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Discrete Laplacian thermostat for spin systems with conserved dynamics
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A well-established numerical technique to study the dynamics of spin systems in which symmetries and
conservation laws play an important role is to microcanonically integrate their reversible equations of motion,
obtaining thermalization through initial conditions drawn with the canonical distribution. In order to achieve a
more realistic relaxation of the magnetic energy, numerically expensive methods that explicitly couple the spins
to the underlying lattice are normally employed. Here we introduce a stochastic conservative thermostat that
relaxes the magnetic energy while preserving the constant of motions, thus turning microcanonical spin dynamics
into a conservative canonical dynamics, without actually simulating the lattice. We test the thermostat on the
Heisenberg antiferromagnet in d = 3 and show that the method reproduces the exact values of the static and
dynamic critical exponents, while in the low-temperature phase it yields the correct spin wave phenomenology.
Finally, we demonstrate that the relaxation coefficient of the new thermostat is quantitatively connected to the
microscopic parameters of the spin-lattice coupling.
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I. INTRODUCTION

The impact of symmetries and conservation laws on the
dynamics of physical systems cannot be overstated, and spin
systems are no exception. Not only conservation laws can
change the low-temperature dispersion relations, but they can
also radically change the dynamical critical exponents [1].
The most effective method to numerically study spin systems
with symmetries and conservation laws is to microcanonically
integrate the reversible equations of motion [2,3], a technique
called spin dynamics (SD) by Landau and coworkers, who
advanced it very significantly [4–10]. As the energy is con-
served, in order to thermalize the system SD draws the initial
conditions from a canonical ensemble at temperature T using
Monte Carlo. Although SD provides excellent results, one
can raise an issue, which is both conceptual and practical.
Consider a microcanonical simulation of a particles system, as
in standard molecular dynamics (MD); despite the inevitable
simplifications, one can argue that MD is conceptually the
same as the actual physical dynamics of an isolated system.
On the other hand, microcanonical SD has not quite the same
conceptual standing as microcanonical MD: In an actual spin
system, where the spins belong to the atoms of an underlying
lattice, thermal relaxation occurs mostly through the exchange
of energy (but not of magnetization) between the spins and
the nuclei; by excluding the lattice from the simulation, and
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including the temperature only through the initial conditions,
SD takes a (clever) shortcut, which has, however, no actual
physical counterpart, as in most physical systems it is quite
hard to isolate the spins from the lattice. While within MD
one can consider a subsystem A as the heat bath acting upon
an adjacent subsystem B, in most spin systems the heat bath
is provided by the lattice, which is instead absent in SD. This
issue has also practical implications; for example, if we want
to change the temperature during a spin simulation or if we
want to study the effects of a quench, SD has a problem, as
T is fixed once and for all at the beginning of the simulation
by the initial conditions. It was precisely to deal with this
problem that Tauber and Nandi devised an interesting hybrid
method, in which microcanonical SD is alternated with canon-
ical Kawasaki Monte Carlo (KM) at temperature T , giving
rise to a SD-KM-SD-KM-. . . dynamical sequence [11,12].
Notice that although KM is conservative, it is not a true
dynamics, as conservation is achieved by swap moves, rather
than being dynamically generated by the symmetry through
Noether’s theorem; which is precisely why KM needs to take
turns with SD in the method of [11,12].

A more fundamental approach is to explicitly take into
consideration the interaction between spins and lattice by
running in parallel a spin dynamics and a molecular dynamics
simulation, an approach that we will call SD+MD [13,14].
Even though in this microcanonical dynamics the total energy
is conserved, there is energy exchange between spin and lat-
tice, so that the magnetic energy relaxes. SD+MD is the most
complete and realistic numerical method to simulate magnetic
systems, but it is also significantly more expensive than SD
from a computational point of view, as it needs to update the
positions and the momenta of the nuclei, in addition to the
spins. It would be useful to have a method as simple and
economic as SD, but which includes the relaxational effects
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of the spin-lattice coupling. We note that such methods ex-
ist for the case where interactions do not conserve the total
magnetization. The Landau-Lifshitz-Gilbert equation [15] and
other Langevin-type equations [16,17] relax the spin energy
through multiple dissipative terms, violating the conservation
law. However, analogous mechanisms for the conservative
case, where the total magnetization is constant, are still lack-
ing. Here, we fill that gap and present a stochastic thermostat
that turns microcanonical spin dynamics into a conservative
canonical dynamics: the novel numerical method updates only
the spins, hence having a low computational cost—similar to
SD—and yet it thermalizes the magnetic energy, as if the spins
were coupled to an underlying lattice.

The paper is organized as follows. In Sec. II, we intro-
duce the new conservative thermostat. In Sec. III, we test
the method on the Heisenberg antiferromagnet and obtain the
correct critical exponents, spin wave dispersion law, and spin
wave softening. Finally, we show in Sec. IV that the relaxation
coefficient of the stochastic thermostat can be qualitatively
and quantitatively connected to the microscopic parameters
of the spin-lattice coupling.

II. DISCRETE LAPLACIAN THERMOSTAT

In this section, partly taking inspiration from the dynamical
mesoscopic equations of conserved fields, we will devise a
way to write a conservative thermostat for a discrete spin
dynamics. As we shall see, the key objects to achieve this
result will be the discrete Laplacian and the incidence matrix;
for a discussion of both these quantities in the context of graph
theory see [18].

A. Microcanonical spin dynamics

We consider a system of N spins σ
μ
i with i = 1, . . . , N and

μ = 1, . . . , d , obeying the Poisson brackets,

{
σ

μ
i , σ ν

j

} = h̄−1
d∑

ρ=1

εμνρ σ
ρ
i δi j, (1)

where εμνρ is the Levi-Civita antisymmetric tensor. Micro-
canonical SD amounts to integrate the reversible equations of
motion,

dσ i

dt
= {H, σ i}, (2)

which naturally conserve the energy H . We consider the case
in which also the total magnetization

M =
N∑

i=1

σ i (3)

is a constant of motion,

dM
dt

= 0, (4)

which, of course, amounts to require

{H, M} = 0. (5)

As we discussed in the Introduction, the only way to thermal-
ize a microcanonical SD simulation is to start the numerical

experiment from an initial condition previously thermalized
at temperature T with a canonical nonconservative dynamics,
typically Monte Carlo [9]. We want to change that; our aim
is to add to the microcanonical SD dynamics (2) some new
irreversible relaxational terms, i.e., a stochastic thermostat,
which relaxes the energy H , while at the same time conserving
the magnetization M.

B. Inspiration from dynamical field theory

Within dynamical field theory there is a standard method
to achieve the equilibration of a field ϕ(x, t ), subject to the
constraint that its space integral is a constant of motion; this
method consists in adding to the reversible parts of the dynam-
ics, an irreversible relaxational force and a stochastic noise
linked to each other by a kinetic coefficient proportional to
the Laplacian [1]. More precisely, we can write

∂ϕ

∂t
= reversible terms − 	

δH
δϕ

+ ξ, (6)

where the noise correlator satisfies the equilibrium condition,

〈ξ (x, t )ξ (x′, t ′)〉 = 2	 δ(t − t ′)δ(x − x′), (7)

and where (crucially) the kinetic coefficient 	 is given by

	 = −λ∇2. (8)

The positive parameter λ is usually called transport coeffi-
cient; notice that also the kinetic coefficient 	 is positive, as
the continuous Laplacian is a negative-definite operator. To
see why this method works, it is sufficient to go to Fourier
space, where −λ∇2 → λk2, so that the space integral of the
field—namely the mode ϕ(k, t ) at k = 0—is automatically
conserved, both by the relaxational force and by the noise.

Using the standard terminology of Hohenberg and
Halperin [1], this method is used in model B (spinodal de-
composition), in models E and F (superfluid helium), in model
G (quantum antiferromagnet), and in model J (isotropic quan-
tum ferromagnet). Moreover, a conserved noise with the form
of (7) and (8) is used in the context of nonequilibrium theories,
in particular in the case of the conserved KPZ equation [19].
We want to take inspiration from this mesoscopic continuous
case to devise a conservative relaxational dynamics that works
also in the microscopic discrete case. We stress, however,
that we are not discretizing equations (6)–(8) in any concrete
way; we will simply try and export the physical mechanism of
conservation used in the continuous case to the discrete setup.

C. The role of the discrete Laplacian

Transposing to the discrete case the idea behind the meso-
scopic conservative dynamics (6)-(8) does not seem too
difficult, given that there exists a very well-known discrete
version of the Laplacian operator; this matrix, that we shall
call �i j , is defined in the following way [18]:

�i j = −ni j + δi j

∑
k

nik, (9)

where ni j is the adjacency matrix defining the lattice’s topo-
logical structure: ni j = 1 if two sites interact with each other,
ni j = 0 otherwise; we will assume a symmetric interaction
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network, so that also the Laplacian is symmetric. Notice
that, at variance with its continuous counterpart, the discrete
Laplacian is a positive-definite matrix, i.e., � ∼ −∇2 (to
make this correspondence dimensionally consistent we should
include the square of the lattice spacing; however, as we have
already remarked, we are not pursuing an actual discretization
of the continuous case, but just using it as a conceptual guide-
line). One of the crucial features of the Laplacian is the fact
that it has a zero mode, namely,∑

i

�i j = 0. (10)

We can exploit this property and directly mimic Eqs. (6)–(8),
so to achieve a relaxational dynamics of the discrete spins,
which at the same time enforces the conservation law. We pro-
pose to do this by writing the following canonical stochastic
equations,

dσ i

dt
= {H, σ i} − h̄−1λ

∑
j

�i j
∂H

∂σ j
+ ξi, (11)

where, in order to achieve thermal equilibrium, the dimension-
less relaxation coefficient λ and the noise ξi must satisfy the
fluctuation-dissipation (FD) relation,〈

ξ
μ
i (t )ξν

j (t ′)
〉 = 2kBT h̄−1λ �i j δμν δ(t − t ′). (12)

Let us show that dynamics (11) and (12) conserves the total
magnetization; we recall that {H, M} = 0 and that

∑
i �i j =

0; we therefore have

dM
dt

=
∑

i

dσ i

dt
=

∑
i

ξi, (13)

but from (12) we see that the random variable
∑

i ξi has zero
mean and zero variance, hence it must be identically zero for
each realization of ξi, finally proving that

dM
dt

= 0. (14)

On the other hand, the new irreversible relaxational term pro-
portional to the “force” ∂σH pushes the spins to relax towards
the configuration that minimizes the Hamiltonian, so that
the energy converges to its equilibrium value at temperature
T . Indeed, a standard Fokker-Planck argument [20] shows
that the equilibrium probability distribution generated by (11)
and (12) is the Gibbs-Boltzmann canonical ensemble,

P(σ) = exp ( − H (σ )/kBT )/Z . (15)

We therefore have a new canonical stochastic dynamics, in
which the microscopic spins are thermalized at temperature
T and the total magnetization is conserved. And yet, we still
have some more work to do.

D. Incidence matrix noise

Up to now the method simply mimics the continuous case,
but of course the real problem is how to produce a noise ξi
whose correlator is proportional to the discrete Laplacian �i j

as required by Eq. (12). Let us see how we can solve this
problem.

1. The complicated way

If we insist working exclusively in the space of sites, the
first possibility that comes to mind is to try and find the matrix
Di j whose square (over the sites) is the Laplacian,∑

sites k

DikDk j = �i j , (16)

and then define the conservative noise as ξi = ∑
k Dikεk , with

〈εkεl〉 ∼ δkl , hence giving 〈ξiξ j〉 ∼ �i j , as desired.
Although at first sight this seems feasible, it is in fact a dead

end. The problem with this method is that solving Eq. (16)
is far from straightforward: The matrix Di j heavily depends
on the specific nature of the lattice, because one needs to go
through the explicit form of the eigenvalues and eigenvectors
of the discrete Laplacian to find it; in fact, one finds,

Di j =
∑

q

w
q
i

(
w

q
j

)∗√
λq (17)

where w
q
i are the eigenvectors of the discrete Laplacian matrix

�, with λq the corresponding eigenvalues. This form of Di j is
problematic, because the spectrum of the Laplacian is known
analytically only for a limited number of regular lattices, and
even in these cases only with periodic boundary conditions,
while we would like to have a method that works irrespective
of the specific topology of the lattice, and of its boundary
conditions. Moreover, even in those cases where the Laplacian
spectrum is exactly known and the matrix Di j can be calcu-
lated, its mathematical expression is extremely cumbersome,
even for the simplest lattices. An even more serious problem
is that of locality: in general, the matrix Di j in (17) is nonzero
even for noninteracting sites, namely for pairs of sites for
which the adjacency matrix is zero, ni j = 0; this means that
the conserved noise ξi = ∑

k Dikεk connects sites that were
not directly interacting in the original Hamiltonian, which
seems unnatural, to say the least.

We want to develop a method that is local and that employs
noting more complicated than the plain adjacency matrix it-
self, ni j , and that possibly entails no calculations whatsoever,
neither hard, nor easy. Once again, field theory comes to our
rescue.

2. The simple way

In the continuous case, the fact that the noise variance is
proportional to the Laplacian suggests that, in some way, the
noise must be proportional to a gradient, ξ ∼ ∇. Fortunately,
a simple discrete equivalent of the gradient does exist in graph
theory: interestingly, it is a matrix defined in the space of sites
and links, rather than of sites only. Let us label the sites of
the lattice with {i, j, . . . } and the links with {a, b, . . . }. The
incidence matrix Dia is constructed as follows [18]: After ar-
bitrarily assigning a direction to each link a, we set Dia = +1
if i is at the end of a, Dia = −1 if i is at the origin of a, and
Dia = 0 if site i does not belong to a (Fig. 1); note that, by
construction, we have ∑

sites i

Dia = 0 . (18)

A little reflection immediately shows in what sense the in-
cidence matrix is the discrete equivalent of the gradient: the

224302-3



CAVAGNA, CRISTÍN, GIARDINA, AND VECA PHYSICAL REVIEW B 107, 224302 (2023)

FIG. 1. Schematic view of the adjacency matrix n, incidence
matrix D, and discrete Laplacian � in a very simple lattice.

“derivative” of a discrete set of variables {σi} over link a can
now be written as

[∇σ ]a =
∑
sites i

Diaσi , (19)

in view of which, relation (18) simply expresses the obvious,
i.e., that the derivative of a constant is zero. Notice also that
the arbitrariness in the definition of Dia due to the arbitrary
choice of the directions of the links, reflects the inevitable
arbitrariness in the definition of the derivative on a general
discrete lattice.

We can now state the crucial property of the incidence
matrix, namely that its square over the links is equal to the
discrete Laplacian [18],∑

links a

DiaDT
a j = �i j . (20)

What we have to do now seems clear: We need to switch
from a noise defined on the sites, to a noise defined on the
links. More precisely, on each link a we define a standard
δ-correlated Gaussian noise εa with variance,〈

εμ
a (t )εν

b (t ′)
〉 = 2kBT h̄−1λ δab δμν δ(t − t ′), (21)

so that the site noise acting on each spin i can finally be
constructed as

ξi(t ) =
∑

a

Dia εa(t ), (22)

which gives discrete flesh to the idea that the conserved noise
is proportional to a gradient, ξ ∼ ∇. Let us compute the vari-
ance of this new noise,〈

ξ
μ
i (t )ξν

j (t ′)
〉 =

∑
ab

DiaDjb
〈
εμ

a (t )εν
b (t ′)

〉

=
∑

a

DiaDT
a j 2kBT h̄−1λ δμν δ(t − t ′)

= 2kBT h̄−1λ �i j δμν δ(t − t ′), (23)

so that we recover exactly the desired expression, Eq. (12).
Moreover, we see from Eq. (22) that, within this construction,
the site noise ξi is the sum of all the link noises εa incident on

that site; because by construction
∑

i Dia = 0, from (22) we
have that ∑

i

ξi = 0 , (24)

which makes it even more apparent the fact that the new noise
conserves the total magnetization in (11).

E. Summary of the discrete Laplacian thermostat

We have finally derived a closed set of equations spec-
ifying the canonical stochastic dynamics of a spin system
with conserved magnetization. Because of the rather lengthy
derivation, we summarize here the new canonical equations,

dσ i

dt
= {H, σ i} − h̄−1λ

∑
j

�i j
∂H

∂σ j
+ ξi, (25)

ξi(t ) =
∑

a

Dia εa(t ), (26)

〈
εμ

a (t )εν
b (t ′)

〉 = 2kBT h̄−1λ δab δμν δ(t − t ′), (27)

where �i j is the discrete Laplacian and Dia is the incidence
matrix. We call this method discrete Laplacian thermostat
(DLT).

It is important to stress that for λ = 0 the DLT canoni-
cal dynamics (25)–(27) becomes identical to microcanonical
SD (2), where the energy does not relax; hence, we expect
the relaxation coefficient λ to be related to the inverse of the
timescale of energy thermalization. Apart from this, we will
show that the relaxation coefficient does not impact on the
qualitative features of the system: both the static and dynamic
universality classes are unchanged, and the classic spin-wave
phenomenology is correctly reproduced by DLT.

We conclude this section with a notational clarification.
After Eqs. (6), (7), and (8), one could have expected us to
call λ the “transport coefficient”, as in the field theory con-
text [1]. However, the terminology “transport coefficient”,
as well as “kinetic coefficient”, belongs to the very specific
context of hydrodynamics, which is a coarse-grained theory.
Here, on the other hand, we are dealing with microscopic
dynamic equations. Moreover, under coarse graining, the mi-
croscopic spins may in general give rise to both conserved
and nonconserved hydrodynamic fields, depending on the spe-
cific model [1,21], so that the microscopic parameter λ could
contribute at the coarse-grained level both to the transport
coefficient of a conserved field and to the kinetic coefficient
of a nonconserved field. Therefore, we prefer to adopt a more
neutral name for the microscopic parameter λ, and call it
“relaxation” coefficient.

III. TESTING DLT IN THE HEISENBERG
ANTIFERROMAGNET

We numerically test DLT on the classical Heisenberg anti-
ferromagnet. The Hamiltonian is

H = J

2

∑
kl

nkl σk · σ l , (28)

where J > 0 and nkl corresponds to a d = 3 cubic lat-
tice of side L with PBC. The Hamiltonian is rotationally
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FIG. 2. (a) Time evolution of the energy per spin, for L = 16, T = 0.6, and λ = 0.1, for ordered and random initial conditions. Inset:
x component of the magnetization, fluctuating around the 13th decimal digit. (b) Energy relaxation (ordered initial conditions) at various
values of λ. Inset: The energy thermalization time τE —defined by the crossing to an arbitrary value of E close to its asymptotic limit—goes
like, τE ∼ λ−1. (c) Modulus of the equilibrium staggered magnetization per spin vs temperature, at different sizes. The line corresponds to the
low-T linear spin-waves regime. (d) Static susceptibility vs size, in the scaling regime, for two values of the relaxation coefficient λ; the line
is the fit to the exact critical exponent. (e) Transverse scattering function ST vs frequency, for k = 2π

L , with L = 16 and λ = 0.1, at different
temperatures. (f) Dispersion law: Characteristic spin-wave frequency vs wavevector for T = 0.6 with L = 16 and λ = 0.1; the line is not a fit,
but the actual analytic result (30). Inset: Spin wave peak at various wavevectors k.

invariant in the absence of an external field, so that
{H, M} = 0 and the global magnetization is conserved, Ṁ =
0. The order parameter is the nonconserved staggered mag-
netization, � = ∑

i πi σ i, where πi = ±1 is the parity of
site i.

By plugging Hamiltonian (28) into the DLT equation (25),
and after using Poisson’s relations (1), we obtain

dσ i

dt
= h̄−1 ∂H

∂σi
× σ i − h̄−1λ

∑
j

�i j
∂H

∂σ j
+ ξi (29)

where ξi is given by (26) and (27). In order to fix the norm
of the spins one could use a Lagrange multiplier, which
would, however, slow down the simulation; instead, we use
a single-particle potential suppressing norm fluctuations (see
Appendix A 1 for more details). We have performed simu-
lations of system sizes from L3 = 216 up to L3 = 8000 (the
lattice spacing is � = 1). We work in units such that kB = 1
and h̄ = 1; we also choose units such that J = 1, hence we
are effectively measuring time in units of J−1.

A. Numerical integrator

We need to make an important technical remark here.
Standard, microcanonical SD employs a nonstochastic fourth-
order Runge-Kutta integrator with time-step �t = 5 × 10−4;
of course, in any reversible microcanonical dynamics, in
which energy must be conserved, it is important that the
integrator is highly accurate, lest the conservation of energy
is violated, which does not bode well for a microcanonical
dynamics. But if we add a stochastic thermostat to the dy-
namics, the energy is no longer conserved, so that the tiny
inaccuracies in the integration of the reversible part, which
would cause a violation of energy conservation in the mi-

crocanonical case, become now irrelevant compared to the
relatively huge fluctuations of the energy caused by the irre-
versible stochastic term; hence, what would normally happen
when we switch from a nonstochastic microcanonical dy-
namics to a stochastic canonical one, is that we should also
switch from a nonstochastic highly accurate integrator to a
stochastic one.

But in our case, we want to be able to precisely recover
the microcanonical SD dynamics in the limit λ → 0; while
the case at exactly λ = 0 could be studied by switching
back to a nonstochastic integrator, this is not possible for
small values of λ, when inaccuracies in the integration of
the reversible term are not irrelevant compared to the energy
fluctuations caused by the irreversible stochastic term. There-
fore, the deterministic term must still be integrated with high
accuracy, to correctly reproduce also the case of small relax-
ation coefficient. This is the reason why, even though we are
dealing with a stochastic differential equation, we employ the
same nonstochastic fourth-order Runge-Kutta integrator as in
standard SD.

On the other hand, by construction, both the reversible term
and the irreversible thermostat satisfy exactly the constraint
Ṁ = 0 (see Secs. II C and II D), independently from the ac-
curacy of the integrator, simply thanks to the antisymmetric
form of the equations; hence, the conservation law of the
magnetization is immune from all this.

B. Conservation, transition, and susceptibility

In Fig. 2(a) we show that DLT conserves the magnetiza-
tion with very high precision, while relaxing the energy, both
when starting from random initial conditions, � ∼ 0, M ∼ 0,
and when starting from ordered initial conditions, |�| = N ,
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M = 0; to avoid slowing down due to coarsening we used
ordered initial conditions in the rest of our study. Figure 2(b)
shows that energy thermalization is quicker the larger is the
relaxation coefficient λ; the energy is not a critical variable,
hence its thermalization time τE is a harmless microscopic
scale of the system; we find τE ∼ λ−1, hence confirming the
expectation that the relaxation coefficient is the inverse of
the energy time scale [had we not set J = 1, we would have
τE ∼ (Jλ)−1].

The antiferromagnet has a continuous phase transition at
Tc = 1.446 [22,23], which DLT captures well [Fig. 2(c)].
Notice that the low-T linear behavior of the modulus of the
staggered magnetization, 1 − �/N ∼ T , predicted by the the-
ory [24], is also correctly reproduced by DLT.

We test the static critical behavior by studying the sus-
ceptibility, which satisfies the finite-size scaling relation, χ =
ξγ /νg(L/ξ ), where g(x) is a scaling function; we probe the
scale-free regime by selecting at each size L the temperature
Tc(L) at which χ is maximal (see Appendix A 2 for a detailed
description of the procedure), hence we obtain ξ ∼ L, and
therefore χ ∼ Lγ /ν ; the fit to the theoretical exponent [25] is
quite satisfactory [Fig. 2(d)].

C. Spin waves and their dispersion relation

The low-temperature regime of antiferromagnets is dom-
inated by spin waves [26], which are the quintessential
consequence of the symmetry and conservation law; hence,
it is important to check how DLT performs in relation to
them. The transverse scattering function ST (k, ω) of the stag-
gered magnetization—which is computed following [7]—is
reported in Fig. 2(e): as expected, above the critical temper-
ature there is a simple diffusive peak, while two spin-wave
peaks at ±ωc emerge for T < Tc. In the spin wave phase,
the characteristic frequency ωc depends on the wavevector
k according to the exact dispersion relation (see Appendix B
for the full derivation),

ωc(k) = 4J
√

d sin(k�/2)
√

1 − (1/d ) sin(k�/2)2, (30)

which is fairly well reproduced by DLT, considering that no
fitting parameters whatsoever are used [see Fig. 2(f)].

D. Critical dynamics and the exponent z

As fundamental as the existence of spin waves is the
emergence of critical slowing down at the phase transition:
In the bulk, the relaxation time of the order parameter at
k = 0 diverges at the critical point as a power law of the
correlation length τ ∼ ξ z [1]. An exact renormalization group
calculation of the dynamic critical exponent yields z = 1.5 for
the Heisenberg antiferromagnet in d = 3 [27], a result that has
been confirmed both by numerical simulations [10] and by
experiments on perovskites [28,29].

Notice that z = 1.5 differs very significantly from the value
z ≈ 2 of the universality class of standard nonconserved fer-
romagnets (as the Ising model), also called model A class in
the classification of Hohenberg-Halperin [1]. The profound
reason for this difference is the connection between symmetry
and conservation law: If the critical dynamics of the anti-
ferromagnet is studied through a Monte Carlo method, one
obtains z ≈ 2. Interestingly, it is not only standard noncon-

FIG. 3. Relaxation time τ as a function of the system’s size L,
for different values of λ. The lines indicates fits to the exact critical
exponent, z = 1.5, over the five largest sizes.

served Monte Carlo that fails to yield the correct dynamical
critical exponent [30], but also Kawasaki Monte Carlo (KM)
fails: Although KM conserves M, this conservation has no
effects on the dynamics of �, hence giving z ≈ 2; as we have
already noted, it is not the conservation per se, but the deep
dynamical connection between symmetry and conservation
law that yields the correct universality class.

To calculate the critical exponent z we use dynamical scal-
ing [31], according to which the relaxation time has the form

τk = k−zg(kξ ), (31)

where g(x) is a scaling function and all the dependence on
the temperature T goes into ξ (T ) (the precise definition of
relaxation time is reported in Appendix A 3). We now define
the largest relaxation time τ as that corresponding to the
lowest mode, k = 2π

L ; from (31) we obtain

τ = Lzg(ξ/L). (32)

If for each size L we work in the scale-free regime, namely at
the pseudocritical temperature Tc(L), where χ is maximal (see
Sec. III B and Appendix A 2), we have ξ (Tc(L)) ∼ L, hence,

τ ∼ Lz, (33)

which is the relation we test, using sizes ranging from L3 =
1000 to L3 = 8000. The result of DLT is quite satisfactory
(Fig. 3): We find z = 1.47 ± 0.07 for λ = 0.1, z = 1.56 ±
0.08 for λ = 0.2, and z = 1.50 ± 0.10 for λ = 1.0, all values
consistent with the exact result, z = 1.5. The tests of thermal-
ization that we used to check that all simulations are actually
at equilibrium are reported in Appendix A 4.

Hence, the critical exponent z does not depend on the
relaxation coefficient λ, which therefore does not impact on
the dynamic universality class of the model; the role of the re-
laxation coefficient is simply to shift the prefactor of τ , which
is reasonable, given the identification of λ−1 as a noncritical
time scale of the system.

E. Spin wave softening and damping

A feature over which the relaxation coefficient does have
a nontrivial impact is the blunting of spin waves (Fig. 4):
The larger is λ, the weaker is the spin wave peak (SW
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FIG. 4. The intensity and the position of the spin wave peak in
the low-temperature phase decrease when the relaxation coefficient λ

increases (T = 0.3 and L = 16). Inset: evolution of the peak’s height
and frequency with λ.

damping [32]) and the lower its characteristic frequency (SW
softening [33]).

Damping and softening are typically caused by the
coupling of the magnetic degrees of freedom (magnons) with
the lattice vibrational degrees of freedom (phonons) [34], an
interpretation confirmed by numerical simulations [35,36].
Hence, the fact that λ is connected to softening suggests to try
and link the relaxation coefficient of DLT to the microscopic
details of the magnon-phonon system. This is what we do in
the next section.

IV. CONNECTION BETWEEN DLT
AND SPIN-LATTICE DYNAMICS

The canonical DLT method has just one extra parameter
compared to microcanonical SD, namely the relaxation
coefficient λ, which, as we have seen, is essentially the
inverse of the energy relaxation time; this makes sense, as
in SD the energy does not relax, of course, and the limit
λ → 0 reproduces exactly the SD case. We also have found
from the numerical simulations that λ has an impact on
the softening of spin waves, while no spin-wave softening
can be observed in microcanonical SD. In actual physical
systems, that is in systems where the spins are coupled to
an underlying atomic lattice, both these phenomena (energy
relaxation and spin-wave softening) are obviously caused by
the very interaction between spins and lattice. Therefore, it
seems natural to seek a connection between the relaxation
coefficient λ of DLT and the physical parameters of the actual
spin-lattice coupling. To do that, we need a model of the
interaction between spins and atomic lattice.

A. The simplest SD+MD dynamics

In the very simplest case the coupling between the
spins and the underlying lattice can be described by the
Hamiltonian [37,38],

HTOT = 1

2

∑
kl

J (rkl ) σk · σ l

+1

2
K

∑
kl

nkl (uk − ul )
2 +

∑
k

p2
k

2m
, (34)

where rkl = |rk − rl |, while

uk = (
rk − r0

k

)
(35)

is the deviation of nucleus k from its equilibrium position.
The first term in HTOT is the spin exchange interaction, while
the second and third terms describe the vibrational excita-
tions of the lattice. At variance with microcanonical SD, the
spins’ positions are not fixed and the spin exchange interac-
tion J (r) depends on the distance. Within a microcanonical
simulation of (34) (the SD+MD method described in the
Introduction [13,14]), the total magnetization M is conserved,
as well as the total energy HTOT of the system; however, there
is an energy exchange between phonons and magnons, so
that the spin magnetic energy is not conserved and it relaxes
to its thermal value. Hence, we can interpret phonons as a
conservative thermostat coupled to magnons, which is exactly
the role of DLT.

To explore this analogy further, following [32,38,39], we
expand the spin exchange coupling to first order,

J (rkl ) = J0 nkl − α nkl (uk − ul ) · êkl , (36)

where

J0 = J
(
r0

kl

)
(37)

becomes the spin-spin coupling constant at the leading order,
while

α = −J ′(r0
kl

)
(38)

plays the role of the spin-lattice coupling constant; notice that
α is positive, because the exchange interaction J (r) decreases
with distance. Finally, in (36) we have defined

êkl = (
r0

k − r0
l

)
/
∣∣r0

k − r0
l

∣∣ . (39)

We can now write the equations of motion for all the degrees
of freedom,

dσ i

dt
= h̄−1J0

∑
k

nik σk × σ i

−h̄−1α
∑

k

nik σk × σ i (ui − uk ) · êik, (40)

dui

dt
= pi

m
, (41)

d pi

dt
= −2K

∑
k

nik (ui − uk )

+α
∑

k

nik (σ i · σk ) êik . (42)

These equations conserve the total magnetization thanks to
the fact that the unit vector êik is antisymmetric. Compared to
purely microcanonical SD, however, the spin equation (40)
has an extra spin-phonon term proportional to α, which is
responsible for relaxing the magnetic energy.

B. Marginalizing the lattice degrees of freedom

In order to find an effective canonical dynamics for the
sole spin variables, we follow the rather standard path [20]
of marginalizing the spin-phonon term over the dynamics
of the phonon variables, {ui, pi}, using thermalized initial
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conditions. To do this, one must first rewrite the dynamical
equations using the eigenvectors of the discrete Laplacian,
which is somewhat lengthy and cumbersome; for this reason,
the full details of the calculation are reported in Appendix C.

Once this marginalization is performed, a relaxational term
and a noise term emerge, linked to each other by the FD
relation and both conserving the total magnetization, thus
acting as an effective thermostat very similar to DLT. We
can write the formal solution of Eq. (42) treating the spin
term as an external driving force; then, the solution of (42)
can be plugged into (40), and after some manipulations and
reasonable approximations (described in Appendix C), we end
up with

dσ i

dt
= h̄−1 ∂H0

∂σ i
× σ i − �i[{σ}] + ξi. (43)

The first term at the right-hand side (r.h.s.) is the usual
reversible force coming from Poisson’s brackets structure,
where

H0 = J0

2

∑
kl

nkl σk · σ l , (44)

is the standard Heisenberg Hamiltonian, as in (28). The
second term in (43) is a relaxational force, which takes the
form (see Appendix C)

�
μ
i = h̄−1

(
α2

h̄K

) ∫ t

0
dt ′ ∑

j,ν

2Rμν
i j (t, t ′)

(
∂H0

∂σ ν
j

)
t ′
, (45)

where Rμν
i j (t − t ′) is a dimensionless memory kernel, whose

explicit form is specified in Appendix C [see Eq. (C36)] and
that has the following crucial property:∑

i

Rμν
i j (t − t ′) = 0 , (46)

which guarantees the conservation of the total magnetization
in (43). The third term ξi is a noise, with variance

〈
ξ

μ
i (t )ξν

j (t ′)
〉 = 2kBT h̄−1

(
α2

h̄K

)
Rμν

i j (t − t ′). (47)

Using the same line of thought of Sec. II C, it is clear that this
noise too conserves the total magnetization, because, thanks
to (46) and (47), we have that

∑
i ξi = 0 for each realization

of the noise. All brackets 〈·〉 in the relations above indicate
an average over the initial conditions for phonons, as they are
random variables drawn from the Gibbs-Boltzmann distribu-
tion. We also observe that the FD relation is satisfied, since
in both the relaxational and the noise term the same kernel
Rμν

i j (t − t ′) appears.

C. A simple dimensional argument

The derivation of Eqs. (43)–(47)—derivation that we
provide in great detail in Appendix C—is lengthy and cum-
bersome. Hence, let us give to the reader a very simple
dimensional argument to calculate the effect of the spin-lattice
coupling on the dynamics of the spins, and show how DLT
quite naturally emerges in this context.

If we go back to Eq. (40), we see that the first term at the
r.h.s. is the same as in pure SD dynamics, therefore it will

not be affected by the marginalization over the phonon vari-
ables, while the second term, proportional to the spin-lattice
coupling constant α, is the one that, containing the phonon
degrees of freedom, will give rise both to the relaxational force
� and to the noise ξ ; let us concentrate on the latter, even
though, of course, dimensionally the two are the same. By
dimensional analysis of the spin-phonon term in (40) we get

〈ξ 2〉 ∼ h̄−2α2〈(ui − uk )2〉 , (48)

where, again, brackets 〈·〉 indicate an average over thermal
phonons. By using equipartition of the phonons potential en-
ergy, we can rewrite (48) as

〈ξ 2〉 ∼ kBT h̄−1

(
α2

h̄K

)
. (49)

We immediately see that, dimensionally, this relation is the
same as (47); moreover, the only reasonable way to gener-
alize (49) to different sites, i, j, different coordinates, μ, ν,
and different times, t, t ′, without changing the dimensions, is
indeed to introduce a dimensionless kernel Rμν

i j (t − t ′), which
gives exactly Eq. (47); moreover, even if we did not do the
explicit calculation of this kernel, we would still know that
the conservation of magnetization that holds in the original
Eq. (40) must survive marginalization over the phonons, hence
we must have that

∑
i R

μν
i j = 0.

Now that we have dimensionally justified the form of the
effective noise variance (47), we can compare it with the DLT
variance, that we report here for clarity,〈

ξ
μ
i (t )ξν

j (t ′)
〉 = 2kBT h̄−1λ �i j δμν δ(t − t ′). (50)

Such comparison may suggest that we are almost done: we
have obtained a non-Markovian nonisotropic version of the
DLT noise and one may be tempted to identify the DLT
relaxation coefficient λ with (α2/h̄K ); but that would be a
dimensional mistake, because the kernel Rμν

i j (t − t ′) is di-
mensionless, while the combination �i j δμν δ(t − t ′) has the
dimensions of the inverse of a time. To make progress, we in-
troduce the memory time scale of the non-Markovian kernel,

τm ∼
∫ ∞

−∞
ds Rμν

i j (s) , (51)

where we can forget about its possible i j and μν dependence
as long as we are only proceeding through dimensional anal-
ysis. The advantage of having singled out τm is that we can
rewrite (47) as

〈
ξ

μ
i (t )ξν

j (t ′)
〉 = 2kBT h̄−1

(
α2

h̄K

)
τm

(
Rμν

i j (t − t ′)

τm

)
, (52)

where now the operator (Rμν
i j /τm ) has the right dimensions

to play the role of a “fatter” δ function, so that a direct com-
parison between (52) and the DLT original noise (50) finally
gives

λ =
(

α2

h̄K

)
τm, (53)

which is a quantitative relation between the relaxation co-
efficient of DLT and the microscopic parameters of the
spin-lattice coupling.
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These results can actually be obtained analytically, and
we refer the reader to Appendix C for the details. There, we
show that, under some reasonable approximations, the kernel
is proportional to the discrete Laplacian,

Rμν
i j (t − t ′) � �i j δμν R(t − t ′) , (54)

so that the effective noise after the phonons marginalization
becomes indeed a non-Markovian version of the DLT noise,

〈
ξ

μ
i (t )ξν

j (t ′)
〉 = 2kBT h̄−1

(
α2

h̄K

)
�i j δμν R(t − t ′). (55)

Then, the kosher way to proceed after this is to discretize
the spin dynamics using a time interval �t 
 τm, so that
the dynamics becomes effectively Markovian over time scales
comparable to the discretization scale; in this way we finally
obtain a Markovian noise that can be directly compared with
the time-discrete version of the DLT noise (50), thus giving
again Eq. (53) (see, as usual, Appendix C for the details).

The relation we found between the DLT relaxation coeffi-
cient λ and the parameters of the spin-lattice system [Eq. (53)]
looks very sound at the qualitative level: when K goes to
infinity (i.e., for infinitely stiff, namely fixed, lattice) or when
α goes to zero (no spin-lattice coupling), we obtain λ → 0,
correctly recovering microcanonical SD. Hence, the relax-
ation coefficient of DLT wraps into a single quantity all the
parameters of the (possibly very complicated) interaction be-
tween spins and lattice: λ is larger the stronger is the phonon-
magnon coupling, and because this coupling is responsible for
blunting spin waves [36], we finally understand why softening
and damping within DLT are the stronger the larger is λ. But
can we trust relation (53) at the quantitative level?

First, let us discuss what happens when λ is either too small
or too large. As we have said, if there is no magnon-phonon
interaction we obviously obtain λ = 0; but we know that 1/λ

is the energy relaxation time, which does not diverge in real
antiferromagnets. On the other hand, as we have seen from
numerical simulations, too high a value of λ would completely
suppress spin waves, which are a quintessential feature of real
antiferromagnets. These considerations suggest that it may be
possible to actually obtain a reasonable estimate of λ by plug-
ging into (53) the microscopic parameters of actual magnetic
materials found in the literature [13,16]. We can estimate the
strength of the phonon-magnon coupling α from Eq. (38), in
particular by using the characteristic amplitude and width of
standard forms of the function J (r) (see, for example, Table
A1 of [13]), getting α ∼ 1.0 − 2.0 × 10−11 J/m. The lattice
stiffness K can be derived from sound velocities, atomic
masses, and lattice spacings for magnetic systems, which
gives K ∼ 40 − 50 N/m. Estimating the value of the mem-
ory kernel timescale τm is more challenging, as it depends
on the phonon dynamics—itself coupled to the spins; it is
known that the characteristic time scale of the phonon-phonon
interaction is of the order of 1 ps, while the spin-phonon
interaction has a characteristic scale of 100 ps (see [13]). It
is, therefore, reasonable to expect that τm should be within
this range. Hence, we obtain that the value of the (dimension-
less) relaxation coefficient in real materials should lie in the
range 0.02 < λ < 10, which is consistent with the values of
the relaxation coefficient used in our DLT simulation, where
λ was chosen between 0.1 and 1 (see Figs. 2–4).

In conclusion, the connection between the effective canoni-
cal dynamics provided by DLT and the actual microcanonical
dynamics of systems with spin-lattice coupling, seems to be
deeper than a generic numerical shortcut: Given a certain
material, with a certain set of parameters describing its mi-
crocanonical SD+MD dynamics, it should be possible to
calculate the DLT relaxation coefficient λ through (53) and
run an effective canonical dynamics appropriate for that spe-
cific material.

V. CONCLUSIONS

We have introduced a thermostat that is at the same time
conservative and stochastic, thus preserving the true dynamics
of the spins, yet making it canonical. The potential appli-
cations of DLT seem promising. First of all, remaining at
the equilibrium level, the method should be tested in other
dynamical universality classes for which symmetries and
conservation laws are important, as model J (Heisenberg
ferromagnet) and models E/F (superfluid helium) [1]. But
DLT seems particularly promising for the study of out-of-
equilibrium systems. As we anticipated in the Introduction,
the method could be employed in the context of aging stud-
ies [11], as quenches and dynamic changes of temperature
become straightforward within the canonical dynamics. More-
over, DLT—or, more precisely, the conservative noise that we
have introduce within DLT—can be used for the study of in-
herently out-of-equilibrium systems, such as those that violate
detailed balance; in these cases, metropolis-like Monte Carlo
simulations—whose dynamics is built upon the assumption
of detailed balance—cannot be employed. One outstanding
example in this class of systems is the conserved KPZ equa-
tion [19], which has nonthermal fluctuations. DLT noise could
be an interesting new way to simulate such equations in real
space.

Of course, DLT is not free of limitations. As with any other
thermostat, and despite the connection between the relaxation
coefficient and the spin-lattice parameters, a substantial part
of the physical information regarding the microscopic degrees
of freedom is lost, resulting in an effective simplified canon-
ical dynamics. Moreover, we have seen how DLT can deal
with respecting one conservation law, that of the total-order
parameter; it remains to be seen whether, and how, DLT could
be adapted or generalized to the case of several conservation
laws simultaneously holding in the dynamics.

An interesting issue for future studies is the possible emer-
gence of dynamical crossovers related to the weak violation
of the conservation law. In our (much) simplified microscopic
model for spins and lattice we assumed that the only relevant
interaction was the exchange interaction, which is isotropic,
namely invariant under rotations in the internal space of spins,
thus leading, through Noether’s theorem, to the exact con-
servation law of the global magnetization. Within DLT, this
exact conservation law is empowered by the fact that the
relaxational force and the noise variance are proportional to
the discrete Laplacian �i j . However, anisotropic interactions,
such as spin-orbit or dipole-dipole interaction, can in some
cases be relevant, thus violating the symmetry and the con-
servation law. The interesting point is that we can easily
generalize DLT to this cases, by adding a nonconservative
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component to the relaxation coefficient, namely,

λ �i j −→ λ �i j + η δi j , (56)

leaving all the other relations untouched. Now the effec-
tive friction η dissipates the total magnetization, hence it
can be used to describe those physical cases in which the
original conservation law is hindered by all sorts of non-
symmetric interactions. When η is very large compared to
the conservative coefficient λ, the symmetry and conserva-
tion laws are completely washed away, and one recovers
the physics of overdamped nonconservative systems [15].
But when anisotropic interactions are weak, the value of
η will be nonzero but small, so that the relative magnitude
of the conservative relaxation coefficient λ vs the nonconser-
vative one η may give rise to interesting finite-size dynamical
crossovers. Such crossovers have been already studied in the
field-theoretical context using the renormalization group [40],
so that the possibility to analyze at the microscopic level
the interplay between conserved and nonconserved relaxation
seems a promising direction of investigation in the general
field of magnetism.

Finally, we notice that there might be a broader spectrum
of applications of DLT beyond the realm of physical magnets.
In biophysics there is growing experimental [41,42], numer-
ical [43] and theoretical [44,45] evidence that conservation
laws are important in determining the collective dynamical
properties of some natural systems. More precisely, it has been
noted that, although the mechanisms of biological imitation
between neighbors in a biological group can be described by
borrowing the standard concepts of ferromagnetism [46], an
overdamped dynamics as in the standard nonconserved case
(model A class [1]) does not reproduce some key experimen-
tal traits, as information propagation across the group and
dynamic scaling [41,42]. On the other hand, it has emerged
that the dynamics of underdamped mode-coupling systems,
that is systems where a conservation law is important (as the
model G class [1] of the antiferromagnet studied here), is
more suited to the study of collective behavior and it has a
better agreement with biological experiments [45]; essentially,
the behavioral inertia of the biological individuals forces the
interaction rules to comply to a second-order dynamics that
can only emerge as a result of a conservation law [41]. In
the light of this, a conservative thermostat tailored on spin
dynamics could become a relevant numerical tool also in
physical biology.
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APPENDIX A: NUMERICAL PROCEDURE

1. The norm constraint

The DLT equation of motion reads

dσ i

dt
= h̄−1 ∂H

∂σ i
× σ i − h̄−1λ

∑
j

�i j
∂H

∂σ j
+ ξi. (A1)

The first term (cross product) automatically conserves the
norm of each spin. The second and third terms (relaxational
and noise terms, respectively), however, would produce some
deviations from the initially fixed norm if no countermeasure
is taken. In order to fix the norm of the spins one could
use a Lagrange multiplier; however, the equation to work out
the Lagrange multiplier would need to be solved numerically
at each time step, hence slowing down significantly the sim-
ulation. We therefore use a different method: we introduce a
soft constraint on the norm by adding to the Hamiltonian the
potential,

Vnorm = 1

4
A

∑
i

(
σ2

i − 1
)2

, (A2)

so that the spin force becomes

∂H

∂σ i
= J

∑
j

ni jσ j + A
(
σ2

i − 1
)
σ i. (A3)

It is easy to check that the reversible term is not affected by
the soft constraint and that the total magnetization M remains
constant. Hence, the soft constraint does not modify the re-
versible dynamics and it conserves the total magnetization,
independently of the value chosen for A. For A → ∞, one
would recover a strictly fixed norm, but of course for very
large A we would need a much higher precision to integrate
the equation. To set A, therefore, we just need a large value
that preserves in practice the norm, but does not demand
an extreme precision in the simulations. Fortunately, because
nothing essential in the dynamics actually depends on A, find-
ing this balance is not too difficult. We have fixed A = 100
and we have carefully checked that this value does not play a
relevant role in the results presented throughout the main text
and the Appendices. In Fig. 5 we can see that at this value of
A, norm, energy, and order parameter are not far from their
asymptotic, A = ∞, values.

2. Identification of the scaling regime

The critical temperature of the Heisenberg antiferromagnet
in d = 3 is Tc ∼ 1.446J [22,23]. However, the actual phase
transition only occurs in the thermodynamic limit, where
ξ ∼ (T − Tc)−ν → ∞ and the static susceptibility χ ∼ (T −
Tc)−γ → ∞. In a finite system, the correlation length ξ cannot
diverge, as it is limited by the the system’s size, L. Finite-
size scaling [47] states that near criticality the susceptibility
χ [reported in Fig. 6(a)] obeys the relation

χ = Lγ /νF (L(T − Tc)ν ), (A4)

where F (y) is a dimensionless scaling function. This scal-
ing form implies that if we plot χ/Lγ /ν vs L(T − Tc)ν , we
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FIG. 5. (a) Mean norm 〈|σi|〉 vs parameter A. (b) Staggered magnetization per spin |�| vs parameter A. (c) Energy per spin vs parameter
A. The simulations have been done for L = 16, λ = 0.1, and T = 0.6.

should have a collapse of the data, provided that we use
the correct critical exponents of the Heisenberg antiferro-
magnet in d = 3 [25], that is γ /ν = 1.97 and ν = 0.70.
This collapse is shown in Fig. 6(b), which is already quite
convincing. But to have a harder check, we need to work
out the critical exponents in a more direct way than the
collapse.

The most effective way to explore the critical point at finite
size is to keep fixed the scaling variable, y = L(T − Tc)ν , thus
defining a size-dependent pseudocritical temperature Tc(L);
the easiest way to do that is to locate the point yc where
F (y) has its maximum, which corresponds to locating the
temperature Tc(L) where χ (T, L) has its maximum, at each
given L [see Fig. 6(a)]. In this scaling regime we have
ξ (Tc(L)) ∼ L, and

χ = Lγ /νF (yc) ∼ Lγ /ν, (A5)

because the scaling variable yc is kept constant by following
the maximum of χ at each L. Equation (A5) is tested in
Fig. 2(d) in the main text; the best fit to a log-log represen-
tation of the data gives γ /ν = 1.92 ± 0.07, quite close to the
correct value.

3. Relaxation time

Given the dynamic correlation function of the order pa-
rameter in the momentum-frequency domain C(k, ω), we can

obtain the static correlation function C0(k) as

C0(k) =
∫ ∞

−∞

dω

2π
C(k, ω), (A6)

which gives the following normalization condition:

∫ ∞

−∞

dω

2π

C(k, ω)

C0(k)
= 1. (A7)

A convenient and very robust definition of the characteristic
frequency ωk is [31]

∫ ωk

−ωk

dω

2π

C(k, ω)

C0(k)
= 1

2
. (A8)

The characteristic frequency ωk is naturally the inverse of
the relaxation time τk , which—working out (A8) in the time
domain—is defined by

∫ ∞

0

dt

t

C(k, t )

C0(k)
sin (t/τk ) = π

4
, (A9)

which is the relation we use in our simulations to calculate the
relaxation time [the transverse scattering function ST(k, ω) in
the main text is the transverse part of C(k, ω)]. The advantage
of calculating τk through Eq. (A9) is that no a priori fitting

FIG. 6. (a) Static susceptibility χ vs temperature T for λ = 0.1 and different system sizes L. The black circles correspond to the peak of
the susceptibility for each size. The bulk critical temperature Tc is marked by a vertical line. (b) Collapse of the susceptibility χ by using the
correct critical exponents.
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FIG. 7. (a) Correlation function C(k, t ) for two different system sizes L [λ = 0.1 and T = Tc(L)]. (b) Relaxation time τ vs trajectory
duration tmax. The lines correspond to the value of the stationary plateaus.

form for C(k, t ) is needed; moreover, being an integral equa-
tion that uses the entire temporal range of C(k, t ), this estimate
is considerably more robust than crossing the correlation func-
tion with an arbitrary constant.

4. Tests of thermalization

We test that the analysis to obtain the exponent z has
been done for a thermalized system. To do so, we check that
the relaxation time τ does not depend on the duration of
the simulation. We compute τ for trajectories of increasing
duration tmax (see Fig. 7). The value of τ grows with tmax

until it reaches a stationary plateau. This procedure allows
us to say that, when the duration is tmax � 10τ , we are sure
that the system has thermalized; we repeat this test for all
temperatures T and sizes L.

APPENDIX B: DISPERSION RELATION
IN THE SPIN-WAVE REGIME

In the main text, we report the dispersion relation for spin
waves at low temperatures. In this section, we show how
to derive this result for the case of the classical Heisenberg
antiferromagnet in d = 3. Let us consider the microcanonical
equation of motion,

dσi

dt
= ∂H

∂σi
× σi, (B1)

with ∂H
∂σi

= J
∑

j ni jσ j . From (B1), one obtains

d2σi

dt2
= ∂H

∂σi
× dσi

dt
+ d

dt

(
∂H

∂σi

)
× σi

= J
∑

j

ni j

[
σi × dσi

dt
+ dσ j

dt
× σi

]

= J
∑

j

ni j

[
σi ×

(
∂H

∂σi
× σi

)
+

(
∂H

∂σ j
× σi

)]

= J2
∑

jk

ni j[σ j × (nikσk × σi ) + (n jkσk × σ j ) × σi].

(B2)

Multiplying both sides by the parity of the site πi = ±1
(neighboring spins have opposite parity), we can rewrite
Eq. (B2) in terms of the local staggered magnetizations,
ψi = πiσi,

d2ψi

dt2
= J2

∑
jk

ni jπ jπk[ψ j × (nikψk × ψi )

+ (n jkψk × ψ j ) × ψi]. (B3)

In the first term of the r.h.s., the indexes j and k have the
same parity, while the opposite holds for the second term.
Equation (B3) can then be rewritten as

d2ψi

dt2
= J2

∑
jk

ni j[ψ j × (nikψk × ψi ) − (n jkψk × ψ j ) × ψi].

(B4)

In the low-temperature regime, i.e., T � Tc, the system is
deeply polarized. We can thus expand the local staggered
magnetization around the global polarization direction,

n̂ =
∑

i ψi

| ∑i ψi| , (B5)

that is

ψi = ψi
‖n̂ + πi (B6)

with n̂ · πi = 0, |πi| � 1, and where we have
∑

i πi = 0.
The spin wave expansion is an expansion in terms of the
{πi}. Because of the constraint, |ψi| = 1, we have that

ψi
‖ =

√
1 − π2

i . To first order, then, ψi
‖ � 1, and the equation of motion becomes

d2πi

dt2
= J2

∑
jk

ni j[nik (n̂ × (n̂ × πi ) + n̂ × (πk × n̂)) − n jk ((n̂ × π j ) × n̂ + (πk × n̂) × n̂)]

= J2
∑

jk

[ni jnik (−πi + πk) − nikn jk (−π j + πk)]. (B7)
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If we now define (for a cubic lattice) nc = ∑
k nik = 2d , we get

d2πi

dt2
= J2

⎡
⎣−n2

cπi + nc

∑
k

nikπk +
∑

jk

nikn jkπ j − nc

∑
k

nikπk

⎤
⎦ = J2

⎡
⎣−n2

cπi +
∑

jk

nikn jkπ j

⎤
⎦

= J2

⎡
⎣−n2

cπi +
∑

jk

(ncδik − �ik )(δ jknc − � jk )π j

⎤
⎦ = J2

∑
jk

(�ik�k j − 2nc�i jδ jk )πi,

(B8)

where, we remind, �i j = −ni j + ncδi j is the discrete
Laplacian. In Fourier space, this equation can be easily ex-
pressed in terms of the eigenvalues of the Laplacian operator

λ(q) = 4
d∑

α=1

sin2

(
qα�

2

)
, (B9)

The resulting dispersion relation reads

−ω2(q) = J2(λ2(q) − 2ncλ(q)), (B10)

and taking q = (q, 0, 0), one obtains

ω(q) = 4J
√

d sin

(
q�

2

)√
1 − 1

d
sin2

(
q�

2

)
. (B11)

This expression is precisely the one reported in Eq. (30) and
plotted in Fig. 2(f) of the main text.

APPENDIX C: MICROSCOPIC DERIVATION
OF THE DISCRETE LAPLACIAN THERMOSTAT

1. Hamiltonian of the coupled spin-lattice system

Let us consider the magnon-phonon Hamiltonian, Eq. (34)
in the main text,

HTOT = 1

2

∑
i j

J (ri j )ni jσ i · σ j + K

2

∑
i j

ni j (ui − u j )
2

+ 1

2m

∑
i

p2
i , (C1)

where, we remind, ri j = |ri − r j | and ui = ri − r0
i is the

deviation of nucleus i from its equilibrium position. Follow-
ing [32,38,39] we expand the spin exchange coupling to first
order,

J (ri j ) = J0 ni j − α ni j (ui − u j ) · êi j, (C2)

where

J0 = J
(
r0

i j

)
(C3)

is the spin-spin coupling constant at the leading order, while

α = −J ′(r0
i j

)
(C4)

is the spin-lattice coupling constant; α is positive, because the
exchange interaction J (r) decreases with distance; we have
also defined the normalized vector pointing from j to i,

êi j = (
r0

i − r0
j

)
/
∣∣r0

i − r0
j

∣∣ . (C5)

We can now rewrite the Hamiltonian as

HTOT = J0

2

∑
i j

ni jσ i · σ j − α
∑

i j

ni j êi j · (ui − u j )(σ i · σ j )

+ K

2

∑
i j

ni j (ui − u j )
2 + 1

2m

∑
i

p2
i . (C6)

It is convenient to define the three distinct contributions to this
Hamiltonian; the magnetic energy of the spins,

H0 = J0

2

∑
i j

ni jσ i · σ j, (C7)

the vibrational energy of the phonons,

HVIB = K

2

∑
i j

ni j (ui − u j )
2 + 1

2m

∑
i

p2
i , (C8)

and finally the spin-lattice interaction energy

H INT = −α

2

∑
i j

ni j êi j · (ui − u j )(σ i · σ j ). (C9)

Periodic boundary conditions (PBC) are assumed, so that the
system is translationally invariant.

Our aim in this section is to integrate out the contribution
of phonons from the dynamics of the spin variables. To do so,
it is convenient to rewrite the Hamiltonian in terms of vari-
ables that, contrary to the {ui}, are not coupled to each other.
Looking at the vibrational part, we notice that the quadratic
term can be rewritten as

K

2

∑
i j

ni j (ui − u j )
2 = K

∑
i j

�i jui · u j, (C10)

where �i j = −ni j + δi j
∑

k nik , is the discrete Laplacian. The
Hamiltonian (C10) can then be rewritten in diagonal form
using the eigenvectors and eigenvalues of the Laplacian

�i jw
q
j = λqw

q
i , (C11)

For a simple cubic lattice we have

w
q
i = 1√

N
e−iq·ri , λq = 2

d∑
α=1

(1 − cos(qα�)), (C12)

with � the lattice spacing. Due to the PBC, q can only assume
discrete values, q = 2π

L (nx, ny, nz ), with L the lattice size, nx,
ny, nz integers from 0 to nmax = (L/� − 1). The change of
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basis using the eigenvectors of the discrete Laplacian gives

ui =
∑

q

Qq
1√
N

e−iq·ri , Qq =
∑

i

ui
1√
N

e+iq·ri ,

pi =
∑

q

Pq
1√
N

e−iq·ri , Pq =
∑

i

pi
1√
N

e+iq·ri , (C13)

and ∑
i j

w
−q
i �i jw

p
j = δqpλq. (C14)

Hence we have

HVIB = K
∑

q

λqQqQ−q +
∑

q

1

2m
Pq · P−q. (C15)

To rewrite the interaction energy we define the auxiliary quan-
tities,

f i({σ}) =
∑

j

ni j êi j (σ i · σ j ),

f q({σ}) =
∑

i

1√
N

eiq·ri f i({σ}),
(C16)

and so we get

H INT = − α

2

∑
i j

ni j êi j · (ui − u j )(σ i · σ j )

= − α

2

∑
i j

ni j êi j · ui(σ i · σ j )

+ α

2

∑
i j

ni j êi j · u j (σ i · σ j )

= − α
∑

i j

ni j êi j · ui(σ i · σ j ) = −α
∑

i

ui · f i({σ});

(C17)
hence

H INT = −α
∑

q

Qq · f −q({σ}) = −α
∑

q

Q−q · f q({σ}).

(C18)
Finally, combining all terms, we end up with

HTOT = J0

∑
i j

ni j (σ i · σ j ) − α
∑

q

Qq · f −q({σ})

+ K
∑

q

λqQqQ−q +
∑

q

1

2m
Pq · P−q. (C19)

We will now write the equations of motion for both the spins
and the lattice vibrational degrees of freedom. In the new
basis, the variables {Qq} are not directly coupled one with the
other; we can therefore solve explicitly their equations and
plug back the solutions in the equations for the spins. The
result is an equation of motion for the spin variables only,
where the effect of the phonons is the appearance of a thermal
bath composed by a “noise” and a “relaxational” term, both of
which preserve the conservation of the global magnetization.
This thermal bath always satisfies the fluctuation dissipation
(FD) relation, but the specific memory kernel will depend
on the details of the dynamics. In the following sections, we

are going to derive it for both an isolated system, and in the
case where the nuclei, but not the spins, are in contact with a
(standard) thermal bath.

2. Isolated system

a. Equations of motion

The outline for deriving a thermal bath out of many os-
cillatory degrees of freedom of an isolated system can be
found in [20]; in the case of ferromagnetic systems, a similar
computation has been done in [48] within a mesoscopic field
theory framework. We start by writing the equations of motion
for phonons and spins,

m
d2Qq

dt2
= dPq

dt
= −∂HTOT

∂Q−q
= −2KλqQq + α f q, (C20)

dσ i

dt
= h̄−1 ∂HTOT

∂σ i
× σ i = h̄−1 ∂H0

∂σ i
× σ i

− α

h̄

∑
q,β

Qβ
q

∂ f β
−q({σ})

∂σ i
× σ i. (C21)

The plan is now to solve Eq. (C20) and plug the result back
into Eq. (C21). The solution of the homogeneous equation is
given by

QHOM
q (t ) = Qq(0) cos(ωqt ) + Pq(0)

mωq
sin(ωqt ), (C22)

where Qq(0) and Pq(0) are the initial conditions at time t =
t0 = 0, and

ω2
q = 2K

m
λq. (C23)

The complete solution is therefore given by

QTOT
q (t ) = QHOM

q (t ) + α

∫ t

0
dt ′ sin (ωq(t − t ′))

mωq
f q(t ′)

= QHOM
q (t ) + α

mω2
q

f q(t ) − α

mω2
q

f q(0) cos (ωq(t ))

− α

mω2
q

∫ t

0
dt ′ cos (ωq(t − t ′))

d

dt ′ f q(t ′).

(C24)
Substituting into the equations of motion for the spins we get

dσ i

dt
= h̄−1 ∂Heff

∂σ i
× σ i − �i[{σ}] + ξi, (C25)

where the effective Hamiltonian is given by

Heff = H0 −
∑

q

α2

2mω2
q

f q · f −q({σ}), (C26)

the relaxational term is given by (square brackets indicate
functional dependence)

�i[{σ}] = −
∑
qβ

α2

mh̄ω2
q

∫ t

0
dt ′ cos (ωq(t − t ′))

d

dt ′ f β
q (t ′)

×
(

∂ f β
−q({σ})

∂σ i
× σ i

)
t

, (C27)
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and the noise term is given by

ξi = −α

h̄

∑
qβ

(
Qβ

q (0) cos(ωqt ) + Pβ
q (0)

mωq
sin(ωqt ) − α

mω2
q

f β
q (0) cos(ωqt )

)
∂ f β

−q({σ})

∂σ i
× σ i. (C28)

Equation (C21) is the same equation of motion (written in Fourier’s space) as Eq. (40) of the main text, used to find the
dependence of λ on the microscopic parameters. We notice, however, that the spin-lattice interaction term in the r.h.s. of
Eq. (C21), which depends on Qq, is generating not only the noise (as in the simplified argument of the main text), but also
the relaxational term. This is what we should expect, since they always emerge together in actual physical systems.

b. Noise

In the context of the microcanonical dynamics discussed in this section, if we want to describe the properties of the system at
a given temperature T , the natural choice is to consider the initial conditions as drawn with a canonical distribution e−βH/Z . We
note that the total Hamiltonian of Eq. (C19) can be rewritten as

HTOT = Heff ({σ}) +
∑

q

m

2

(
ωqQq − α

mωq
f q

)
·
(

ωqQ−q − α

mωq
f −q

)
+

∑
q

1

2m
Pq · P−q. (C29)

We therefore have for the canonical averages, 〈
Qα

q (0) − α

mω2
q

f α
q (0)

〉
= 0, (C30)

mω2
q

2

〈(
Qα

q (0) − α

mω2
q

f α
q (0)

)(
Qβ

q′ (0) − α

mω2
q′

f β

q′ (0)

)〉
= kBT

2
δα,βδq′,−q, (C31)

〈
Pα

q (0)
〉 = 0, (C32)

1

2m

〈
Pα

q (0)Pβ

q′ (0)
〉 = kBT

2
δα,βδq′,−q. (C33)

We can exploit these expressions to compute the properties of the effective noise ξi. From Eq. (C28) we get

〈ξi〉 = 0, (C34)

and, from Eqs. (C31) and (C33),

〈
ξ

μ
i (t )ξν

j (t ′)
〉 = α2

h̄2

∑
αβqq′

[〈(
Qα

q (0) − α

mω2
q

f α
q (0)

)(
Qβ

q′ (0) − α

mω2
q′

f β

q′ (0)

)〉
cos(ωqt ) cos(ωq′t ′)

+ 〈Pα
q (0)Pβ

q′ (0)〉
m2ωqωq′

sin(ωqt ) sin(ωq′t ′)
](

∂ f α
−q({σ})

∂σ i
× σ i

)μ

t

(
∂ f β

−q′ ({σ})

∂σ j
× σ j

)ν

t ′

=
∑
βq

α2kBT

mh̄2ω2
q

[
cos(ωqt ) cos(ωq′t ′) + sin(ωqt ) sin(ωqt ′)

](
∂ f β

−q({σ})

∂σ i
× σ i

)μ

t

(
∂ f β

q ({σ})

∂σ j
× σ j

)ν

t ′

=
∑
βq

α2

2h̄2Kλq
cos (ωq(t − t ′))

(
∂ f β

−q({σ})

∂σ i
× σ i

)μ

t

(
∂ f β

q ({σ})

∂σ j
× σ j

)ν

t ′
. (C35)

Hence, the {ξi} are random variables with a Gaussian distribution, zero mean and nontrivial correlations both in space, as noises
in different sites i and j are not independent, and in time. We can indeed identify in Eq. (C35) the following non-Markovian,
dimensionless memory kernel,

Rμν
i j (t, t ′) =

∑
βq

1

4λq
cos (ωq(t − t ′))

(
∂ f β

−q({σ})

∂σ i
× σ i

)μ

t

(
∂ f β

q ({σ})

∂σ j
× σ j

)ν

t ′
. (C36)

The noise correlator can then be expressed in a more compact form as

〈
ξ

μ
i (t )ξν

j (t ′)
〉 = 2kBT h̄−1

(
α2

h̄K

)
Rμν

i j (t, t ′). (C37)

Equation (C37) is the same as (47) of the main text, and already looks quite similar to (55), written in the main text using
dimensional analysis. Some more work, however, is needed to recover the same thermostat as DLT.
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c. Relaxational term and the FD relation

We now consider the relaxational term �i[{σ}] of Eq. (C27). We can exploit Eq. (C21) to expand the time derivative of f β
q ,

df β
q

dt
=

∑
j

∂ f β
q

∂σ j
· dσ j

dt ′ = ∂ f β
q

∂σ j
·
(

h̄−1 ∂HTOT

∂σ j
× σ j

)
= −h̄−1 ∂HTOT

∂σ j
·
(

∂ f β
q

∂σ j
× σ j

)
. (C38)

Using the above equation we find

�i[{σ}] =
∑
jq,β

α2

mh̄ω2
q

∫ t

0
dt ′ cos (ωq(t − t ′))

(
∂ f β

−q({σ})

∂σ i
× σ i

)
t

(
∂ f β

q

∂σ j
× σ j

)
t ′

·
(

h̄−1 ∂HTOT

∂σ j

)
t ′
. (C39)

We then find that the relaxational term can be written as

�
μ
i = h̄−1

(
α2

h̄K

) ∫ t

0
dt ′ ∑

j,ν

2Rμν
i j (t, t ′)

(
∂HTOT

∂σ ν
j

)
t ′
. (C40)

Hence, the same memory kernel appears in the relaxational term and in the noise correlator, Eq. (C37). Together with the factor
kBT , this fully recovers the FD relation. We recall here that the FD relation must be satisfied in order to have a thermal bath,
which preserves the equilibrium probability distribution of the system.

d. Conservation of the total magnetization

Let us prove here that the dimensionless kernel appearing in both the noise and relaxational terms preserves the total
magnetization along the dynamics. Let us consider Eq. (C25), the sum over i yields the derivative of the total magnetization
of the system,

dM
dt

= h̄−1
∑

i

(
∂Heff

∂σ i
× σ i

)
−

∑
i

�i[{σ}] +
∑

i

ξi. (C41)

We now show that each term of the r.h.s. is zero. Recalling the definition of f β
σ in Eq. (C16), we note that

∂ f β
−q

∂σ i
=

∑
k

1√
N

e−iq·rk
∂ f β

k ({σ})

∂σ i
=

∑
k

1√
N

e−iq·rk
∑

h

ni j êβ
i j

∂ (σk · σh)

∂σ i
=

∑
k

1√
N

e−iq·rk
∑

h

ni j êβ
i j

∂ (σk · σh)

∂σ i

=
∑

k

1√
N

e−iq·rk
∑

h

ni j êβ
i j [δikσh + δihσk] =

∑
kh

1√
N

(e−iq·rk − eiq·rh )ni j êβ
i j δikσh

=
∑

h

1√
N

(e−iq·ri − e−iq·rh )ni j êβ
i j σh.

(C42)

From this expression we get

∑
i

(
∂ f β

−q

∂σ i
× σ i

)
=

∑
ih

1√
N

(
e−iq·ri − e−iq·rh

)
ni j êβ

i j (σh × σ i ) = 0, (C43)

where the last passage derives from summing an antisymmetric object. Thanks to this relation, and recalling (C36), we
conclude that ∑

i

Rμν
i j (t − t ′) = 0 , (C44)

which implies that the second and third term in (C41) are zero. For what concerns the first term in (C41), we notice that it can
be rewritten as

h̄−1
∑

i

(
∂Heff

∂σ i
× σ i

)
= h̄−1

∑
i

(
∂H0

∂σ i
× σ i

)
− h̄−1

∑
qβ

α2

mω2
q

f β
q

∑
i

(
∂ f β

−q

∂σ i
× σ i

)
, (C45)

where the first term in the r.h.s. gives 0, as we knew from the very beginning, while the second vanishes due to Eq. (C43). The
total magnetization is therefore strictly conserved during the dynamical evolution.
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3. Approximations for recovering DLT

Up to this point, no approximation has been done, and both the conservation of the total magnetization and the FD relation
are satisfied exactly. The equation of motion for the spin that we have obtained is

dσ
μ
i

dt
= h̄−1εμνρ

∂Heff

∂σ ν
i

σ
ρ
i − h̄−1

(
α2

h̄K

) ∫ t

0
dt ′ ∑

jν

2Rμν
i j (t, t ′)

(
∂HTOT

∂σ ν
j

)
t ′

+ ξ
μ
i . (C46)

Equation (C46) looks similar in structure to the equation of motion introduced in the main text in the DLT scheme: there is
a Hamiltonian precession term, a conservative noise term, and a conservative relaxational term linked to the derivative of the
Hamiltonian. However, there are several differences. First of all, the derivative of the Hamiltonian in the relaxational term
involves the total Hamiltonian, which includes the phononic degrees of freedom making the equation itself not closed in the
spin variables. The precession term involves the effective Hamiltonian (C26), instead of a simple spin exchange interaction. The
relaxation term is proportional to something, which, while having a zero mode, is not the discrete Laplacian. Finally, the memory
kernel is not proportional to a Dirac delta distribution and the equation is therefore not Markovian. We address here the first three
issues, while leaving the fourth to a separate section at the end of the Appendix.

a. Approximation for HTOT in the relaxational term

Equation (C46) involves the derivative of the total Hamiltonian with respect to the spin variables σ j . In the simpler case of a
colloidal particle coupled to a bath of harmonic oscillators (see [20]), this term does not depend on the degrees of freedom of the
thermal bath, leaving a closed equation for the colloidal particle. In the case of spin systems, although, this derivative includes
the phononic degrees of freedom, so we have to make an approximation to close the equation. From the expression of the total
Hamiltonian (C19) and the definition of Heff we get

∂HTOT

∂σ j
= ∂Heff ({σ}

∂σ j
− α

∑
βp

∂ f β
p

∂σ j
·
(

Qβ
−p − α

mω2
p

f β
−p

)
. (C47)

The phononic variables Qβ
−p(t ) on the r.h.s. are random variables, since they depend on the initial condition Qβ

−p(0), which we
have drawn from the canonical distribution. If we assume that their dynamics is faster than the one of the spin variables we can
approximate their time dependent value with the expected value with respect to their marginal equilibrium distribution at fixed
σ. Hence, the second term of Eq. (C47) can be approximated with its average. Since the initial canonical distribution is invariant
under the microcanonical dynamics, this average value is zero [see Eq. (C30)], thus giving

∂HTOT

∂σ j
� ∂Heff

∂σ j
. (C48)

b. The effective Hamiltonian approximation

The effective Hamiltonian Heff appears now in both the precession and the relaxational term, and the equation of motion
becomes

dσ
μ
i

dt
= h̄−1εμνρ

∂Heff

∂σ ν
i

σ
ρ
i − h̄−1

(
α2

h̄K

) ∫ t

0
dt ′ ∑

jν

2Rμν
i j (t, t ′)

(
∂Heff

∂σ ν
j

)
t ′

+ ξ
μ
i . (C49)

Equation (C49) involves a Hamiltonian, which is a function of the spins only, and it is therefore self-consistent. In the main
text, though, we used an equation for the spin dynamics where only H0 appears, in place of Heff . In general, corrections to H0

might be potentially relevant for the equilibrium probability distribution of the slower variables. However, this is not likely what
happens in our case. Indeed, if we consider the difference between H0 and Heff we have that

�H = Heff − H0 = −
∑

q

α2

2mω2
q

f q · f −q({σ}), (C50)

and using, Eq. (C16),

�H = − α2

2K

∑
q

∑
i jkh

eiq·(ri−rk )

2λqN
ni jnkhêi j · êkh

(
σ i · σ j

)
(σk · σh). (C51)

The above expression is quite complicated, but we can see
that both the ground state of the ferromagnet (all the spins
aligned) and the ground state of the antiferromagnet (all spins
anti-aligned with their neighbors) yield �H = 0. Hence, we

argue that the correction does not change any fundamental
feature of the system and it is safe to neglect this contribu-
tion. This is also consistent with the fact that in the starting
Hamiltonian we neglected all the 4-spins (or more)
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contributions keeping only two-spins interactions. With this
approximation, we hence have

Heff � H0. (C52)

c. Introducing the Laplacian

We now focus on the site dependence of the memory
kernel. As discussed in the previous sections, the kernel ex-
actly has a zero mode, which ensures the conservation law for
the global magnetization. Adopting some additional approx-
imations, we can show that it is proportional to the discrete
Laplacian, with the appropriate q-dependent coefficient. Let
us call

�
μν

i j (t, t ′) =
∑

β

(
∂ f β

−q

∂σ i
× σ i

)μ

t

(
∂ f β

q

∂σ j
× σ j

)ν

t ′
, (C53)

the site-dependent part of the memory kernel. Using Eq. (C43)
we find

�
μν

i j (t, t ′) = 1

N

∑
βhk

(eiq·ri − eiq·rh )(eiq·r j − eiq·rk )nihêβ

ih n jk êβ

jk

× (σh × σ i )
μ
t (σk × σ j )

ν
t ′ . (C54)

It is also convenient to introduce the following auxiliary
quantity:

Lμν

hik j (t, t ′) = (σh × σ i )
μ
t (σk × σ j )

ν
t ′ . (C55)

First, we assume isotropy with respect to the spin vectorial
components, so that this matrix becomes proportional to the
identity in that space,

Lμν

hik j (t, t ′) � 1

d
(σh × σ i )t · (σk × σ j )t ′δμν. (C56)

By applying the vectorial identity (a × b) · (c × d ) = (a ·
c)(b · d ) − (a · d )(b · c) we can rewrite this quantity in a more
useful form,

Lμν

hik j (t, t ′) � 1

d
[(σh(t ) · σk (t ′))(σ i(t ) · σ j (t

′))

− (σh(t ) · σ j (t
′))(σ i(t ) · σk (t ′))]δμν. (C57)

We then approximate the above expression with its expected
value with respect to the stationary spin distribution,

Lμν

hik j (t, t ′) � 1

d
[〈(σh(t ) · σk (t ′))(σ i(t ) · σ j (t

′))〉
− 〈(σh(t ) · σ j (t

′))(σ i(t ) · σk (t ′))〉]δμν, (C58)

and we consider spin correlations to be negligible unless the
scalar product is taken between two spins on the same site
(i.e., for i = j and h = k in the first term and h = j and i = k
in the second term),

Lμν

hik j (t, t ′) � 1

d
[〈(σh(t ) · σh(t ′))(σ i(t ) · σ i(t

′))〉δhkδi j

− 〈(σ j (t ) · σ j (t
′))(σ i(t ) · σ i(t

′))〉δ jhδik]δμν

= 1

d
[〈(σh(t ) · σh(t ′))(σ i(t ) · σ i(t

′))〉(δhkδi j

− δ jhδik )]δμν.

(C59)
A four-point correlation function of the spins appears in

Eq. (C59), namely,

C(4)(t − t ′) = 〈(σh(t ) · σh(t ′))(σ i(t ) · σ i(t
′))〉 (C60)

where no site dependence is present in the left-hand side (l.h.s)
because i and h are always first neighbors [see (C54)] and the
resulting expected value is therefore the same for all the first
neighbors pairs. The time dependencies appear only as a time
difference, because expected values are taken with respect to
the stationary distribution. The actual shape of this function
is not important: we only assume that the time dependence
is much slower than the phononic dynamics, so that we can
assume it to be constant in time and approximate it with its
value in 0, namely C(4)(t − t ′) � C(4)(0) = 1. Now we can
use the above approximations in formula (C54) and obtain

�
μν

i j (t, t ′) � �
μν

i j � 1

Nd

∑
βhk

(eiq·ri − eiq·rh )(eiq·r j − eiq·rk )nih êβ

ih n jk êβ

jk δμν (δhkδi j − δ jhδik )

= 1

Nd

[ ∑
βh

(eiq·ri − eiq·rh )(eiq·ri − eiq·rh )nih êβ

ih êβ

ih δi j −
∑
βh

(eiq·ri − eiq·rh )(eiq·rh − eiq·ri )nih êβ

ih êβ

hi δ jh

]
δμν.

(C61)
We remind that êhi = −êih, thus finding

�
μν

i j � 1

Nd

[ ∑
h

|eiq·ri − eiq·rh |2nihδi j − |eiq·ri − eiq·rh |2nihδ jh

]
δμν = 1

Nd

[ ∑
h

2(1 − cos (q · (ri − rh))) nihδi j

− 2(1 − cos(q · (ri − r j ))) ni j

]
δμν = 2

Nd
[λqδi j − (1 − cos (q · (ri − r j )))ni j]δμν.

(C62)

The indexes i and j identify a well defined direction α = α(i, j), so the last equation reads

�
μν

i j = 2

Nd
[λqδi j − (1 − cos(qα(i, j)l ))ni j]δμν. (C63)
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Lastly, we make the assumption of isotropy in the q space,

(1 − cos(qα(i, j)l )) � 1

d

d∑
β=1

(1 − cos(qβ l )) ≡ 1

nc
λq∀α,

(C64)

hence we end up with

�
μν

i j � 2

Ndnc
λq(ncδi j − ni j )δμν

= 1

Nd2
λq�i jδμν.

(C65)

With this expression, we finally recover the Laplacian matrix
appearing in the DLT scheme. We now can reduce the memory
kernel introduced before to

Rμν
i j (t − t ′) � �i jδμνR(t − t ′), (C66)

where

R(t − t ′) =
∑

q

1

4Nd2
cos (ωq(t − t ′)), (C67)

And we can rewrite, after all the approximations discussed so
far, Eq. (C49) as

dσ i

dt
= h̄−1 ∂H0

∂σ i
× σ i − h̄−1

(
α2

h̄K

)∑
j

�i j

×
∫ t

0
dt ′2R(t − t ′)

(
∂H0

∂σ j

)
t ′

+ ξi, (C68)

with the noise correlation,

〈
ξ

μ
i (t )ξν

j (t ′)
〉 = 2kBT h̄−1

(
α2

h̄K

)
�i jδμνR(t − t ′). (C69)

This dynamics is now nearly identical to DLT. The only
remaining difference is that the dimensionless memory kernel
R(t − t ′) is not Markovian, as we hinted in our shortened

derivation in the main text using dimensional analysis. The
time dependence of the kernel is in general nontrivial and it
depends on the details of the phononic spectrum, and on the
phonon dynamics. So far, we have considered the case where
the system is isolated and the dynamics is fully microcanonic.
In the next section, we compute the time dependence of the
memory kernel when the phononic degrees of freedom (but
not the spins) are coupled with an external thermal bath.

4. Phonons coupled to an external thermal bath

a. Equations of motion

In this section we perform the same computation as in
Appendix C 2 a, but considering this time the vibrational de-
grees of freedom coupled to an external thermal bath. The spin
variables, on the other hand, still follow Hamiltonian equa-
tions of motion and feel the presence of the thermal bath only
via their interaction with the lattice. We use for the phonons a
standard Gaussian white thermal bath, with friction coefficient
η and temperature T . Instead of Eq. (C20) we therefore have

m
d2Qq

dt2
+ η

dQq

dt
+ 2KλqQq = ζq + α f q, (C70)

where the bath noise satisfies

〈ζq〉 = 0, (C71)

〈ζq(t )ζp(t ′)〉 = 2ηT δq,−pδ(t − t ′). (C72)

There are three relevant (inverse) timescales in this
equation, i.e.,

ωq =
√

2K

m
λq, γ = η

2m
, ωq =

√
ω2

q − γ 2. (C73)

The solution of the homogeneous equation is not relevant,
since it only gives an exponentially decaying transient, and
for large enough times that system forgets the initial condi-
tions. Setting the initial condition at t0 = −∞ the solution is
therefore given by

Qq(t ) = α

mωq

∫ t

−∞
dt ′e−γ (t−t ′ ) sin (ωq(t − t ′)) f q(t ′) + 1

mωq

∫ t

−∞
dt ′e−γ (t−t ′ ) sin (ωq(t − t ′))ζq(t ′)

= α

mω2
q

f q(t ) − α

mω2
q

∫ t

−∞
dt ′e−γ (t−t ′ )

(
cos (ωq(t − t ′)) − γ

ωq
sin (ωq(t − t ′))

)
d

dt ′ f q(t ′)

+ 1

mωq

∫ t

−∞
dt ′e−γ (t−t ′ ) sin (ωq(t − t ′))ζq(t ′).

(C74)

The above equations can then be inserted back in the equations of motion for the σ variables,

dσ i

dt
= h̄−1 ∂H

∂σ i
× σ i = h̄−1 ∂H0

∂σ i
× σ i − α

h̄

∑
qβ

Qβ
q

∂ f β
−q({σ})

∂σ i
× σ i. (C75)

Proceeding as in Appendix C 2 a we find

dσ i

dt
= h̄−1 ∂Heff

∂σ i
× σ i − �i[{σ}] + ξi, (C76)
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where Heff is the same defined in Eq. (C26), but the relaxational and the noise terms now have a different expression,

�i[{σ}] = −
∑
qβ

α2

mh̄ω2
q

∫ t

−∞
dt ′e−γ (t−t ′ )

(
cos (ωq(t − t ′)) − γ

ωq
sin (ωq(t − t ′))

)
d

dt ′ f β
q (t ′)

(
∂ f β

−q({σ})

∂σ i
× σ i

)
t

, (C77)

and

ξi = α

h̄

∑
qβ

(
1

mωq

∫ t

−∞
dt ′e−γ (t−t ′ ) sin (ωq(t − t ′))ζ β

q (t ′)
)(

∂ f β
−q({σ})

∂σ i
× σ i

)
t

. (C78)

b. Noise

Let us start by considering the noise term ξi defined in (C78). In the microcanonical treatment of Appendix C 2 a, the noise
was a fluctuating variable due to the presence of the initial conditions, which were drawn randomly with a canonical distribution.
Here, on the other hand, the initial conditions are not relevant and the fluctuating nature of this term is due to the presence of
the stochastic variable ζ

β
q representing the external thermal bath coupled to phonons. Taking the average of Eq. (C78) over the

thermal bath at fixed σ we get

〈ξi〉 = 0, (C79)

and, for the noise correlator,

〈
ξ

μ
i (t )ξν

j (t ′)
〉 = α2

h̄2

∑
αβqq′

〈[(
1

mωq

∫ t

−∞
dse−γ (t−s) sin (ωq(t − s))ζ α

q (s)

)(
1

mωq′

∫ t ′

−∞
ds′e−γ (t ′−s′ ) sin (ωq′ (t ′ − s′))ζ β

q′ (s′)
)]〉

×
(

∂ f α
−q({σ})

∂σ i
× σ i

)μ

t

(
∂ f β

−q′ ({σ})

∂σ j
× σ j

)ν

t ′
=

∑
βq

4γα2kBT

mh̄2ω2
q

[ ∫ min(t,t ′ )

−∞
dse−γ (t+t ′−2s) sin (ωq(t − s))

× sin (ωq(t ′ − s))
](

∂ f β
−q({σ})

∂σ i
× σ i

)μ

t

(
∂ f β

q ({σ})

∂σ j
× σ j

)ν

t ′
=

∑
βq

4γα2kBT

mh̄2ω2
q

[
e−γ (t+t ′ )

∫ min(t,t ′ )

−∞
dse2γ s

× 1

2

(
cos (ωq(t − t ′)) − cos (ωq(t + t ′ − 2s))

)](
∂ f β

−q({σ})

∂σ i
× σ i

)μ

t

(
∂ f β

q ({σ})

∂σ j
× σ j

)ν

t ′

=
∑
βq

2α2kBT

mh̄2ω2
q

1

2

[
e−γ |t−t ′ | cos (ωq(t − t ′)) − γ

ω2
q

e−γ |t−t ′ |(γ cos (ωq(t − t ′)) + ωq sin(ωq|t − t ′|))
]

×
(

∂ f β
−q({σ})

∂σ i
× σ i

)μ

t

(
∂ f β

q ({σ})

∂σ j
× σ j

)ν

t ′
=

∑
βq

α2kBT

mh̄2ω2
q

e−γ |t−t ′|
(

cos(ωq|t − t ′|) − γ

ωq
sin(ωq|t − t ′|)

)

×
(

∂ f β
−q({σ})

∂σ i
× σ i

)μ

t

(
∂ f β

q ({σ})

∂σ j
× σ j

)ν

t ′
. (C80)

Hence, we have again that the {ξi} are Gaussian random variables with 0 mean and nontrivial correlations in space and time. We
can in this case identify the dimensionless kernel,

Rμν
i j (t, t ′) =

∑
βq

1

4λq
e−γ |t−t ′|

(
cos(ωq|t − t ′|) − γ

ωq
sin(ωq|t − t ′|)

) (
∂ f β

−q({σ})

∂σ i
× σ i

)μ

t

(
∂ f β

q ({σ})

∂σ j
× σ j

)ν

t ′
, (C81)

and rewrite the correlator as

〈
ξ

μ
i (t )ξν

j (t ′)
〉 = 2kBT h̄−1

(
α2

h̄K

)
Rμν

i j (t, t ′). (C82)

This last result generalizes the one of Eq. (C36), while the microcanonical result is recovered when γ = 0.

c. Relaxational term and the FD relation

Let us now consider the relaxational term �i[{σ}] in Eq. (C77). Since t > t ′ inside the integral, we can put a modulus in the
argument of the exponential, of the cosine and of the sine. Then, again, we can use Eq. (C38) to expand the time derivative of
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f β
q , and we find

�i[{σ}] =
∑
jq,β

α2

mh̄ω2
q

∫ t

−∞
dt ′e−γ |t−t ′|

(
cos(ωq|t − t ′|) − γ

ωq
sin(ωq|t − t ′|)

)

×
(

∂ f β
−q({σ})

∂σ i
× σ i

)
t

(
∂ f β

q

∂σ j
× σ j

)
t ′

·
(

h̄−1 ∂HTOT

∂σ j

)
,

(C83)

or, equivalently, using the definition of Rμν
i j (t, t ′) given in (C81),

�
μ
i = h̄−1

(
α2

h̄K

)∫ t

−∞
dt ′ ∑

j,ν

2Rμν
i j (t, t ′)

(
∂HTOT

∂σ ν
j

)
t ′
. (C84)

Also in this case therefore the memory function of the relaxational term is the same as the correlation of the noise, up to a factor
kBT . Hence, the FD relation is satisfied also with this dynamics, which allows recovering the equilibrium behavior at temperature
T . The conservation law of the total magnetization is also ensured with this thermal bath, as the the site-dependent part of the
kernel defined in (C81) is the same as in (C35).

Finally, we can perform all the approximations that we have discussed for the isolated system case. The final result of this
computation is the same as the previous one, except for the time dependence of Rμν

i j (t, t ′). Hence, we end up with

�i[{σ}] = h̄−1

(
α2

h̄K

) ∑
j

�i j

∫ t

−∞
dt ′2R(t − t ′)

(
∂HTOT

∂σ ν
j

)
t ′
, (C85)

where now the scalar memory kernel is given by

R(t − t ′) =
∑

q

1

4Nd2
e−γ |t−t ′ |

(
cos(ωq|t − t ′|) − γ

ωq
sin(ωq|t − t ′|)

)
. (C86)

5. Summary of phonons marginalization

Let us summarize the main results obtained so far. We
started from the equations of motion for a system of spin
degrees of freedom following a precession dynamics and
interacting with the vibrational degrees of freedom of the
lattice. We explicitly solved the equations for the phonons,
as a function of the spins. This procedure lead, after some
approximations, to the following effective equations of motion
for the spins only [49],

dσ i

dt
= {H0, σ i} − h̄−1

(
α2

h̄K

) ∑
j

�i j

×
∫ t

−∞
dt ′2R(t − t ′)

(
∂H0

∂σ j

)
t ′

+ ξi, (C87)

where ξi is a Gaussian noise, with zero mean and correlation
given by

〈
ξ

μ
i (t )ξν

j (t ′)
〉 = 2kBT h̄−1

(
α2

h̄K

)
�i jδμνR(t − t ′). (C88)

R(t − t ′) is a dimensionless non-Markovian memory kernel
dependent on the details of the phonons. For an isolated sys-
tem, we have

R(t − t ′) =
∑

q

1

4Nd2
cos(ωqt − t ′), (C89)

while for a system where phonons (but not spins) are in
contact with a thermal bath, we have

R(t − t ′) =
∑

q

1

4Nd2
e−γ |t−t ′ |

(
cos(ωq|t − t ′|)

− γ

ωq
sin(ωq|t − t ′|)

)
. (C90)

6. Discrete-time Markovian approximation

Because of the memory kernel in Eq. (C87), what we
have obtained so far is a non-Markovian thermostat, while
the DLT presented in the main text is Markovian. In this
section we show that, under appropriate conditions, we can
recover a Markovian dynamics by discretizing the continuous
stochastic process over a sufficiently long time scale. Every
stochastic differential equation must ultimately be brought
back to its discrete time version for it to make sense, so we
rewrite (C87) as

dσ i = {H0, σ i}dt −
[

h̄−1

(
α2

h̄K

) ∑
j

�i j

∫ t

−∞
dt ′2R(t − t ′)

×
(

∂H0

∂σ j

)
t ′

]
dt + dwi, (C91)

where dwi = ξidt is the noise on scale dt . The microscopic
timescale dt has to be interpreted as the minimal physical
time increment over which the system’s dynamics takes place.
The derivation of the previous sections shows that on this
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minimal timescale the noise correlator has memory, i.e.,
〈dwi(t ) · dwi(t ′)〉 ∼ R(t − t ′)dt2. We can, however, ask
whether, when considering the dynamics on scales larger
than this minimal increment, a Markovian process can be
recovered. Let us assume that the spins vary in time slowly
compared with the time span of R(t − t ′). In this case, we
immediately see that a simplification occurs in Eq. (C91), be-
cause the quantity ∂H0/∂σ j only depends on the spin variables
and can be brought out of the integral. If we then define

τm =
∫ +∞

−∞
dsR(s) =

∫ 0

−∞
ds2R(s). (C92)

Equation (C91) can be rewritten as

dσ i={H0, σ i}dt−
⎡
⎣h̄−1

(
α2

h̄K

)
τm

∑
j

�i j

(
∂H0

∂σ j

)
t

⎤
⎦dt+dwi.

(C93)

Consistently with the above assumption, it is reasonable to
look at the spin dynamics over a lower time resolution, be-
cause changes in the spins are negligible on the minimal scale
dt . We can then consider a discrete time increment �t 
 τm,
which is much larger than the decay time of R, but also
much smaller than the time scale over which the spins vary
significantly. The dynamical evolution of the spins on this
coarse-grained timescale can be easily obtained by integrating
Eq. (C93) between t and t + �t , and considering the spins to
be constant in this integration interval. We get

�σ i = {H0, σ i}�t −
⎡
⎣h̄−1

(
α2

h̄K

)
τm

∑
j

�i j

(
∂H0

∂σ j

)
t

⎤
⎦�t

+ �wi, (C94)

where

�wi =
∫ t+�t

t
dwi. (C95)

Equation (C94) is now the lower time resolution version of
Eq. (C91). Memory is not present anymore in the relaxational

term and �wi is the coarse-grained noise over scale �t .
From (C95) we find

〈�w
μ
i (t1)�wν

j (t2)〉 = 2kBT h̄−1

(
α2

h̄K

)
�i jδμν

×
∫ t1+�t

t1

dt
∫ t2+�t

t2

dt ′R(t − t ′),

(C96)

where t1 and t2 are multiples of the new time resolution �t .
Now, since �t is much larger than the decay time of R, if
t1 �= t2 Eq. (C96) gives 0; on the other hand, if t1 = t2, all the
times where the function is significantly different from 0 are
inside the integration range, thus yielding the aforementioned
τm. Therefore, we have

〈
�w

μ
i (t1)�wν

j (t2)
〉 = 2kBT h̄−1

(
α2

h̄K

)
τm�i jδμν�t δt1,t2 .

(C97)

We then recover white uncorretaled noise [i.e., �w
μ
i (t ) is a

Wiener process on scale �t], together with the correct FD re-
lation between its correlation and the relaxational coefficient.

Equation (C94) is therefore Markovian and it has the very
same structure on scale �t as the DLT equation used in the
main text. This can be seen explicitly by discretizing Eq. (11)
of the main text on scale �t , which becomes

�σ i = {H0, σ i}�t −
⎡
⎣h̄−1λ

∑
j

�i j

(
∂H0

∂σ j

)
t

⎤
⎦�t + �wi,

(C98)
with〈

�w
μ
i (t1)�wν

j (t2)
〉 = 2kBT h̄−1λ�i jδμν�t δt1,t2 . (C99)

By comparing these two equations with Eqs. (C94) and (C97)
we can finally identify the relaxational coefficient λ as

λ =
(

α2

h̄K

)
τm, (C100)

which is (finally) Eq. (53) of the main text.
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