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We investigate the infinite-temperature dynamics of the complex Sachdev-Ye-Kitaev model (SYK4) com-
plemented with a single-particle hopping term (SYK2), leading to the chaos-to-integrable crossover of the
many-body eigenstates. Due to the presence of the all-to-all connected SYK2 term, a nonequilibrium prethermal
state emerges for a finite time window tth ∝ 2a/λ2/5

that scales with the relative interaction strength λ, between the
SYK terms before eventually exhibiting thermalization for all λ. The scaling of the plateau with λ is consistent
with the many-body Fock-space structure of the time-evolved wave function. In the integrable limit, the wave
function in the Fock space has a stretched exponential dependence on distance. On the contrary, in the SYK4

limit, it is distributed equally over the Fock-space points characterizing the ergodic phase at long times.

DOI: 10.1103/PhysRevB.107.224207

I. INTRODUCTION

In an isolated interacting system, the process of thermal-
ization under unitary time evolution happens via decoherence;
the system acts as its bath and, at long times, the initial mem-
ory is scrambled. The Sachdev-Ye-Kitaev (SYK4) model is
an exactly solvable all-to-all connected interacting Majorana
(fermions) model, which shows thermalization with the fastest
scrambling of information akin to a black hole [1–10]. Con-
sequently, the nonequilibrium long-time dynamics is ergodic
over the many-body Fock space (FS), and the wave functions
are spatially structureless in FS.

On the contrary, a many-body localized (MBL) system,
such as the disordered spinless Hubbard model, is believed
to evade thermalization at strong randomness at infinite tem-
perature [11–15]. The lack of thermalization of the strongly
disordered phase is understood as “emergent” integrability
described by an extensive number of local integrals of mo-
tion [13,16–18]. From the FS perspective, an MBL phase
would imply that the wave functions occupy a vanishing frac-
tion of the FS sites [19–24]. However, a consensus is yet to
emerge about the existence of the MBL phase in finite-size
numerical studies; a slow tendency towards thermalization has
been observed at strong disorder [25–33], and a shift in the
“critical” disorder with increasing system size is identified
that presumably indicates ergodicity in the thermodynamic
limit [34–40].

To address both of these extreme limits, recently, a mod-
ification of the original maximally chaotic SYK4 model was
proposed by adding an integrable two-body all-to-all coupled
term (SYK2). The model describes an interaction-mediated
thermalizing phase and disorder-driven localization in the di-
agonal basis of the SYK2 [41,42]. Even though both terms
individually are maximally entropic, the combination of the
two allows correlations between FS site energies, essential
for interpolation between the two extreme limits of Poisson
(integrable limit) and Wigner-Dyson (ergodic, chaotic) energy

level statistics.1 The model can be considered as a disordered
quantum dot and is particularly suitable for controlled analyt-
ical studies due to its extensive connectivity between the FS
nodes.

Additionally, Monteiro et al. [41] showed that the compos-
ite model (1) hosts intermediate nonergodic regimes, where
the wave function occupies only a fraction of the entire FS.
For instance, such intermediate finite-size nonergodic regime
is seen near the putative MBL transition [25,26,44], and in the
Anderson model on random regular graphs [45–50].

A qualitative understanding can be made of the deformed
SYK model (1) following Ref. [41]. In the ergodic regime,
the many-body energy bandwidth �4 of the SYK4 term is
larger than the bandwidth �2 of the SYK2 term. Therefore,
hybridization of states happens over the �4, and the states are
ergodic over the entire Hilbert space. With decreasing λ, the
�2 > �4 and less number of states hybridize, which results
in a reduced Fock space where states resonantly coupled to
a fraction of sites in the FS for a given energy. Nonetheless,
within the energy shell constructed out of these resonant sites,
the state remains distributed uniformly [51]. At even smaller
λ, the number of resonant states becomes negligible and the
wave function localizes in the diagonal basis of the SYK2

term.
Similar nonergodic regimes have been observed in a model

where the random infinite range (SYK4) interaction is re-
stricted to density-density interaction [52]. Even though the
interaction Hamiltonian for itself has qualitatively different
properties than the original SYK4 interaction, the single-
particle term competes to separate a fully extended phase from

1Recently, it was shown that in specific random graph mod-
els, the correlation between site energies is crucial to observe a
delocalization-localization transition with a critical disorder strength
that scales as

√
K , where K is the connectivity of the graph [43].
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FIG. 1. Qualitative dynamical phase diagram of the model
Hamiltonian (1) as a function of the relative interaction strength λ

between the SYK terms. N quantifies the number of the sites in the
quantum dot. tH denotes the Heisenberg time, and tth indicated via
the dashed line is the thermalizing time, which depends on λ.

a localized one by regimes where wave functions are partially
extended in the FS [51].

In this work, we address the following question: what is
the infinite-temperature dynamical properties of the crossover
regime of the composite model (1)? Our observables are the
density-density correlator and the wave-function propagation
in the many-body FS. The crossover regime shows prethermal
behavior at the intermediate time that scales with the relative
interaction strength λ, implying thermalization in the thermo-
dynamic limit. A similar conclusion can be made from the
FS dynamics: a finite-size crossover is observed where the
critical interaction strength scales as λc ∝ 1/N5/2, where N is
the number of sites in the quantum dot [41,50]. A qualitative
“dynamical” phase diagram is shown in Fig. 1.

II. MODEL AND METHOD

Model. We consider the Hamiltonian,

H = λHSYK4 + (1 − λ)HSYK2 , (1)

where λ ∈ [0, 1] quantifies the relative strength of the two
parts of the Hamiltonian and

HSYK4 =
N∑

i jkl

Ji jkl c
†
i c†

j ckcl

and

HSYK2 =
N∑
i j

ti jc
†
i c j,

where c†
i (ci) is the complex fermionic creation (annihilation)

at site i ∈ [1, 2, . . . , N], and ti j and Ji jkl are real random
numbers with zero mean and variance, 〈t2

i j〉dis = J2/64N and
〈J2

i jkl〉dis = J2/2N3, with symmetry properties such as to en-
sure Hermiticity of the resulting Hamiltonian. Here, 〈 · 〉dis

denotes the ensemble average over independent disorder real-
izations of the couplings Ji jkl , ti j . The scaling of the variance

takes care of the proper extensive scaling of the many-body
energy. The Hamiltonian in Eq. (1) has a conserved global
particle number. Henceforth, we will restrict ourselves with-
out losing generality to the filling factor nfill = 1/2.

The two parts of the Hamiltonian considered in Eq. (1)
support a many-body chaotic and a many-body integrable
phase, respectively. In the chaotic point λ = 1, fully ergodic
dynamics is expected, while at the integrable point λ = 0, the
infinite-temperature dynamics would be nonthermalizing. In
the presence of both terms, we expect a crossover between
those two regimes as a function of the interaction parameter
λ [41,42]; here, we probe the consequence of the intermediate
regime in nonequilibrium dynamics.

Models of SYK4 + SYK2 varieties have been subject to
several studies in recent years in various contexts [41,42,53–
58]. For instance, Nandy et al. [57] studied the adiabatic
gauge potential and the spectral form factor in the modified
SYK Hamiltonian. The authors found that the Thouless time
scales with the system size, which is compatible with an
ergodic regime for large enough system sizes at long times.
In the current work, we support the above observation with
a (semi)analytical understanding of the prethermal timescale
and show—using exact numerics—that the real-space den-
sity correlator and the FS dynamics are consistent with the
predicted scaling, therefore providing a complementary un-
derstanding of the dynamics of the mass deformed SYK
model (1).

Observable. We consider the infinite-temperature density-
density correlator and its sample-to-sample fluctuations at
finite times,

Ci(t ) = 〈∣∣〈ni(t )ni(0)〉∞ − n2
fill

∣∣〉
dis. (2)

Here, ni(t ) = e−iHt c†
i ci eiHt , where the site index i = 0 with-

out loss of generality since the model is fully structureless
and all sites are equivalent up to disorder fluctuations, and
〈 · 〉T = Tr(e−H/T · )/Tr(e−H/T ) is the quantum mechanical
expectation value at temperature T .

The time evolution is performed using the kernel poly-
nomial method, with a Chebyshev expansion of the time-
evolution operator e−iHt [59]. Traces are evaluated stochas-
tically employing the principle of quantum typicality [25,59].
Calculations in the limit t → ∞ have been performed using
exact diagonalization.

III. RESULTS

In the following, we will show the existence of a finite time
window on the ergodic side of the crossover of model (1)
that is reminiscent of the slow thermalization behavior on
the ergodic side of a (finite-size) MBL phase. However, the
thermalization process is qualitatively different; instead of a
slow power-law decay, e.g., the return probability, towards
equilibrium [26], we observe the forming of a finite-time
plateau as we approach the integrable regime. Additionally,
we will quantify the crossover timescale to the thermody-
namic limit, in which thermalization is observed, and provide
physical intuition about the FS dynamics on both sides of the
crossover.
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FIG. 2. Density-density correlator of the SYK model with random single-particle perturbations as in Eq. (1). Upper left: C(t ) for the
bare SYK case, i.e., λ = 1, for system sizes N = 10, 12, 14, 16, 18. The curves saturate at a plateau for t → ∞; the saturation value C(t =
∞) = 〈C(t > tthresh )〉t is shown in the inset as a function of the system size N . Upper right: C(t ) for the bare single-particle case, i.e., λ = 0,
for the same system sizes. Also, here a plateau forms, whose saturation value is shown in the inset and scales linearly with system size
N . Lower left: C(t ) for different values of λ = 0.0, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.1 for system size N = 18. As a function of λ,
an intermediate plateau forms, which eventually drops to the bare SYK saturation value as long as λ is big enough. The dashed horizontal
line marks the threshold value 1.5C(∞) below which we consider the system thermalized, i.e., we extract the thermalization time tth from
the intersection of the fitted data ( black dashed lines). Lower right: Scaling collapse of C(t ) for different system sizes N = 14, 16, 18 and
λ = 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.1 at long times. The inset shows the thermalization time tth extracted as in the previous figure, together
with the estimated behavior as a function of λ resulting from the approximate scaling collapse.

A. Density-density correlator

Limiting cases. We begin with discussing the limiting cases
in which there is either no interaction (λ = 0) or no single-
particle term (λ = 1). The latter case is shown in Fig. 2 (upper
left) for different system sizes. In the ergodic phase, we expect
the density correlator to become trivial and decoupled in the
limit t → ∞. This would correspond to C(t ) → 0. As the sys-
tems considered are not infinite, there are still fluctuations for
a given sample. Therefore, we still measure a finite C(t → ∞)
for a finite system size N , even though the model is fully
ergodic. This fact, however, manifests in the scaling of the
infinite-time limit: As N increases, the sample-to-sample fluc-
tuations decrease with a power of the FS dimension (Fig. 2,
upper left inset). This implies that the time-evolved states
explore the entire FS, and hence are fully ergodic.

In contrast to this, for the noninteracting limit shown in
Fig. 2 (upper right), the correlation function C(t ) reaches a
plateau for t → ∞. However, there are two qualitative dif-
ferences to the former case: On the one hand, the value of
the limiting plateau is orders of magnitudes higher than in the
former case. On the other hand, the decrease of the limiting
plateau with system size is qualitatively different: It follows
a power law of the system size, instead of the dimension of
the FS (inset). It implies that even though the time-evolved
states explore, in absolute numbers, more and more basis
states of the FS due to its extensive connectivity, its fraction
decreases exponentially with increasing system sizes. In the
thermodynamic limit, the dynamics is integrable in this sense.

Dynamics at the finite-size crossover. Considering now both
single-particle and interaction contributions, i.e., 0 < λ < 1,
we expect a change between the two extreme cases discussed
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above. In Ref. [41], using the statistics of the eigenstates
along with analytical calculation, the authors predicted a
finite-size transition between the two regimes to happen at
λc ∝ 1/N5/2 ln N . In our work, we find it difficult to resolve
the ln N correction due to the unavailability of large system
sizes in exact numerical simulations. Hence, in the remainder
of the present article, we will compare to the leading order,
λc ∝ 1/N5/2.

Prethermal plateau at intermediate times. In Fig. 2 (lower
left), we show C(t ) for different interactions strengths λ. For
large interaction strength, the correlator follows a similar
trajectory as the pure SYK model (λ = 1); however, as λ

becomes smaller, a plateau develops for small enough λ even
with an additional local maximum at finite times. For those
intermediate times, the data seem to resemble the noninteract-
ing limit. One expects that one has already crossed the critical
λc below which we expect single-particle physics, and hence
integrability. However, as the system evolved to larger times,
the prethermal plateau again dropped up to the thermal value,
which has been observed in the interacting limit (Fig. 2, upper
left). This behavior suggests that even in the ergodic phase of
the model, for λ > λc, there is a crossover timescale above
which the time traces resemble the infinite-time phase and
below which the model behaves as if it was an integrable
system. This fact is the first main observation of the present
work.

If λ is decreased even more, we expect to undergo the
crossover to the integrable phase, for a fixed N , and C(t ) will
saturate at larger values which scale with N , as observed in
Fig. 2 (upper right). The infinite time behavior above and
below the crossover will be discussed later.

Crossover timescale. As we have established that for the
ergodic phase, there is indeed a crossover timescale from
prethermal localization to eventual thermalization, we wish to
quantify this thermalization timescale tth(λ) in the vicinity of
the crossover λc as a function of λ.

An analytical argument can be made from the following
considerations: As we consider a finite system, the level spac-
ing of the spectrum will provide a fixed upper bound for
any physical timescales where crossovers can happen. This
usually is the Heisenberg time tH which scales with the di-
mension of the Hilbert space given by tH ≈ O(1) · ( N

N/2

)
at half

filling. Now, assuming that at the finite-size transition λc, the
crossover to the ergodic behavior happens at the latest possible
time, such that below λc the plateau remains present up to the
t → ∞ limit, we can assume tth(λ = λc) = tH.

As for large N , we can approximate tH ∝ ( N
N/2

) ∝ 2b·N , and
a natural assumption is to have

tth(λ) ∝ 2a/λ2/5
, (3)

where a = O(1), which satisfies the above condition.
In Fig. 2 (lower right), we analyze the data discussed before

with respect to this analytical idea. To do so, we rescale both
the time axis with the newly found tth and the C axis with the
t → ∞ limiting value for a given system size. This allows
us to show time traces associated with different λ and system
sizes N in the same figure, where—assuming the analytical
estimate is correct—we expect them to collapse in a certain
time window.

Indeed, when setting the open constant a ≈ 2.2, we ob-
serve an approximate collapse for times around tJ/2a/λ2/5 ≈
O(1) − O(10). Additionally, we attempt to measure the
timescale tth by defining a threshold value that is slightly
larger than the thermal value C(∞), below which we consider
the system thermalized (Fig. 2, lower left, dashed horizon-
tal line). The timescale associated with the crossing of this
threshold is shown in Fig. 2 (lower right, inset), as a function
of 1/λ2/5 for different system sizes. The theoretical predic-
tion (black line) in Eq. (3) describes the measured values
reasonably well. The deviations from the predictions and the
collapse in Fig. 2 may be explained by the logarithmic scaling
corrections of the crossover scale of the interaction strength
λ. Additionally, the different regimes close to the finite-size
crossover observed in Ref. [41] may affect the thermalization
properties. To resolve this, a detailed study of the energy-
resolved dynamics in these regimes has to be performed.

Essentially, we have described the finite-time and finite-
size integrable-to-chaos crossover universally for a large
range of interaction strengths largely independent from the
system size (up to logarithmic corrections), with a reasonably
accurate analytical estimate of the timescale tth. This is the
second main message of the present work.

The crossover timescale between the prethermal plateau
and thermalization can be understood in terms of a Thouless
time, which defines the timescale after which the dynamics of
the many-body system become universal, i.e., loses memory
of its initial condition. We observe that the thermalization time
tth approaches the Heisenberg time tH as the critical interac-
tion strength λc is approached for finite N . This is similar
to spin chain models with the diagonal disorder that shows
an apparent lack of thermalization at strong disorder [60]. In
the composite model (1), the role of disorder is played by the
relative interaction strength λ.

B. Fock-space dynamics

In this section, we analyze the structure of the time-
dependent wave function in the many-body FS. In the ergodic
regime, we expect the wave function to distribute over all
the FS lattice uniformly at a sufficiently long time. At the
same time, in the localized phase, it should have finite sup-
port in a smaller portion of the FS lattice that does not
scale with lattice size. To this end, we start with consid-
ering the time evolution of an initial state which is fully
localized on a basis state of fixed occupations at half filling,
ψ (t ) = e−itHψ0 = e−itH |0, 0, 0, . . . , 1, 1, 1 . . .〉 . We struc-
ture the FS according to the local occupations of the basis
states, ψa = |na

1, na
2, . . . , na

L〉, where na
i = 0, 1 are the local

fermionic occupations. The (integer) distance between two
basis states is defined as an FS distance2 between the string
of occupations, i.e., dH(ψa, ψb) = 1

2

∑N
i=1 |na

i − nb
i |, which

reaches up to a total length dmax
H = N/2.

2The distance defined here need not be the shortest path in the FS
lattice. However, for our purpose, the defined measure is sufficient
to measure the propagation of wave functions through FS. Here it is
important to note that the connectivity of the FS nodes is also scaling
with the system size N due to SYK interaction.
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FIG. 3. Time-dependent probability density as a function of the
FS distance to the initial state. The colors indicate the time steps
(color bar), corresponding to the time steps shown in Fig. 2 in the
single-particle case (λ = 0, left) and in the fully interacting case (λ =
1, right). The yellow data show the infinite-time extrapolation. The
inset shows the infinite-time extrapolation for different λ (blue to
red). N = 16.

We then define the probability for ψ (t ) to reach states of
distance d as

Pd (t ) =
∑

ψa for dH (ψa,ψ0 )=d

|〈ψ (t ) | ψa〉|2. (4)

For the limiting cases, i.e., single particle vs interacting, we
show the measured probabilities in Fig. 3. For better compara-
bility, we normalize the probability density by the equilibrium
distribution,

P th
d = 1

Nth

(
N − n

d

)
·
(

n

n − d

)
,

for filling factor nfill = n/N and normalization constant Nth =
2N�(N + 1/2)/

√
π�(N + 2/2) at half filling, which corre-

sponds to the probability density assuming equal probability
on each FS, such that every distance is equally weighted.

Long-time structure of wave function. Figure 3 shows the
time evolution of the wave packet in FS towards an equi-
librium distribution which indeed is qualitatively different
in the two limiting cases: In the integrable case (λ = 0, the
two-body all-to-all coupled term), we observe an imbalance
of the probability weight towards the initial state, suggesting
a “localization” in FS with respect to the FS distance from the
initial state. In the SYK limit, we observe that the distribution
is flat in the long-time limit, indicating that the time-evolved
state has explored the full FS. This is expected and has also
been observed in FS dynamics. For instance, in Ref. [61],
the probability transport has been observed in a disordered
quantum spin model: In the strong disorder limit, the wave
function approaches an inhomogeneous infinite-time limit in
space, similar to what we observe in Fig. 3, and on the ergodic
side, it is homogeneous.

In the inset of Fig. 3, we extend this to finite λ at t 
 tH,
and we observe a crossover between the imbalanced and flat
distribution as a function of λ. On the localized side of the
crossover, the shape of the probability density appears to

FIG. 4. The first moment �x(t ) of the distribution Pd (t ) as
a function of time for different interaction strengths λ (color bar
indicates the strength). The curves closely resemble the crossover
behavior observed in the density-density correlator; see Fig. 2. The
colored arrows indicate the thermalization time extracted from Fig. 2
(inset). The system size is N = 18.

be a stretched exponential with Pd (t → ∞) ∼ e−√
d/ξ · P th

d ,
where ξ is the correlation length in the FS. The stretched
behavior is seen all the way to the integrable point.

Spread of the wave function: Prethermal plateau. To quan-
tify the spread at a long time in FS, we define the first moment
of the distribution with respect to the equilibrium distribution
P th

d ,

�x(t ) =
∑

d

[Pd (t ) d] − 4

N
. (5)

With this, we characterize the extension of the time-evolved
wave function in FS in the metric of the FS distance.

We show �x(t ) for different λ in Fig. 4. At short times, we
observe an initial decay of the form �x(t ) ∼ e−�2t2

, which
is a universal feature for quantum many-body chaotic sys-
tems [60]. The constant � is related to the depletion time
of the initial state. For larger times t 
 1, the behavior be-
comes nonuniversal and the trajectories of �x(t ) strongly
depend on the interaction strength λ. For large λ, the decay
continues with presumably a power law, while for smaller
λ, close to the crossover, we again observe the emergence
of a finite-time plateau, resembling the noninteracting limit,
up to a thermalization timescale, where eventually in the er-
godic phase thermalization occurs and �x(t ) tends to zero.
It is apparent that this quantity behaves qualitatively very
similar to the density-density correlator in Fig. 2. Apparently,
the FS structure imposed by the FS distance of basis states
has a direct impact on the density-density correlator (2), as
discussed in detail in Ref. [61]. It has been shown that the
first moment of the extension in Fock space, measured in a
metric, can be related to two-point correlators in quantum spin
chains.

As a final check for this fact, we calculate �x∞ = �x(t →
∞), which probes the statistics of the many-body eigenstates
of the Hamiltonian, which has been explored in Ref. [41].
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FIG. 5. Finite-size integrable-to-chaos crossover at infinite time.
The extrapolated �x∞ is a function of the rescaled interaction
strength λ · N5/2 for different system sizes. The curves intersect
approximately at the vertical dashed line (expected crossover point).

In Fig. 5, we observe the finite-size crossover behavior as a
function of λ. Indeed, there is a crossing of the data associated
with different system sizes when λ is rescaled by N5/2. This
is consistent with the finite-time dynamics and crossover that
we found earlier in the density-density correlator.

The finite-size scaling of the critical interaction strength
λc is consistent with the results found in similar models in
Ref. [41,50]. Additionally, it matches the prediction with the
random regular graphs (RRGs) transition. Recently, [62] pre-
dicted a critical disorder W RRG

c ∝ N4 ln N , which is related to
the critical interaction strength λc by Wc ∝ λ−1

c N3/2, where
the factor N3/2 is accounted for by the different normalization
of the interaction term in our model (1). Quantitatively, the
numerical values of the crossover scale for a fixed system size
are consistent with each other.

IV. DISCUSSION AND CONCLUSION

To summarize, our extensive numerical investigation sug-
gests a rich dynamical phase diagram (as indicated in Fig. 1)
for the SYK4 + SYK2 model (1) along with the finite-
size chaos-to-integrable crossover. Our observables are the
density-density correlation function and the wave-function
spread in the many-body FS.3 As expected, the SYK4 shows
ergodic dynamics in real space and many-body FS. In the
presence of the SYK2 term, in the intermediate time, the
model shows a prethermal plateau that scales with the interac-
tion strength 2a/λ5/2

with a ≈ 2.2. After the prethermal plateau
for all values of λ, we observe a λ-dependent power-law decay
of the return probability, both in real space and in the FS.

The long-time asymptotic behavior of the wave packet
in the FS indicates a crossover at λc ∝ 1/N5/2, which is

3We note that both of these quantities are related closely to the
spectral form factor, which is a generic feature of two-point corre-
lators of SYK-related models [63]. Therefore, a similar dependence
of the plateau value with relative interaction strength should also be
expected in the spectral form factor [57].

consistent with the prediction of Ref. [41]. In particular, we
observe that in the integrable limit, the wave function in the FS
decays in a stretched exponential ∝e−√

d/ξ with FS distance d .
These observations imply that for finite N , the SYK2 term is
a relevant perturbation to the SYK4 physics.

In the context of the dynamics of the finite-size chaos-to-
integrable crossover, it would be relevant to study how the
states contributing to the prethermal plateau relax into the
energy shells found in Ref. [41]. Here, it would be helpful
to study the energy-resolved correlators as studied in spin
chains [25]. We leave this for future studies.

Given the current understanding of the nonequilibrium dy-
namics, it is pertinent to ask whether it represents the slow
thermalization physics in the context of a MBL transition
that we know in finite-size and finite-time numerical stud-
ies [26,33,64–66]. For short-range models, the density-density
correlator shows a slow propagation of charge density, even
at large disorder [26], without a hint of prethermalization at
intermediate times. In the FS, several different transport statis-
tics have revealed a power-law decay of return probability at
intermediate disorder strengths [60,61,67]. Therefore, in this
class of models, there is a lack of evidence for a finite-size
prethermalized plateau.

In contrast, for models with finite range 1/rα interaction
or hopping [68–75], a finite-size transition has been observed
similar to the composite model (1). It is generically found
that the critical disorder strength scales with the system size
as Wc ∝ L2d−α ln L for d < α < 2d , where d is the system
dimension. The implication of the finite range interaction [52]
and hopping on the observed prethermal plateau would be a
relevant question for further study.

We end with the following observation: Our numerical cal-
culation is performed on the computational basis, where both
SYK4, and the SYK2 terms are nondiagonal; therefore, we do
not expect to observe localization. It would be relevant now
to study the model (1) in the diagonal basis of SYK2, where
an ergodic-to-localization transition is possible. The model
can be understood as SYK4 complemented with a correlated
chemical potential disorder, and the dynamical properties of
such a model would be generically interesting to study in the
context of the existence of the MBL phase.
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