hopping from
carbon atoms in the A sublattice to their nearest-neighboring
B carbon atoms (as shown in Fig. 1), and vice versa:

Ĥ = −
∑
R j ,n

tR j ,n
[
â†

R j
b̂R j+δn + b̂†

R j+δn
âR j

]
, (1)

where R j labels the Bravais lattice points formed by the A
atoms, and index n denotes the three nearest-neighboring B
atoms. Here, the â and b̂ operators annihilate fermions on the
A and B sublattices, respectively, with hopping amplitude tR j ,n

(that we have taken to be real). The nearest-neighbor vectors
δn joining the A and B atoms are as follows:

δ1 = a

(√
3

2
,

1

2

)
, δ2 = a

(−√
3

2
,

1

2

)
, δ3 = a(0,−1), (2)

with a the nearest-neighbor carbon distance. When a graphene
sheet undergoes a mechanical strain, with ui j ≡ 1

2 (∂iu j + ∂ jui )
being the strain tensor, the distance between two carbon atoms
changes and thus the hopping amplitude gets adjusted accord-
ingly. For perturbative strains, we can then Taylor expand the
hopping amplitude as follows [69]:

tR j ,n = t0
[
1 − β�u(1)

n − β�u(2)
n

]
, (3)

with

�u(1)
n = δi

nδ
j
n

a2
ui j, (4)

�u(2)
n = δi

nδ
j
nδ

k
n

2a2
∂iu jk, (5)
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FIG. 1. The honeycomb lattice of graphene where the carbon
atoms in red color for the Bravais lattice with primitive lattice vec-
tors a1 = a(

√
3/2, 3/2) and a2 = a(−√

3/2, 3/2), connected to the
nearest-neighbor carbon atoms shown in blue by δi, i = 1, 2, 3, as
defined in Eq. (2).

where �u(1)
n is the first-order change due to strains alone, and

�u(2)
n denotes the first-order change due to strains and their

derivatives (which is a low-energy approximation). Here, a is
the lattice spacing, and β = | ∂ log t

∂ log a | is the Grüneisen parame-
ter. Note we also assume that the electrons cannot hop to the
next-nearest neighbors, i.e., t ′ = 0.

With the aim of realizing the Rindler Hamiltonian, hence-
forth we choose the following components for the strain

tensor:

uxx = uyy = − |x|
βλ

, uxy = 0,

t1(x) = 1 + |x|
λ

+
√

3

4

a

λ
sgn(x),

t2(x) = 1 + |x|
λ

−
√

3

4

a

λ
sgn(x),

t3(x) = 1 + |x|
λ

, (6)

where λ is the strain scale that measures the distance over
which an appreciable inhomogeneity develops in the honey-
comb lattice. With this choice of strain tensor, the distance
between atoms decreases with increasing distance from x = 0.
At low energies, the electron dynamics is governed by two

nodes in the reciprocal space K = ( 4π

3a
√

3
, 0) = −K′. We can

thus write the a and b operators localized near these nodes
as [70]

âR j = eiK·R j Â(R j ) + eiK ′ ·R j Â′(R j ), (7)

b̂R j+δn = eiK·(R j+δn )B̂(R j + δn)

+ eiK ′ ·(R j+δn )B̂′(R j + δn), (8)

where the prime denotes operators associated to the K′ node.
For low energies, it suffices to Taylor expand the b̂R+δn opera-
tors to linear order in gradients of these operators [70]:

B̂(R j + δn) ≈ B̂(R j ) + δn · ∇B̂(R j ). (9)

Plugging into the tight-binding Hamiltonian (1), the ex-
pressions for operators near the nodes (7), and the Taylor
expansions for the hopping amplitude (3) and for the operators
on B carbon atoms (9), gives us the following:

Ĥ = −t0
∑
R j ,n

[
1 − β�u(1)

n − β�u(2)
n

] · [Â†(R j ){B̂(R j ) + δn · ∇B̂(R j )}eiK·δn + H.c.]

− t0
∑
R j ,n

[
1 − β�u(1)

n − β�u(2)
n

] · [Â′†(R j ){B̂′(R j ) + δn · ∇B̂′(R j )}eiK ′ ·δn + H.c.], (10)

where the second term in each line is the Hermitian conjugate
of the first, denoted by H.c. Here we have ignored cross terms
between the two nodes like ∼∑

R j
Â†(R j )B̂′(R j )ei(K−K ′ )·R j ,

that destructively interfere and thus vanish. We now simplify
this expression by using the Rindler strain pattern (6) and
keeping terms that are linear order in gradients, terms that
are linear order in strains, and terms that are both linear in
gradients as well as strains. We also introduce two-component
field operators at the K and K′ nodes:

ψ̂K(R j ) =
(

B̂(R j )
Â(R j )

)
, (11)

ψ̂K′ (R j ) =
(

Â′(R j )
B̂′(R j )

)
. (12)

Upon approximating the sums over Bravais lattice points R j

to spatial integrals over r, relabeling the K and K′ points to
be the right (R) and left (L) nodes, we finally arrive at the
effective Hamiltonian

Ĥ =
∑

i=R,L

∫
d2r ψ̂

†
i (r)ĥiψ̂i(r), (13)

ĥR ≡
√

v(x)(σ · p̂
)√

v(x) = −ĥL, (14)

where σ = (σx, σy) is the vector of Pauli matrices, p̂ = −ih̄∇
is the momentum operator, with ∇ = (∂x, ∂y) being the gra-
dient. Here, v(x) = v0(1 + |x|

λ
) represents a spatially varying

Fermi velocity with v0 = 3t0a
2h̄ being the Fermi velocity of the

unstrained honeycomb lattice. If we had instead chosen a plus
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sign for the strain tensor components in (6), then we would
get a spatially decreasing Fermi velocity v0(1 − |x|

λ
). We em-

phasize that, although here we focus on strained graphene, for
our purposes the essential goal is to achieve a spatially varying
hopping amplitude yielding a two-dimensional (2D) Dirac
Hamiltonian (14) with a spatially varying velocity. Therefore,
another method to realize an effective spatially varying hop-
ping will have similar behavior. For example, in Ref. [71], it
was shown that the vector potential of a bicircular laser field
(in the long-pulse limit) can modify the hopping amplitude,
providing another path to realizing Eq. (14).

In the next step, we establish two different limiting cases
of the Hamiltonian (13): The unstrained case, λ → ∞, that
yields the well-known 2D Dirac Hamiltonian, and the case
of strong strains, λ → 0, in which the system Hamiltonian
describes Dirac particles moving in a Rindler metric [10]. In
the strong-strain limit, we can neglect the unit contribution
in v(x), leaving v(x) = v0|x|/λ. In fact, as we now argue,
this approximation also holds in the long-wavelength limit.
Our argument relies on translation symmetry in the y direc-
tion, which implies eigenfunctions of ĥR are plane waves in
the y direction, ∝eikyy with wave vector ky. Rescaling the
coordinates via x → x/|ky| and y → y/|ky| changes the spa-
tially dependent Fermi velocity to v(x) → v0(1 + |x|

|ky|λ ) and
the momentum operator becomes p̂ → |ky| · p̂. In the long-
wavelength limit (|ky|λ � 1), the contribution of unity inside
v(x) becomes negligible and |ky| cancels out, giving us the 2D
Rindler Hamiltonian which is just (13) with the Fermi velocity
v(x) = v0|x|/λ. This shows the emergence of the effective
Rindler Hamiltonian in the long-wavelength low-energy limit,
exhibiting a horizon at x = 0. An alternate way to see the
presence of this horizon, as shown in Appendix B, is to show
that eigenfunctions of the strained Hamiltonian in Eq. (13)
obey an effective Schrödinger-type equation with an infinite
potential barrier at x = 0.

Having discussed how the Rindler Hamiltonian can be re-
alized in strained honeycomb lattices, in the coming sections,
we apply these ideas to see how a sudden switch on of the
system strain, suddenly changing the Hamiltonian from the
2D Dirac Hamiltonian to the 2D Rindler Hamiltonian, can
strongly modify low-energy and long-wavelength properties
leading to the analog Unruh effect. To begin with, in the next
section, we start with a review of fermions in flat unstrained
honeycomb lattices, i.e., the case of graphene.

III. MODE EXPANSION: FLAT HONEYCOMB LATTICE

In this section, we review the Dirac equation for flat
(unstrained) graphene and derive the resulting normal mode
expansion that describes electron and hole excitations. As
we have already discussed, the low-energy Hamiltonian for
fermions hopping on a uniform (unstrained) honeycomb lat-
tice follows from taking the λ → ∞ limit of Eq. (13),
resulting in Ĥ = ĤR + ĤL with

ĤR = v0

∫
d2r ψ̂

†
R(r)σ · p̂ψ̂R(r), (15)

where to get ĤL we simply replace R → L and take
v0 → −v0. The field operators ψ̂i (i = L, R) satisfy the

anticommutation relation

{ψ̂i, ψ̂
†
j } = δi jδ(r − r′). (16)

In the following we focus on the right node, with results
from the left node easily following. The Heisenberg equa-
tion of motion for the field operators ψ̂R(r, t ) is

ih̄∂t ψ̂R(r, t ) = [ψ̂R(r, t ), Ĥ ] = v0σ · p̂ ψ̂R(r, t ), (17)

the massless Dirac equation (Weyl equation) that describes
how fermions (with zero rest mass) propagate in a flat space-
time with an emergent (2 + 1)-dimensional Minkowski line
element labeled by the inertial coordinates (T, X,Y ):

ds2
Mink = −v2

0dT 2 + dX 2 + dY 2, (18)

where the speed of light is now replaced by the Fermi velocity
c → v0. In Appendix A, we describe how a metric expressed
in inertial coordinates like (18) [see Eq. (A2)] leads to a
Dirac equation in inertial coordinates (17) [see Eq. (A13)].
This metric describes the dynamical trajectories of inertial
observers in a flat space-time. Suppose two inertial frames S
and S′ moving with relative speed v, then the coordinates of an
observer in frame S′, i.e., (T ′, X ′,Y ′), are related to the ones
in S via Lorentz transformations:

v0T ′ = v0T cosh θ − x sinh θ,

X ′ = x cosh θ − v0T sinh θ,

Y ′ = Y, (19)

where cosh θ = γ = 1√
1−β2

is the Lorentz factor with β = v
v0

,

and sinh θ = γ β. The ratio of these factors relates the velocity
with rapidity θ ∈ (−∞,∞): tanh θ = β ∈ (−1, 1). In either
frame, the trajectory of an inertial observer is of the form
−v2

0T 2 + X 2 + Y 2 = const.
Thus, as one might expect, fermions hopping in an

unstrained honeycomb lattice obey an analog Dirac equa-
tion with the Fermi velocity v0 playing the role of the speed
of light. Our next task is to expand the fermion field operators
into normal modes corresponding to positive-energy “par-
ticle” and negative-energy “hole” excitations in graphene’s
Dirac band structure. Since the system is homogeneous in
space and time [or alternatively the emergent metric compo-
nents (18) are constants], the Dirac equation solutions that
describe the evolution of fermions are plane waves of the form
e±i(k·x−ωkt ) and thus the field operators on the right node can
be expressed in terms of the following mode expansion [72]:

ψ̂R(r) =
∫

d2k

2π
(ei(k·r−v0kt )ukâk + e−i(k·r−v0kt )v−kb̂†

k), (20)

where the wave vector k = (kx, ky) is related to the linear
momenta in spatial directions via p = h̄k and, thanks to trans-
lation symmetry, is related to the energy εk = h̄ωk (ωk is
the mode frequency), via the dispersion relations εk = h̄v0|k|
or ωk = v0k where k ≡ |k| =

√
k2

x + k2
y is the wave-vector

magnitude.
This mode expansion for the right node KR (right-handed

Weyl fermions) should have positive helicity, which is defined
as the projection of the Pauli spin operator onto the direction
of the momentum vector h = σ · k̂. Thus, the flat spinors used
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FIG. 2. A schematic figure to depict the (a) Minkowski and (b) Rindler mode expansions. In flat graphene, the existence of translation
symmetry yields a Dirac-type linear energy dispersion εk = h̄v0|k| [shown in green in (a)]. The electron and hole excitation energies are
both positive (εk > 0) with the operators âk|0M〉 = 0 = b̂k|0M〉 annihilating the Minkowski vacuum. In strained graphene, the Rindler
energy Eky,� = h̄� > 0 [shown in green in (b)] and transverse momenta h̄ky are decoupled, with their associated electron and hole operators
annihilating the Rindler vacuum state ĉky,�|0R〉 = 0 = d̂ky,�|0R〉.

in the mode expansion (20) are defined as follows:

uk = 1√
2

[
1

kx+iky

k

]
, vk = 1√

2

[
−( kx−iky

k

)
1

]
. (21)

In the above definitions, uk has positive helicity h = +1,
whereas vk has negative helicity h = −1. The particle â and
hole b̂ operators satisfy anticommutation relations and annihi-
late the flat honeycomb (Minkowski) vacuum state |0M〉:

{âk, â†
k′ } = δ(k − k′), {b̂k, b̂†

k′ } = δ(k − k′),

âk|0M〉 = 0, b̂k|0M〉 = 0. (22)

To obtain the mode expansion for the left node KL (left-
handed Weyl fermions), the particle and hole spinors uk and
v−k in Eq. (20) need to be switched with vk and u−k, respec-
tively, which means they both have negative helicities.

As is well known, the particle and hole fermionic excita-
tions in graphene obey a linear dispersion relation, with ωk ∝
|k|. In Fig. 2(a), we depict this linear energy dispersion, with
the system ground state being a fully occupied valence band at
negative energies and a fully unoccupied conduction band at
positive energies. This figure also depicts the positive-energy
particle (or electron) and hole excitations that are captured by
the mode expansion (20).

IV. MODE EXPANSION: RINDLER SYSTEM

In this section, we study the case of fermions hopping in a
honeycomb lattice in the presence of a strain field that leads to
the Rindler low-energy Hamiltonian, obtained by approximat-
ing v(x) � v0

λ
|x|. As in the flat case, the system Hamiltonian

comprises terms from the left and right nodes, Ĥ = ĤR + ĤL,
with the right-node Hamiltonian

ĤR = v0

λ

∫
d2r ψ̂

†
R(r)

√
|x|σ · p̂

√
|x|ψ̂R(r), (23)

which we call the Rindler Hamiltonian by analogy with
the well-known Rindler metric, that describes how the flat
Minkowski space-time is seen by an accelerating observer
[10]. Following the discussion in the homogeneous case, we

find the equation of motion

ih̄∂t ψ̂R(r) = v0

λ

√
|x|σ · p̂

√
|x| ψ̂R(r), (24)

the Dirac equation for massless fermions in Rindler space-
time with Rindler coordinates (t, x, y) [73–75] described by
the line element

ds2 = −
(

x

λ

)2

v2
0dt2 + dx2 + dy2. (25)

In Appendix A, we describe how the Rindler metric [see
Eq. (A3)] leads to a Dirac equation for accelerating electrons
[see Eq. (A14)]. To understand the role of this metric in the
context of honeycomb systems, we first need to understand
its role in relativistic physics. Imagine a Rindler observer in
the frame SR, moving with some acceleration a = ax̂ (a > 0)
with respect to an inertial frame S. The observer starts their
journey far away at x = ∞ at time t = −∞ with veloc-
ity close to the speed of light c moving towards the origin
x = 0. Initially they decelerate, eventually stopping at a cer-
tain distance from the origin xmin = c2

a , and then return to
x = +∞ at t = +∞. Since at any one instant of time, the
Rindler observer is moving at a certain velocity v, we expect
a hyperboliclike trajectory similar to the Minkowski case:
−v2

0T 2 + X 2 + Y 2 = const, and the transformation between
inertial coordinates (T, X ) and Rindler (t, x) coordinates to be
similar to (19). This is reminiscent of nonrelativistic physics,
where the trajectory of an accelerated observer is parabolic:
x = x0 + u0t + 1

2 at2. However, relativistic accelerations need
to be hyperbolic as motion also affects the rate at which the
observer’s clock ticks. Thus, the relation between the inertial
and Rindler coordinates is as follows [73–75]:

cT = xmin sinh
ct

xmin
,

X = xmin cosh
ct

xmin
, (26)

which gives us the trajectory of a Rindler observer viewed
from an inertial frame S: X 2 − c2T 2 = x2

min. The above coor-
dinates (T, X ) label the world line of an accelerated observer
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from the perspective of an inertial frame. If the acceleration
is changed to a different but constant value, then we get
a family of Rindler observers, each with a different closest
distance of approach xmin. This family is parametrized us-
ing a new coordinate xmin → x, giving us the Rindler metric
in Eq. (25). If we set the spatial coordinates to zero, i.e.,
dx = dy = 0, then t behaves like the proper time as seen on
the watch of a Rindler observer. Similar arguments hold for
an observer accelerating in the opposite direction with a < 0.
Note that (25) becomes degenerate at x = 0, i.e., the time-
time component of the metric tensor vanishes (gtt = 0) and
hence has no inverse. This is known as the Rindler horizon.
Because of this horizon, oppositely accelerating observers
can never communicate with each other. Note that the con-
nection between the coordinates (T, X ) and (t, x) is just a
switch of variables, therefore, the metric (25) is basically
flat space-time written in disguise, and thus the Riemann
curvature of this space-time is zero. Also note that the coor-
dinates (t, x, y) cover only two portions of the flat Minkowski
space-time: The right Rindler wedge x > 0 for positive ac-
celerations and the left Rindler wedge x < 0 for negative
accelerations.

In the context of strained graphene, the emergent metric
in Eq. (25) tells us that similar Rindler physics is expected
provided we replace the speed of light with the Fermi ve-
locity c → v0, and the distance of closest approach with the
strain scale xmin → λ. Once we do this, then we can interpret
the electron dynamics inside graphene as Rindler fermions

where the analog acceleration is given by a = v2
0
λ

, where a
choice of strain λ corresponds to choosing a unique Rindler
observer with this acceleration. Such analog accelerations are
expected here because under the semiclassical model of elec-
tron dynamics, the strained graphene has an environment with
broken translation symmetry that forces the Fermi velocity
to be spatially dependent v(x) = v0(1 + |x|

λ
). Moreover, the

strain pattern in Eq. (6) tells us that carbon atoms become
closer with distance from the origin, thus enhancing electron
hopping. This hopping from one carbon atom to another will
be most difficult at the origin itself, especially for low-energy
and long-wavelength modes which cannot tunnel from one
side to the other (see Appendix B for more details). There-
fore, x = 0 being a barrier for such modes acts as an analog
of the Rindler horizon, breaking the strained graphene into
two disconnected pieces: The right side mimics the right
Rindler wedge, and the left side mimics the left Rindler
wedge.

Our next task is to identify the normal mode expansion
for the field operator ψ̂R(r) in the Rindler Dirac equa-
tion (24) [19,28,76–81]. In doing this, we define the frequency
scale � > 0 and look for positive-energy (E = h̄� > 0)
solutions (corresponding to Rindler particles) and negative-
energy (E = −h̄� < 0) solutions (corresponding to Rindler
holes). Starting with the E > 0 case, the solutions take the
form ψ+

� (x, ky)ei(kyy−�t ), where py = h̄ky is the momentum
in the y direction. If we define the components of the spinor
part via

ψ+
� (x, ky) =

(
f (x)
g(x)

)
, (27)

then the functions f (x) and g(x) satisfy (henceforth we set
h̄ → 1) (

|x| d

dx
+ ky|x| + sgn(x)

2

)
g(x) = i� f (x), (28a)

(
|x| d

dx
− ky|x| + sgn(x)

2

)
f (x) = i�g(x). (28b)

The dimensionless form of these equations came because we
measured energy (or frequency, �) relative to the scale

ωc = v0/λ (29)

characterizing the strain magnitude.
Starting with the case of x > 0 and ky > 0, and focusing on

solutions that are normalizable at |x| → ∞, we find

f (x) = K 1
2 −i�(kyx) − K 1

2 +i�(kyx), (30a)

g(x) = K 1
2 −i�(kyx) + K 1

2 +i�(kyx), (30b)

where Kν (x) is the modified Bessel function of the second
kind, that diverges at the origin x = 0 and for large negative
arguments x → −∞. This divergence can be attributed to
the form of the analog Rindler metric (25), whose time-time
component vanishes at x = 0, and contributes a nonsmooth
modulus function |x| in the Weyl equations which leads to
different solutions in the left and right spatial regions of the
strained honeycomb lattice. As we have already discussed,
this demarcation of the system at x = 0 is known as the
Rindler horizon. In analogy with relativity, the left spatial
portion acts as the left Rindler wedge, and similarly for the
right portion. There, an observer in right wedge will never be
able to communicate with their counterpart in the left wedge.
In the next section, we will see that this is an essential reason
why a natural temperature emerges in this system.

The solutions for f and g above have Bessel functions
with positive arguments. Therefore, they are finite and vanish
asymptotically for kyx → ∞. For the case x > 0 and ky < 0,
Eqs. (28a) and (28b) get interchanged, resulting in an ex-
change of the spinor components f (x) ↔ g(x). The case of
x < 0 and ky > 0 effectively switches � → −� and ky →
−ky relative to the x > 0 and ky > 0 cases, while the case of
x < 0 and ky < 0 effectively switches � → −� relative to the
x > 0 and ky > 0 cases. Taken together, these considerations
imply the positive-energy spinor

ψ+
� (x, ky) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝K 1

2 −i� − sgn(ky)K 1
2 +i�

K 1
2 −i� + sgn(ky)K 1

2 +i�

⎞
⎠ if x > 0,

⎛
⎝K 1

2 +i� + sgn(ky)K 1
2 −i�

K 1
2 +i� − sgn(ky)K 1

2 −i�

⎞
⎠ if x < 0,

where K 1
2 ±i� is shorthand for K 1

2 ±i�(|kyx|). We emphasize
here that the above two solutions come from solving the
Rindler-Dirac equation separately for x > 0 and x < 0, per-
taining to the two sides of the honeycomb lattice. Thus,
we define orthonormality separately in the x > 0 and x < 0
regimes.

Turning to the E < 0 case, we take the solutions to have the
form ψ−

� (x, ky)e−i(kyy−�t ), which effectively changes the sign
of ky and � relative to the positive-energy case. This leads to
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the negative-energy spinors

ψ−
� (x, ky) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝K 1

2 +i� + sgn(ky)K 1
2 −i�

K 1
2 +i� − sgn(ky)K 1

2 −i�

⎞
⎠ if x > 0,

⎛
⎝K 1

2 −i� − sgn(ky)K 1
2 +i�

K 1
2 −i� + sgn(ky)K 1

2 +i�

⎞
⎠ if x < 0.

The normal mode expansion then takes the form
[19,28,76–81]

ψ̂R(r, t ) =
∫ ∞

−∞

dky√
2π

∫ ∞

0
d� Nky,�

[
ψ+

� (x, ky)ei(kyy−�t )

× ĉky,� + ψ−
� (x, ky)e−i(kyy−�t )d̂†

ky,�

]
, (31)

where the operators ĉky,� annihilate positive-energy Rindler
particles and the operator d̂†

ky,�
creates a negative-energy

Rindler hole, as illustrated in Fig. 2(b). These particle and hole
operators satisfy fermionic anticommutation relations{

ĉky,�, ĉ†
k′

y,�
′
} = δ(ky − k′

y)δ(� − �′), (32)

{
d̂ky,�, d̂†

k′
y,�

′
} = δ(ky − k′

y)δ(� − �′). (33)

We emphasize that, in our convention, the energy scale h̄� >

0, so that both particle and hole excitations have positive en-
ergy (although the latter emerge from below the Fermi level).
Thus, the Rindler vacuum |0R〉 is annihilated by both the
electron and hole operators:

ĉky,�|0R〉 = 0, (34)

d̂ky,�|0R〉 = 0. (35)

For the left-handed electrons, we need to solve the corre-
sponding set of Weyl equations, which is the same as the
equation for right-handed electrons, except for a minus sign
associated with the time derivative. This amounts to saying
that the fermions on KL node will be described by the same
mode expansion as (31), except that the spinors will all change
signs for the frequency, i.e., ψ±

� (x, ky) → ψ±
−�(x, ky). Finally,

to determine the normalization factor Nky,� =
√

|ky|
2π2 cosh π�

we make use of the inner product for Weyl spinors [1,19]:

(ψσ ′
�′ (x, ky), ψσ

�(x, ky)) ≡
∫ ∞

0
dx ψ

σ ′†
�′ (x, ky)ψσ

�(x, ky)

= δσσ ′
δ(� − �′), (36)

where σ = ± denotes the positive- or negative-energy
spinors, and the following identity for Bessel functions
[81,82]:∫ ∞

0
dx

[
K 1

2 +i�(x)K 1
2 −i�′ (x) + K 1

2 −i�(x)K 1
2 +i�′ (x)

]

= π2sech (π�)δ(� − �′). (37)

Now that we have derived the mode expansion (31) in
terms of Bessel functions that are singular at the horizon for
the field operators in a strained graphene system (or in an ul-
tracold honeycomb optical lattice that has a linear-in-position
Fermi velocity), in the next section, we will describe how this

leads to spontaneous creation of electron-hole pairs, which
is equivalent to saying that a sudden change in the Fermi
velocity v0 → v0

|x|
λ

leads to a spontaneous jump of electrons
from the valence to conduction band.

V. SPONTANEOUS ELECTRON-HOLE PAIR CREATION

In the last two sections, we discussed the Dirac Hamilto-
nian (15) and its solutions (20) for a flat honeycomb system
with homogeneous Fermi velocity v(x) = v0, and the Rindler
Hamiltonian (23) and its solutions (31) for an inhomogeneous
honeycomb lattice with a spatially varying Fermi velocity
v(x) = v0

|x|
λ

. The latter solutions are made out of spinors
of Bessel functions that diverge at the horizon x = 0, with
separate solutions at x > 0 and x < 0. In this section, we
will describe how this setup leads to spontaneous creation
of electron-hole pairs, with the spectrum of these excitations
described by an emergent Fermi-Dirac distribution that is a
function of Rindler mode frequency � and the characteristic
frequency ωc, defined in Eq. (29), that is proportional to the
Unruh temperature.

Since the Rindler |0R〉 and the Minkowski |0M〉 vacua are
associated with strained and flat honeycomb lattices, respec-
tively, they are expected to be very different from each other,
i.e., the notion of particles that one ascribes to with respect
to the Minkowski vacuum cannot be the same as the Rindler
case since in the former case there exists translation symmetry,
whereas in the latter, the mechanical strain strongly modifies
the properties of system eigenstates.

We consider the situation where we start with the flat hon-
eycomb Hamiltonian (15) described by the mode expansion
(20) for the field operators, and then suddenly switch on the
linear-in-position Fermi velocity with a characteristic strain
length λ, thereby invoking the Rindler Hamiltonian (23) and
the corresponding mode expansion (31). In the Heisenberg
picture then, we expect that the mode expansion for the
fermionic field operators ψ̂R on the right node evolve from
Eq. (20) to (31), whereas the state of the system will remain
the Minkowski vacuum state |0M〉. This is just the sudden
approximation of quantum mechanics, where if a potential
suddenly changes its shape, then the original ground state can
be expressed as a linear combination of the eigenstates of the
new Hamiltonian, and thus the observables can be found by
taking expectation values of operators in the modified system
with respect to the ground state of the original Hamiltonian.

Thus, we shall treat the rapid strain of graphene within
the sudden approximation. Before embarking on this, we note
some conditions for the validity of this approximation. If the
Rindler strains develop too quickly, then perturbations can
grow exponentially with time, marking the onset of turbu-
lence. This means electronic transitions to higher bands in
graphene, and formation of vortices and solitons [83,84] in
cold-atom honeycomb setups. Such effects are beyond the
scope of the present low-energy description. On the other
hand, if the onset of the strain is too slow, then the system
will remain adiabatically in the ground state and will end up
in the Rindler vacuum. Although we assume the strain onset
to be sufficiently rapid such that the sudden approximation
holds (while neglecting the above-mentioned transitions to
higher bands), it would be valuable in future work to study
such effects.
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In the present case, applying the sudden approximation
requires knowing how the Rindler operators ĉ and d̂ of the
strained system act on the Minkowski vacuum state |0M〉
(the initial system). For this, we need to find an expression
of these Rindler operators in terms of the Minkowski anni-
hilation operators â and b̂. To do this, we can simply equate
the two mode expansions (20) and (31) as they describe the
same quantum field operator ψ̂R. Then we take the inner prod-
uct of the resulting equations with positive-energy solutions
(ψ+

� (x, ky), ψ̂R(x)) for electron, and negative-energy solutions
(ψ−

� (x, ky), ψ̂R(x)) for hole Rindler operators, as defined in
(36) [1,19], yielding

ĉ>
ky,�

=
∫

d2k′ [α+,>

k′,ky,�
âk′ + β+,>

k′,ky,�
b̂†

k′
]
,

d̂>†
ky,�

=
∫

d2k′ [β−,>

k′,ky,�
âk′ + α−,>

k′,ky,�
b̂†

k′
]
, (38)

the Bogoliubov transformations that express the Rindler lad-
der operators for x > 0 (denoted by superscript >) as a
linear combination of the Minkowski ladder operators. Sim-
ilar relations hold for x < 0 region with the superscript <

at the appropriate places. Following Takagi [19], the coeffi-
cients of this linear relationship α±

k,k′
y,�

′ and β±
k,k′

y,�
′ , known as

Bogoliubov coefficients, are found to be

α+,>

k′,ky,�
=

√
nF(−2π�) δ(ky − k′

y)P (k′,�),

β+,>

k′,ky,�
= −i

√
nF(2π�) δ(ky + k′

y)P (k′,�),

α−,>

k′,ky,�
= α+,<

k′,ky,�
= (

α+,>

k′,ky,�

)∗ = (
α−,<

k′,ky,�

)∗
,

β−,>

k′,ky,�
= β+,<

k′,ky,�
= (

β+,>

k′,ky,�

)∗ = (
β−,<

k′,ky,�

)∗
, (39)

where the first Bogoliubov coefficient α+,> for the right side
of graphene is found by taking the inner product of the
positive-energy Rindler spinor for x > 0 with the positive-
energy Minkowski modes, whereas the second coefficient
β+,> is found using the negative-energy Minkowski modes.
Similarly, the other two coefficients α−,> and β−,> can
be found by using negative-energy Rindler spinors. In the
last two lines, we list how the rest of the coefficients are
related to the first two via complex conjugation. These co-
efficients are written in terms of the Fermi-Dirac function
nF(x) = (ex + 1)−1 and the projection operator

P (k,�) = 1 + i√
2

1√
2πk

(
k + kx

k − kx

) i�
2

×
(√

k + kx

2k
+ i

√
k − kx

2k

)
. (40)

The anticommutation relations for the Rindler operators ĉky,�

and d̂ky,�, along with those of the Minkowski operators âk and
b̂k and the transformations (38) imply the following normal-
ization condition for the Bogoliubov coefficients:∫

d2k̃
(
ασ,r

k̃,ky,�
ασ ′,r′∗

k̃,k′
y,�

′ + βσ,r
k̃,ky,�

βσ ′,r′∗
k̃,k′

y,�
′
)

= δσσ ′
δrr′

δ(ky − k′
y)δ(� − �′), (41)

where the superscript σ = ± labels the positive- and negative-
energy solutions, and r =>,< labels the right (x > 0) or left
(x < 0) region of graphene. To find these Bogoliubov coeffi-
cients, we made use of the Fourier transform of the modified
Bessel functions of the second kind [81,82]:∫ ∞

0
dx Kν (ax)eibx

= π

4
√

a2 + b2

[
(
√

r2 + 1 + r)ν + (
√

r2 + 1 − r)ν

cos(πν/2)

+i
(
√

r2 + 1 + r)ν − (
√

r2 + 1 − r)ν

sin(πν/2)

]
, (42)

where r = b/a. The conditions required for the validity of
the sine transform are Re a > 0, b > 0, |Re ν| < 2 and ν �= 0.
Whereas the conditions for the cosine transform are Re a > 0,
b > 0, |Re ν| < 1. For our case, a = ky > 0 and ν = 1

2 ± i�
satisfy the conditions. However, b = kx could be positive or
negative. For kx > 0 case, the above Fourier transform can
be used whereas for kx < 0, one needs to take the complex
conjugate of the above transform.

Note that the transformation in (38) and the corresponding
Bogoliubov coefficients in (39), can be re-written in a much
cleaner way [19]:

ĉ>
ky,�

=
√

nF(−2π�)Âky,� − i
√

nF(2π�)B̂†
−ky,�

, (43a)

d̂>†
ky,�

= i
√

nF(2π�)Â∗
−ky,�

+
√

nF(−2π�)B̂∗†
ky,�

, (43b)

where instead of using momentum integrations as in (38),
the Rindler operators are expressed in terms of modified
Minkowski Â and B̂, that are defined as a complex linear
combination of the original Minkowski operators â and b̂ as
follows [19]:

Âky,� =
∫ ∞

−∞
dkxP (k,�) âk,

B̂†
ky,�

=
∫ ∞

−∞
dkxP (k,�) b̂†

k, (44)

that (like the operators {â, b̂}) also annihilate the Minkowski
vacuum

Âky,�|0M〉 = B̂ky,�|0M〉 = 0, (45)

which follows from Eq. (22). In addition, they satisfy the
anticommutation relations:{

Âky,�, Â†
k′

y,�
′
} = {

B̂ky,�, B̂†
k′

y,�
′
}

= δ(ky − k′
y)δ(� − �′). (46)

As a result of these properties, the expectation values of mod-
ified operators in the Minkowski vacuum state |0M〉 become

〈0M|Âky,�Â†
k′

y,�
′ |0M〉 = 〈0M|B̂ky,�B̂†

k′
y,�

′ |0M〉
= δ(ky − k′

y)δ(� − �′),

〈0M|Â†
ky,�

Âk′
y,�

′ |0M〉 = 〈0M|B̂†
ky,�

B̂k′
y,�

′ |0M〉 = 0, (47)

where in order to derive the Dirac delta function in ener-
gies δ(� − �′), in the above vacuum averages, the following
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identity was used [19]:

∫ ∞

−∞

dkx

2πk

(
k + kx

k − kx

)i(�−�′ )/2

=
∫ ∞

−∞

dy

2π
ei(�−�′ )y

= δ(� − �′), (48)

where in the first equality we made the substitution
y = 1

2 log ( k+kx
k−kx

).
The advantage of (43) emerges when we evaluate the

expectation value of Rindler operators in the Minkowski
vacuum, where we only need vacuum averages of modified
Minkowski operators, simplifying our calculations. Interest-
ingly, when we compute expectation values of the Rindler
operators with respect to the Minkowski vacuum we find that
such averages involve an emergent Fermi distribution

〈0M|ĉ>†
ky,�

ĉ>
k′

y,�
′ |0M〉 = 〈0M|d̂>†

ky,�
d̂>

k′
y,�

′ |0M〉,
= nF(2π�)δ(ky − k′

y)δ(� − �′), (49)

that arises solely due to strains in the material, rather than
due to any real heat bath. This implies that although the oc-
cupancy of Rindler electrons and holes in the Rindler vacuum
is zero, in the Minkowski vacuum state it is proportional to
the Fermi function. Thus, surprisingly, spontaneous particle
creation here has a spectrum that turns out to be thermal in na-
ture. This is known as the Fulling-Davies-Unruh effect which,
in the conventional setting, says that an accelerating observer
views the Minkowski space-time as a thermal bath of particles
at the Unruh temperature TU = h̄a

2πkBc . We note that this result
is of course well known in the relativity literature [19,28].
However, its derivation here is included both for completeness
of presentation and because our mechanism for the Unruh
effect (a sudden switch on of a spatially inhomogeneous
strain) is different than the standard case (an accelerating
observer). While a coordinate transformation relates these
two pictures, our presentation in this section makes it clear
how the Unruh effect (characterized by the strain-dependent
Unruh temperature TU = h̄ωc

2πkB
= h̄v0

2πkBλ
) emerges in strained

graphene, providing a prologue for computing specific ob-
servables (as we do in subsequent sections).

To see how this thermality arises in a concrete way, we
rewrite Eq. (43) for electrons in the right side of graphene
(x > 0) and holes on the left side (x < 0):

ĉ>
ky,�

=
√

nF(−2π�)Âky,� − i
√

nF(2π�)B̂†
−ky,�

, (50a)

d̂<†
−ky,�

= −i
√

nF(2π�)Âky,� +
√

nF(−2π�)B̂†
−ky,�

, (50b)

where we made use of the symmetry properties of Bogoliubov
coefficients in (39) and we chose to evaluate the hole opera-
tor for x < 0 region and with inverted momentum −ky with
respect to the electrons. These can be inverted to write the
modified operators in terms of Rindler operators

Âky,� =
√

nF(−2π�)ĉ>
ky,�

+ i
√

nF(2π�)d̂<†
−ky,�

, (51a)

B̂†
−ky,�

= i
√

nF(2π�)ĉ>
ky,�

+
√

nF(−2π�)d̂<†
−ky,�

. (51b)

Equation (49) suggests that what we see as the vacuum of a
flat graphene sheet may appear as a state filled with Rindler
strained particles. Thus, we can express the Minkowski

vacuum in terms of Rindler excited states in the following
way [85,86]:

|0M〉 =
∏
ky,�

|0ky,�〉M, (52)

∣∣0ky,�

〉
M =

1∑
m,n=0

Amn

∣∣m>
ky,�

〉
R
∣∣n<

−ky,�

〉
R, (53)

which expresses the Minkowski vacuum state in terms of a
Rindler state with m electrons on the right and n holes on
the left side. Note that the sum has only two entries because
of the Pauli principle for fermions which, according to (45),
means that the electron annihilation operator (also true for
holes) acting on the state with no electrons as well as the
corresponding electron creation operator acting on a state
with one electron will yield zero, i.e., ĉ|0R〉 = ĉ†|1R〉 = 0.
Dropping the quantum labels ky and �, and the subscript R,
and applying the modified Minkowski electron annihilation
operator Âky,� to the above Minkowski state in Eq. (52), we
get [85,86]

0 = Â
∣∣0ky,�

〉
M

= [
n

1
2
F (−2π�)A11 + in

1
2
F (2π�)A00

]|0>〉|1<〉
+ n

1
2
F (−2π�)A10|0>〉|0<〉 + in

1
2
F (2π�)A10|1>〉|1<〉.

(54)

If the right-hand side vanishes for arbitrary Rindler-Fock
states, then this yields the summation coefficients as A10 =
A01 = 0, and A11 = −iA00e−π�. Also normalizing the ansatz
in (52) yields |A00|2 + |A11|2 = 1. Combing these ideas, we

get A00 = n
1
2
F (−2π�) and A11 = −in

1
2
F (2π�), and therefore

the flat graphene vacuum state can be expressed as a two-
mode squeezed state of Rindler-strained fermions:

|0M〉 =
∏
ky,�

n
1
2
F (−2π�)

× [∣∣0>
ky,�

〉
R
∣∣0<

−ky,�

〉
R − ie−π�

∣∣1>
ky,�

〉
R
∣∣1<

−ky,�

〉
R
]
,

(55)

similar to the Bardeen-Cooper-Schrieffer (BCS) state [87,88]
for electrons that form a Cooper pair [89] inside a super-
conductor or superfluid. From this, a density matrix can be
constructed ρ̂ = |0M〉〈0M| representing the pure state of the
flat graphene sheet, and when traced over the left side (x < 0)
Rindler particle states, we get a reduced density matrix in
terms of the Rindler Hamiltonian expressed in terms of modes
pertaining to the right side only (x > 0):

ρ̂> = e−2πĤ>

Tr e−2πĤ>
, (56)

where the normal ordered Hamiltonian constrained to the
right side should be understood in terms of a sum in modes
Ĥ> = ∑

ky,�
�{ĉ>†

ky,�
ĉ>

ky,�
+ d̂>†

ky,�
d̂>

ky,�
}. This density matrix

is clearly of the Gibbs’ thermal ensemble form.
In the case of the conventional Unruh effect with an

accelerating observer, the Rindler horizon that bars any com-
munication between the two wedges presents a natural trace

224310-9



ANSHUMAN BHARDWAJ AND DANIEL E. SHEEHY PHYSICAL REVIEW B 107, 224310 (2023)

of the density matrix. In the present setting of a strained hon-
eycomb lattice, the low-energy and long-wavelength modes
see the point x = 0 as an analog horizon and thus leakage of
such modes between the two sides is either zero or minuscule
(see Appendix B for more details). Hence, even though the
global state of the honeycomb system might be a pure state,
when we make measurements on one side of the sheet, the
degrees of freedom on the other side are not available to
us and hence get naturally traced out from the density ma-
trix giving us a reduced mixed thermal state as in Eq. (56)
[4,19,28,90]. This is known as the thermalization theorem
which says that the presence of horizons in a space-time is
sufficient for thermality to emerge. It is intimately connected
to the Kubo-Martin-Schwinger (KMS) condition [14,15] and
the principle of detailed balance which we shall discuss in the
next section. Thus, any strain pattern that realizes an analog
space-time with a natural horizon such as black holes, de
Sitter or Rindler, can lead to the appearance of such thermal
effects.

So far we have discussed how a Rindler Hamiltonian
(23) forms from assuming a linear-in-position Fermi velocity
v(x) = v0

|x|
λ

, how this leads to the Bogoliubov transforma-
tions (43) between the strained (Rindler) and flat (modified
Minkowski) honeycomb operators, giving rise to the vacuum
averages in (49) that behave as thermal averages over an
ensemble represented by the density matrix (56). As empha-
sized by Rodríguez-Laguna et al. [47], an important aspect
of the Unruh effect is the fact that the Minkowski vacuum
is stationary with respect to the Rindler Hamiltonian. This
is reflected in the form of the density matrix (56) and in
averages like Eq. (49). Thus, while one might expect rapid
postquench dynamics to “wash out” the Unruh effect after a
sudden switch on of the strain, here (in the limit of an exact
Rindler Hamiltonian after the quench), such dynamics are not
expected.

These results, collectively termed the Unruh effect,
emerge due to the presence of a natural demarcation in
the material. Before we discuss the implications of this
spontaneous electron-hole formation on observables like the
electronic conductivity and internal energy, in the next sec-
tion we will present the Green’s functions pertaining to
the strained graphene system to discuss in what sense is
the Unruh effect a genuine thermal phenomena. We will
also discuss how the dimensionality of graphene leads to
the violation of Huygens’ principle and the inversion of
statistics which could possibly be seen in photoemission
experiments.

VI. GREEN’S FUNCTIONS

In this section, we describe properties of single-particle
Green’s functions that will help us explain how thermal behav-
ior emerges, how the Huygens’ principle is violated, and how
this leads to the phenomena of apparent statistics inversion
in the excitation spectrum of fermions. Towards the end of
this section, we discuss how these properties can be detected
in experiments like photoemission spectroscopy (PES) and
scanning tunneling microscopy (STM).

Following Ooguri [20], we introduce two fundamental
single-particle Green’s functions defined with respect to the

flat graphene vacuum state |0M〉:
G+(r, t ; r′, t ′) = 〈0M|ψ̂R(x, y, t )ψ̂†

R(x′, y′, t ′)|0M〉, (57a)

G−(r, t ; r′, t ′) = 〈0M|ψ̂†
R(x, y, t )ψ̂R(x′, y′, t ′)|0M〉. (57b)

Here G+ creates a particle at location r′ = (x′, y′) and time
t ′, and then annihilates it at another location r = (x, y) and
time t , whereas G− does the opposite. In the condensed-matter
context, these are called the > and < Green’s functions,
respectively [91] (up to factors of i), and their physical in-
terpretation will become clear when we discuss their Fourier
transforms below.

Interestingly, despite the intrinsically nonequilibrium na-
ture of this setup, i.e., a sudden switch on of the system
strain that changes the system Hamiltonian from the Dirac to
the Rindler Hamiltonian, these Green’s functions have simple
forms, at least in the local real-space limit. To see this, we
set the positions equal, i.e., x′ = x and y′ = y. Making use of
mode expansion (31) for the right-node fields and the vacuum
averages (49) for Rindler ladder operators with respect to
Minkowski vacuum, and taking the spinor trace, we find

Tr G+(x, y,�t ) = 1

2πx2

∫ ∞

0
d�� coth π�

× [ei��t nF(2π�) + e−i��t nF(−2π�)],

(58)

Tr G−(x, y,�t ) = 1

2πx2

∫ ∞

0
d�� coth π�

×[ei��t nF(−2π�) + e−i��t nF(2π�)],

(59)

where �t = (t − t ′). If we define a typical timescale associ-
ated with the Unruh temperature h̄/(kBTU) (equal to 2π in our
units), then it can be shown that the above Green’s functions
are periodic in imaginary shifts by this timescale:

Tr G+(x, y,�t − 2π i) = Tr G−(x, y,�t ). (60)

This is known as the Kubo-Martin-Schwinger (KMS) con-
dition [14,15] which in the conventional equilibrium case at
temperature T guarantees that the thermal average of any two
operators Â and B̂ for a system kept in contact with a heat
bath at temperature β = (kBT )−1 is also periodic in imaginary
time, i.e., 〈Â(t )B̂(t ′)〉 = 〈B̂(t ′)Â(t + iβ )〉. For example, if we
take the operators Â and B̂ as the graphene right-node field
operators, then we get the following KMS condition for the
Green’s functions in (57a) and (57b):

G+(r, r′,�t − 2π i) = G−(r, r′,�t ). (61)

Note that here we have assumed that the Green’s functions
depend solely on the time difference �t because the system
exhibits time translation invariance when it is in thermal equi-
librium. In an isolated strained graphene sheet, this condition
implies that the vacuum (pure state) average of field oper-
ators behaves as a legitimate thermal (mixed state) average
with respect to the reduced density operator (56) (that can be
thought of as an evolution operator [91,92]), as if it is kept in
contact with a real heat bath set at the Unruh temperature, i.e.,
T = TU.
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To further understand the meaning of the KMS condition,
we take the Fourier transforms of the above Green’s functions
(58) and (59) defined as

F±(x, ω) =
∫ ∞

−∞
d (�t ) e−iω�t Tr G±(x, y,�t ), (62)

from which we obtain

F+(x, ω) = ω

x2
nB(2πω), (63)

F−(x, ω) = − ω

x2
nB(−2πω). (64)

As discussed by Coleman [91], F+(x, ω) is the photoemis-
sion spectra that gives the total excitation of electrons when
graphene is illuminated by light. Similarly, F−(x, ω) measures
the deexcitation spectra. The ratio of these two power spectra
turns out to be

F+(x, ω)

F−(x, ω)
= e−2πω (65)

which says that the rate of excitation versus deexcitation
is of the Boltzmann form with the strain frequency 1/2π

playing the role of temperature. This is the principle of de-
tailed balance which originates from Boltzmann’s principle
of microscopic reversibility [93,94], but was first applied to
quantum systems by Einstein in [95] that predicted the phe-
nomena of stimulated emission. He studied the setup where
an atom with two energy levels E1 < E2 is in thermal contact
with a bath of photons such that when equilibrium sets in the
ratio of number of particles in the excited state |E2〉 versus
|E1〉 is e−β(E2−E1 ). Then by demanding that the excitation
probability should match deexcitation (spontaneous and stim-
ulated) at equilibrium, the number distribution of photons will
be given by a Planck distribution ρ(ω) = [exp(βω) − 1]−1,
where ω = (E2 − E1) is the energy of the photon wave packet
that is absorbed by the two-level atoms. Such two-level sys-
tems are termed Unruh-DeWitt detectors in the relativistic
context [13,90]. Thus, the Fourier transform of the KMS
condition, i.e., the principle of detailed balance, tells us that
accelerated fermionic fields have a Fermi-Dirac spectrum and
when they are in contact with a two-level or more atom or
detector, then the latter comes into global thermal equilibrium
with the field with the Unruh temperature defined everywhere
on the real or analog space-time.

The discussion above can be summarized by stating the
thermalization theorem. For a comprehensive account of its
various versions, see [19]. It states that if the space-time (or
the analog system) has a causal horizon (like the Minkowski
space-time in Rindler coordinates), then any quantum field on
that space-time will spontaneously emit particles in a thermal
distribution characterized by a Bose or Fermi function which
is captured by the reduced density matrix (56) in Gibbs’ en-
semble form. Once this density operator is achieved, then the
KMS condition (60), or more generally Eq. (61), guarantees
that the field will also thermalize any other system (like an
atom or a detector) in its contact, that has energy levels, thus
establishing a global thermal equilibrium with temperature
T = 1/2π .

To discuss Huygens’ principle and how its violation leads
to statistics inversion, we now consider two other fundamental

Green’s functions pertaining to the commutator and the anti-
commutator of fermionic fields, that are similar to the Green’s
functions defined in (58) and (59). The former is related to the
Keldysh Green’s function [96] and the latter is related to the
retarded Green’s function that takes causality into account:

GC (r, t ; r′, t ′) = 〈0M|[ψ̂R(x, y, t ), ψ̂†
R(x′, y′, t ′)]|0M〉, (66a)

GA(r, t ; r′, t ′) = 〈0M|{ψ̂†
R(x, y, t ), ψ̂R(x′, y′, t ′)}|0M〉. (66b)

After setting x = x′ and y = y′, computing these Green’s func-
tions, and taking the trace, we get

Tr GC (x, y,�t ) = − i

πx2

∫ ∞

0
d�� sin(��t ), (67)

Tr GA(x, y,�t ) = 1

πx2

∫ ∞

0
d�� coth(π�) cos(��t ). (68)

Conventionally, the Huygens’ principle states that if we have
a source in even space-time dimensions, then its wavefronts
can be constructed by drawing circles (appropriate to the
dimensions) with the source at the center [19]. This means
that the retarded Green’s function that describes the prop-
agation of waves to any point (x, y, t ) with the source at
(x′, y′, t ′) has support only on the light cone, i.e., it vanishes
when (x′, y′, t ′) and (x, y, t ) are either timelike or spacelike
separated. This implies that the retarded Green’s function in
even space-time dimensions is proportional to a Dirac delta
function and its derivatives. However, strained graphene mim-
ics an odd-dimensional space-time where we find that the
anticommutator in Eq. (68) is not a Dirac delta function. This
is the manifestation of the well-known violation of Huygens’
principle [19,97]. It says that in odd space-time dimensions,
our intuition for wave propagation breaks down, i.e., a sharp
source of wave does not lead to a single spherical wavefront,
and instead the observer notices a continuously decreasing
tail.

Curiously, although the anticommutator Green’s function
violates Huygens’ principle, from Eq. (67) we see that the
commutator Green’s function GC amounts to 2i

x2 δ
′(�t ), i.e.,

it has support on the light cone. As a result, it is expected that
the Fourier transform of the GC will be a polynomial in ω,
whereas for GA it will lead to the following:

FC (x, ω) = − ω

x2
, (69)

FA(x, ω) = ω

x2
coth πω. (70)

To see the connection of this violation of Huygens’ principle
with statistics inversion, we need the fluctuation-dissipation
theorem. They can be derived in general by writing (68) and
(67) in terms of (57a) and (57b), i.e., GA = G+ + G− and
GC = G+ − G−, Fourier transforming them, and finally ap-
plying the KMS condition or the principle of detailed balance,
i.e., F− = e2πωF+, yields two different but equivalent versions
of the theorem:

F+(x, ω) = nF(2πω) × FA(x, ω) (71)

= nB(2πω) × −FC(x, ω). (72)

The excitation or power spectrum F+(x, ω) is related to the
rate at which an accelerated detector senses Rindler particles,
and shows inversion of statistics depending on the dimension
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FIG. 3. The orange solid curve is a plot of the power spectrum
F−(ω), that can be measured in photoemission spectroscopy (PES)
experiments. The black dotted-dashed curve is a plot of FA(ω) that
can be measured in scanning tunneling microscopy (STM) experi-
ments that measure the density of states. Their ratio (in green) yields
the expected Fermi-Dirac spectrum in accordance with the Unruh
effect predictions.

of the space-time [19–26]. Following Ooguri [20], there are
two interpretations for this. The first makes use of (71), which
says that the excitation spectrum is basically the Fermi-Dirac
function coming from the real statistics of the fermions, mul-
tiplied with the spectral density of states coming from the
Fourier transform of anticommutator which we know violates
Huygens’ principle and thus is not simply a polynomial in ω.
This, coupled with the particular form of the mode functions
in (31), gives us a hyperbolic cotangent which coincidentally
inverts the Fermi to a Bose function. The other interpretation
comes from (72), where one can argue that since we are in
odd space-time dimensions in graphene, therefore, we would
expect the Fourier transform of the commutator to be poly-
nomial in ω [see (69)]. Thus, the excitation spectrum should
be expected to be a Bose-Einstein distribution multiplied by a
factor which is polynomial in ω, thereby removing the need to
invoke any inversion.

To see how these power spectra could manifest them-
selves in experiments, we focus at the first version (71) of
the fluctuation-dissipation theorem, but instead for F−, i.e.,
F−(ω) = nF(−2πω)FA(ω). To do this, the experimenter will
first obtain the photoemission data from the photoemission
spectroscopy or the PES experiment [47]. For low energies
and long wavelengths, this will give us a plot of fermion oc-
cupancy in graphene’s lowest-energy band which, in this limit,
should mimic the Planck distribution F− = − ω

x2 nB(−2πω).
As can be seen from Fig. 3, F−(ω) increases with energy,
which is due to the fact that the PES experiment measures
the occupancy of valence band electrons by extracting them
by shining light. If the intensity of light is increased, then
more electrons residing in the lower valence energy levels
will be detected. The experimenter can then obtain the data
regarding the local density of states by performing the scan-
ning tunneling microscopy or the STM experiment [50,52]
which, in the low-energy and long-wavelength limits (where
our calculations are valid), will be given by the statistics in-
version factor FA = ω

x2 coth πω, which implies that Huygens’
principle is being violated in strained graphene. Now if we

take the ratio of the PES and STM data, we will find

PES data

STM data
= F−(x, ω)

FA(x, ω)
= nF(−2πω), (73)

and we will obtain the Fermi-Dirac distribution as expected
from the Unruh effect of fermions, as can be seen in Fig. 3.
For the case of cold-atom honeycomb setups, radio-frequency
spectroscopy could be performed where photons transfer
atoms from an occupied to an unoccupied auxiliary band
[98,99]. After this, the optical laser trap would be turned
off and a time-of-flight absorption imaging would be per-
formed which will yield the energy and momentum-resolved
photoemission data. When this is summed over all possible
momenta, it will give us the density of states of the occupied
band [99].

Note that the experiments for photoemission and density
of states use interactions between photons and electrons, and
thus could affect the state of the system |0M〉 by evolv-
ing it into an interacting vacuum state [47]. However, since
these interactions are perturbative in nature, therefore to first
order, all observables, i.e., vacuum expectation values such
as the Green’s functions and conductivity will be the same
as the results presented in this paper. Also note that the
timescale of these interactions should be less than or equal
to timescale of Unruh effect, which for strains of λ = 1 mm
size results in 1 ns. This way, the PES photons will feebly
interact with the emergent electrons and excite them out of the
material.

Equipped with the Bogoliubov transformations (43) be-
tween the strained (Rindler) and flat (modified Minkowski)
honeycomb operators, that lead to the vacuum averages in
(49) and the statistics inversion in Eqs. (71) and (72), we
are now ready to discuss in the next two sections, the im-
plications of this spontaneous electron-hole formation on
observables like the electronic conductivity and total internal
energy.

VII. ELECTRONIC CONDUCTIVITY

In this section, we consider another observable that is
sensitive to the Unruh effect in strained graphene: The
frequency-dependent conductivity. For this calculation, we
shall require the Bogoliubov transformations (43), derived in
Sec. V, that establish the relationship between the Rindler
operators {ĉ, d̂} in a strained honeycomb system with the
modified Minkowski operators {Â, B̂} in a flat (unstrained)
honeycomb system. This led us to the expectation value (49)
of the Rindler operators with respect to the Minkowski vac-
uum. To use these results, we will need the Kubo formula that
relates the frequency-dependent conductivity to an associated
current-current correlation function. For generality, we will
briefly recall the Kubo formula derivation for both the setups
considered here, i.e., the case of electronic graphene (in which
the fermions are charged electrons) and the case of neutral
cold atoms in an optical lattice.

For the electronic graphene case, we can start with the
Rindler Hamiltonian (23) minimally coupled to an elec-
tromagnetic vector potential A(r, t ), i.e., we can make the
replacement −ih̄∇ → −ih̄∇ − eA in the derivative operators
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giving us the following new Hamiltonian [100]:

Ĥ (t ) = ĤR + Ĥ1(t ),

Ĥ1(t ) = −
∫

d2r ĵ(r, t ) · A(r, t ), (74)

where ĤR is the Rindler Hamiltonian (23). Here, the conserved
current operator in the strained (Rindler) system is

ĵ(r, t ) ≡ ev0
|x|
λ

ψ̂
†
R(r, t )σψ̂R(r, t ). (75)

Within linear response theory, we can treat the vector potential
term as a perturbation, and to linear order the response of the
average current is given by

〈 ĵμ(r, t )〉 = − i

h̄

∫ t

−∞
dt ′ 〈[ ĵμ(r, t ), Ĥ1(t ′)]〉

= i

h̄

∫ t

−∞
dt ′

∫
d2r′ 〈[ ĵμ(r, t ), ĵν (r′, t ′)]〉Aν (r′, t ′).

(76)

The time-dependent vector potential can be written as
Aν (r′, t ′) = 1

iω+ Eν (k, ω)e−i(k·r′+ω+t ′ ), where ω+ = ω + iδ,
with δ = 0+. Here, Eν (k, ω) is the electric field at wave
vector k and frequency ω. Upon plugging this into Eq. (76),
multiplying both sides by e−iq·r and integrating over r in
the limit of q → 0 (corresponding to spatial averaging), we
obtain

〈 ĵμ(q → 0, t )〉 = 1

h̄ω+

∫ ∞

−∞
dt ′�(t − t ′)e−iω+t ′

× 〈[ ĵμ(0, t ), ĵν (0, t ′)]〉Eν (0, ω). (77)

Noting that the time-dependent electric field Eν (0, t ) =
Eν (0, ω)e−iω+t , redefining the variable of integration to T =
(t − t ′) and taking the ratio of current and electric field, we

find the average conductivity tensor σμν = 〈 ĵμ(0,t )〉
Eν (0,t ) :

σμν = 1

h̄ω+

∫ ∞

−∞
dT �(T )eiω+T 〈[ ĵμ(0, T ), ĵν (0, 0)]〉. (78)

The preceding derivation depends on the use of the vector
potential as an external stimulus. But, for a system that is
not made of charged particles such as neutral ultracold-atomic
gases, we must use a different approach. In this case, a change
in the local chemical potential creates a pressure difference
and hence affects the density of fermions. Instead of Eq. (74),
the perturbing Hamiltonian involves a coupling of the atom
density n̂(r, t ) = ψ̂†(r, t )ψ̂ (r, t ) to a spatially and temporally
varying chemical potential:

Ĥ1(t ) = −
∫

d2r μ(r, t )n̂(r, t ). (79)

Plugging this into Eq. (76) with μ(r, t ) = μ(r)e−iωt , integrat-
ing by parts in the t ′ integral, and also integrating by parts
in space using the equation of continuity 0 = ∂

∂t n̂(r, t ) + ∇ ·
ĵ(r, t ), we finally arrive at the Kubo formula for neutral atoms,
with the average atom current related to the chemical potential
gradient as j = −σ∇μ where σ is given by (78).

Thus, in either case we require the current-current correla-
tion function, with the averages being performed with respect

to the Minkowski vacuum. We start with the computation
of σxx. Instead of directly using Eq. (78) that involves the
spatially Fourier-transformed current correlator, we start with
the real-space current-current correlation function, perform
spatial averages (on r and r′), and finally Fourier transform
to frequency space. The average current correlation function
at the right node has the form

C̄xx(t − t ′) =
∫

d2r
∫

d2r′〈0M| ĵx(r, t ) ĵx(r′, t ′)|0M〉, (80)

where we are evaluating the correlations only between fields
on the right node. In what follows, we will set e → 1, h̄ → 1,
and ωc → 1.

We performed spatial integrals on (80) along the coor-
dinates r and r′ because the conductivity Eq. (78) requires
the current-current correlation in the reciprocal space in the
limit q → 0. Integration along y and y′ will yield Dirac delta
functions in wave vectors δ(ky − k′

y), after which integration
of spinor products is performed over x and x′ directions using
the following identity:∫ ∞

0
dx x

[
K 1

2 +i�(x)K 1
2 −i�′ (x) − K 1

2 −i�(x)K 1
2 +i�′ (x)

]

= iπ2(�2 − �′2)

2[sinh(π�) + sinh(π�′)]
. (81)

Thus, the average current-current correlator as a function of
time for the right-handed fermions looks as follows:

C̄xx(�t ) = 1

2

∫ ∞

−∞
d�

∫ ∞

−∞
d�′ cosh π� cosh π�′

× nF(2π�)nF(−2π�′)ei(�−�′ )�t

× (�2 − �′2)2

[sinh(π�) + sinh(π�′)]2
, (82)

where �t = (t − t ′). We now subtract from this the current
correlator with time coordinates interchanged, t ↔ t ′, i.e.,
C̄xx(t ′ − t ) = C̄xx(−�t ), to obtain the vacuum average of the
commutator of current-current correlation. Plugging this into
the expression for conductivity tensor (78), where we perform
the Fourier transform of a retarded function in time using the
Plemelj formula limδ→0+ 1

x+iδ = P 1
x − iπδ(x), and extracting

the imaginary part, we finally obtain the xx component of the
dissipative average conductivity as follows:

σ̄ ′
xx(ω) = πω

2

∫ ∞

−∞
d� cosh π� cosh π (� + ω)

× (2� + ω)2

(sinh π� + sinh π (� + ω))2

× [nF(2π�) − nF(2π (� + ω))], (83)

where the prime denotes the real part of conductivity that leads
to dissipation of electronic current. In this formula, we have
dropped dimensionful prefactors (such as e2/h̄, the typical
units of conductivity), and we have dropped an extensive
factor

A =
∫ ∞

0

dky

2π

1

k2
y

∫ ∞

−∞
dy = Ly

∫ ∞

0

dky

2π

1

k2
y

, (84)
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FIG. 4. A plot showing how the average dissipative conductivity
(in units of e2/h̄) grows approximately linearly as a function of AC
frequency (in units of strain frequency ωc = v0/λ). The longitudinal
component σ ′

xx (ω) (in red) vanishes in the DC limit ω → 0, whereas
σ ′

yy(ω) (in green) reaches a value of 1/(6π ).

with Ly the size of the system in the y direction. Properly
handling the remaining integral would require analyzing our
problem in a finite system along x, a task we leave for future
work.

We have plotted Eq. (83) in Fig. 4 which shows that the
conductivity grows approximately linearly with the probing
frequency and vanishes in the DC limit (ω → 0). As we dis-
cussed in Sec. II, the Rindler Hamiltonian with Fermi velocity
v(x) � v0|x|/λ can be achieved for modes with low energies
and long wavelengths. Hence, the results for conductivity (and
for internal energy) for strained honeycomb lattices are valid
if we choose to probe long-wavelength modes kyλ � 1. This
is valid because in order to evaluate these observables, spatial
averages need to be performed equivalent to setting q → 0 in
σ (ω, q → 0) as we discussed in Eq. (77).

To understand the result in Eq. (83), we revisit the elec-
tronic conductivity of flat graphene (per node and per spin) in
the collisionless limit and at a finite environment temperature
β = (kBT )−1 [101]:

σ̄ ′
xx(ω) = 1

16

[
nF

(
− βω

2

)
− nF

(
βω

2

)]
(85)

= 1

16

[
1 − 2nF

(
βω

2

)]
, (86)

where the left-hand side is measured in units of e2/h̄. The
right-hand side vanishes in the DC limit ω → 0. This happens
because in this limit, only the energy levels close to the Dirac
point participate in electronic transitions due to switching
on the vector potential in (74). However, here the electron
occupancy in conduction band, given by nF(βω) ∼ 0.5, is
equal to the electron occupancy in the valence band, given by
nF(−βω) ∼ 0.5. Thus, the rate of excitation and deexcitation
is equal and hence the electrons near the Dirac point (DC
limit) do not participate in conductivity. On the other hand,
as the probing frequency is increased, the electron occupancy
in the valence band starts exceeding the conduction band,
thus giving us a net rate of excitation of electrons that give
nonzero conductivity. In the opposite limit of ω � (h̄β )−1,

the high-energy modes are unaffected by the thermal scale
and, hence, the electron occupancy here is approximately
unity, i.e., the deexcitation is minuscule and conductivity
reaches it maximum value of e2/16h̄. The density of states
in a two-dimensional material such as graphene, is expected
to be linear in energy. However, this gets canceled out due to
the 1/ω in the expression for conductivity (78), and therefore
only the Fermi functions are needed to physically understand
the behavior of conductivity.

Since the strained graphene system is effectively at an Un-
ruh temperature TU, by analogy with the preceding argument
we might also expect to find that σ (ω) → 0 for ω → 0, as
we indeed find in Fig. 4. To derive the approximate linear
behavior, we use the fact that the factor multiplying the Fermi
functions in square brackets in Eq. (83) is sharply peaked at
� = −ω/2. Then, we are allowed to make this replacement
in the square brackets, yielding [nF(−πω) − nF(πω)] that can
be pulled outside the integral. Upon evaluating the remaining
� integration over the peak region finally gives

σ̄ ′
xx(ω) �

√
3

2π3/2
ω tanh

πω

2
, (87)

which agrees with our numerical result in Fig. 4.
We can also interpret these results by focusing on the sec-

ond version similar to (86) and noting that the conductivity is
reduced due to the presence of emergent Fermi functions. This
happens due to stimulated particle reduction [8,102–105]. The
process of straining the honeycomb lattice leads to creation
of fermions in the conduction band with a Fermi distribution
nF(2π�) characterized by Unruh temperature (here 1/2π ),
yielding a thermally excited state. To study the linear elec-
tronic response of this system, a vector potential stimulus is
provided because of which more electrons from the valence
band jump to the conduction band. Pauli’s exclusion prin-
ciple does not allow the strained electrons to coexist with
the electronically excited ones, hence leading to an overall
reduction in the response. Since particle creation is maximum
at zero energy where the two bands meet (as the Unruh-Fermi
function is maximum at low energies), it is easiest for strains
to create electrons at this zero-energy level, and hence the
stimulated reduction is maximum for zero probing frequency,
i.e., the DC limit ω → 0. In contrast, higher energies over-
power the strains making the Fermi functions small, and hence
maximum conductivity is achieved.

Next we turn to the conductivity σyy for directions per-
pendicular to the strain fields, which, following the same
procedure, leads to the similar result:

σ̄ ′
yy(ω) = πω

2

∫ ∞

−∞
d� cosh π� cosh π (� + ω)

× (2� + ω)2

(sinh π� − sinh π (� + ω))2

× [nF(2π�) − nF(2π (� + ω))], (88)

the only difference being a minus sign in the denominator of
one factor in the integrand. In this case the factor multiplying
the Fermi functions in square brackets is not a narrow peak
at −ω/2; nonetheless, the qualitative behavior is similar as
seen in Fig. 4 which shows that just like the xx component,
the yy component of conductivity also grows approximately

224310-14



UNRUH EFFECT AND TAKAGI’S STATISTICS … PHYSICAL REVIEW B 107, 224310 (2023)

linearly with the probing frequency. Two key differences are
that σ̄ ′

yy(ω) is smaller in magnitude, and does not vanish in
the DC limit (ω → 0) approaching a value of 1/(6π ). The
reason is that in the x̂ direction the atoms have been forced
to come closer to each other using strains of type (6), thereby
increasing the Fermi velocity, and thus hopping becomes eas-
ier. Whereas in the ŷ direction, the strains do not depend on
coordinate y, and thus the atoms are further apart in this direc-
tion as compared to x̂, hence, the hopping and the conductivity
here are lower.

The results for σ̄ ′
xx in Eq. (83) and for σ̄ ′

yy in Eq. (88)
imply that (when the dimensionful Unruh temperature TU is
reintroduced), σ̄ ′(ω) is suppressed at low frequencies with
increasing TU. Since the conductivity is expected to obey
the f -sum rule [91,106] that conserves the integral of σ̄ ′(ω)
over ω, we expect this suppression to be accompanied by an
additional δ(ω) peak (as occurs in flat graphene [101,107] at
nonzero real temperature T ). In the presence of disorder or
interactions, we furthermore expect this peak to be broad-
ened into a Drude peak [107], but with a weight controlled
by TU.

The transverse or off-diagonal components of conductiv-
ity tensor are antisymmetric, i.e., σxy(ω) = −σyx(ω), which
can be readily inferred from the commutator in Eq. (78).
This means that knowledge of one determines the other. Per-
forming similar calculations as the longitudinal case, yields a
vanishing transverse conductivity

σ ′
xy(ω) = −σ ′

yx(ω) = 0. (89)

This can be expected because if σ xy �= 0, then an electric field
in the x direction Ex would be able to create a current in the
y direction. However, due to translation symmetry, there is
no reason why +ŷ would be favored over −ŷ, and thus the
current is expected to be zero by symmetry. This symmetry
gets broken when there is a real magnetic field in the system.

In this section we showed how the Rindler Hamiltonian
(23) leads to a linear-in-probing frequency behavior of lon-
gitudinal components of the electronic conductivity (83) and
(88), and that the transverse (89) components simply vanish.
These results for average dissipative conductivity are sum-
marized in Fig. 4, where both the longitudinal components
scale linearly for frequencies. In the next section, we will
take a look at the consequence of Rindler Hamiltonian on the
internal energy of such honeycomb systems.

VIII. INTERNAL ENERGY

As we saw in the previous section, that spontaneous par-
ticle creation due to us assuming a linear-in-position Fermi
velocity had a profound effect on the behavior of electronic
conductivity which scaled linearly in the probing frequency,
as opposed to the flat honeycomb case where it has a constant
value for all frequencies. In this section, we will be looking at
how this Rindler-Unruh particle creation affects the response
of honeycomb systems when brought in contact with a thermal
heat bath, i.e., we will find the total electronic energy in the
system U , which can be calculated using the expectation value
of the Rindler Hamiltonian (23) with respect to a Minkowski
thermal density matrix labeled by the temperature parameter

β = (kBT )−1 as a subscript:

UM = 〈ĤR〉β

= ih̄

〈 ∫
d2x ψ̂

†
R(x) · ∂t ψ̂R(x)

〉
β,M

, (90)

where to get the second line we made use of the Dirac
equation (24) to simplify further calculations. Equivalently,
this can also be calculated using the energy-momentum ten-
sor operator as discussed in Ref. [19]. However, the above
Minkowski thermal average is divergent and thus requires
normal ordering. This involves subtracting off the Rindler
thermal average (i.e., the limit of zero strains λ → ∞) of the
Rindler Hamiltonian from the Minkowski average as follows:

U = 〈ĤR〉β,M − 〈ĤR〉β,R. (91)

This renormalization is needed because the Hamiltonian is
quadratic in the fields ψ̂2(x) [1–6], and thus the expectation
value has a genuine divergence since even smearing the field
operators will not cure this divergence, unlike the case of two-
point functions which are bidistributions and their divergences
at short distances can be cured by smearing.

To evaluate these expectation values, the physical picture
that we will be needing is that the honeycomb lattice is
initially in a thermal state (due to contact with a heat bath
or the surroundings), and then strains are put on it. As a
result, the initial state of the flat honeycomb lattice is de-
scribed by the eigenstates of the standard Dirac Hamiltonian
(15), whose excitations are described by Minkowski operators
{âk, b̂k} in Eq. (20) labeled by momentum vector k. Since this
system is also kept in contact with a heat bath at temperature
β = (kBT )−1, the thermal averages of Minkowski operators
will be given by the Fermi distributions:

〈â†
kâk〉β,M = 〈b̂†

kb̂k〉β,M = nF(βεk ) ≡ 1

eβεk + 1
, (92)

as a function of the Minkowski energy dispersion relation
εk = h̄ωk = h̄v0|k|. When the strains are turned on, then the
system is described the Rindler Hamiltonian (23), whose ex-
citations are governed by the Rindler operators {ĉky,�, d̂ky,�},
labeled by the independent pair of momenta h̄ky and energy
h̄�. We have seen in Sec. IV that the Bogoliubov transfor-
mations (43) help express these Rindler operators in terms
of modified Minkowski operators {Â±

ky,�
, B̂±

ky,�
}, which are in

turn complex linear combinations of the standard ones {âk, b̂k}
as given in Eq. (44). Thus, making use of this transformation
between operators, and the thermal averages in Eq. (92), we
obtain the thermal averages of the Rindler operators in the
Minkowski vacuum as follows:〈
ĉ†

ky,�
ĉk′

y,�
′
〉
β,M = 〈

d̂†
ky,�

d̂k′
y,�

′
〉
β,M

= δ(ky−k′
y)[δ(�−�′)

√
nF(2π�)

√
nF(2π�′)

+{
√

nF(−2π�)
√

nF(−2π�′)

−
√

nF(2π�)
√

nF(2π�′)}Zky (�)], (93)

where � ≡ � − �′ and we define the function Zky (�),

Zky (�) =
∫ ∞

−∞

dkx

2πk

(
k + kx

k − kx

)−i�/2

nF(βεk ), (94)
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FIG. 5. A figure showing the average number of fermions [plot-
ted with respect to mode energy normalized with Unruh temperature,
see Eq. (95)] in a graphene sheet which is initially in a thermal
state and is then strained leading to stimulated particle reduction,
for various values of momenta k̂y normalized with real temperature.
The dashed black curve represents the Unruh effect with a perfect
Fermi-Dirac distribution which could be achieved in the limit of
k̂y → ∞, i.e., large ky or zero environment temperature. As the
temperature rises, the Fermi-Dirac distribution gets reduced due to
Pauli’s principle.

which we emphasize is real [i.e., Z∗
ky

(�) = Zky (�)]. Note the
difference between the two types of Fermi distributions being
used here. The first nF(βεk ) is due to a heat bath labeled by the
environment temperature parameter β and is a function of the
Minkowski energy εk . The second one nF(2π�) is an emer-
gent thermal distribution governed by the strain frequency
ωc = v0/λ.

The thermal averages in (93) have a temperature-
independent part proportional to a delta function in energy
δ(� − �′) and a temperature-dependent part having the func-
tion Zky (� − �′). To get an intuition for this formula, we
discretize the wave vector and frequency delta functions to
Kronecker delta functions, effectively smearing the Rindler
operators [19]. Then taking k′

y = ky and �′ = �, the electron
(or hole) thermal averages take the form

Nky,� ≡ 〈
ĉ†

ky,�
ĉky,�

〉
β,M − Zky (0)

= nF(2π�)

[
1 − 1

π

∫ ∞

−∞

dk̂x√
k̂2

x + k̂2
y

nF
(√

k̂2
x + k̂2

y

)]
,

(95)

where � is the dimensionless frequency used elsewhere [in
which the Unruh temperature is 1/(2π )] and the wave vectors
k̂ = h̄v0k

kBT are normalized using the real system temperature T .
We have also renormalized the number average by subtracting
off the Rindler vacuum contribution which can be found by
setting TU = 0 (λ → ∞) in (93), or equivalently subtracting
off Zky (0) from the expectation value in the first line. This is
the same procedure as was discussed in (91) without which
the integrals inside the expectation values diverge.

In Fig. 5, we plot the renormalized occupancy as a
function of frequency for various values of the normalized
wave vector k̂y. This figure shows that nonzero environment

temperature leads to a stimulated reduction of fermions
[8,102–105], i.e., a smaller Unruh effect. However, this re-
duction is dependent on the momentum ky, with the k̂y → ∞
curve (dashed line) identical to the zero-temperature Unruh
effect, and an increasing stimulated reduction with decreasing
k̂y. This happens because we start with an initial thermal state
of fermions and Pauli’s exclusion principle does not allow new
fermions to coexist with them that are spontaneously created
via strains, hence leading to reduction. The higher the initial
temperature, the lower the value of k̂y and therefore the further
away the spectrum is from the Fermi-Dirac. In other words, if
we keep the environment temperature fixed, then in the limit
of small wavelength we recover the Unruh effect and for larger
wavelengths the average fermion number strays away from the
perfect Fermi-Dirac distribution.

Next, we turn to the direct calculation of the internal energy
U using Eq. (91). For this task we shall use Eq. (93) without
making the above-mentioned discretization that was used for
Fig. 5. We find that the internal energy has two contributions
U = U 0 + U β . For the zero-temperature part U 0, the energy
and momentum integrals inside the thermal averages can be
simplified by using the Dirac delta functions δ(� − �′) and
δ(ky − k′

y) that pin �′ = � and k′
y = ky. Then integration can

be performed over momenta ky using the identity

∫ ∞

0
dky ky K 1

2 +i�(kyx)K 1
2 −i�(kyx) = π2

4x2

�

sinh π�
, (96)

which leads to

U 0 = Ly

π

∫
dx

x2

∫ ∞

0
d� h̄�� coth π� nF(2π�)

= Ly

π

∫ ∞

a

dx

x2

∫ ∞

0
d� h̄�� nB(2π�), (97)

where in going from the first to second line we used the
identity coth x · nF(2x) = nB(2x), and we cut off the x spa-
tial integral at the lattice scale a. We also note that the
energy labels � that are not associated with an h̄ need to
be understood as being normalized with ωc. This result is
for the right side of the honeycomb lattice per node and per
spin state. This temperature-independent contribution U 0 is
made up of three elements: The mode energy h̄�, the den-
sity of states � coth π�, and the occupancy of energy levels
given by a Fermi-Dirac distribution nF(2π�). In the last line,
however, we see that the product of the last two factors in
the first line effectively yields a linear-in-energy density of
states multiplied by the Bose-Einstein distribution. This is
Takagi’s apparent statistics inversion [19] that we discussed
in Eqs. (71) and (72). Thus, although Eq. (97) pertains to
fermions, the final result looks like Planck’s blackbody result
for photons.

The temperature-dependent part of the total internal en-
ergy U β depends on the temperature-dependent terms of
the thermal averages in Eq. (93). For this contribution, the
momentum integrals inside the thermal averages can be sim-
plified by using the Dirac delta function δ(ky − k′

y), pinning
k′

y = ky. Then, integrating over x using Eq. (37) gives us a
Dirac delta function δ(� − �′). This along with the finite-
temperature renormalization discussed in Eq. (91) gives the
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temperature-dependent part of internal energy:

U β = −Ly

π

∫ ∞

0
d� h̄� nF(2π�)

∫ ∞

−∞
dky Zky (0). (98)

The momentum integral can be simplified by switching to po-
lar coordinates, i.e., (kx, ky) → (k, θ ), and using the identity∫ ∞

0 dx nF(x) = log 2, thus yielding
∫ ∞

−∞
dky Zky (0) = kBT log 2

h̄v0
. (99)

Compiling the results for the temperature-independent and -
dependent cases we find that the renormalized total internal
energy U = U 0 + U β for a strained graphene sheet kept in an
environment with finite temperature is

U = Ly

πa

∫ ∞

0
d�� coth π� h̄� nF(2π�)

− Ly

πλ

log 2

βεc

∫ ∞

0
d� h̄� nF(2π�), (100)

where εc = h̄ωc. This result depends linearly on temperature
and manifestly shows that because we started with an initial
thermal state of fermions in flat graphene, then the process of
straining leads to stimulated particle reduction due to Pauli’s
exclusion principle [8,102–105].

IX. CONCLUDING REMARKS

In this paper, we have discussed how a honeycomb lattice
that is strained inhomogeneously can act as an arena where
analog Rindler physics associated with accelerating observers
can be realized. We broke this problem into two stages. The
first stage is that of an unstrained flat graphene sheet that
possesses (discrete) translation symmetry, and leads to an
emergent Dirac equation for low-energy modes. This mimics
the evolution of fermions in flat Minkowski space-time. We
then solved the evolution equation to obtain the mode expan-
sion in terms of plane waves in space and time. This choice
helps us define a structure of ladder operators âk and b̂k which,
when acting on the Minkowski or flat graphene vacuum state
|0M〉, lead to excitation of electrons and holes that obey a
linear in energy-momentum dispersion relation.

The second stage starts when we suddenly switch on strains
to create a Rindler Hamiltonian with a spatially varying
Fermi velocity v(x) � v0

|x|
λ

where the origin x = 0 acts as
an analog of Rindler horizon separating the x < 0 and x > 0
regions and forbidding low-energy and long-wavelength elec-
trons to tunnel through. Thus, the two disconnected sides of
strained graphene mimic the causally disconnected left and
right Rindler wedges. Then we solved the Dirac equation for
right-handed Weyl fermions and obtained the solutions in
terms of Bessel functions that blow up at the horizon and
asymptotically vanish at large x. Here the plane-wave basis in
Rindler time helps us choose the structure of Rindler creation
and annihilation operators ĉky,� and d̂ky,� for electrons and
holes with respect to the Rindler vacuum state |0R〉. However,
unlike the Minkowski case, here due to broken translation
symmetry there is no band dispersion and the energy and
momentum are decoupled.

Since the same quantum field operator has two different
representations in the flat and strained regimes, by project-
ing one onto the other we find that the Minkowski vacuum
|0M〉 appears to operators of the strained system as if it is at
finite temperature, swarming with Rindler particles. This can
be understood in terms of the Heisenberg picture where the
state of the system remains the same, whereas the operators
evolve, and thus in the sudden approximation the original
state is viewed as a linear combination of the eigenstates of
the new Hamiltonian. In fact, the Minkowski vacuum state
corresponding to the flat system can be expressed as a two-
mode squeezed state with respect to the Rindler vacuum since
one side of the lattice is unavailable to the modes residing
on the opposite side. Thus, expectation values on the right
side effectively involve a trace over the left side, amounting
to a mixed thermal density operator for the right side. This is
similar to what happens in Rindler space-time because when
an observer picks a certain acceleration, say a > 0, then they
are naturally causally disconnected from the observers accel-
erating opposite to them. As a result of this, the Minkowski
vacuum averages of Rindler ladder operators pertaining to
one side appear as thermal averages, which is known as the
Fulling-Davies-Unruh effect.

After discussing this thermal-like creation of particles, we
looked into the properties of the strained Green’s functions
which satisfy the KMS condition that ensures that if the
analog space-time has a horizon in it, then the spectrum of
particles it creates is bound to be thermal in nature. Another
feature of these Green’s functions was that the Huygens’ prin-
ciple gets violated due to graphene being a two-dimensional
material and thus leads to a Bose-Einstein spectrum for
electron-hole pairs created by strains, a manifestation of Tak-
agi’s statistics inversion.

We then discussed how the Unruh thermality (for low-
energy and long-wavelength modes) could be measured in
photoemission spectroscopy (PES) experiments and the inver-
sion factor could be seen in scanning tunneling microscopy
experiments that measure the density of states. In PES, shining
photons on graphene would excite fermions to higher states
according to a Bose distribution and, therefore, in this sense,
these experiments are related to the Unruh-DeWitt detectors
that also get excited with a Bose-Einstein response when
interacting with acceleration radiation. We also found that
a similar thermal-like behavior could be seen in measure-
ments of the spatially averaged electronic conductivity of an
isolated strained honeycomb lattice, which at low energies
exhibits a frequency dependence that is similar to that found
in the case of a flat graphene sheet kept at finite environment
temperature, hence signaling emergence of Unruh-type ther-
mality. Finally, we ended our discussion with a calculation of
the total system energy due to strains at finite environment
temperature and found that it has a zero-temperature portion
which resembles the blackbody spectrum of photons, thus
signaling statistics inversion, and a finite-temperature part
whose contribution is negative. This is due to the fact that
if we start with an initially excited (thermal) state in flat
graphene, then strains lead to stimulated particle reduction
due to the Pauli principle not allowing newly created fermions
to occupy the energy levels already occupied by thermal
fermions.
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A possible future direction of research is to consider a
more realistic temporal profile for the strains λ(t ). Tuning
the speed of this parameter can give rise to three possible
regimes. First is the rapid quenching regime that gives rise to
turbulence, which when coupled with dissipation could lead
to exponential growth and decay of perturbations. For this, a
Lindbladian analysis [84] could be performed over the thermal
density matrix in Eq. (56). Second is the slow or adiabatic
phase where the system will end up in |0R〉, with the Hamil-
tonian being given by (23). Since the system Hamiltonian
has changed, this could have potentially interesting effects
on observables like conductivity. Third, tuning between these
two limits could provide information about the appropriate
time window in which the sudden approximation is valid
and how observables related to the Unruh effect are modified
away from the sudden regime. Another possible direction is
to look at the effects of electron-electron interactions on the
Unruh thermality. It is well known that the KMS condition
is valid even for interacting field theories [108]. This could
be especially interesting for conductivity at ω = 0 where the
expected Dirac delta peak broadens due to interactions and
leads to hydrodynamic behavior of graphene quasiparticles.

ACKNOWLEDGMENTS

The authors are grateful to J. Louko, B. Narozhny, J.
Schmalian, M. Gaarde, Á. Jiménez Galán, L. Yue, and D.
Browne for useful comments and discussions. A.B. and
D.E.S. acknowledge support from the National Science Foun-
dation under Grant No. PHY-2208036. A.B. acknowledges
financial support from the Department of Physics and As-
tronomy at LSU. D.E.S. acknowledges funding from the
European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sklodowska-Curie Grant Agreement
No. 873028 (HYDROTRONICS project).

APPENDIX A: THE DIRAC EQUATION

In this Appendix, we will investigate how fermionic
quantum fields evolve in a (2 + 1)-dimensional space-time
equipped with the following line element:

ds2 = −
(

1 + |x|
λ

)2

c2dt2 + dx2 + dy2, (A1)

which is written in some coordinates (t, x, y) whose inter-
pretation depends on the choice of parameter λ. The limit in
which it diverges, i.e., λ → ∞, we recover the flat Minkowski
metric expressed in inertial coordinates (t, x, y), which we
could also relabel with (T, X,Y ) as was done in (18):

lim
λ→∞

ds2 = −c2dt2 + dx2 + dy2, (A2)

whereas in the opposite limit where this parameter is small,
i.e., λ → 0, we recover the flat Minkowski metric written in
terms of the Rindler coordinates (t, x, y):

lim
λ→0

ds2 = − x2

λ2
c2dt2 + dx2 + dy2, (A3)

and thus here λ plays the role of xmin = c2

a which is the closest
distance of approach from the origin at x = 0, of a Rindler

observer accelerating with a. To derive the Dirac equation in
these two limits, we will write it using the most general metric
(A1). The Dirac equation describing the evolution for mass-
less or Weyl fermions in arbitrary space-time is as follows:

iγ aeμ
a ∇μψ̂ (x) = 0, (A4)

where ψ̂ (x) is the massless Dirac spinor (or Weyl spinor)
and can be written as a two-component spinor, which due
to zero rest mass are decoupled from each other ψ̂T(x) =
[ψ̂R(x), ψ̂L(x)]. Also, the covariant derivative is defined as
∇μ = ∂μ − i

4ωab
μ σab, where σab = i

2 [γa, γb], where the Dirac
matrices satisfy the Clifford algebra {γ a, γ b} = 2ηab. From
the line element in (A1), we can write the metric components
as follows:

gμν = diag

[
− c2

(
1 + |x|

λ

)2

, 1, 1

]
, (A5)

which is diagonal and hence simplifies our derivation. Tetrads
are objects that take us from an arbitrary metric to the lo-
cal flat metric of the tangent space at a point. They are as
defined as

gμν = ea
μeb

νηab, ηab =

⎡
⎢⎢⎣

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦, (A6)

where ηab is the Minkowski tensor. In our notation we make
use of greek (μ, ν, . . . ) indices to denote curved space-time
labels such as (t, x, y), and roman (a, b, . . . ) indices signify
that we are in the tangent space at a particular point in space-
time and therefore can take values (0,1,2). By comparing (A5)
and (A6) we get the following tetrads:

ea
μ = diag

[
c

(
1 + |x|

λ

)
, 1, 1

]
. (A7)

These tetrads can now be used to derive the spin connections
ωab

μ which take into account the spin precession of fermions
due to the curvature of space-time. They are defined as
follows:

ωab
μ = 1

2 eνa
(
∂μeb

ν − ∂νeb
μ

) − 1
2 eνb

(
∂μea

ν − ∂νea
μ

)
− 1

2 eρaeσb(∂ρeσc − ∂σ eρc)ec
μ, (A8)

which is manifestly antisymmetric ωab
μ = −ωba

μ . The only sur-
viving components of the spin connection in the metric of
(A1) are as follows:

ω01
t = −ω10

t = c

λ
sgn(x), (A9)

where sgn(x) is the signum function, i.e., it returns +1 for
positive values and −1 for negative entries. Finally, we will
be needing the Dirac matrices in the Weyl or chiral represen-
tation:

γ 0 =
[

0 −I2

−I2 0

]
, γ i =

[
0 σ i

−σ i 0

]
, γ 5 =

[
I2 0
0 I2

]
,

(A10)
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where σ i are the Pauli matrices:

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (A11)

Plugging in the tetrads (A7) and the spin connection (A9)
pertaining to the metric (A1) into the massless Dirac equa-
tion (A4), we get two decoupled Weyl equations for the left-
and right-handed fermions:

∂t ψ̂L = c

(
1 + |x|

λ

)
σ · ∇ψ̂L + c sgn(x)

2λ
σxψ̂L,

∂t ψ̂R = −c

(
1 + |x|

λ

)
σ · ∇ψ̂R − c sgn(x)

2λ
σxψ̂R. (A12)

In the limit of λ → ∞, the above set reduces to the Weyl
equations for fermions in inertial frames (A2):

∂t ψ̂L = cσ · ∇ψ̂L,

∂t ψ̂R = −cσ · ∇ψ̂R, (A13)

which is the same as (17) describing massless fermions in a
flat graphene sheet. In the opposite limit λ → 0, we recover
the Weyl equations for massless fermions in uniformly accel-
erating frames:

∂t ψ̂L = c|x|
λ

σ · ∇ψ̂L + c sgn(x)

2λ
σxψ̂L,

∂t ψ̂R = −c|x|
λ

σ · ∇ψ̂R − c sgn(x)

2λ
σxψ̂R, (A14)

which is the same as Eq. (24) that describes how electrons and
holes evolve in a Rindler strained graphene sheet.

APPENDIX B: RINDLER HORIZON
IN STRAINED GRAPHENE

In this Appendix, we will discuss how an effective
Rindler horizon forms at x = 0 in a graphene sheet that is
strained according to Eq. (6). Our aim is to show that, for
long-wavelength excitations (kyλ � 1, with λ the parameter
characterizing the strain), excitations in graphene obey an
effective Schrödinger equation with a potential that diverges
for x → 0.

To illustrate this, we start with the Hamiltonian in Eq. (13)
that results in the following Dirac equation for right-handed

massless Dirac fermions:

ih̄∂t ψ̂R(r) =
√

v(x)σ · p̂
√

v(x) ψ̂R(r), (B1)

where v(x) = v0(1 + |x|
λ

) is the Fermi velocity. Next, we as-
sume the following ansatz:

ψ̂R =
(

f (x)
g(x)

)
ei(kyy−�t ), (B2)

which is a product of a spinor with component functions
f (x) and g(x), and a plane wave in y and t . Substituting this
ansatz into Eq. (B1), we get a system of coupled differential
equations:[

(|x| + λ)
d

dx
+ ky(|x| + λ) + sgn(x)

2

]
g = i�̄ f , (B3a)

[
(|x| + λ)

d

dx
− ky(|x| + λ) + sgn(x)

2

]
f = i�̄g, (B3b)

where we have defined �̄ = �/ωc. Assuming x > 0, we elim-
inate g(x) in favor of f (x). Defining a new function F (x) =
f (x)/(x + λ), we arrive at the following second-order differ-
ential equation:

d2F (x)

dx2
− [

k2
y − V (x)

]
F (x) = 0, (B4)

taking the form of an effective Schrödinger equation with the
single-particle potential

V (x) = − ky

(x + λ)
+ 1/4 + �̄2

(x + λ)2
. (B5)

We now rescale the coordinates x → x/ky and take the long-
wavelength limit, i.e., kyλ � 1, which makes Eq. (B4) take
the form

d2F (x)

dx2
−

[
1 + 1

x
− 1/4 + �̄2

x2

]
F (x) = 0, (B6)

exhibiting a divergence at x → 0. This shows that in the pres-
ence of an appropriate strain field, electronic quasiparticles
in graphene experience an effective infinite potential barrier
reflecting the Rindler horizon.
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