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Interatomic potential development using machine learning (ML) approaches has attracted a lot of attention in
recent years because these potentials can effectively describe the structural and dynamical properties of complex
materials at the atomistic level. In this work, we present the development of a neural network (NN) deep ML
interatomic potential for Fe-Si alloys, and we demonstrate the effectiveness of the NN-ML potential in predicting
the structures and energies of liquid and crystalline phases of Fe-Si alloys in comparison with the results from
ab initio molecular dynamics simulations or experimental data. The developed NN-ML potential is also used to
perform molecular dynamics simulations to study the structures of Fe-Si alloys with various compositions under
rapid solidification conditions. The short-ranged orders in the rapidly solidified Fe-Si alloys are also analyzed by
a cluster alignment method.
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I. INTRODUCTION

In addition to high academic research interest, Fe-Si
alloys have great potential in advanced technological appli-
cations due to their various unique physical properties [1].
A crystalline Fe3Si alloy with DO3 structure is a metallic
ferromagnet at room temperature, and it can be used as an
efficient spin-injection source in magnetic devices [2,3]. The
cubic ε-FeSi compound is a semiconductor with unusual mag-
netic properties [1,4], while the β-FeSi2 alloy with a band gap
of about 0.87 eV is expected to be applied in air atmosphere at
high temperature as an excellent thermoelectric material [5,6].
Moreover, Fe-Si alloys are often used as initial materials for
commercial alloys with complex components such as Sendust
alloy (Fe-Si-Al) [7,8] and Finement (Fe-Si-B-Cu-Nb) [9–11].
In addition to the crystalline phases, amorphous Fe-Si alloys
have also attracted considerable interest [3,12–16]. Several
Fe-Si amorphous alloys have also been made by experi-
ments [3,12–16]. It has been shown that structural disordering
is an important means to tune the electronic and magnetic
properties of Fe-Si alloys [3]. For the Fe-rich amorphous
Fe-Si alloys, the spin polarization has been confirmed to be
larger than the corresponding value in the ordered phase [12],
which can be designed as amorphous spintronic material. On
the Si-rich side, amorphous Fe-Si alloys have been reported
to possess a similar band gap to that of crystalline struc-
tures, but they exhibit a larger optical absorption coefficient
[13–16], which is suitable for use in optoelectronic technolo-
gies. Therefore, understanding the structures of amorphous
Fe-Si alloys with different composition ratios is essential for
elucidating the properties and functionalities observed.

*wangcz@ameslab.gov

The energetic stability, physical properties, and local
chemical order of Fe-Si alloys have been investigated exten-
sively in the past several decades by both experimental and
theoretical studies [17–21]. So far, the ab initio molecular
dynamics (AIMD) method based on the first-principles den-
sity functional theory (DFT) has been widely used. AIMD
can accurately describe the interatomic interactions and total
energies for different Fe-Si structures, and it has demonstrated
good agreement with available experimental data [22,23].
However, most of AIMD can only be performed for a short
time (less than 1 ns) and several hundred atoms because of
the expensive computational cost. Therefore, it is difficult for
AIMD to investigate the phase-competition during solidifica-
tion and long-time relaxation in amorphous structures [24].

To overcome these limitations in AIMD, some empiri-
cal interatomic potentials, such as Lennard-Jones [25], the
embedded-atom method (EAM) [26,27], and Tersoff and
Stillinger-Weber potentials [28–30], have been developed.
These potentials have been very useful in MD simulation
studies of some classes of materials [31,32]. Among them, the
EAM potentials can give a good description for metallic sys-
tems [27,33]. However, due to the different bonding features,
it is still difficult to get a suitable EAM potential to describe
the atomistic behaviors for complex materials containing dif-
ferent types of bonding, such as the Fe-Si system with mixed
metallic and covalent bonds [33–35].

Recently, it has been shown that accurate interatomic po-
tentials can be generated for reliable MD simulations by
using deep machine learning based on artificial neural net-
works. In particular, the deep potential molecular dynamics
(DeepMD), a neural network learning software package, has
been developed which can accurately describe the interatomic
interactions in complex materials involving various bonding
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TABLE I. A list of liquid training data sets.

System Number of atoms Temperatures (K) Simulation time (ps) Number of snapshots

Fe10Si90 liquid 128 1600,1700,1800,1900,2000 60 for each temperature 108000
Fe11Si5 liquid 128 1600,1700,1800,1900,2000 60 for each temperature 214000
FeSi liquid 128 1600,1700,1800,1900,2000 60 for each temperature 332000
Fe liquid 250 1600,1700,1800,1900,2000 60 for each temperature 28000
Si liquid 256 1600,1700,1800,1900,2000 60 for each temperature 106000

environments [36–39]. Neural network machine learning
(NN-ML) potentials developed from DeepMD have been
demonstrated to be accurate in predicting the structural and
dynamical properties of alloy materials [24,35–37]. More-
over, while the accuracy of NN-ML potentials obtained from
DeepMD is close to that of DFT calculation, MD simulations
using NN-ML potentials are much faster than AIMD simula-
tions [40,41]. For a system with 5000 atoms, MD simulations
using NN-ML potentials can be about 106 times faster than
AIMD [24,37,42]. Therefore, the development of NN-ML
potentials opens the door to performing accurate and reliable
MD simulations for a larger size and a longer simulation time.

In this paper, by using the DeepMD method, we develop
a NN-ML interatomic potential for Fe-Si alloys. By com-
paring with first-principles DFT calculations, we show that
the developed NN-ML potential describes well the liquid
states of Fe-Si alloys with compositions Fe11Si5, FeSi, and
Fe10Si90, respectively. The NN-ML potential also accurately
described the energy versus volume curves for a number of
crystalline structures, including Fe2Si, Fe5Si3, FeSi, Fe11Si5,
Fe3Si, and FeSi2. The NN-ML potential is then used to study
the rapid solidification of Fe11Si5, FeSi, Fe30Si70, Fe20Si80,
and Fe10Si90 by MD simulations. We found that under a
cooling rate of 1011 K/s, all Fe-Si liquid alloys are developed
into an amorphous state except for Fe10Si90, in which partial
crystallization has been observed. Using the cluster alignment
method, the short-ranged orders (SRO) in the quenched Fe-Si
alloy samples at 300 K obtained from the MD simulations are
analyzed and classified.

The rest of the paper is organized as follows. In Sec. II,
data preparation and ML training for the NN-ML potentials is
described. In Sec. III, the accuracy of the developed NN-ML
potentials for liquid and crystalline Fe-Si alloys is demon-
strated in comparison with the first-principles DFT results
or experimental data. The structures of Fe-Si alloys (includ-
ing the SRO analysis) with various compositions under rapid
solidification by MD simulations are presented in Sec. IV,
followed by a summary in Sec. V.

II. DATA PREPARATION AND DEEPMD TRAINING

The data used in training the NN-ML potential by DeepMD
contain snapshots from the liquids of pure Fe and Si as well
as Fe11Si5, FeSi, and Fe10Si90 alloys at different temperatures,
in addition to various crystalline phases of pure Fe, pure
Si, and Fe-Si binary compounds with random displacements
imposed.

First-principles DFT calculations for the crystalline struc-
tures are performed using the Vienna ab initio simulation
package (VASP) [43,44]. The projector augment wave (PAW)

method [45] is adopted for describing the interaction between
core-valence electrons. The electron exchange and correlation
potential are determined by the generalized gradient approxi-
mation (GGA) in the Perdew-Burke-Ernzerhof (PBE) formula
[46]. The kinetic energy cutoff of 520 eV for the plane-wave
basis set is chosen, and the Monkhorst-Pack k mesh with
2π × 0.03 Å−1 spacing is utilized to sample the Brillouin
zone. The electronic convergence criteria of energies and
forces are set to 10−5 eV/atom and 0.01 eV/Å, respectively,
for the relaxation of the unit-cell lattice vectors.

The crystalline phases include body-centered-cubic, face-
centered-cubic, and hexagonal Fe structures, and crystalline
Si with cubic diamond structure (Fd3m), hexagonal diamond
structure (P63/mmc), orthorhombic structure (Cmcm), and
BC structure (R3), as well as the binary Fe2Si, Fe5Si3, FeSi,
Fe11Si5, Fe3Si, and FeSi2 line compounds, are obtained from
the Materials Project (MP) database [47]. The unit cell is con-
tracted or expanded by a scaling factor ranging from 0.85 to
1.225 with 0.025 intervals for each Fe-Si crystal structure, and
from 0.85 to 1.245 with 0.005 intervals for Fe and Si crystal
structures. For each given volume, the atoms in the crystal
are randomly displaced from their equilibrated position with a
distortion amplitude between −0.025 and 0.025 of the length
of the lattice vectors. Fifty distorted structures are randomly
generated for each crystalline phase. Then, single-point DFT
calculations are performed for these structures to obtain the
energies and forces (on each atom). These calculation results
are also collected into the training database. All training data
used in the present paper are listed in Tables I and II.

TABLE II. A list of crystal training data sets.

Space Number of Number of
System group atoms distorted structures

FeSi2 P4/mmm 3 800
Fe2Si P3m1 6 800
Fe5Si3 P63/mcm 16 800
FeSi P2_13 8 800
Fe11Si5 Pm3m 16 800
Fe3Si Fm3m 16 800
FeSi2 Cmce 48 800
Fe P63/mmc 2 4000
Fe Fm3m 4 4000
Fe Im3m 2 4000
Si R3 24 4000
Si P63/mmc 4 4000
Si Ia3 16 4000
Si Fd3m 4 4000
Si Cmcm 24 4000
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FIG. 1. The comparison of the energies and the magnitude of forces predicted by the trained NN-ML model and ab initio calculation results
for the training and validation data of Fe11Si5 liquid structure.

For generating the liquid snapshots training data, AIMD
simulations are also carried out using VASP with a constant
number of atoms, constant volume, and temperature (NVT)
ensemble using a Nosé-Hoover thermostat under periodic
boundary conditions and a MD time step of 3 fs [48]. The
simulation temperatures for pure Fe and Si liquids and three
liquid alloys, i.e., Fe11Si5, FeSi, and Fe10Si90, are at 2000,
1900, 1700, and 1600 K separately. For each simulation tem-
perature, the MD box size is constantly adjusted so that the
average pressure of the system is in the range of −10.0 − 10.0
Kbar. The numbers of snapshots for the liquids at different
compositions are picked up somewhat randomly. We collected
these snapshot structures together with their potential energies
and forces on each atom from the AIMD simulations, and we
used them as the training data.

The DeepPot-SE model as implemented in the DeepMD-
Kit package [49] is used to train the NN-ML potential. The
radial cutoff of the model is taken as 7.0 Å for capturing the
neighbor configuration information around each atom, and
the smooth cutoff radius is set as 6.8 Å. The filter net has
two hidden layers with 60 and 120 neurons, respectively, and
the fitting net has three hidden layers with 240 neurons for
each layer. The data set from DFT calculations and AIMD
simulations is randomly divided into 97% and 3% of training
and validation set, respectively. The learning rate decreases
exponentially with the decay rate of 0.96 every 10 000 steps.
The initial learning rate is set as 0.001. To achieve a satisfied

accuracy, a total of 3 000 000 steps are performed for the train-
ing process. In Fig. 1, we compare the results of the energies
and forces from our NN-ML prediction for the Fe11Si5 liquid
structure with those from DFT calculations. The energies and
forces predicted by our NN-ML potential agree very well with
DFT calculations, and most of the data points are concentrated
near the perfect-fit line with a small root-mean-square errors
(RMSE) of 5.0 meV/atom and 0.26 eV/Å for the energy and
the magnitude of forces, respectively. Moreover, the compari-
son of energies and forces for the Fe30Si70 alloy, which is not
included in the training dataset, also shows a good agreement
between our NN-ML potential results and DFT data, as can
be seen from Fig. 2. These results indicate that the training
accuracy from the DeepMD is satisfactory, and no sign of
overfitting is observed.

III. PERFORMANCE OF THE NN-ML POTENTIAL
FOR Fe-Si ALLOYS

Using the trained NN-ML model, we calculated the energy
versus volume (E-V) curves of some Fe-Si crystal structures,
and we validated the accuracy of the NN-ML to reproduce
the energies of DFT. From the comparison of the calculation
results shown in Fig. 3, it can be found that the trained NN-ML
model predicts excellently the E-V curves of relevant Fe-Si
crystal structures. The equilibrium lattice constants of the
crystalline phases obtained from the NN-ML potential are also
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FIG. 2. The comparison of the energies and the magnitude of the forces predicted by the trained NN-ML model and ab initio calculation
results for the Fe30Si70 alloy at a temperature of 1300 K.

in good agreement with the DFT results and experimental
data, as shown in Table III. These good agreements suggest
that the NN-ML potential is transferable with respect to vari-
ous bonding environments in Fe-Si crystal phases.

We also calculate the energy convex hull for Fe-Si binaries
using the NN-ML potential, and we compare the results with
those from DFT calculations. The formation energies of the

Fe-Si binary compounds are defined as

Eform(FexSiy) = [E (FexSiy) − xE (Fe) − yE (Si)]/(x + y),

where E (FexSiy) is the total energy of the FexSiy compound,
and E(Fe) and E(Si) are the per atom energy of the ground
state of Fe and Si crystal, respectively. The bcc Fe (Im3̄m)
structure and diamond Si (Fd 3̄m) structure were used as

FIG. 3. Curves of energy vs volume obtained from DFT and NN-ML potential calculations for some crystal structures of the Fe-Si system.
The volume is in units of the equilibrium volume V0.
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TABLE III. A list of lattice constants (in units of Å) obtained from the experimental measurement, the DFT calculations, and the
calculations using the NN-ML potential for the four Fe-Si crystals.

Compound Experiment DFT NN-ML

Fe3Si a = b = c = 5.66 [50] a = b = c = 5.52 a = b = c = 5.53
Fe5Si3 a = b = 6.75, c = 4.74 [51] a = b = 6.55, c = 4.71 a = b = 6.63, c = 4.66
FeSi2 a = 9.86, b = 7.79, c = 7.83 [52] a = 9.88, b = 7.76, c = 7.81 a = 9.86, b = 7.73, c = 7.74
FeSi a = b = c = 4.48 [53] a = b = c = 4.44 a = b = c = 4.45

references in the convex hull construction. The atomic struc-
tures are optimized using the conjugate gradient algorithm in
the NN-ML potential and DFT calculations. The comparison
results are shown in Fig. 4. For the stable crystalline phases
(i.e., Fe3Si, FeSi, and FeSi2) used for the training data, we can
see from the figure that the formation energies calculated by
the NN-ML potential are in good agreement with the results
by DFT. In addition, we also calculated the formation energies
of crystalline structures FeSi3, which was not included in the
training data set. The result shows that the formation energy
of the FeSi3 binary compound calculated by NN-ML is also
very close to that of the DFT calculation. These results verify
the accuracy and transferability of the NN-ML potential.

The melting temperature of the lowest-formation energy
phase, i.e., FeSi, is studied using the developed NN-ML po-
tential to test the predictive capability of the potential since
melting temperatures are not explicitly included in the train-
ing data set. The melting temperature is determined through
the solid/liquid coexistence MD simulation [54]. An initial
FeSi(001)/liquid interface sample of 3600 atoms with 1800
atoms in crystalline structures and 1800 atoms in liquid phase
is prepared at T = 1600 K (about 80 K below the experimen-
tal melting point) under zero pressure by an NPT ensemble.
Then the solid/liquid coexistence MD simulations are car-
ried out using an NVE ensemble where the total energy is
adjusted by scaling the velocities of the atoms. By varying
the total energy, the solid/liquid interface exhibits three differ-
ent behaviors, i.e., crystallization, solid/liquid coexistence, or
melting as shown in Figs. 5(b)–5(d), respectively. The melting

FIG. 4. Formation energy of the Fe-Si crystalline phases calcu-
lated by the DFT and NN-ML potential.

temperature is calculated by time averaging of kinetic energy
for the last 60 ps of MD simulation in the solid/liquid coex-
istence sample shown in Fig. 5(c). The melting temperature
determined in this way is about 1812 K, which is 129 K
(7.7%) higher than the experimental value (1683 K [55]).
Since the NN-ML potential is trained using the DFT calcula-
tion data, the slight overestimation of the melting temperature
would partially be attributed to an overestimation of binding
energy by DFT calculation.

To further verify the transferability and reliability of the
NN-ML potential, we apply the potential in MD simulations
using the LAMMPS package [56] to study the structures of
Fe11Si5, FeSi, and Fe10Si90 liquids, which cover from Fe-rich
to Fe poor compositions, and we compare the results with
those from AIMD simulations. The NN-ML potential MD

FIG. 5. (a) Initial FeSi(001)/liquid configuration, where the
golden and blue balls are Fe and Si atoms, respectively. (b)–(d) The
configurations (after 6 ns simulation time) for the FeSi(001)/liquid
sample at different total energies. The sample in (b) begins to grow
crystal at the interface, while the sample in (d) starts to melt at the
interface. The sample in (c) is in a solid/liquid equilibrium state
where the temperature of the melting point is about 1812 K.
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FIG. 6. Comparison of the pair distribution functions of (a)–(c) total, (d)–(f) Fe-Fe pairs, (g)–(i) Fe-Si pairs, and (j)–(l) Si-Si pairs of three
Fe-Si alloy liquids at 2000 K.

and AIMD simulations are performed at the same conditions,
i.e., using an NVT ensemble with 200 atoms in a cubic box
of the same volume at each composition and with periodic
boundary conditions, and at T= 2000 K, which is controlled
by a Nosé-Hoover thermostat. As shown in Fig. 6, the total
pair distribution functions (PDFs) and Fe-Fe, Fe-Si, and Si-Si
partial PDFs of the three liquids obtained from NN-ML MD
simulations agree well with those from AIMD simulations at
the same conditions, except some discrepancy for the Fe-Fe
partial PDF in Fe10Si90 liquid. This discrepancy would be due
to the small number of Fe atoms in the simulation cell, which
cause poor statistics for Fe-Fe partial PDF. The overall good
agreement between the NN-ML MD and AIMD results indi-
cates that the NN-ML potential is accurate for MD simulation
of high-temperature liquid Fe-Si alloys over a wide range of
compositions.

To see how reliable are the predictions from the developed
NN-ML interatomic potential, the temperature dependence
of viscosity in liquids Fe70Si30 and Fe62Si38 is investigated
using MD simulations with the NN-ML potential, and the
simulation results are compared with the experimental data
from Ref. [57]. The MD simulations are performed in an
isothermal-isobaric (NPT) ensemble with the number of
atoms N= 5000 and at zero pressure. A Nosé-Hoover thermo-
stat is used to control the pressure and temperature. Periodic
boundary conditions in all three directions are applied, and
the MD time step is 2.5 fs. High-temperature liquids are first
prepared by the MD simulations at 2000 K for 120 ps. Then
the liquids are cooled down to lower temperatures step-by-
step to study the temperature dependence of viscosity. At
each temperature, 25 ps MD simulations are performed to
equilibrate the liquid at the temperature, followed by another
25 ps of simulation to calculate viscosity. The viscosity is
calculated from the equilibrium MD simulation calculation
based on the Green-Kubo formula [58],

η = V

kBT

∫ ∞

0
〈pαβ (0)pαβ (t )〉dt,

where V is the volume of the simulation box, pαβ is the off-
diagonal component of the pressure tensor, and 〈· · · 〉 means

the average that is taken over all off-diagonal components
(αβ is xy, xz, or yz) and all time origins.

As shown in Fig. 7, with the decrease of liquid temperature,
the viscosity of Fe70Si30 and Fe62Si38 liquid alloys gradually
increases, which is consistent with the experimental results in
Ref. [57], although the numerical value is slightly offset. We
note that viscosities are not explicitly included in the training.
These results indicate that the predictions from the developed
NN-ML potential are reliable.

To further verify that the developed NN-ML Fe-Si potential
is suitable for undercooled liquid and glass simulations, we
compare the NN-ML and ab initio MD results for Fe11Si5 at
1000 K (which is close to the glass-transition temperature). It
can be seen from Fig. 8 that the RMSE for the energies and
the magnitude of forces of the Fe11Si5 alloy at 1000 K are
acceptable. The total PDFs and Fe-Fe, Fe-Si, and Si-Si partial
PDFs of the alloy (shown in Fig. 9) obtained from the NN-
ML MD simulations also agree well with those from AIMD
simulations at the same conditions.

IV. STRUCTURES OF Fe-Si ALLOYS UNDER RAPID
SOLIDIFICATION BY MD SIMULATIONS

The accuracy and efficiency of the developed NN-ML po-
tential enable us to perform extensive MD simulations with a
larger number of atoms and a longer simulation time to gain
useful insights into the structures of Fe-Si alloys with various
compositions under a rapid solidification process. In the MD
simulations, an NPT (N= 5000 atoms, P= 0) ensemble and
a Nosé-Hoover thermostat are used. The time step for the
MD simulations is 3 fs and the periodic boundary conditions
are used in the three directions. Above the melting point, the
liquid Fe-Si alloys are first annealed at 2000 K for 30 ps to
reach equilibrium and then cooled down to 100 K at a cooling
rate of 1011 K/s.

The evolutions of instantaneous potential energies
(E–3kBT ) with the temperature [59–61] for the Fe-Si alloys
of different compositions at the cooling rate of 1011 K/s
are shown in Fig. 10. As can be seen from the figure, in
the high-temperature section with temperature exceeding
1000 K, the potential energies of Fe11Si5 and FeSi alloys
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FIG. 7. The comparison of experimental data and simulation results of viscosity of Fe70Si30 and Fe62Si38 liquid alloys at different
temperatures.

decrease significantly with the decrease of temperature.
However, when the temperature drops below 1000 K, the
potential energies decrease slowly. This evolution of potential
energies suggests a glass transition, and the glass transition
temperatures of Fe11Si5 and FeSi alloys are similar and
around 1000 K. As the Si content continues increasing to
70% and 80%, the potential energies decrease slower with
temperature in the high-temperature stage, and the glass
transition gradually weakens and shifts to lower temperatures.
Finally, as the Si content reaches 90%, there is an abrupt drop
in instantaneous potential energy for the Fe10Si90 alloy at a
temperature around 600 K, indicating that a crystallization
process occurs during the rapid cooling.

To gain more insights into the local ordered structures in
the rapid solidified Fe-Si alloys obtained from the MD simu-
lations, the short-range-order (SRO) motifs and corresponding
fractions in the samples at 300 K are quantified by using the
cluster alignment method developed previously [62,63]. For
each Fe or Si atom in the samples, a cluster of atoms in a
sphere within a radius R around this atom is extracted from
the MD sample. This cluster is then aligned with a given
template cluster to quantify the similarity of the cluster to the
template cluster. The radius R is adjusted so that each cluster

contains a few more atoms than the number of atoms in the
template cluster. The alignment is proceeded by overlapping
the center atom of the cluster with the center atom of the
template, and then rotating the cluster around the center atom
to minimize the relative distances of the corresponding atoms
in the cluster and template. The alignment score is determined
by the overall minimum of these relative distances. Therefore,
the smaller the alignment score is, the more similarity there is
between the cluster and the template. A cutoff score (usually
taken as 0.16) is then applied to determine if the cluster
can be classified as the template motif. The choice of cutoff
score of 0.16 is mainly guided by considering the structure
distortion due to the thermal fluctuation effect. This value is
estimated by the half-width of the first peak in the Fe-Si pair
distribution function divided by the average Fe-Si bond length
in the sample at room temperature. For more details of the
cluster alignment method, we refer the readers to our previous
publications [62,63].

The alignment score distributions with respect to some
given templates as indicated for the Fe11Si5, Fe30Si70, and
Fe10Si90 MD samples at room temperature are shown in
Fig. 11. The selection of templates is crucial for the align-
ment analysis. First, the six commonly observed SRO motifs

FIG. 8. The comparison of the energies and the magnitude of the forces predicted by the trained NN-ML model and ab initio calculation
results for the Fe11Si5 alloy at the glass-transition temperature of 1000 K.
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FIG. 9. The comparison of the pair distribution functions from simulations by NN-ML MD and AIMD for the Fe11Si5 alloy at the glass-
transition temperature of 1000 K.

FIG. 10. The instantaneous potential energies as a function of temperature for Fe-Si alloys at the cooling rate of 1011 K/s.
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FIG. 11. The distribution of alignment scores against various selected motifs for Fe11Si5, Fe30Si70 and Fe10Si90 alloys.

[i.e., icosahedra (ICO), octahedral (OCT), tetrahedral (TET),
face-centered-cubic (FCC), body-centered-cubic (BCC), and
hexagonal close-packed (HCP)] are used as templates for the
alignment analysis. In addition, the “B2” motif, i.e., the par-
tially ordered α2 phase in the Fe-Si phase diagram [64], and
the “3661” motif usually seen in the metallic glasses (which
has the structure of a top triangle, two consecutive hexagons
in the middle, and a single atom at the bottom [65]), are
also included in the templates list. For the Fe-centered and
Si-centered clusters in Fe11Si5, we can see that the alignment
scores are between 0.2 and 0.3, indicating that the degree
of SRO is very weak in this structure. As for the Fe30Si70

alloys, most alignment scores of Fe-centered and Si-centered
clusters are around 0.3, except for the alignment scores against

the TET template. Although the distribution of the alignment
scores with respect to the TET template is very wide and peaks
around 0.2, there are substantial fractions of scores below the
cutoff score of 0.16 for both Fe- and Si-centered clusters.
These results suggest that TET is the dominant SRO motif
in the Fe30Si70 alloy upon rapid solidification from a liquid
state. By summing over the clusters that have an alignment
score on the TET template less than the cutoff score of 0.16,
we found that about 11% of Fe-centered clusters and about
9.8% of Si-centered clusters in the Fe30Si70 samples can be
classified as TET motif. The spatial distributions of these TET
clusters in the sample are shown in Fig. 12. It can be seen that
Fe-centered and Si-centered clusters are evenly distributed in
the sample. As the proportion of Fe atoms in the alloy is
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FIG. 12. (a) The Fe30Si70 alloy at 300 K, in which the golden balls denote the Fe atoms and the blue ones represent the Si atoms. The
spatial distributions of TET templates in (b) Fe-centered and (c) Si-centered clusters of the sample.

relatively small, only 30%, it seems that Fe-centered clusters
are relatively sparse. It is interesting to note that as the Si
content becomes richer, strong SROs emerge in the rapidly
solidified Fe10Si90 alloy. The distribution of alignment scores
with respect to the B2 template for the Fe-centered clusters
exhibits a strong and sharp peak around 0.07, suggesting a
strong B2-type order around the Fe atoms in the sample.
Meanwhile, alignment of the Fe-centered cluster against the
TET template also shows a sharp peak around 0.05, indicating
that TET is also a strong SRO motif for the Fe-centered cluster
in the rapidly quenched Fe10Si90 sample. Strong structural or-
der can also be observed for Si-centered clusters in the sample.
While the OCT is obviously the dominant SRO motif around
the Si atoms with a strong and sharp peak in its alignment
score around 0.07, the TET SRO motif is also very strong, as
can be seen from the alignment score distribution shown in
Fig. 11(f).

We further analyzed the development of the dominant Fe-
centered B2 and TET clusters as well as Si-centered OCT and
TET clusters in the Fe10Si90 sample as the temperature is low-
ered from 500 to 300 K during the rapid solidification process.
Figure 13 shows the population of these dominated clusters
as a function of temperature, where the cutoff score of 0.16

is used to assign the clusters to the corresponding templates.
If a cluster has a score lower than 0.16 for more than one
template, the template that gives the lowest alignment score
is assigned to the cluster. As can be seen from Fig. 13(a),
the most dominant Fe-centered B2 motif developed rapidly
as the temperature was lowered. When the liquid Fe10Si90

alloy is cooled to 500 K, the amount of the B2 clusters is
still relatively small, accounting for only about 8.8% of all
the Fe-centered clusters. As the alloy continues cooling, the
fraction of the B2 clusters increases sharply and reaches about
40% at 400 K and a high value of 53.7% at 300 K. Similarly,
as the most dominant motif of Si-centered clusters, the frac-
tion of OCT is only a few percent when cooling to 500 K,
even far below that of TET, which is about 20% at 500 K.
However, with the temperature is reduced to 400 and 300 K,
the percentage of OCT clusters grows dramatically, reaching
42% at 400 K and 50.7% at 300 K, as one can see from
Fig. 13(b). In comparison, the development of TET SRO for
both Fe-centered and Si-centered clusters as a function of tem-
perature is more gradually and reaches about 20% and 40%,
respectively, at T= 300 K. The percentage of Si-centered TET
clusters is about twice that of Fe-centered TET clusters at each
temperature.

FIG. 13. (a) Populations of Fe-centered B2 and Fe-centered TET clusters in the sample of Fe10Si90; (b) populations of Si-centered OCT
and Si-centered TET clusters in the sample of Fe10Si90.
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FIG. 14. (a) The Fe10Si90 alloy at 300 K, in which the golden balls denote the Fe atoms and the blue ones represent the Si atoms. Parts (b)
and (c) exhibit the distribution of B2 and TET templates in Fe-centered clusters of the Fe10Si90 alloy at 300 K. Parts (d) and (e) exhibit the
distribution of OCT and TET templates in Si-centered clusters of the Fe10Si90 alloy at 300 K.

The spatial distributions of the dominant Fe-centered B2
and TET clusters and the Si-centered OCT and TET clusters
in the Fe10Si90 at T= 300 K are shown in Fig. 14. As one can
see from Fig. 14(a), where all these clusters in the sample are
plotted, some sections in the Fe10Si90 sample (i.e., the sections
in the middle, top, and bottom of the sample) exhibit a well-
crystallized order. Interestingly, all of the Fe-centered B2 and
TET clusters are almost located in the crystallization sections,
as shown in Figs. 14(b) and 14(c). For the Si-centered clusters,
the crystalline section is mainly occupied by the OCT clus-
ters, while the amorphous section is mainly occupied by TET
clusters. When we roughly divide the Si and Fe atoms in the
sample into a crystalline group and a glass group according to
their coordinates along the c axis, as shown in Fig. 14, we find
that the ratio of Fe and Si in the crystallization section is about
1:9.2, while the ratio of Fe and Si in the amorphous region is
about 1:8.3. This analysis result suggests that crystallization
of Fe-Si alloys under rapid solidification with a cooling rate
of 1011 K/s would require more than 90% of Si concentra-
tion. This result is also consistent with our simulation results
discussed above, i.e., that the sample with 70% and 80% of
Si tends to end up with amorphous structures under the rapid
cooling condition, but the glass-forming tendency tends to
weaken when the Si concentration is increased.

V. SUMMARY

In summary, a NN-ML interatomic potential for Fe-Si al-
loys is developed by using the deep neural network learning
method. The energies and forces of Fe-Si alloys as well as
elemental Fe and Si structures, in both randomly distorted

crystalline states and liquid state at various temperature, have
been calculated by the first-principles DFT method to generate
sufficient data for the ML training. The developed NN-ML
potential has been demonstrated to describe accurately the
structures and energies of the Fe-Si alloys in both crystalline
structures and liquid states, in comparison with the results
from first-principles DFT calculations and AIMD simulations.
The melting temperature of the FeSi phase and the viscosity
of Fe70Si30 and Fe62Si38 liquid alloys at different temperatures
predicted by the developed NN-ML interatomic potential are
also in good agreement with experimental data. The accuracy
and efficiency of the NN-ML potential enable us to perform
reliable MD simulations with a large number of atoms and
a long simulation time to systemically investigate the struc-
tures of Fe-Si alloys with various composition concentrations
under the rapid solidification conditions. Glass formation or
crystallization under rapid cooling are found to be strongly de-
pendent on the concentration ratio of Fe and Si in the sample.
Fe-rich samples are found to have strong glass-forming abil-
ity, while Si-rich samples exhibit more of a tendency towards
crystallization. SRO in the rapid solidification samples is ana-
lyzed and described quantitatively using the cluster alignment
method. The results show that there are no dominated clusters
in the Fe11Si5 alloy, indicating that this alloy has a high degree
of structural disorder. The degrees of structural SRO are en-
hanced as the Si concentration increases. A significant amount
TET SRO is observed for both Fe-centered and Si-centered
clusters in the Fe30Si70 sample. When the Si concentration
reaches 90%, while the TET SRO around both Fe and Si atoms
(especially around Si atoms) continues to grow in the Fe10Si90

sample, Fe-centered B2 clusters and Si-centered OCT clusters
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develop even more rapidly as the temperature is lowered, and
eventually lead to the partial crystallization of the Fe10Si90

sample at 300 K.
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