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Weak localization and antilocalization in twisted bilayer graphene
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In this study, we investigate the weak localization (WL) and weak antilocalization (WAL) effects in twisted
bilayer graphene positioned on a hexagonal boron nitride substrate. The bottom graphene layer aligns with the
hexagonal boron nitride. The top layer of the system features a Dirac cone with a negligible gap, while the bottom
layer possesses a relatively large band gap. With a low concentration of impurities, the quantum correction to
conductivity stems from the quantum interference between two time-reversed impurity scattering trajectories.
We discover that interlayer scattering significantly contributes to the conductivity correction when the Fermi
surface areas of the two valleys at low energy are comparable. A double crossover from WL to WAL and back
to WL occurs at a specific range of Fermi energy, which is particularly intriguing.
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I. INTRODUCTION

Within the framework of classical mechanics, the Drude
model is often used to describe electron motion and obtain
the transport properties of materials. However, at low tem-
peratures when the coherence length is sufficiently long and
quantum effects cannot be ignored, the Drude model requires
correction. Electrons in the material are scattered by impuri-
ties and form an infinite number of trajectories. The quantum
interference between two closed time-reversed trajectories of
electrons tends to increase the probability of electrons staying
in their original place, which usually leads to a decrease in
conductivity [1,2]. This quantum interference can be sup-
pressed by applying a magnetic field that breaks time-reversal
symmetry and thereby breaks quantum coherence. The behav-
ior of relativistic Dirac electrons in monolayer graphene is
distinct from conventional electrons due to their linear energy
band, large Fermi velocity, and chirality [3]. Over the past
decade, there has been extensive theoretical and experimental
study of the quantum conductivity correction to the Drude
model in monolayer [4–14] and bilayer graphene [9,15–18].
Monolayer graphene typically exhibits weak antilocalization
for long-ranged scattering impurities, while bilayer graphene
shows weak localization. In addition to graphene systems, het-
erostructures [19–25], semiconductors [26] and topological
insulators [27–30] are also used to study the phenomenon of
weak localization and weak antilocalization. Researchers have
considered the influence of electron-electron interaction [11]
spin-orbit coupling [1,19–26,28], and magnetism [28,30] and
found that all of these factors have a significant and complex
impact on transport properties.

In recent years, the discovery of the correlated insu-
lating state and superconducting state in twisted bilayer
graphene (TBG) near the magic angle [31,32] has made the
twisted moiré system a hot topic of research [33,34]. TBG
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consists of two graphene layers rotated at a specific angle θ to
each other. which duplicates the original monolayer Brillouin
zone’s Dirac point into two equal Dirac points with the same
chirality. [35–38]. The interlayer hopping renormalizes the
Fermi velocity at low energy, decreasing as the twist angle
decreases. The key feature of TBG is that when the twist
angle decreases to the so-called “magic angle”, the bands near
the charge neutral point are compressed into flat bands. The
kinetic energy of electrons on the bands dramatically reduces
and becomes comparable to the strength of the Coulomb in-
teraction, resulting in significant electron correlation that must
be considered. Currently, much attention has been focused on
the study of strong correlation properties at the flat band, while
weak (anti-)localization of TBG has not been extensively
studied, with only a few experiments conducted on this sub-
ject [39,40]. It remains unclear whether quantum correction
of TBG or some artificial structure based on graphene has
exotic characteristics compared with monolayer and bilayer
graphene.

In this study, we present a theoretical investigation of the
quantum conductivity correction in twisted bilayer graphene
placed on a hexagonal boron nitride (hBN) substrate. The
bottom layer of twisted bilayer graphene aligns with hBN.
We consider a low concentration of long-range nonmagnetic
impurities as the main cause of electron scattering at low tem-
perature and neglect electron-phonon and electron-electron
scattering effects in the system. We particularly focus on
the conductivity correction induced by intervalley scattering
between two valleys with different Fermi surface sizes (valley
in this context refers to a mini-valley as described in previous
work [41]), which has not been studied previously. The paper
is structured as follows. In Sec. II, we introduce an effective
Hamiltonian model for the system and the type of impurities
considered. We then calculate the scattering time and velocity
correction for intra- and intervalley scattering. In Sec. III, we
carefully calculate the Cooperons for the two kinds of scatter-
ing. In Sec. IV, we present our calculations for the quantum
conductivity correction and magneto-conductivity. In Sec. V,
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FIG. 1. (a) Schematic diagram of the twisted bilayer graphene
placed on hBN substrate system. (b) Blue (red) line is the band
structure of the twisted bilayer graphene with (without) interlayer
bias, with the twist angle θ = 3◦. The band gap of the bottom layer
is denoted as �, and the bias-voltage induced bottom layer energy
shift is represented by U . The two bands are put together in order to
illustrate the bias voltage that causes the bottom layer band to shift.
The Fermi surfaces of the system are nearly circular at the Fermi
energy EF = 42 meV. (c) Low-energy band structure extracted from
panel (b). Valley K1 features a gapless and massless Dirac cone while
valley K2 is a massive energy band with a gap. The Fermi energy EF

value is relative to the charge neutral point.

we summarize our findings and provide a discussion of our
study. Following Sec. V, we give our acknowledgments.

II. MODEL

A. Effective Hamiltonian

The system under our study is twisted bilayer graphene
placed in alignment on a hexagonal boron nitride substrate, as
shown in Fig. 1(a). Near the original K point are two equal
Dirac points derived from the top and bottom layers [42],
labeled as K1 and K2, which we refer to as “valleys” instead of
“mini-valleys” in this article. Since impurity scattering in the
system is long-ranged, K-K′ scattering is suppressed, we only
need to consider scattering within one valley. The interaction
between the hBN substrate and the bottom layer of graphene
breaks the sublattice symmetry of the latter and results in a
band gap opening whose magnitude depends on the on-site
energy difference of the A and B sublattices of the bottom
layer [15,43]. We employ the modified Bistritzer-MacDonald

continuum model [35], in which we set the on-site energy of
the sublattices A and B in the bottom layer to be different
to induce a band gap whose magnitude is �. The band in
the top layer can be considered as gapless and massless [35]
if we neglect the lattice relaxation effect. We also neglect
trigonal warping effect in the system since the Fermi surface
is nearly circular in the energy regime of our consideration.
These two effects do not influence our qualitative results. By
tuning the bias voltage, one can control the relative energy
shift U between the two Dirac cones. The energy band of the
system is depicted in Fig. 1(b), and the simplified bands at
low energy is extracted in Fig. 1(c). The van Hove singularity
is located at the midpoint of the valleys K1 and K2. Its energy
is positively correlated with the twist angle [37]. A larger
twist angle corresponds to a higher van Hove energy. When
the Fermi energy approaches the van Hove energy, the shape
of the cone deforms such that we cannot use a simple Dirac
equation to fit the band. Therefore, to obtain a relatively good
cone shape, the twist angle should not be too small, and the
Fermi energy should be far away from the van Hove energy.
Under these conditions, we can describe the low-energy band
structure of the system using a simple effective Hamiltonian
in the continuum limit, which is given by

Heff = τ̂0 ⊗ h̄vF k · σ̂ + (τ̂0 − τ̂z )

2
⊗

(
�

2
σ̂z + U σ̂0

)
, (1)

where vF is the renormalized Fermi velocity, σ̂, σ̂0, and
σ̂z are Pauli operators act in sublattice (A and B) space
and τ̂0 and τ̂z act in valley (K1 and K2) space. We then
obtain the conduction-band energy E (k1) [E (k2)] and the
corresponding eigenstates ψ1 (ψ2) near the valley K1 (K2).
The wave function of the propagating electron is ψ j = 〈r |
k j〉 = 1√

S
(a j, b jeiφk )eik j ·r . Here, φk is the phase angle of the

wave vector, j is the valley index. For two valleys a1 =
1/2, b1 = 1/2, a2 = √

(EF − U + �/2)/[2(EF − U )], b2 =√
(EF − U − �/2)/[2(EF − U )].

B. Impurity type and scattering time

We consider the case of weak nonmagnetic impurity scat-
tering, where perturbation treatment is applicable and electron
spin does not flip. We investigate the transport properties of
the system using standard weak (anti-)localization calcula-
tions. When the twist angle is small, the two valleys are in
close proximity, and impurities can scatter electrons within the
same valley or between the two valleys. Intravalley scattering
potential is given by the following expression:

U0(r) =
∑

i

ui
0τ0 ⊗ σ0F (r − Ri ). (2)

F (r − Ri ) is the distribution function for long-ranged impu-
rity scattering and can be simplified to the form of the δ

function δ(r − Ri ) [26]. Although this may seem contradic-
tory at first sight because the δ function is short-ranged, its
feasibility has been verified. Under the impurity averaging,
U0(r) satisfies 〈U0(r)〉imp = 0, 〈U0(r)U0(r′)〉imp ∼ δ(r − r′).
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The intravalley scattering amplitude is given by

〈 j, k|U0| j, k′〉intra = 1

S

∑
i

ui
0ei(k′−k)·Ri

(
a2

j + b2
je

i(φk′−φk )).
(3)

The intravalley scattering time can be evaluated with the first
Born approximation:

1

τ
= 2π

h̄

∑
k′

〈Uk,k′Uk′,k〉impδ(EF − εk′ ). (4)

Substituting Eq. (3) into Eq. (4) one can get

1

τ j j
= 2πNj,F

h̄
n0u2

0

(
a4

j + b4
j

)
, (5)

with n0u2
0 = ∑

i(u
i
0)2/S. n0 represents the concentration of

nonmagnetic impurities, u0 is the average scattering poten-
tial, and S is the area of the system. Nj,F is the density
of states (DOS) of valley j at the Fermi energy per unit
area of the system. Recent experimental studies have con-
firmed the existence of electron scattering between valleys in
twisted bilayer graphene and twisted double bilayer graphene
(TDBG) [40,41,44]. Kashiwagi discovered that the ratio
between intravalley and intervalley scattering time is propor-
tional to 1/(�Kθ )2 in twisted double bilayer graphene [40],
where �Kθ = |K2 − K1|. We speculate same result can be
found in TBG. Under this condition, intervalley scattering
amplitude is inversely proportional to �Kθ . We assume that
intervalley scattering potential has a similar form as in Eq. (2),

U ′
0(r) =

∑
i

(u′)i
0τx ⊗ σ0F (r − Ri ), (6)

where u′ is intervalley scattering strength which is usually
smaller than intravalley. Phinney found that when the twist
angle θ = 1.65◦, the ratio between intravalley and intervalley
scattering time approximates 3/4 [41]. Therefore, We use the
factor β/�Kθ to express the ratio (u′)i

0/ui
0, so that the ampli-

tude of the intervalley scattering is inversely proportional to
�Kθ ,

〈1, k|U ′
0|2, k′〉inter = β

�Kθ

1

S

∑
i

ui
0ei(K2−K1 )·Ri ei(k′−k)·Ri

× (a1a2 + b1b2ei(φk′−φk ) ). (7)

Using Eq. (4), intervalley scattering time can be calculated,

1

τ j j̄
= 2πNj̄,F

h̄

β2

(�Kθ )2 n0u2
0

(
a2

j a
2
j̄ + b2

jb
2
j̄

)
. (8)

Here j = 1, 2, j̄ is another valley relative to j. τ j j̄ denotes the
scattering time of electron scattered from valley j to valley j̄.
The scattering time is inversely proportional to the DOS of the
destination. The total scattering time of the two valleys are

1

τ1
= 1

τ11
+ 1

τ12
,

1

τ2
= 1

τ22
+ 1

τ21
. (9)

C. Velocity correction

First, we consider the diffuson approximation, which is
a vertex correction that describes the multiple scattering of
electrons on the impurity potential [45,46]. The diffuson
correction corresponds to a series of ladder diagrams and
contributes to the velocity correction through an iterative
equation [2,28]:

ṽx
j,k = vx

j,k +
∑
j′,k′

GR
j′,k′GA

j′,k′ 〈Uk,k′Uk′,k〉imp̃v
x
j′,k′ , (10)

GR/A
j,k = 1

ω − ε j,k ± ih̄/2τ j
. (11)

vx
j,k, ṽx

j,k respectively denote the bare velocity and corrected
velocity of valley j in the x direction, vx = v cos φk. Equa-
tion (11) is the expression for the retarded and advanced
Green’s functions, corresponding to the plus and minus signs
in the denominator on the right-hand side of the equation.
Equation (10) can be further expanded and written as a set
of equations:

vx
1,k =

(
1 − τ1

τ11

a2
1b2

1

a4
1 + b4

1

)̃
vx

1,k − τ2

τ12

a1a2b1b2

a2
1a2

2 + b2
1b2

2

ṽx
2,k//

,

vx
2,k =

(
1 − τ2

τ22

a2
2b2

2

a4
2 + b4

2

)̃
vx

2,k − τ1

τ21

a1a2b1b2

a2
1a2

2 + b2
1b2

2

ṽx
1,k//

.

(12)

k// denotes the wave vector in the valley K2 (K1) on the Fermi
surface that is parallel to the wave vector k in the valley K1

(K2). Note that the two bands are isotropic, the Fermi veloc-
ities on their own Fermi surface are of equal magnitudes and
independent of directions. By numerically solving Eq. (12),
we can obtain the velocity correction factor η j :

η1 = ṽx
1,k/v

x
1,k, η2 = ṽx

2,k/v
x
2,k. (13)

III. COOPERON CORRECTION

Cooperon

Next, we consider the Cooperon correction that
corresponds to the so-called “maximum-crossed dia-
grams” [45,46], which describes the quantum interference
between two time-reversal electron wave trajectories of
oppositely ordered collision sequences. Although for
intravalley scattering, the wave vectors k and −k are not
strictly time-reversal because they are relative to the Dirac
point K rather than � in the Brillouin zone of monolayer
graphene, we still consider them to satisfy generalized
time reversion. The Cooperon directly contributes to the
conductivity correction as follows:

�σ = e2h̄

2πS

∑
j, j′,k

∑
q

� j j′ (Q + q)̃vx
j,kṽ

x
j′,Q+q−k

× GR
j,kGA

j,kGR
j′,Q+q−kGA

j′,Q+q−k. (14)

� j j′ (Q + q) is the Cooperon corresponding to the scattering
from valley j, vector k to valley j′, vector k′. j, j′ = 1, 2 and
k + k′ = Q + q. Here, Q is defined as a “nesting vector” for
intervalley scattering. Its modulus equals the radius difference
between the two Fermi circles, |Q| = |k1F | − |k2F |, as shown
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FIG. 2. (a) The Fermi surface of the system at a specific energy. To aid visualization, we shift the Fermi circles of the two valleys to the same
center. The larger (smaller) circle corresponds to the Fermi surface of valley K1 (K2). k1F and k2F denote the Fermi wave vectors on the Fermi
circle of the two valleys. The nesting wave vector Q has a modulus of |Q| = |k1F | − |k2F |. The red arcs on the two Fermi circles indicate the
part of wave vector k on the larger circle and k′ on the smaller circle that satisfies k + k′ = Q + q and contribute to the conductivity correction.
(b) The Bethe-Salpeter equation that the intravalley scattering Cooperon �11 satisfies. The blue (red) line represents the retarded (advanced)
Green’s function. The pentacle denotes an impurity, and impurity scattering is shown by dotted lines. (c) The Bethe-Salpeter equations that
the “trans” and “cis” Cooperons satisfy. (d) The Feynman diagram depicts the intra- and intervalley scattering contribution of conductivity
correction.

in the Fig. 2(a). For intravalley scattering, the nesting vector is
Q = 0. To obtain the Cooperon �(Q + q), we need to evaluate
the bare vertex function γ . The bare vertex function can be
calculated by

γ j,k; j′,k′ ≡ 〈Uj,k; j′,k′Uj′,Q+q−k; j,Q+q−k′ 〉imp. (15)

In the following, we provide a detailed expression of the bare
vertex function γ for intravalley and intervalley scattering,
and then calculate the corresponding Cooperons. To begin
with, we calculate the Cooperon for intravalley scattering
( j = j′). By combining Eqs. (3) and (15), and setting the
nesting wave vector Q = 0, we can calculate the bare vertex
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function for intravalley scattering as follows:

γ j,k; j,k′ ≡ 〈Uj,k; j,k′Uj,q−k; j,q−k′ 〉imp

= n0u2
0

S

{
a4

j + 2a2
j b

2
je

i(φk′−φk ) + b4
je

2i(φk′−φk )}. (16)

In Eq. (16), the bare vertex function has three channels L = 0,
1, 2, corresponding to the three terms separately. Here, L is
the coefficient of φk′ − φk in the exponent. To calculate the
quantum correction to the conductivity, we set φk′ − φk = π

and k + k′ = q. The Cooperon is related to the bare vertex
function through the Bethe-Salpeter equation [45]:

� j,k; j,k′ = γ j,k; j,k′ +
∑
k′′

γ j,k; j,k′′GR
j,k′′GA

j,q−k′′� j,k′′; j,k′ . (17)

The Feynman diagram representation of this equation is de-
picted in Fig. 2(b). Similar to the bare vertex function γ , the
Cooperon � also has three channels denoted by L = 0, 1, 2:

� j,k; j,k′ = � j j (q) = �
(0)
j + �

(1)
j j ei(φk′ −φk ) + �

(2)
j j e2i(φk′−φk ).

(18)

Intravalley scattering Cooperons are written in a simple form
as � j j (q). We assume that the three channels obey the Bethe-
Salpeter equation separately and do not couple with each
other [27]. In Eq. (17), the product of γ j,k; j,k′′� j,k′′; j,k′ does not
contain the parameter φk′′ as it is canceled out in the exponent.
Therefore, this term can be taken out of the summation over
k′′. We can then define the summation as �, transform the
summation of k′′ into an integral, and evaluate it to obtain

� j j =
∑
k′′

GR
j,k′′GA

j,q−k′′ = 2πNj,F

h̄
τ j (1 − Djq

2τ j ), (19)

here τ j is the total scattering time of the valley j in the Eq. (9),
Dj is diffusion constant with Dj = v jτ

2
j /2. Equation (17) can

be transformed into a concise form:

� j j = γ j j + � j jγ j j� j j . (20)

γ j j is a concise form of the bare vertex function. Solve the
Eq. (20), the Cooperon � j j can be obtained:

� j j = γ j j

1 − ∏
j j γ j j

. (21)

Combining Eqs. (18)–(23), we can obtain an explicit expres-
sion of the Cooperon:

�
(L)
j j = 1

ZjDjτ
2
j

1

l−2
j,L + q2

, (22)

l−2
j,L = 1 − Zjτ jγ

(L)
j j

Z jτ
2
j D jγ

(L)
j j

. (23)

In Eqs. (22) and (23), Zj = 2πNj,F /h̄, where Nj,F is the den-
sity of states of the j valley at the Fermi level, and lL is the
scattering length of channel L. Since there are always three
channels L = 0, 1, 2 for Cooperon, we omit the channel index
L for brevity in the following. It should be noted that all six
channels from the two valleys have a finite scattering length.
The gap in the Cooperon of channel L = 1 of the valley K1

results from intervalley scattering, which changes the scatter-
ing time of the valley according to Eq. (9). This differs from

the situation in monolayer graphene, where the L = 1 channel
corresponds to a Goldstone mode when only intravalley scat-
tering occurs [27]. When considering the interlayer scattering
Cooperon, the situation becomes more complicated because
the Fermi surface of the two valleys are not equal in size. For
any given wave vector k in valley K1, we cannot find −k in
valley K2. Thus, we introduce a nonzero nesting vector Q.
The primary contribution to the conductivity correction comes
from the portion of wave vectors k on the Fermi surface of
one valley that scatter to the wave vector Q + q − k of the
other valley. This proportion is represented by the red arcs in
Fig. 2(a). The bare vertex function for intervalley scattering is
expressed as

γ12,21 ≡ 〈U1,k;2,k′U2,Q+q−k;1,Q+q−k′ 〉imp

= β2

(�Kθ )2

n0u2
0

S

{
a2

1a2
2 + 2a1a2b1b2ei(φk′ −φk )

+ b2
1b2

2e2i(φk′−φk )}. (24)

The subscripts 12,21 of γ represent the correlation between
the scattering events of electrons from valley K1 to valley K2

and its time-reversed process. “12” denotes 1, k and 2, Q +
q − k on the upper (blue) and lower (red) electron line re-
spectively before scattering event happens as seen in Fig. 2(c).
To distinguish intervalley scattering bare vertex function and
Cooperon from those of intravalley in Eqs. (16) and (18),
we use four indices to represent them, as shown in Eq. (24).
To calculate the Cooperon �12,21, we need another Cooperon
�12,12 seen in the second line of Fig. 2(c). The bare vertex
function of γ12,12 is defined as

γ12,12 ≡ 〈U1,k;1,k′U2,Q+q−k;2,Q+q−k′ 〉imp

= n0u2
0

S

{
a2

1a2
2 + (

a2
1b2

2 + a2
2b2

1

)
ei(φk′ −φk )

+ b2
1b2

2e2i(φk′−φk )}. (25)

The form of γ12,12 is similar to that of intravalley scattering
in Eq. (16). However, it represents the correlation between
intravalley scattering events in valley K1 and K2, and its
meaning is completely different from that of Eq. (16). Addi-
tionally, the Cooperon of this type, �12,12, does not contribute
to the conductivity correction because the two wave vectors on
the diagonal of the Cooperon, 1, k and 2, Q + q − k′, are not
equal. As a result, the Bethe-Salpeter equation takes a coupled
form:

�12,12 = γ12,12 +
′∑

k′′
γ12,12GR

1,k′′GA
2,Q+q−k′′�12,12

+
′∑

k′′
γ12,21GR

2,k′′GA
1,Q+q−k′′�21,12,

�21,12 = γ21,12 +
′∑

k′′
γ21,12GR

1,k′′GA
2,Q+q−k′′�12,12

+
′∑

k′′
γ21,21GR

2,k′′GA
1,Q+q−k′′�21,12. (26)
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A prime on the summation sign in Eq. (26) indicates that
the summation over the wave vector k′′ is not over whole
points on the Fermi surface but over the points on the arc. The
Feynman diagram representation of this set of equations is
shown in Fig. 2(c). The product of γ� does not contain
φk′′ , so it can be factored out of the summation, leaving
the summation similar to Eq. (19), which we define as the
summation � j j̄ :

� j j̄ =
′∑

k′′
GR

j,k′′GA
j̄,Q+q−k′′ . (27)

To calculate � j j̄ exactly, two things need to be clarified. First,
only the k′′ points near the tangent point and on the red arcs
in Fig. 2(a) are considered in the calculation. By introducing
the nesting wave vector Q, we match as many wave vectors
k of one valley and k′ of another valley as possible, such that
they satisfy k = Q + q − k′′ and all wave vectors on the two
arcs correspond one to one. Due to the isotropy of the two
bands, we suppose to approximate the partial summation by
summing over all points on the Fermi surface multiplied by
a hyperbolic tangent function f = tanh(λkmin/Q), where kmin

is the modulus of the smaller Fermi wave vectors of the two
valleys. Second, the summations �12 and �21 are equal. Since
they correspond to the same wave vector k′′ summation, and
they are conjugate to each other. Furthermore, considering the
fact that they are real numbers, we can assume that �12 and
�21 are equal. Let �12 = �21 = �. With the above analysis,
the form of � can be approximated as

� = tanh

(
λ

kmin

Q

)
2πN

h̄
τ (1 − Dq2τ ). (28)

In Eq. (28), we have already used the condition ε j,k = ε j̄,Q−k.
Here, N represents the average density of states of the two
valleys at Fermi energy, given by N = (N1,F + N2,F )/2. The
scattering time τ satisfies 2/τ = 1/τ1 + 1/τ2, where τ1 and τ2

are the scattering times in valleys K1 and K2 respectively. The
diffuson constant D is defined as D = v2τ/2, where the ve-
locity v satisfies v2 = (N1,F v2

1 + N2,F v2
2 )/(N1,F + N2,F ). This

treatment mainly takes the average of the two valleys in order
to obtain the equal �12 and �21. The Bethe-Salpeter equa-
tion in Eq. (26) can be modified into a set of equations:(

�12,12

�21,12

)
=

(
γ12,12

γ21,12

)
+

(
γ12,12 γ12,21

γ21,12 γ21,21

)
�

(
�12,12

�21,12

)
. (29)

Furthermore, the bare vertex functions satisfy the following
relations: γ12,12 = γ21,21 = γc, γ12,21 = γ21,12 = γt , where γc

and γt represent the “cis” and “trans” forms, respectively [27].
We can rewrite �12,12 as �c and �21,12, as �t , and simplify
Eq. (29) as (

�c

�t

)
=

(
γc

γt

)
+

(
γc γt

γt γc

)
�

(
�c

�t

)
. (30)

Only �t contributes to the conductivity correction and it can
be solved with the form:

�t = γt

1 − 2�γc + �2
(
γ 2

c − γ 2
t

) . (31)

Different from the Cooperon solved in Eq. (22), the Cooper-
ons in Eq. (31) cannot be directly transformed to a standard

form of 1/(l−2 + q2). At this point, we can neglect the q4 term
in the denominator, which is a small quantity of higher order.
As a result, the Cooperon �t can be expressed as

�t = αt
1

ZDτ 2

1

l−2
t + q2

,

α−1
t = 2

γc

γt
− 2Zτ

γ 2
c − γ 2

t

γt
,

l−2
t = 1

D

(
1

Zτ 2γt
− 2

γc

τcγt
+ Z

γ 2
c − γ 2

t

γt

)
. (32)

lt is the scattering length of intervalley scattering Cooperon.
Z = 2πN tanh(λkmin/Q)/h̄. The form of the Cooperon
is analogous to that of intravalley scattering, as shown
in Eq. (22). Notice that each expression contains three
channels.

IV. CONDUCTIVITY CORRECTION VERSUS
TEMPERATURE AND MAGNETIC FIELD

The conductivity correction is directly connected with the
Cooperon through

�σintra = e2h̄

2π

∑
j

∑
q

� j j (q)
∑

k

ṽx
j,kṽ

x
j,q−k

×GR
j,kGA

j,kGR
j,q−kGA

j,q−k, (33)

�σinter = e2 h̄

2π

∑
j

∑
q

� j j̄ (Q + q)
′∑
k

ṽx
j,kṽ

x
j̄,Q+q−k

× GR
j,kGA

j,kGR
j̄,Q+q−kGA

j̄,Q+q−k. (34)

Equations (33) and (34) represent the conductivity correction
contributions from intra- and intervalley scattering. To begin
with, we calculate the summation of k:∑

k

ṽx
j,kṽ

x
j,q−kGR

j,kGA
j,kGR

j,q−kGA
j,q−k = −2πη2

jv
2
j Nj,F τ 3

j

h̄3 ,

(35)

′∑
k

ṽx
j,kṽ

x
j̄,Q+q−kGR

j,kGA
j,kGR

j̄,Q+q−kGA
j̄,Q+q−k

= −2πη jη j̄v jv j̄Nτ jτ j̄τ

h̄3 tanh

(
λ

kmin

Q

)
. (36)

In the limit q → 0. The condition ε j,k = ε j̄,Q−k is used to
obtain Eq. (36). Next, we need to calculate the summation of
Cooperon. By using the explicit expressions of the Cooperons
given in Eqs. (22) and (32), and transforming the summation
over q into an integral, the conductivity correction can be
written in the following form [28,46]:

�σintra = −
∑

j

η2
j

2π

e2

h

∑
L=0,1,2

(−1)L
∫ l−2

j,e

l−2
ϕ

1

l−2
j,L + q2

dq2

= −
∑

j

η2
j

2π

e2

h

∑
L=0,1,2

(−1)L ln
l−2

j,L + l−2
j,e

l−2
j,L + l−2

ϕ

, (37)
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FIG. 3. Conductivity correction and magnetoconductivity plots. (a) Conductivity correction of the system at the Fermi energy EF =
42 meV without bias. The gap � is set to be 53 meV. The red solid line denotes the total correction, while the black, blue, and green
dotted lines represent the contribution of the corresponding parts. (b) Same parameter used as (a) except for an energy shift U = - 8 meV.
(c) Magneto-conductivity plot corresponds to panel (a). (d) Magneto-conductivity plot corresponds to panels (b). The mean-free path l1,e is set
to be 400 nm, and the temperature T/T ∗ = 0.01. We observe a crossover from weak localization to weak antilocalization at low temperatures.

�σinter = −
∑

j

η jη j̄

2π

e2

h

τ jτ j̄

τ 2

v jv j̄

v2

×
∑

L=0,1,2

(−1)Lαt,L

∫ l−2
t,e

l−2
ϕ

1

l−2
t,L + q2

dq2

= −
∑

j

η jη j̄

2π

e2

h

τ jτ j̄

τ 2

v jv j̄

v2

×
∑

L=0,1,2

(−1)Lαt,L ln
l−2
t,L + l−2

t,e

l−2
t,L + l−2

ϕ

. (38)

Here, l j,e represents the mean-free path of valley j, where
its inverse square is taken as the upper limit of the integral
with respect to q2. For intervalley scattering, the effective
mean-free path is denoted lt,e and is calculated as lt,e = √

Dτ .
The coherence length lϕ has a strong temperature dependence,
which is given by lϕ ∝ T −1/2. We provide an explicit expres-
sion for coherence length as lϕ = l1,e(T/T ∗)−1/2, where T ∗
is the temperature at which coherence length equals the mean
free length of the electron in the valley K1. The coefficient αt,L

has been given in Eq. (32). The total conductivity correction
is the sum of the contributions from intra- and intervalley
scattering:

�σ = �σintra + �σinter. (39)

We investigate the conductivity correction of the system with
twist angle equals 3◦, the Fermi energy EF = 42 meV, the gap
of valley K2 � = 53 meV, λ = 0.1, β = √

3/4�Kθ=1.65◦ [41],

where �Kθ=1.65◦ is the wave-vector difference between two
Dirac points for a twist angle of 1.65◦. The results are pre-
sented in Figs. 3(a) and 3(b). In Fig. 3(a), the Fermi surface
areas of the two valleys are unequal when the bias voltage is
turned off. We observe that the contribution from intervalley
scattering denoted by the green line is negligible and the total
correction is negative across the entire temperature range,
indicating a weak localization regime. When the bias voltage
is turned on and the energy shift U = −8 meV, the bottom
energy band dropped and the Fermi surfaces of the two valleys
become similar in size. In Fig. 3(b), we find that intervalley
scattering plays a significant role at this point, and the sign of
the total conductivity correction changes to a positive value at
low temperatures, indicating a crossover from weak localiza-
tion to weak antilocalization by tuning the bias voltage.

Next, we turn to the calculation of magneto-conductivity.
The external vertical magnetic field induces the appearance
of Landau levels, which discretizes the wave vector q into
a series of discrete numbers: qn = [(n + 1/2)/l2

B]1/2, where
lB is the magnetic length of Cooperon defined as lB =√

h̄/4e|B| [46]. The summation over wave vector q can then
be transformed into a summation over the energy-level in-
dex n. The finite-field conductivity correction is expressed in
terms of digamma functions �,

�σintra (B) = −
∑
j,L

η2

2π

e2

h
(−1)L

{
�

(
1

2
+ l2

B

l2
j,L

+ l2
B

l2
j,e

)

− �

(
1

2
+ l2

B

l2
j,L

+ l2
B

l2
φ

)}
. (40)
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FIG. 4. (a) Phase diagram of the system with a twist angle of θ = 3◦. The dotted box marks the double crossover region. (b) Phase diagram
of the system with a twist angle of θ = 5◦. (c) The relation between the length of the six intravalley scattering channels and twist angle.
(d) Conductivity correction versus twist angle of the system. The Fermi energy EF and U in panels (c) and (d) are corresponding to the red
circle in panels (a) and (b). The total conductivity correction changes from negative to positive when the twist angle is around 4.5◦. The
temperature is set to be T/T ∗ = 0.01.

�σinter (B) = −
∑
j,L

η jη j̄

2π

e2

h

τ jτ j̄

τ 2

v jv j̄

v2
(−1)L

×
{

�

(
1

2
+ l2

B

l2
t,L

+ l2
B

l2
t,e

)
−�

(
1

2
+ l2

B

l2
t,L

+ l2
B

l2
φ

)}
.

(41)

The magneto-conductivity is defined as the change of the
conductivity correction under a finite magnetic field:

�σB = �σ (B) − �σ (0). (42)

Figures 3(c) and 3(d) present the magneto-conductivity
curves. In the presence of magnetic field, time-reversal
symmetry is broken, suppressing quantum interference in
the system. The total magneto-conductivity curve shown in
Fig. 3(c) exhibits an upward trend upon increasing the mag-
netic field beyond a certain threshold, suggesting the existence
of the original weak localization state. On the other hand, the
curve in Fig. 3(d) demonstrates an obvious downward trend
with an increasing magnetic field, indicating the system’s
original state is weak antilocalization. Our results provide
clear evidence of the WL-WAL crossover via tuning of the
bias voltage, and experimental measurement of the magneto-
conductivity is feasible to verify it.

Furthermore, we present phase diagrams of WL and WAL
in the Fermi energy EF and bias voltage U plane for different

twist angles in Figs. 4(a) and 4(b). The system with a small
twist angle corresponds to stronger intervalley scattering, as
evinced by Eq. (7). In Fig. 4(a), for the system with a twist
angle of θ = 3◦, we observe that the red WAL region pen-
etrates deep into the blue WL region, resulting in a double
crossover of WL-WAL-WL. This area is represented by the
dotted box, with the Fermi energy ranging from 40 to 43 meV.
This double crossover can be elucidated by the connection
between intervalley scattering and the bias voltage. As we
tune the bias voltage, the energy band of valley K2 shifts, and
when the Fermi surface area of the two valleys approaches
each other, intervalley scattering dramatically contributes to
the conductivity correction. As one continues to adjust the
bias voltage, the difference in the Fermi surface size of the two
valleys increases. The contribution of intervalley scattering to
the conductivity correction becomes very weak. In Fig. 4(b),
when the twist angle is θ = 5◦, in a sharp contrast to Fig. 4(a),
the WAL and WL regions are clearly separated and the double
crossover disappears. We conclude that intervalley scattering
plays a critical role in the occurrence of double crossover.
From Fig. 4(b), we notice that the conditions for detecting
the double crossover are quite stringent. The twist angle of the
system cannot be large. As in Fig. 4(b), the original WL region
turn into a WAL region when the twist angle increases to 5◦,
and the double crossover fades away. In Fig. 4(c), we inves-
tigate the parameter EF = 35 meV and U = −4 meV, which
corresponds to the red circle in Figs. 4(a) and 4(b). We find
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that the increase in twist angle mainly affects the dominant
intravalley scattering length of the gapless cone l1,1, which has
the fastest rate of increase among all the six intravalley scatter-
ing channels. The dominant intravalley scattering length of the
gapped cone l2,0 does not change dramatically with a varying
twisted angle. This leads to a rapid increase in the gapless
valley contribution to WAL. Consequently, the value of WAL
can surpass WL at certain twist angle, as demonstrated in
Fig. 4(d). This explains why WAL occupies the majority of
the phase diagram in Fig. 4(b) when the twist angle increases.

V. SUMMARY AND DISCUSSIONS

To summarize, we investigated the quantum conductivity
corrections for weak (anti-)localization effects in the system
with adjacent gapless and gapped Dirac cones. Our findings
reveals that intervalley scattering has a significant impact on

conductivity correction, particularly when the Fermi surface
of the two valleys are equal in size. Through standard cal-
culation, we observe a double crossover in a specific range
of Fermi energy by tuning bias voltage when the twist an-
gle is small. Our empirical method for handling intervalley
scattering with unequal Fermi surface areas may be applica-
ble to other multivalley systems, and our calculations may
also be beneficial for future experimental investigations on
the quantum transport properties of two-dimensional twisted
moiré materials.
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