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Production of lattice gauge Higgs topological states in a measurement-only quantum circuit
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By imaginary-time evolution with the Hamiltonian, an arbitrary state arrives in the system’s ground state. In
this paper, we conjecture that this dynamics can be simulated by a measurement-only circuit (MOC), where
each projective measurement is set in a suitable way. Based on terms in the Hamiltonian and ratios of their
parameters (coefficients), we propose a guiding principle for the choice of the measured operators called
“stabilizers” and also the probability of projective measurement in the MOC. In order to examine and verify
this conjecture of the parameter ratio and probability ratio correspondence in a practical way, we study a
generalized (1 + 1)-dimensional Z2 lattice gauge Higgs model, whose phase diagram is very rich, including
the symmetry-protected topological phase, deconfinement phase, etc. We find that the MOC constructed by the
guiding principle reproduces the phase diagram in a very similar way to that of the ground state of the gauge
Higgs Hamiltonian. The present paper indicates that the MOC can be broadly used to produce interesting phases
of matter, which are difficult to be simulated by ordinary Hamiltonian systems composed of stabilizer-type terms.
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I. INTRODUCTION

Measurement of a quantum many-body system induces
nontrivial dynamical effects and produces exotic phases of
matter. One of the most interesting phenomena induced by
measurements is the entanglement phase transition in hy-
brid random unitary circuits [1–15]. This phase transition
phenomenon emerges in various hybrid circuits including
the time-evolution operator by the many-body Hamiltonian
[16–23]. High entanglement of states generated by unitary
time evolution is suppressed by the measurements. Also, as
typical nonequilibrium dynamics, the spread of entanglement
and scrambling of quantum information are suppressed. With-
out the time-evolution unitary, the measurement-only quan-
tum circuit (MOC) [24,25] also displays striking phenomena;
i.e., a combination of multiple kinds of measurements, some
of which are not commutative with each other, can induce
novel phase transitions and generate nontrivial states such as
the measurement-only thermal state without exhibiting the
area law of entanglement entropy [25], the symmetry pro-
tected topological (SPT) state [26,27], and topological order
[28]. It should be remarked that these phase transitions in the
MOC exhibit some universal behavior at transition points as
reported in recent studies [25–28].

In the previous works [26–28], sequential stabilizer pro-
jective measurements are operated on the system as a MOC
and emergence of nontrivial states is observed. There, inter-
estingly enough, the resultant phase diagram of the MOC is
similar and almost identical to that of the ground state of the
Hamiltonian composed of the operated stabilizers. For exam-
ple, the phase diagram of the cluster-spin Hamiltonian with
local Xj terms [29] can be reproduced in the MOC by vary-
ing the probability ratio of projective measurements between
the cluster-spin and the local Xj operators [26]. This result
implies that the coefficient ratio between competing terms

in the stabilizer Hamiltonian corresponds to the probability
ratio between the projective measurements of the stabilizers,
which anticommute with each other in the MOC. In [27],
an interesting conjecture is mentioned that the steady state
in the MOC including stabilizer measurements is close to
the ground state obtained by an imaginary-time evolution of
the corresponding stabilizer Hamiltonian. However, details
of the above interesting conjecture have not been studied yet,
and further concrete examples (both analytical and numerical
ones) clarifying the correspondence are still lacking.

In this paper, we focus on a Hamiltonian composed of
stabilizer-type terms, some of which are anticommutative with
each other [shown in Eq. (1)], and a corresponding MOC and
the process of its numerical simulation. We shall study the
following three subjects to clarify the above conjecture.

(1) Based on the qualitative conjecture of parameter ratio–
probability ratio correspondence (PRC) suggested in [26,27],
we investigate the PRC on a qualitative level by using the
imaginary-time path-integral formalism and the MOC of the
Gottesman-Knill stabilizer simulation [30–32]. Comparing
the path-integral formalism and the MOC, we strengthen the
conjecture. Some simple analytical examples are also shown.
Although rigorous mathematical proof for the PRC is not
given in this paper, our paper supports the conjecture in a
substantial way.

(2) To investigate the PRC concretely, we study an inter-
esting system of great physical significance in high-energy
physics and also condensed matter physics. That is, we fo-
cus on a (1 + 1)-dimensional [(1 + 1)D] Z2 lattice gauge
Higgs model. Recently, the Higgs phase of the lattice gauge
theory (LGT) [33,34] was suggested to have properties of
the SPT phase [35] and also the ground-state phase di-
agram of the gauge Higgs Hamiltonian was studied in
[35,36].
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(3) Instead of working on the Hamiltonian system of the
above model, we numerically study its mixed-state phase dia-
gram by applying the mixed-state update methods of stabilizer
dynamics employed in [25,37] to examine the PRC. That is,
the MOC corresponding to the gauge Higgs Hamiltonian is
constructed by using the guiding principle of the PRC. We
draw the mixed-state phase diagram of the MOC and find its
clear correspondence to the LGT Hamiltonian system. This
also indicates that the MOC with suitable stabilizer measure-
ments produces interesting gauge-theoretical states predicted
as a ground state of LGTs. We further study phase transition
criticality for some typical parameter sweeps by finite-size
scaling (FSS) analysis. We comment on the critical exponents
obtained via the MOC.

The rest of this paper is organized as follows. In Sec. II,
we shall discuss the PRC conjecture on a qualitative level. We
show simple concrete examples for examination of the PRC,
and discuss the extension of the PRC to the mixed-state case.
In Sec. III, we shall introduce the Hamiltonian of the (1 + 1)D
Z2 lattice gauge Higgs model and briefly review its ground-
state properties. Then, we introduce the setup of the MOC
for searching the properties of the ground state of the gauge-
theory Hamiltonian rather in detail. There, the PRC plays the
role of the guiding principle. In Sec. IV, we show the results
of the numerical study of the MOC corresponding to the (1 +
1)D Z2 lattice gauge Higgs model. Detailed discussions on the
numerical results and a study of phase transition criticality are
given. Section IV is devoted to the conclusion.

II. CONJECTURE OF PARAMETER RATIO AND
PROBABILITY RATIO CORRESPONDENCE

In this section, we start with a random-coupling Hamil-
tonian, each term of which is a stabilizer. This type of
Hamiltonian would be expected to have a corresponding
counterpart MOC. That is, both systems share a very close
ground-state phase diagram; here the “ground state” of the
MOC means steady states appearing after a long time evo-
lution. In order to examine the conjecture, we first introduce
the imaginary-time evolution and its path-integral formalism.
Second we explain the setup of the corresponding MOC and
consider an ensemble of steady states obtained by the time
evolution of the MOC. Even though the expressions of the
ensemble of steady states and the time-evolution propagator
are mathematically not rigorous, their descriptions are use-
ful to compare the MOC and the imaginary-time evolution
of the Hamiltonian system. In fact, we obtain a useful in-
sight for the PRC. The flowchart of this section is shown in
Fig. 1(a).

A. Considered Hamiltonian

We consider a general binary random-coupling stabilizer
Hamiltonian in one dimension defined as follows:

Hstab =
L−1∑
j=0

M∑
α=1

Jα
j Kα

j , (1)

where L is the total number of sites { j}, and α represents
M types of stabilizers anticommuting with each other, i.e.,
{Kα

j } satisfy [Kα
j , Kα

k ] = 0 and (Kα
j )2 = 1, and for different
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FIG. 1. (a) Flowchart of comparison between the imaginary-time
evolution of H ′

stab and the measurement-only circuit. (b) Schematic
image of time evolution of the MOC. As an example, three differ-
ent types of stabilizers Kα

j (α = 1, 2, 3) are considered. During a
single time step, one of three kinds of the stabilizer is chosen with
the probability pα and its projective measurement is carried out,
where

∑3
α=1 pα = 1 and the position (site) of the measurement is

chosen randomly with equal probability.

types of stabilizers [Kα
j , Kβ

k ] �= 0 and {Kα
j , Kβ

k } = 0 (α �=
β) [38]. The couplings are local and binary for ∀ j, Jα

j =
±Jα , Jα > 0. The arguments throughout this paper apply
only to the type of the Hamiltonian Hstab. In general, the
model has a rich ground-state phase diagram depending on
the choice of the stabilizers and exhibits clear phase transi-
tions on varying values of parameters. Note that the ground
state is not generally unique, depending on the number of
stabilizers.

B. General setup of the measurement-only circuit

We construct a MOC counterpart to the above sta-
bilizer Hamiltonian Hstab by using the PRC as guiding
principle. In the MOC, we choose a single stabilizer
among the different types of Kα

j0
with a probability pα

and choose a target site j0 with equal probability 1/L at
each time step. We set the probability condition of the
choice of the type of the stabilizer, such as

∑
α pα = 1.

The setup is the same as that employed in the previous
works [26,27]. Then, we perform the projective measure-
ment corresponding to the stabilizer Kα

j0
. We expect that

after a large number of time steps a state reaches a steady
state for most cases. If pα′

with a particular α′ is dominant,
the steady state is stabilized by Kα′

j , corresponding to a sta-
bilizer state. A schematic example of the M = 3 case of the
MOC (three different types of stabilizer projective measure-
ments) is shown in Fig. 1(b).
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C. Parameter fixing of Hstab and the simplified MOC

In this paper, we simulate MOCs (numerically) by em-
ploying simplified stabilizer circuits [30,31], in which the
information of the overall sign of the observed value of the sta-
bilizers by projective measurements is not stored as in many
other previous studies [11,17,20,26,27,39]. In the practical
simulation, we fix the measured value to +1 for all stabilizers
in the MOC. In other words, this fixing means that a pro-
jective measurement of stabilizers denoted by Pα

j is fixed as

Pα
j = 1+Kα

j

2 at each time step. Corresponding to this setup of
MOCs, the following Hamiltonian, instead of Hstab, is consid-
ered for clarifying the subsequent discussion:

H ′
stab = −

L−1∑
j=0

M∑
α=1

JαKα
j , (2)

where the binary random couplings have been set
as Jα

j → −Jα .
Previous studies [26,27] showed that the ground-state

phase diagram of Hstab or H ′
stab is significantly close to that

of the MOC, which is determined by an ensemble average of
the measurement pattern of the MOC. This fact implies that
the ratio of parameters Jα

Jβ is related to the ratio of probabilities
pα

pβ , that is, Jα

Jβ ←→ pα

pβ . This relation is nothing but the explicit
form of “parameter ratio–probability ratio correspondence.”
In what follows, we study the conjecture of the PRC on a
qualitative level by employing the imaginary-time path inte-
gral and by focusing on the averaged states in the MOC. We
further examine the PRC for small size systems as a concrete
example.

D. Imaginary-time evolution

For the stabilizer Hamiltonian H ′
stab, the ground state can

be generated by imaginary-time evolution, which is used by
various numerical simulations, such as the path-integral quan-
tum Monte Carlo method [40]. If degenerate ground states
exist in the Hamiltonian, we expect that the ground state
generated by the imaginary-time evolution is one of the linear
combinations of them (that is, a pure state). Especially for
a spontaneously symmetry-broken phase, one of the ground
states with a definite order parameter is to be chosen.

The imaginary-time evolution starting with a state |ψ (0)〉
generates a final state as

|ψ (τ )〉 = e−τH ′
stab |ψ (0)〉, (3)

where τ is the imaginary-time interval (regarded as inverse
temperature). For sufficiently large τ , we assume the final
state |ψ (τ )〉 reaches the ground state of H ′

stab. We split the
interval τ into N segments (N � 1) and insert identities com-
posed of a complete set of bases:

|ψ (τ )〉 =
∑
{�}

|�N 〉〈�N |e−δτH ′
stab |�N−1〉

· · · 〈�1|e−δτH ′
stab |�0〉〈�0|ψ (0)〉

=
∑
�N

|�N 〉
⎡
⎣ ∑

{�}−�N

N−1∏
j=0

Gj+1, j〈�0|ψ (0)〉
⎤
⎦, (4)

Gi, j ≡ 〈�i|e−δτH ′
stab |� j〉, (5)

where δτ = τ/N and
∑

� |�〉〈�| = 1, i.e., {|�〉} is a set of
bases and we have employed Suzuki-Trotter decomposition
[41], and Gj+1, j is a propagator for small discrete time step
δτ . The above is a discrete imaginary-time path integral, and
the imaginary-time dynamics is governed by the propagator
Gj+1, j .

E. Time evolution of the MOC and ensemble state

As the next step, we turn to the MOC starting with a state
|ψ (0)〉, where a sufficiently large number of discrete time
steps denoted by tN are performed. In the MOC, a measure-
ment pattern of time evolution is selected (called “unraveling”
and this is a single stochastic process). Then, we assume that
the final state reaches a steady state. This state can be written
as [37]

|ψ (tN )�α,�j〉 = C�α,�jQ�α,�j |ψ (0)〉, (6)

Q�α,�j = PαN
jN

PαN−1
jN−1

PαN−2
jN−2

· · · Pα1
j1

, (7)

Pαm
jm

= 1
2

(
1 + Kαm

jm

)
. (8)

Here the single measurement pattern is represented by labels
�α and �j, where �α = (α1, α2, · · · , αtN ), αm(= 1, · · · , M ) rep-
resents the type of the stabilizer at the mth time step with
a probability pα , and �j = ( j1, j2, · · · , jtN ), jm(= 0, · · · , L −
1) represents the position of the performed projective mea-
surement at the mth time step. Pαm

jm
is α-type projective

measurement at the mth time step. C�α,�j is a normalization con-
stant of the state, which depends on the single measurement
pattern (�α, �j).

As in the imaginary-time evolution above, we insert many
identities composed of a complete set of bases between neigh-
boring projective operators:

|ψ (tN )�α,�j〉 ∝
∑

�

|�N 〉〈�N |PαN
jN

|�N−1〉

× 〈�N−1|PαN−1
jN−1

|�N−2〉 · · · 〈�1|Pα1
j1

|�0〉〈�0|ψ (0)〉

=
∑
�N

|�N 〉
⎡
⎣ ∑

{�}−�N

N−1∏
m=0

Im+1,m〈�0|ψ (0)〉
⎤
⎦, (9)

Im,m−1 ≡ 〈�m|Pαm
jm

|�m−1〉, (10)

where we used
∑

� |�〉〈�| = 1 and {|�〉} is the same set of bases
used in the imaginary-time evolution above. In what follows,
we shall ignore the normalization factor of the sequence of the
projective measurements.

To compare the above state in the MOC with the ground
state created by the imaginary-time evolution |ψ (τ )〉, we fur-
ther proceed with the above consideration of the MOC. We
take the ensemble average over many single measurement
patterns, creating a steady state |ψ (tN )〉. Here, we introduce
sample label s. Each sample of the measurement pattern is
labeled as (�α, �j) → (�αs, �js), where s = 1, 2, . . . , Np and Np

is the total number of the samples. Then, an averaged steady
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state is described by

|ψ (tN )〉 = 1

Np

∑
s

C�αs,�js Q�αs,�js |ψ (0)〉

∝ 1

Np

∑
s

Q�αs,�js |ψ (0)〉

= 1

Np

∑
s

∑
�N

|�N 〉
⎡
⎣ ∑

{�}�=�N

N−1∏
m=0

Is
m+1,m〈�0|ψ (0)〉

⎤
⎦

Np→∞=
∑
�N

|�N 〉
⎡
⎣ ∑

{�}−�N

N−1∏
m=0

Im+1,m〈�0|ψ (0)〉
⎤
⎦

≡ Q(tN )|ψ (0)〉, (11)

where

Im+1,m ≡ 〈�m+1|
⎛
⎝∑

α, j

pα

L
Pα

j

⎞
⎠|�m〉. (12)

From this form, the averaged state |ψ (tN )〉 is approximately
determined by an ensemble averaged propagator Im+1,m. Note
that we here ignore the factor C�αs,�js .

F. Qualitative relationship of propagators and the concrete
relation between parameter ratio and probability ratio

Now we compare the two propagators Gj+1, j and Im+1,m

to obtain a relation between them. It is expected that if the
structure of these propagators is close the obtained ground
state |ψ (τ )〉 must be close to the steady state |ψ (tN )〉.
That is,

Gj+1, j ←→ Im+1,m ⇐⇒ |ψ (τ )〉 ←→ |ψ (tN )〉. (13)

Here, ←→ means “close structure.”
From the above observation, if |ψ (τ )〉 ←→ |ψ (tN )〉 is

correct, we can conclude Gj+1, j ←→ Im+1,m. Then, by com-
paring the internal structure of the matrices Gj+1, j with that
of Im+1,m, we can obtain important insight and relationship
between model parameters of H ′

stab [{Jα}] and emergent prob-
ability {pα} and types of stabilizers in the corresponding
MOC.

In general, it is difficult to find strict and rigorous relations
between model parameters of H ′

stab [{Jα}] and probability {pα}
for a many-body system due to large Hilbert space dimen-
sion and large dimension of the matrices of the propagator.
However, we can find a qualitative relation if we consider a
simple Hamiltonian and its corresponding MOC. We study
two concrete examples given as follows.

Case I. Single spin Hamiltonian

H ′
stab1 = −J1Z − J2X,

where Z and X are Pauli operators of single 1/2 spin,
J1(2) > 0. Note that Z and X are different types of stabilizers,
which are anticommutative with each other, corresponding
to the M = 2 and L = 1 case in Eq. (2). For this Hamil-
tonian, the propagator of the imaginary-time path integral
is Gj+1, j = 〈� j+1|e−δτH ′

stab1 |� j〉, where the set of basis is
{|� j〉} = {| ↑〉, | ↓〉} for Z| ↑〉 = | ↑〉 and Z| ↓〉 = −| ↓〉.

The matrix form of Gj+1, j is obtained by practical calculation
as

(Gj+1, j ) ≈
[

eδτJ1 cosh(δτJ2) e−δτJ1 sinh(δτJ2)

eδτJ1 sinh(δτJ2) e−δτJ1 cosh(δτJ2)

]
, (14)

where we have ignored the contribution from the commutators
of X and Z (due to δτ � 1).

Let us turn to the propagator of the MOC. The MOC
corresponding to H ′

stab1 includes a single site projective mea-
surement of Z and X with probability pA and pB, respectively,
where pA + pB = 1. Then, the matrix form of the averaged
propagator (Ii j ) is given by

(Im+1,m) =
⎡
⎣ 1+pA

2
pB

2

pB

2
1−pA

2

⎤
⎦. (15)

We compare the components of the two matrices (Gj+1, j )
and (Im+1,m). The following four relations are then obtained
(ignoring an overall constant factor):

Column 1: eδτJ1 cosh(δτJ2) ←→ 1 + pA

2
,

eδτJ1 sinh(δτJ2) ←→ pB

2
; (16)

Column 2: e−δτJ1 sinh(δτJ2) ←→ pB

2
,

e−δτJ1 cosh(δτJ2) ←→ 1 − pA

2
. (17)

At first glance, we note that an increase (decrease) of the
ratio J1/J2 corresponds to an increase (decrease) of pA/pB.
More precisely for δτ � 1, we expand each component up to
O(δτ ), and then we reach the following relations:

Column 1: 1 + δτJ1 ←→ 1 + pA

2
,

δτJ2 ←→ pB

2
; (18)

Column 2: δτJ2 ←→ pB

2
,

1 − δτJ1 ←→ 1 − pA

2
. (19)

By requiring (Gj+1, j ) = C0(Im+1,m) (C0 is a constant), com-
paring the (1,1) component with the (2,2) component leads to
δτJ1 = C0

2 pA, and also comparing the (1,2) component with
the (2,1) component leads to δτJ2 = C0

2 pB. Thus, we obtain

J1

J2
←→ pA

pB
. (20)

This is a concrete form of the PRC between the imaginary-
time path-integral formalism of H ′

stab1 and its corresponding
counterpart MOC.

Case II. As a second example, we consider a three-site
cluster-spin model:

H ′
stab2 =

2∑
j=0

[−J1Zj−1XjZ j+1 − J2Xj], (21)
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where periodic boundary conditions are imposed and
J1(2) > 0. The operators ZXZ and X are different types of sta-
bilizers, which are commutative/anticommutative with each
other depending on their locations, and the model corresponds
to the M = 2 and L = 3 case in Eq. (2).

We first consider the matrix propagator of the imaginary-
time propagation 〈�|e−δτH ′

stab2 |�′〉 = Gj+1, j . Here, we employ
eigenstates of {Xj} as a complete set of basis, and therefore

{|�〉} = {| + ++〉, | − ++〉, | + −+〉, | + +−〉,
| − −+〉, | − +−〉, | + −−〉, | − −−〉}. (22)

Gj+1, j is an 8 × 8 matrix. Components of the propagators are
approximately obtained by ignoring the contributions from the
stabilizers’ commutators by the Suzuki-Trotter decomposi-
tion. The 8 × 8 full matrix is explicitly shown in Appendix A.

We turn to the propagator of the MOC. By the PRC guiding
principle, the MOC corresponding to H ′

stab2 includes a single
projective measurement of ZXZ and X with probability pA

and pB at a single time step, respectively. Here, pA + pB = 1
and the measurement site is chosen randomly with equal prob-
ability 1/L = 1/3. Then, the 8 × 8 full matrix of the averaged
propagator (Im+1,m j ) is also directly calculable. The full form
is also shown in Appendix A.

Now, we employ the same strategy as in case I. That is,
we compare the components of the two matrices (Gj+1, j ) and
(Im+1,m). Fortunately, we find only five relations (the detailed
calculation is shown in Appendix A):

1 + 3δτJ2 ←→ pA/2 + pB,

1 + δτJ2 ←→ pA/2 + 2pB/3,

1 − δτJ2 ←→ pA/2 + pB/3,

1 − 3δτJ2 ←→ pA/2,

δτJ1 ←→ pA/6. (23)

From the above relations, if we require Gj+1, j = C0(Im+1,m),
then δτJ1 = C0

6 pA, and the relations 1 + 3δτJ2 = C0(pA/2 +
pB) and 1 + δτJ2 = C0(pA/2 + 2pB/3) lead to δτJ2 = C0

6 pB.
Hence, we have

J1

J2
←→ pA

pB
. (24)

This relation is the same as that obtained in case I.
We showed that the genuine PRC relation appears for the

above two concrete cases classified in the type of Hamiltonian
of Eq. (1) by comparing the imaginary-time path-integral for-
malism and MOC.

This is the genuine PRC relation between the imaginary-
time path-integral formalism and the MOC.

G. PRC for mixed-state dynamics

We have strengthened the PRC conjecture in previous
subsections, following the previous works for pure-state evo-
lution, which numerically imply the PRC in some parts of
phase diagrams of certain models [26,27].

Forwarding the discussion one step further, we extend the
above discussion on the pure state to the mixed state, in partic-
ular, starting with an infinite-temperature mixed state. Under

the imaginary-time evolution, the density matrix dynamics is
given by

ρ(τ ) = e−τHρ(0)eτH , (25)

where H is a Hamiltonian and a suitable normalization of ρ(τ )
is assumed. Here, we set ρ(0) to an infinite-temperature state.
We expect that this approach is efficient to detect a degenerate
ground-state multiplet of the system, and there the steady
mixed state can be constructed by the ground-state multiplet.
In fact, for sufficiently large τ , the state ρ(τ ) results in a
ground state, which is a multiplet if the ground state of H is
degenerate.

Similar observation to the above can be applied to the
MOC for each single measurement pattern. We consider the
ensemble average of the density matrix averaged over samples
of measurement patterns. If we employ the averaged time-
evolution operator of the MOC Q(tN ) in Eq. (11), the averaged
time-evolved density matrix ρ(tN ) is approximately given by

ρ(tN ) ∼ Q(tN )ρ(0)Q(tN )
†
. (26)

One might expect that the PRC, similar to the pure-state
system, holds for the above mixed-state system since the
propagators for the update are the same.

However, for the mixed state in the quantum circuit, ρ(tN )
is not commonly used for calculation of physical quantities
such as entropy and entanglement entropy [14]. More pre-
cisely in the MOC, physical quantities are obtained for each
single measurement path and so-obtained results are averaged
over various measurement patterns. Then rigorously it is a
nontrivial question whether the PRC holds for the MOC of
mixed states from the viewpoint of quantum-mechanical co-
herence. Therefore, it is very important to examine if the PRC
holds for the mixed states in the MOC and to show its concrete
examples. In this paper, we address this problem by employ-
ing numerical methods. We shall study MOCs for a lattice
gauge model classified as the type of Hamiltonian of Eq. (1)
as a concrete example, which has a very rich and interesting
phase diagram. Sometimes, degenerate ground states emerge;
hence, for practical use, we employ the mixed-state update.

III. (1 + 1)D Z2 LATTICE GAUGE HIGGS MODEL AND ITS
MEASUREMENT-ONLY CIRCUIT COUNTERPART

In the previous section, we discussed the PRC between
the imaginary-time formalism of the Hamiltonian and the
ensemble average of the MOC. Certain simple examples were
investigated there. We shall further examine and strengthen
this guiding principle by investigating another model of great
physical interest. In this section, we study a lattice gauge
model called the “(1 + 1)D Z2 lattice gauge Higgs model”
with open boundary conditions. Its global ground-state phase
diagram was recently studied rather in detail [35,36]. The
model includes interesting phases, and the study on it reveals
an important relationship between gauge theory and topologi-
cal order in condensed matter.

We address the following issue: Based on the PRC guiding
principle, whether or not a suitably chosen MOC generates a
steady-state phase diagram which is similar or identical to the
ground-state phase diagram of the target gauge-theory model.
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matter site

gauge link

0

FIG. 2. Lattice-link setting for the extended cluster model. Open
boundary conditions are imposed. The total number of the matter site
is L and the total number of the gauge link is L + 1.

We shall present a suitable setup of the MOC and clarify this
issue.

A. Model Hamiltonian proposed in [35,36]

We introduce a gauge lattice as shown in Fig. 2, where
spin-1/2 degrees of freedom reside both on matter sites and
gauge links in one spatial dimension. Therefore, the total
degrees of freedom are Lt ≡ 2L + 1 spins. We focus on the
following cluster-spin Hamiltonian [35,36]:

HZ2 =
L−1∑
j=0

[ − K1σ
x
j−1/2Xjσ

x
j+1/2 − K2σ

z
j+1/2

]

+
L−1∑
j=0

[ − J1Zjσ
z
j+1/2Zj+1 − J2Xj

]
, (27)

where Xj and Zj are Pauli operators defined on matter sites
and σ x

j± 1
2

and σ z
j± 1

2

are also Pauli operators on gauge links.

We consider open boundary conditions throughout this paper.
Note that the boundaries of the system are the gauge links
as shown in Fig. 2. The model has two important symmetries:
(I) parity symmetry P ≡ ∏L−1

j=0 Xj and (II) magnetic symmetry

W ≡ ∏L−1
j′=−1 σ z

j′+ 1
2

, resulting in Z2 × Z2 symmetry, which has

been referred to as key symmetry for the SPT phase [42–45].
The model HZ2 in (27) reduces to the well-known (1 + 1)D

Z2 lattice gauge Higgs model for K1/K2 → ∞, and also it
has SPT properties of condensed-matter physics in certain
parameter regions. More precisely from the gauge-theoretical
point of view, the K1 term acts as an energetic penalty caused
by breaking of the Gauss-law constraint. On the other hand,
the K2 term hinders fluctuations of the gauge field. The J1 term
is a cluster term, interpreted as a matter-(Z2) gauge coupling,
and also it is a topological stabilizer protected by Z2 × Z2

symmetry in SPT literature, and the J2 term acts as a chemical
potential of the matter and also is regarded as a “transverse
field” competing with the cluster term. The above four terms
are different types of stabilizers from the MOC point of view.

The ground state of HZ2 and its phase diagram were
studied in detail [35,36]. The model has four ground-state
phases: the (1) Higgs=SPT phase, (2) deconfinement phase,
(3) ferromagnetic phase, and (4) simple product phase. For
K1/K2 � 1, the K1 term is dominant. This condition gives the
Gauss-law constraint σ x

j−1/2Xjσ
x
j+1/2 = 1 for the Hilbert space

[46]. Under this condition, in the parameter region such as
J1 > J2, the J1-cluster term is dominant, leading to the SPT
phase protected by Z2 × Z2 symmetry. This SPT phase is also
interpreted as the Higgs phase, where charges are condensed
and a string order parameter (the open Wilson string) is finite

as recently suggested in [35]. While for J1 < J2 the J2 term
is dominant, the deconfinement phase of the LGT emerges,
which can be regarded as a one-dimensional counterpart of
the toric code in two dimensions. In this phase, twofold de-
generacy appears in the ground state by the long-range order
〈σ x

j−1/2σ
x
j′+1/2〉 �= 0 via Gauss’s law and finite magnetization

(a finite charge density) 〈Xj〉 �= 0. Interestingly enough, this
phase can be regarded as a spontaneously broken phase of the
W symmetry [35].

Furthermore, the K2 > K1 regime is also interesting, where
Gauss’s law is weakened, and other phases emerge. For J1 >

J2, a ferromagnetic phase appears with spontaneous broken
Z2 symmetry since σ z

j+1/2 is frozen and the model reduces to
a transverse field Ising model [36], while for J1 < J2 the J2

term is dominant and as a result a trivial product state emerges,
stabilized by Xj and σ z

j+1/2.
With open boundary conditions, the above four ground

states exhibit different characters [35,36]; in particular, the de-
generacy of these ground states is different. In the Higgs=SPT
phase, the ground state is fourfold degenerate due to the pres-
ence of a zero-energy edge mode at each edge. This is directly
observed by counting the number of stabilizers stabilizing
the state. For K1 → ∞ and J1 → ∞, the total number of
the two stabilizers of K1 and J1 terms is 2L − 1. This leads
to two redundant degrees of freedom, Lt − (2L − 1) = 2, in-
ducing fourfold (= 2Lt −(2L−1)) degeneracy. In the topological
phase for J2/J1 � 1, the ground state is twofold degenerate
since the total number of matter sites is smaller than that of
the gauge link [47]. For the ferromagnetic phase, the ground
state is doubly degenerate since cat states occur. For the
product phase, the ground state is unique since the state is
stabilized by all K2 and J2 terms. The above ground-state
degeneracy is one of the properties of the Hamiltonian. We
shall show that states which can be regarded as counterparts
of the above four ground states are produced by the MOC as
mixed states by employing the mixed-state protocol.

It is expected that some of four phases can be characterized
by bulk nonlocal order parameters [35]. For the Higgs=SPT
phase, the bulk order can be characterized by the following
decorated domain wall operator (DWO):

G(i0, j0) = Zi0

⎛
⎝ j0−1∏

j=i0

σ z
j+ 1

2

⎞
⎠Zj0 , (28)

where i0 and j0 are two separated matter sites. The
Higgs=SPT phase has a finite expectation value of G(i0, j0).
For the ferromagnetic phase, the bulk order can be character-
ized by the spin-spin correlation operator:

S(i0, j0) = Zi0 Zj0 , (29)

where i0 and j0 are two separated matter sites. The ferromag-
netic phase has a finite expectation value of S(i0, j0). We shall
apply a modified version of these nonlocal order parameters
to the numerics of the MOC as shown later.

The global ground-state phase diagrams were analytically
studied and obtained in [36] (see Fig. 8 in [36], where
the phase diagrams of a related model to HZ2 are shown).
There, the four phases are displayed in the (J1/J2) − (K1/K2)
plane, and two phase boundaries are given by J1/J2 = 1 and
K1/K2 = 1.
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Gauss-law layer
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FIG. 3. Schematic figure of the measurement-only circuit corre-
sponding to the Hamiltonian HZ2 . The black and red lines represent
the matter sites and gauge links, respectively. The blue and magenta
shaded layers represent the Gauss-law and matter layers, respec-
tively. The one time step includes the two layers.

B. Circuit setup corresponding to HZ2

We set up a MOC, which is expected to produce quali-
tatively the same phase diagram as that of the ground state
reviewed in the previous subsection. To this end, we introduce
a two-layered projective measurement in a single time step as
shown in Fig. 3. The two layers are composed of the matter
layer and Gauss-law layer.

We consider a system of L matter sites with open boundary
conditions, where L + 1 gauge links exist as in Fig. 2. The
total degree of freedom is therefore Lt . Here, we introduce
four different types of stabilizers and corresponding projective
measurements, which are defined as

M̂1a
j = σ x

j−1/2Xjσ
x
j+1/2, M̂1b

j′ = σ z
j′+1/2, (30)

M̂2a
j = Zjσ

z
j+1/2Zj+1, M̂2b

j = Xj, (31)

where j = 0, 1, . . . , L − 1 and j′ = −1, 0, . . . , L − 1. The
above four kinds of operators are included in HZ2 and they
satisfy properties of the stabilizer, i.e., [M̂kα

i , M̂kα
j ] = 0 and

(M̂kα
j )2 = 1 for k = 1, 2 and α = a, b, and note that M̂ka

i and
M̂kb

j anticommute with each other for a pair of (i, j). That
is, projective measurements of M̂ka

i and M̂kb
j for k = 1, 2 are

competitive with each other. In the MOC, for each matter
layer, we apply stabilizers M̂2a

j and M̂2b
j with probability pA

and pB, respectively, with pA + pB = 1. The measured site j
is chosen randomly with equal probability, similar to the case
in Sec. II.B. In each Gauss-law layer, we apply stabilizers
M̂1a

j and M̂1b
j with probability pC and pD, respectively, with

pC + pD = 1. The measured site j is chosen again randomly
with equal probability.

Since each ground state of HZ2 is degenerate in a different
manner, the mixed-state update procedure is efficient to detect
and characterize the phases since we can count the number of
stabilizers directly in numerics. In the previous subsection, we
expect that the PRC holds even for the mixed-state protocol.
For the practical MOC, we set the infinite-temperature state

as an initial state, and then the mixed state is evolved for a
large number of discrete time steps. Another reason to employ
the mixed-state protocol is that the initial-state dependence
existing in the pure-state update can be avoided.

We consider a long time evolution with the total number
of steps tN = 4(2L + 1)(= 4Lt ). In general, the initial mixed
state is purified by projective measurements. We first obtain
a steady state (mixed or pure state) in each measurement
pattern (a single stochastic process) and calculate physical
observables in the steady state. Then, we gather many samples
of steady states and physical observables as an ensemble and
investigate the properties of the ensemble to compare them
with the ground-state properties of the target Hamiltonian.

IV. NUMERICAL RESULTS
OF PURIFICATION DYNAMICS

In this section, we shall show numerical demonstrations of
the MOC defined in the previous section, and verify that the
MOC generates steady stabilizer states, the phase diagram of
which is similar to the ground-state phase diagram of HZ2 .

A. Explanation of numerical calculation

We make use of the stabilizer update numerical algorithm
[30–32] to simulate the MOC. In particular, we employ the
mixed-state update methods of stabilizer dynamics employed
in [25,37], in which sign information for updating stabilizers
is not stored.

We start with the state at infinite temperature ρ = 1
ND

Î ,
where ND is the Hilbert space dimension of the system
(ND = 2Lt ). Generally, the time evolution by sequential pro-
jective measurements of stabilizers makes the initial mixed
state purified (the rank of the density matrix is decreasing.)
For a long time period, a purified state emerges as a steady
state, but it cannot be necessarily a genuine pure state, i.e., it
is allowed to be a mixed state. We expect that a steady mixed
state corresponds to a multiplet of the ground states of HZ2 .
More precisely, the rank of a steady mixed state denoted by
Ncs is related to the degeneracy of the ground state of HZ2

denoted by Ngd , as 2Ncs = Ngd . In the stabilizer formalism,
the rank is related to the dimension of code space 2Ncs with
Ncs ≡ Lt − NR, where NR is the total number of linearly inde-
pendent stabilizers generating the mixed state [48].

In practical calculation of the target observables shown
later, we employ 400–600 different measurement patterns for
various system sizes and various values of probabilities, and
take an ensemble average of saturation values of the observ-
ables at tN = 4Lt , where the state reaches a steady state (mixed
or pure state).

B. Physical observables

To identify the phase of the state obtained by the MOC,
we first observe the degree of the code space Ncs obtained by
counting the total number of linearly independent stabilizers
NR. In particular for steady states, we calculate the ensemble
average of them, denoted by 〈Ncs〉, obtained through many
samples of the measurement patterns. In fact, 〈Ncs〉 is related
to the average entropy of the state [37] and also is expected to
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relate to the degeneracy of the ground state of the correspond-
ing Hamiltonian HZ2 , as we explained above.

Furthermore, to examine if the MOC dynamics generates
the Higgs=SPT or ferromagnetic phase in the bulk as a steady
state, we calculate decorated DWO [26,35], which is defined
as follows:

(DWO)2 ≡ 2Ncs tr[ρ(tN )G(i0, j0)ρ(tN )G(i0, j0)] (32)

where

G(i0, j0) = Zi0

⎛
⎝ j0−1∏

j=i0

σ z
j+ 1

2

⎞
⎠Zj0 .

Here, by using linearly independent stabilizer generators, the
density matrix of the system state (mixed state) is given by

ρ(tN ) =
NR−1∏
�=0

(
1 + s�(tN )

2

)
, (33)

where s�(tN ) is NR’s updated stabilizers (linearly indepen-
dent). In the LGT, G(i0, j0) is nothing but a gauge-invariant
correlator of matter field (Higgs field) connected by a Wilson
string. On the other hand, (DWO)2 is a kind of Edward-
Anderson type of string order to detect SPT phase [26].

We further calculate the following spin-glass long-range
order parameter (SGO) to characterize ferromagnetic phase:

(SG)2 ≡ 2Ncs tr[ρ(tN )S(i0, j0)ρ(tN )S(i0, j0)], (34)

where S(i0, j0) = Zi0 Zj0 . In the update of the MOC without
storing sign information for the stabilizers, the ferromagnetic
phase implies the presence of a spin-glass–like phase; thus, in
what follows, we call the phase the “spin-glass (SG) phase”
instead of the ferromagnetic phase. The further practical cal-
culation scheme in our numerics is explained in Appendix B.

C. Phase diagram of the steady state obtained by the MOC

We start with observing 〈Ncs〉. From the behavior of 〈Ncs〉,
we verify that the MOC generates four different kinds of
steady states and find the qualitative phase diagram in the
pA − pC plane as shown in Fig. 4. This phase diagram is very
close to the ground-state phase diagram of the Hamiltonian
HZ2 proposed in [35,36], in which two phase boundaries exist
at J1/J2 = 1 and K1/K2 = 1 separating the ground state of the
system HZ2 . The phase diagram of the steady state obtained
by our numerics of the MOC has also two phase boundaries
at pA/pB ≈ 1 and pC/pD ≈ 1. Therefore, the present study
confirms the PRC, i.e., the MOC with a suitable setting of
projective measurement of stabilizers can generate (mixed)
steady states that are very close to the gauge-theoretical
ground states of HZ2 through long but finite-period evolution
by the MOC.

We investigate details of the transition properties of mixed
states in the MOC. The behavior of 〈Ncs〉 along the four typical
lines in the parameter space (I)–(IV), displayed in Fig. 4, is
observed. The results for various system sizes are shown in
Fig. 5. We find that all data exhibit clear system-size depen-
dence and the peaks of 〈Ncs〉 are located in the vicinity of pA or
pc ≈ 0.5. These peaks are obviously a signature of the phase
transition.

0.5

0.5

Higgs=SPTdeconfinement

SGsimple product

(I)

(II)

0 1

1
(IV)

(III)

FIG. 4. Schematic figure of the phase diagram obtained by the
MOC. A mixed-state algorithm is employed. The red and blue dashed
lines are obtained phase boundaries, pA ≈ 0.5 and pC ≈ 0.5 in the
present paper. The red and blue solid lines represent the typical
parameter sweeps studied in detail.

Calculations in Fig. 5(a) are for the case of pC = 0.9,
in which Gauss’s law is enforced strongly. We find the
value of 〈Ncs〉 clearly changes as 1 → 2 with increasing
pA. This indicates that the mixed state exhibits transition
from the deconfinement phase to the Higgs=SPT phase since
〈Ncs〉 = 2 shows the presence of fourfold degenerate stabilizer
states, corresponding to the ground-state degeneracy of the
Higgs=SPT phase of HZ2 in the open boundary case, whereas
〈Ncs〉 = 1 corresponds to twofold degenerate states by the
spontaneous breaking of the magnetic symmetry in HZ2 . See
the data of Fig. 5(b) for pC = 0.1(pD = 0.9). Gauss’s law is
weak and the gauge variable is frozen as σ z

j+1/2 → 1 instead.
We observe that the value of 〈Ncs〉 clearly changes as 0 → 1
with increasing pA. This implies that the state changes from
the product pure state stabilized by all Xj and σ z

j+1/2 to the
SG phase, which are twofold degenerate states stabilized by
Zjσ

z
j+1/2Zj+1 → ZjZ j+1, corresponding to the ground-state

degeneracy of the ferromagnetic phase (cat states) of HZ2 .
Next, see the data of Fig. 5(c) where we fix pA = 0.9 and vary
the strength of Gauss’s law. We observe that the value of 〈Ncs〉
clearly changes as 1 → 2 with increasing pC , implying that
the SG phase transitions into the Higgs=SPT phase. Also,
see the data of Fig. 5(d) where we fix pA = 0.1 and vary the
strength of Gauss’s law. We observe that the value of 〈Ncs〉
clearly changes as 0 → 1 with increasing pC , implying the
simple product pure-state transitions into the deconfinement
phase.

We further analyze the system-size dependence of 〈Ncs〉
along the above mentioned four lines in the parameter space.
From the data, we can obtain phase transition points in the
MOC. We fit the data points of 〈Ncs〉 [49] and deduce the
location of the peak of the fitting line with the correspond-
ing probability for each system size. The exponential fitting
[50] of selected probability points of different system sizes
is performed on the 1/L axis, and the fitting line is extrapo-
lated to estimate the transition probability point pA

c or pC
c for

Lt → ∞. These FSS data are displayed in the right panels
in Figs. 5(a)–5(d). By using this method, we estimate the
phase transition points: for line (I) pA

c = 0.485(8), for line (II)
pA

c = 0.494(7), for line (III) pC
c = 0.491(1), and for line (IV)
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FIG. 5. Phase transition behaviors of 〈Ncs〉 for various system sizes. The solid lines are fitting lines. (a) The data for a strong Gauss’s law
case, pC = 0.9. (b) The data for a weak Gauss’s law case, pC = 0.1(pD = 0.9), where the gauge dynamics is frozen, σ z

j+1/2 → 1. (c) The data
for a Gauss’s law sweep case with a fixed pA = 0.9. (d) The data for a Gauss’s law sweep case with a fixed pA = 0.1. Right small panels:
System-size dependence of pA

c and pC
c deduced from the peak of the fitting lines. We can extrapolate the critical probabilities for 1/L → 0.

Here we used an exponential fitting line.

pC
c = 0.485(6). The above values are fairly close to 0.5, im-

plying that pA/pB ≈ 1 and pC/pD ≈ 1 are phase boundaries
in the MOC. The results of estimation indicate the valid-
ity of the PRC for the phase boundaries, pA/pB ←→ J1/J2

and pC/pD ←→ K1/K2. Note that these estimated values are
slightly smaller than 0.5, and we expect that the reason for that
comes from the difference of the total number of the stabiliz-
ers corresponding to each phase. In Appendix C, we further
show the behavior of 〈Ncs〉 on other lines in the parameter
space and determine a quadruple critical transition point.

In addition, we calculate the average values of the DWO
and SGO along lines (I) and (III) in Fig. 4, where we set
i0 = 1 and j0 = L − 2. The results are shown in Figs. 6(a)
and 6(b). The DWO becomes finite in the Higgs=SPT regime
(pA � 0.5) and the SGO becomes finite in the SG ferromag-
netic regime (pC � 0.5). These results support the existence of
the bulk Higgs=SPT and SG phases produced by the MOC.
We also find that the behaviors of the DWO and SGO are
insensitive to the system size.

Finally, we estimate the criticality of the transitions in
the MOC simulation. Before showing the numerical results,
it should be remarked that the present simulation of the
mixed-state update in the MOC has aspects different from
the usual ground-state simulation governed by the Hamil-
tonian. That is, the critical exponents of the mixed-state
transition in the MOC might be different from those of the
genuine ground-state phase transition emerging by varying the
parameters in the Hamiltonian. The criticality of the ground-
state phase transitions in the system HZ2 was investigated in
[35,36] in terms of conformal field theory (CFT). However,
our finding phase transition is not necessarily governed by
such a CFT. At present, it is not clear if the pure-state and
mixed-state updates have the same criticality, even though

the transition points are the same. This is an interesting fu-
ture problem. Keeping this remark in mind, we carry out
FSS analysis for the (I) and (III) lines in Fig. 4, that is, we
consider the deconfinement-Higgs=SPT phase and the SG
phase-Higgs=SPT phase transitions. To estimate its criticality
(critical exponents), we apply the FSS analysis to 〈Ncs〉. Here,
we employ the following scaling ansatz [6,51]:

〈Ncs〉(pα, L) = L
γ

ν �[(pα − pα
c )L1/ν], (35)

where � is a scaling function, γ and ν are critical exponents,
and pα=A,C

c is a critical transition probability. We use the
extrapolated values of pA(C)

c for Lt → ∞ shown in Figs. 5(a)

(a)

(b)

Higgs=SPT

SG

Higgs=SPT

deconfinement

FIG. 6. (a) Decorated DWO with fixed value pC = 0.9 (a strong
Gauss’s law is enforced). The decorated domain wall is condensed
in the Higgs=SPT phase indicating spontaneous symmetry breaking
of matter parity symmetry. (b) SGO with fixed value pA = 0.9. Both
data indicate no system size dependence.

224305-9



YOSHIHITO KUNO AND IKUO ICHINOSE PHYSICAL REVIEW B 107, 224305 (2023)

(a) (b)

FIG. 7. Best optimal scaling functions for the transition behav-
ior of the sweeps (I) and (III) in Fig. 4. The curves are obtained
from the optical fitting calculation by using the estimated values
pA

c = 0.485(8) and pC
c = 0.491(1) from the data in Figs. 5(a) and

5(c). In panel (a), the optimal critical exponents are γ = 1.53(0)
and ν = 2.15(0). The fitting line of the scaling function has
R2 = 0.990(4). In panel (b), the optimal critical exponents are
γ = 1.85(0) and ν = 2.6(0). The fitting line of the scaling function
has R2 = 0.995(8). For both data, the fitting curve of the scaling
function is obtained via a 12th order polynomial function with the
best optimal coefficients.

and 5(c), and determine the scaling function � by searching
the optimal values of γ and ν. There, by using the data of
〈Ncs〉, the fitting curve for the scaling function is obtained via
a 12th order polynomial function with the optimal coefficients
for various values of γ and ν, and then the coefficient of
determination R2 is estimated to find optimal γ and ν.

The scaling functions obtained by this FSS analysis are
displayed in Figs. 7(a) and 7(b) where we used L = 48, 64, 96
data points in Figs. 5(a) and 5(c) and set pA

c = 0.485(8) and
pC

c = 0.491(1) for the parameter sweeps (I) and (III),
respectively.

For the deconfinement-Higgs=SPT phase transition, the
optimal critical exponents are estimated as γ = 1.53(0) and
ν = 2.15(0). The fitting line of the scaling function has
R2 = 0.990(4). For the SG phase-Higgs=SPT phase tran-
sition, the optimal critical exponents are estimated as
γ = 1.85(0) and ν = 2.6(0). The fitting line of the scaling
function has R2 = 0.995(8). We should not compare these val-
ues with those of CFTs since our target phase transition is for
mixed states and occurs in the MOC, as we explained above.
Furthermore, the criticality observed in the present MOC for
the mixed states may reveal some nontrivial aspects of the
symmetry enriched topological phase transition. Anyway, to
clarify physical meanings of the obtained critical exponents is
a future problem. We summarize the results of our numerical
calculation of the MOC, where we used mixed-state update
methods that are efficient to study the various degenerate
ground-state multiplets. We numerically demonstrated that
the PRC between the gauge-theory Hamiltonian HZ2 and the
corresponding MOC holds in the phase diagram level (that is,
phase boundaries) even though mixed-state update simulation
is employed, but the criticality is different. Conversely, based
on the PRC guiding principle, the MOC with a suitable set
of stabilizer projective measurements can produce various
stabilizer states corresponding to the interesting ground states
of the gauge theory.

V. CONCLUSION

In the first half of this paper, we focused on a Hamiltonian
including different types of stabilizers of Eq. (1) and gave a
qualitative argument of the PRC by comparing the propaga-
tors obtained from the imaginary-time path integral and the
ensemble average of the MOC. In particular, we showed two
concrete examples supporting and strengthening the validity
of the PRC. We also discussed that the PRC can be extended to
the mixed-state dynamics since the PRC is based on the struc-
ture of the propagator itself. Needless to say, the discussion
on the PRC in this paper is qualitative, and more rigorous and
mathematical proof for this conjecture is an important future
problem and welcome.

In the second half of this paper, to examine the validity
and utility of the PRC, we investigated the (1 + 1)D Z2 lattice
gauge Higgs model, which includes very rich physics and
distinct degenerate ground-state multiplets for each phase, by
the practical use of the MOC. We showed that the MOC with
suitable stabilizer projective measurements and suitable prob-
ability ratios produces a steady-state phase diagram, which
is quite similar to the ground-state phase diagram of the
corresponding gauge Higgs Hamiltonian previously studied
in [35,36]. Our numerical result of the MOC is a concrete
example indicating that (I) the PRC is observed as far as
the phase structure even in the mixed-state update, extending
and corroborating the analytical conjecture of the pure-state
update, and (II) the PRC can be a good guiding principle
to produce interesting and desired states (including mixed
state) by MOCs with suitable stabilizer projective measure-
ment suggested by the PRC. As a specific concrete example,
our MOC demonstrates the presence of the Higgs=SPT phase
and other symmetry-breaking types of orders such as the SG
phase by controlling the strength of Gauss’s law with varying
the measurement probability.

Finally, even though this paper mainly studied gauge
theory in the (1 + 1)D case as a concrete example, it is
straightforward to apply the present methods to other quantum
systems in higher dimensions. We hope to report studies on
them in the future.
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APPENDIX A: THREE SPIN CLUSTER MODEL

We consider the following Hamiltonian:

H ′
stab2 =

2∑
j=0

[−J1Zj−1XjZ j+1 − J2Xj],

where periodic boundary conditions are imposed.
We focus on the imaginary-time propagator Gj+1, j =

〈�|e−δτH |�′〉. Here, we consider a set of basis based
on Xj :

{|�〉} = {| + ++〉, | − ++〉, | + −+〉, | + +−〉,
| − −+〉, | − +−〉, | + −−〉, | − −−〉}. (A1)
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Then with this basis, the full matrix form of Gj+1, j is obtained as

(G j+1, j )

≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1[a3 − b3] 0 0 0 c3[ab(a − b)] c3[ab(a − b)] c3[ab(a − b)] 0

0 c2[a3 + b3] c2[ab(a + b)] c2[ab(a + b)] 0 0 0 c4[−ab(a + b)]

0 c2[ab(a + b)] c2[a3 + b3] c2[ab(a + b)] 0 0 0 c4[−ab(a + b)]

0 c2[ab(a + b)] c2[ab(a + b)] c2[a3 + b3] 0 0 0 c4[−ab(a + b)]

c1[ab(a − b)] 0 0 0 c3[a3 − b3] c3[−ab(a − b)] c3[−ab(a − b)] 0

c1[ab(a − b)] 0 0 0 c3[−ab(a − b)] c3[a3 − b3] c3[−ab(a − b)] 0

c1[ab(a − b)] 0 0 0 c3[−ab(a − b)] c3[−ab(a − b)] c3[a3 − b3] 0

0 c2[−ab(a + b)] c2[−ab(a + b)] c2[−ab(a + b)] 0 0 0 c4[a3 + b3]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A2)

where

a = cosh(δτJ1), b = sinh(δτJ1),

c1 = e3δτJ2 , c2 = eδτJ2 , c3 = e−δτJ2 , c4 = e−3δτJ2 .

We turn to the propagator of the MOC. By employing the set of basis {|�〉} above, the full matrix form of Im+1,m is
obtained as

(Im+1,m)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pA/2 + pB 0 0 0 pA/6 pA/6 pA/6 0

0 pA/2 + 2pB/3 pA/6 pA/6 0 0 0 −pA/6

0 pA/6 pA/2 + 2pB/3 pA/6 0 0 0 −pA/6

0 pA/6 pA/6 pA/2 + 2pB/3 0 0 0 −pA/6

pA/6 0 0 0 pA/2 + pB/3 −pA/6 −pA/6 0

pA/6 0 0 0 −pA/6 pA/2 + pB/3 −pA/6 0

pA/6 0 0 0 −pA/6 −pA/6 pA/2 + pB/3 0

0 −pA/6 −pA/6 −pA/6 0 0 0 pA/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A3)

We compare the components of the two matrices (Gj+1, j ) and (Im+1,m) to obtain the following relationships:

Column 1: c1[a3 − b3] ←→ pA/2 + pB, c1[ab(a − b)] ←→ pA/6,

Columns 2–4: c2[a3 + b3] ←→ pA/2 + 2pB/3, c2[ab(a + b)] ←→ pA/6,

Columns 5–7: c3[a3 − b3] ←→ pA/2 + pB/3, c3[ab(a − b)] ←→ pA/6,

Column 8: c4[a3 + b3] ←→ pA/2, c4[ab(a + b)] ←→ pA/6.

We proceed to further approximation. Since δτ � 1, we expand each component up to the order O(δτ ), and then we find that
the above eight relations reduce to

Column 1: 1 + 3δτJ2 ←→ pA/2 + pB, δτJ1 ←→ pA/6,

Columns 2–4: 1 + δτJ2 ←→ pA/2 + 2pB/3, δτJ1 ←→ pA/6,

Columns 5–7: 1 − δτJ2 ←→ pA/2 + pB/3, δτJ1 ←→ pA/6,

Column 8: 1 − 3δτJ2 ←→ pA/2, δτJ1 ←→ pA/6.

Requiring Gj+1, j = C0(Im+1,m), δτJ1 = C0
6 pA, and the

relations 1 + 3δτJ2 = C0(pA/2 + pB) and 1 + δτJ2 =
C0(pA/2 + 2pB/3) leads to δτJ2 = C0

6 pB. We obtain

J1

J2
←→ pA

pB
. (A4)

APPENDIX B: COMPUTATION OF STRING
TOPOLOGICAL ORDER AND SCALING ANALYSIS

The DWO can be calculated in the stabilizer formalism as
G(i0, j0) is written only by Pauli strings without imaginary
factor i and G2 = 1. Each stabilizer s�(t ) commutes or an-
ticommutes with G at ∀t , Gs�(t ) = α�s�(t )G with α� = ±1.
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0.5

0.5

Higgs=SPT

SGsimple product

(V)

0 1

1

(VI)

deconfinement

FIG. 8. Schematic figure of the phase diagram obtained by the
MOC. A mixed-state algorithm is employed. The black and gray
dashed lines labeled by (VI) and (V) are additional parameter sweep
lines. The red and blue dashed lines are phase boundaries, pA ≈ 0.5
and pC ≈ 0.5, respectively.

The STO is reduced to a simple form:

O[(DWO)2] = 2Ncs tr[ρ(t )G(i0, j0)ρ(t )G(i0, j0)]

= 2Ncs

22NR
tr

[
NR−1∏
�=0

(1 + s�)G
NR−1∏
k=0

(1 + sk )G

]

= 2Ncs

22NR
tr

[
NR−1∏
�=0

(1 + s�)
NR−1∏
k=0

(1 + αksk )

]

= 2Ncs

22NR
tr

[
NR−1∏
�=0

(1 + s�)(1 + α�)

]

= 2Ncs

22NR
tr

[
NR−1∏
�=0

(1 + s�)

]
NR−1∏
k=0

(1 + αk )

= 1

2NR

NR−1∏
�=0

(1 + α�), (B1)

where we have used Gs(1 + s�(t ))Gs = [1 + Gss�(t )Gs] =
(1 + α�s�(t )). For the ideal Z2 × Z2 SPT phase, due to α� = 1
for ∀�, O[(DWO)2] = 1 while for no Z2 × Z2 SPT phase
strictly O[(DWO)2] = 0 due to α� = −1 for ∀�.

The observable (SG)2 in Eq. (34) is also calculated in a
similar manner.

APPENDIX C: ADDITIONAL DATA
OF THE MOC SIMULATION

We further investigate the behavior of 〈Ncs〉 and the tran-
sition properties of mixed states in the MOC for additional
parameter sweeps denoted by (V) and (VI) as shown in Fig. 8.
For case (V), we vary ps as defined by pA = pC = ps, and
for case (VI) we vary ps defined by pA = 1 − pC = ps. The
results of 〈Ncs〉 of case (V) for different system sizes are
displayed in Fig. 9(a). We find the value of 〈Ncs〉 clearly
changes as 0 → 2 with increasing ps. This implies that the
mixed state transitions from the simple product phase to the
Higgs=SPT phase in the open boundary case. For all data,
the system-size dependence emerges clearly and a peak of
〈Ncs〉 is located around ps ≈ 0.5. These peaks are signa-
tures of a phase transition. The system-size dependence of
ps of the peak is displayed in the right panel in Fig. 9(a).
We can extrapolate the phase transition point psc = 0.483(5)
for L → ∞.

Next, we show the results of 〈Ncs〉 of case (VI) for different
system sizes, displayed in Fig. 9(b). We observe that the value
of 〈Ncs〉 clearly changes almost as 1 → 1 with increasing ps.
This implies the mixed state changes from the deconfinement
phase to the SG phase in the open boundary case. For all data,
the system-size dependence emerges clearly and a peak of
〈Ncs〉 is located around ps ≈ 0.5. These peaks are signatures
of a phase transition. The system-size dependence of ps of
the peak point is displayed in the right panel in Fig. 9(b).
We can extrapolate the phase transition point psc = 0.499(8)
for L → ∞.

These numerical results indicate that the probability
point (pA, pC ) ≈ (0.5, 0.5) is a quadruple critical transition
point.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.02 0.04

(a) (b)

1/L 1/L

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.02 0.04

FIG. 9. Phase transition behaviors of 〈Ncs〉 for various system sizes. The solid lines are fitting lines. (a) The data for the case (IV),
pA = pC = ps. (b) The data for the case (V), pA = 1 − pC = ps. Right small panels: System size dependence of psc deduced by the peak
of the fitting lines. We can extrapolate the critical probabilities for 1/L → 0. Here we used an exponential fitting line.
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