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Critical dynamics of long-range models on dynamical Lévy lattices
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We investigate critical equilibrium and out of equilibrium properties of a ferromagnetic Ising model in one
and two dimensions in the presence of long-range interactions, Ji j ∝ r−(d+σ ). We implement a local dynamics
on a dynamical Lévy lattice, that correctly reproduces the static critical exponents known in the literature, as a
function of the interaction parameter σ . Due to its locality the algorithm can be applied to investigate dynamical
properties, of both discrete and continuous long-range models. We consider the relaxation time at the critical
temperature and we measure the dynamical exponent z as a function of the decay parameter σ , highlighting that
the onset of the short-range regime for the dynamical critical properties appears to occur at a value of σ which
differs from the equilibrium one.
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I. INTRODUCTION

Systems with nonlocal long-range interactions are known
to give rise to interesting physics in classical [1] and quan-
tum [2] many-body regimes, both at equilibrium and out-of
equilibrium. Long range interactions can induce spontaneous
symmetry breaking even at low dimensions [3] and, at contin-
uous phase transitions, a sufficiently slow decay can modify
the universality classes, resulting in critical exponents which
depends on the interaction decay [4]. Out of equilibrium,
long range interactions modify the dynamical exponents in
coarsening phenomena [5–8], also giving rise to non trivial
metastable states that can affect the dynamics [9,10].

A wide interest in the field has been devoted to the in-
vestigation of magnetic models on lattices in the presence of
long range interactions of the type Ji j ∝ r−(d+σ ). The accepted
description of the critical properties in the ferromagnetic case
was given by Sak [11]. For σ < d/2, the critical behavior is
mean field, while in the so called “long range” regime, d/2 <

σ < 2 − ηSR, the critical exponents depend non-trivially on σ

(ηSR is the exponent of the critical correlation function in the
short range model). For large enough σ > 2 − ηSR, the short
range behavior is recovered.

In this class of models, very often studies are based on
numerical approaches. In physical long range models, inter-
actions involve all degrees of freedoms since all pairs of sites
interact and thus they form a fully connected model on a com-
plete graph with weighted links. This implies that the number
of interactions scales as O(N2), requiring large resources for
simulations. In recent years, several solutions to this problem

have been proposed. Cluster algorithms [12,13] can simulate
long range model with a computational cost of O(N log N )
or O(N ) and reduce the relaxation time, so that they are not
influenced by critical slowing down, at the price of a non local
dynamical evolution. On the other hand the kinetic Monte
Carlo [7–10] provides an effective tools for simulating a local
dynamics only at very low temperatures.

Another interesting solution are Lévy lattices [14–17].
These are random diluted graphs with interactions between
pairs which are constant and occur with probability ∝ r−(d+σ ),
with the total number of interactions being O(N ). Lévy lat-
tices drastically reduce the computational cost while keeping
a local dynamics, however an average over different realiza-
tions is required. In one dimension, Lévy lattices seem to
fall in a different universality class than their fully connected
counterparts, due to long range correlations induced by the
disorder in the random lattice realization [18], while in two
dimension consistent results have been obtained in the XY
model [17,19].

In this paper, we introduce an alternative local dynamics
for the long range model based on a dynamical Lévy lattice,
that is a dynamical sampling at each time step of the long
range interacting model, in the spirit of the q-Ising model
[20,21]. In a nutshell, each spin interacts with a constant
interaction J only with q neighbors, randomly drawn from
the corresponding long range probability distribution. Unlike
Lévy lattices, the underlying graph is not fixed before the
dynamics take place, but evolves dynamically with the system
and it is built during the simulation. The system can be thought
of as living on a temporal Lévy graph [22–24], in which
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at each time step the underlying structure evolves and it is
reshuffled. As a result, the long range correlations character-
izing the single disordered realization of static Lévy lattices
are eliminated. Such correlations are known to deeply affect
the behavior of the system, at least in low dimension as shown
in Ref. [18]. Moreover, in the dynamical Lévy lattice physical
quantities are computed by averaging over the full dynamic
evolution of the model and thus feature the same symmetries
of the statistical model on the fully connected graph. This is
expected to provide a significant numerical advantage with
respect to simulations on the static Lévy lattice in particular at
small σ , which are affected by large fluctuations in different
quenched realizations at finite size [19].

On the other hand, in the dynamical Lévy lattices detailed
balance is not guaranteed, so we need to compare our results
with that of static fully connected lattices to show that they
belong to the same universality class. Therefore, we first test
the validity of the new algorithm by studying numerically the
critical behavior of one and two-dimensional Ising model in
the presence of long range interactions, comparing the results
with the Sak’s scenario and with state-of-the-art simulations
[25–29]. We then present a numerical measure of the dy-
namical exponent z at the critical temperature, which governs
the behavior of the relaxation time at criticality. This is a
critical dynamical quantity that cannot be measured with the
non-local cluster algorithm [12,13] nor with the kinetic Monte
Carlo [7,8]. We consider the full interesting range of σ . In the
mean field regime σ < d/2, we show that z = d/2, consis-
tently with the relaxation properties of a Curie-Weiss model.
At σ = d/2, the superdiffusive behavior z = σ , characterisz-
ing a free random walk with long range motion, is recovered.
At larger σ , interactions start to play a role, giving rise to
perturbative contributions and, interestingly, the transition to
the short range behavior seems to occur at a value of σ larger
than that for the short range regime at the equilibrium.

The paper is organized as follows: in Sec. II we briefly
describe the long range model and we summarize the existing
algorithms with their features and limitations. In Sec. III we
present our dynamics and in Sec. IV we numerically test
its validity comparing the results with the Sak’s prediction.
In Sec. V we present our results for the dynamical critical
exponent z. Finally, in Sec. VI we summarize and discuss
future perspectives of our work.

II. THE LONG RANGE ISING MODEL

The ferromagnetic Ising model with long range interaction
on a hypercubic lattice of dimension d is described by the
Hamiltonian:

H = −1

2

N∑

i, j=1

Ji jσiσ j, (1)

where σi are the usual Ising spins and Ji j ∝ r−(d+σ )
i j , with ri j

the euclidean distance between i and j, σ being the parameter
for the decay of the long range interaction. The interactions
have here infinite range and connect all the spins, i.e., the sys-
tem is fully connected. According to renormalization group
calculations [4,11,30], the model exhibits three different be-
haviors depending on the value of σ :

(1) σ ∈ (0, d
2 ): the system is in a mean-field (MF) regime;

(2) σ ∈ ( d
2 , 2 − ηSR), where ηSR is the critical exponent η

characterizing the decay of the correlation function at criti-
cality in the short range model in d dimension: the system
belongs to a universality class different from the MF one and
the critical exponents depend on the value of σ . This region
will be referred as the long range (LR) region;

(3) σ > 2 − ηSR: the interaction decays so fast that the
system becomes equivalent to the corresponding short range
(SR) model;

The boundary σ = 2 − ηSR between LR and SR regions is
indeed the main point of Sak’s prediction. In one dimension
the LR phase is observed for 1/2 < σ < 1, while for σ > 1
the system does not present a critical transition at finite tem-
perature, and at σ = 1 a Kosterlitz-Thouless transition occurs
[31] with non trivial features [32,33].

Numerical approaches to long range models

As mentioned above, the simulation of the fully connected
model is computationally costly, and several algorithms and
techniques have been introduced to study long range models
numerically. We now briefly discuss the approaches intro-
duced so far.

Cluster Algorithms. Following the idea of Swendsen-Wang
and Wolff [34,35], cluster algorithms have been designed to
simulate long range Ising models with a computational cost
of O(N ) [12,13]. The basic step of these algorithms is to
flip arbitrary large clusters of spins by preserving the detailed
balance and reducing the relaxation time. Indeed large clusters
are updated in a single step and uncorrelated configurations
are rapidly obtained even at the critical point. This avoids
the critical slowing down, which is the typical bottleneck in
terms of computational cost. This algorithm has been used
to test the Sak’s scenario and to confirm that it gives the
correct description of the critical behavior in the Ising case
[13,25–27,29]. However, as there are no local dynamics, the
algorithm cannot be used to study the temporal evolution.
Moreover, identification of clusters is straightforward for the
Ising model while it cannot be implemented in models with
continuous variables. Recently, a cluster algorithm has also
been introduced to study long-range percolation [36].

The kinetic Monte Carlo Algorithm. Recently an implemen-
tation of the kinetic Metropolis algorithm has been introduced
for the long range Ising model [7–10]. In this local algorithm,
the time intervals in which no spin flip occurs are directly
estimated after each move and the rejection rate vanishes.
The implementation turns out to be very efficient at low tem-
peratures, when spin flips are very unlikely, while at higher
temperatures (e.g. at criticality) the efficiency is comparable to
standard Metropolis. The kinetic Monte Carlo algorithm has
been applied to study nonequilibrium properties in coarsening
dynamics, that is the evolution of the system quenched from
T = ∞ to a temperature lower than the critical one [5,6].

Lévy lattices. The Lévy lattice is a diluted graph with adja-
cency matrix Ai, j = 0, 1, built to display the same properties
of the long range fully connected model [14–17]. In particu-
lar, the long range ferromagnetic model on a d-dimensional
lattice is approximated by a graph in which two sites are
connected with a probability proportional to the long range
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interaction, i.e. Ai j = 1 with probability Pi j ∝ r−(d+σ )
i j . On

the diluted Lévy lattice, the usual Monte Carlo simulations
are implemented with the saving of computational cost, since
each node is connected to a finite number of edges. There
are no analytical proofs that models on Lévy lattices are
equivalent to their long range fully connected counterparts.
In particular, for one-dimensional lattices, numerical evidence
suggest that static long range correlations can modify the
critical properties in the free model, changing the spectral
dimension [18]. On the other hand, in the two-dimensional
case, the spectral dimension of the Lévy lattice seems to
coincide with that of the long range, suggesting that the dif-
ference is limited to low dimensions [17,37]. At difference
with the cluster algorithm, the Lévy diluted lattice can be
used to simulate continuous symmetry models. Consistent
simulations have been performed for the two-dimensional XY
model with long range interaction [17,19], in the presence of
a Kosterlitz-Thouless phase transition [38]. On finite systems,
simulations on Lévy lattices strongly depend on the graph
realization and averages over a large number of samples are
necessary to obtain stable results. In this context the problem
of self averaging is still an open issue; moreover the averaging
procedure can be very demanding from a computational point
of view [19].

III. THE DYNAMICAL LÉVY LATTICE

The starting point of our approach is the q-Ising model
[20,21]. In this algorithm, at each time step a spin σi is
chosen randomly and it interacts with the field produced by q
neighbors, which are also randomly drawn uniformly among
the remaining N − 1 spins. The spin σi flips according to a
Metropolis [39] or Glauber [40] prescription. As shown in
Ref. [41] this model has two fluctuating variables, the spins
and the links. The former are in contact with the heat bath,
while the links are randomly rewired during the dynamics,
without any acceptance-rejection procedure. The links can be
considered as being in thermal contact with a heat bath of
temperature T = ∞, which implies rewiring with probability
1. With two different heat baths governing the dynamics,
detailed balance is not satisfied and thermal equilibrium is not
obvious.

Our idea is to simulate a long range q-Ising model, which
we expect to belong to the same universality class as the
long range Ising model. In the dynamical Lévy lattice (DLL),
first we select the spin σi and thereafter its q neighbors are
randomly chosen from the nodes of the lattice, based on
a power-law probability distribution Pi j ∝ r−(d+σ )

i j . Then σi

flips, according to a constant interaction J with the q randomly
selected spins. Note that in this way the decay of the inter-
action as a power law is recovered in a statistical sense. In
particular, the model can be regarded as living on a dynamical
Lévy lattice, because the graph has an adjacency matrix which
evolves with time, i.e. Ji j → Ji j (t ) = J × A(i, j, t ), where
A(i, j, t ) = 1 if at time t the spin σ j is drawn as a neighbor
of σi and 0 otherwise. We observe that, by definition, random
walks on a DLL exhibit the same behavior as random walks on
the fully connected long-range graph: in this case, in fact, the
walker jumps at each step from the starting site i to any nodes

of the network j with probability Pi j ∝ r−(d+σ )
i j . This is ex-

actly the same probability which is used on a DLL at each step
to choose the q neighbors of the walker, and then the jumps
occur uniformly among these q nodes. So the two dynamics
coincide and, hence, the spectral dimension, as measured from
the return probability of the random walker [42,43], are the
same on the fully connected graph and on DLL. In contrast, on
a Lévy lattice the walker evolves on a random static network,
thus in the presence of correlations. For example, when the
walker crosses a link connecting two long-distance sites, it
has a significant probability of going back along the same
link that remains active on the static graph, while it fails to
reach in a few steps the lattice sites that are not connected by
long-distance links in that specific quenched realization. This
induces static long-range correlations that are not present in
either the fully connected lattice or the DLL. In particular,
such correlations in one dimension [18] are able to modify the
spectral dimension with respect to the fully connected long
range model.

Similarly, in the DLL the correlation functions 〈σiσ j〉 are
computed by averaging over the dynamic evolution of the
model and thus naturally possess the symmetries of the sta-
tistical model on the fully connected graph. In contrast, on a
Lévy lattice, the 〈σiσ j〉 depend on the quenched realization of
the random structure and disorder breaks the original transla-
tion invariance. Therefore, the original spatial symmetries are
recovered only after averaging over several realizations of the
random lattice. We observe that this averaging procedure can
also be very numerically demanding [19].

The method we propose appears very flexible and can be
applied to several statistical models both with discrete and
continuous symmetry. Finally, the algorithm displays the same
efficiency at any temperature even if, due to its local nature,
we expect to observe the typical slowing down at criticality.
An important point is that since on the DLL detailed balance
is not valid and the equilibrium distribution is not known,
the equivalence in terms of critical exponents with the fully
connected long range system has to be checked.

IV. EQUILIBRIUM CRITICAL PROPERTIES

Accordingly to renormalization group calculations, ferro-
magnetic long range models have critical exponents which
depends on the parameter σ [4,11,30]. The three different
regimes, mean-field, long-range, and short-range (MF, LR,
and SR) can be characterized by their critical exponents,
for example the one governing the scaling of the magnetic
susceptibility χ with the system size at criticality, which can
be defined as the magnetization M fluctuations, χ ∝ 〈M2〉 −
〈|M|〉2. We call this exponent y.

For σ < d
2 the susceptibility exponent is equal to the MF

one, y = d
2 [26]; for d

2 < σ < 2 − ηSR the system exhibits
long range behavior and the exponent is related to that of
the spatial correlation 2 − η and depends on σ : y = 2 − η =
σ ; finally for σ > 2 − ηSR the system is equivalent to the
corresponding short range model, and so the exponent: y =
2 − η = 2 − ηSR. The Sak’s prediction for the boundary be-
tween LR and SR regions is widely considered valid and
many numerical studies corroborate it [25–27,29]. Thus, one
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FIG. 1. |m| behavior with the temperature as we increase the
system size for σ = 1.2 (one-dimensional case).

way to test the validity of the dynamical Lévy lattice is to
measure this exponent and to compare it with the expected
one. It is known that strong finite size effects are present in
long range models [28,29]. One way to proceed is to include
higher-order terms in the scaling form of the thermodynamic
functions [29].

Close to criticality the scaling form of susceptibility is

χ ∼ Ly · χ̃
(
tL

1
ν

)
, (2)

where L is the linear size of the system, t = T −Tc
Tc

the reduced
temperature (Tc is the critical temperature) and χ̃ is a scaling
function. In infinite systems χ diverges at Tc, but in finite
ones there is a size-dependent temperature Tc(L) where it has
a maximum. According to Eq. (2), this maximum follows a
power law behavior χmax(L) ∼ Ly which can be efficiently
used to extrapolate the exponent y (see Appendix B).

A. One-dimensional chain

We first focus on the one-dimensional spin chain (see
Appendix A for details). We consider sizes from L = 28 to
L = 215 and five values of the σ parameter: 0.35 for the MF
region, 0.6, 0.8 and 0.9 for the LR one and finally 1.2 for the
SR region, where the one-dimensional classical Ising model
behavior is recovered and the system does not undergo a phase
transition. We check this behavior by studying the absolute
value of the magnetization per spin m, for different sizes. We
find that m goes to zero for each temperature as the size is
increased, as it is clearly shown in Fig. 1. For the other values
of σ we find good agreement with theoretical expectations
and we collect the results in Table I and Fig. 2. An interesting
regimes in the one-dimensional case is observed when σ ap-
proaches one and a Kosterlitz-Thouless transition occurs [31].
However, in this limit we observe that simulations are quite
demanding (see the large error on the exponents in Fig. 2) and
a detailed study requires further investigations.

B. Two-dimensional lattice

In the two-dimensional case we consider a wide range of
σ ’s in the MF, LR and SR regimes. The results for the critical
exponent η are summarized in Fig. 3 and show a deviation

FIG. 2. 2 − y critical exponent extrapolated with our method, for
the one-dimensional case. The black dashed line is the theoretical
expectation. Numerical data are provided in Table I in Appendix D.

from the theoretical prediction for value of σ at the LR-SR
boundary, where it is well known that there are large finite size
effects as pointed out in Refs. [28,29] and the finite system is
sensitive to boundary conditions (see Appendix A for discus-
sion on boundary conditions). Indeed, we analyzed the same
range of σ and systems of the same size in the fully connected
long-range model, using the traditional cluster algorithm of
Luijten and Böthe, and we verified that in the measure of η

comparable finite size effects are present. Angelini et al. [29]
indeed argue that near σ = 1.75 it is necessary to consider
higher-order terms in the correction to scaling. In particular,
they consider a scaling form of the type

χ ∼ L2−η(a + bL−δ ), (3)

where a, b, δ are parameters which in principle could depend
on σ . They found that at σ = 1.75 a value of δ ≈ 0.42 ac-
counts for the correct scaling correction and the analytical
predictions of Sak’s renormalization group are verified. In Ap-
pendix B we show indeed that a correction to the scaling with
δ = 0.42 is consistent with our simulation even for the other
values of σ . In particular, Fig. 3 shows that taking into account

FIG. 3. 2 − y critical exponent extrapolated with our method, for
the two-dimensional case. The black dashed line is the theoretical
expectation. The brown circles are the results of our algorithm (DLL)
and the blue star is the value found when using next to leading order
corrections (δ = 0.42). Numerical data are reported in Tables II and
III in Appendix D.
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this correction to the scaling we obtain a very good agreement
with Sak’s predictions in the whole range of σ . Interestingly,
in Appendix B we also show that the ratio a/b between the co-
efficients defined by Eq. (3) strongly depends on the exponent
σ and it displays a sharp minimum at σ = 1.75. The presence
of such a minimum is an evidence that finite size effects are
particularly relevant at the transition between the SR and the
LR regimes. Our results are summarized in Tables II, III, and
Fig. 3. More details about the numerical analysis and error
estimate can be found in Appendix B.

We observe that the DLL, due to its locality, at criticality
cannot be as efficient as the cluster algorithm in [12] which
involves non-local Monte-Carlo moves. Here, however, our
goal was to show that the algorithm provides the expected
equilibrium critical properties. In the next section, we use our
local algorithm to study the dynamical critical properties that
cannot be approached by nonlocal algorithms.

V. THE DYNAMICAL CRITICAL EXPONENT

A. Scaling analysis

We now turn our attention to long range dynamical prop-
erties at criticality, a regime inaccessible to both cluster
algorithms and kinetic Monte Carlo approaches. We concen-
trate on the dynamical critical exponent z, which governs the
relaxation time. Indeed, near the critical point the autocorre-
lation time τ , which is the Monte Carlo time needed to get
two statistically independent samples, diverges as a power law
τ ∼ ξ z, where ξ is the correlation length. When dealing with
a critical finite size system, the only characteristic length scale
is its linear size L, which implies

τ ∼ Lz. (4)

In this perspective we compute τ from the autocorrelation
time of the absolute magnetization per spin.

We expect z to show different values in the three regimes
considered in equilibrium, as outlined in the Sak’s scenario.
In the MF region, the system behaves as a Curie-Weiss model.
The underlying geometry disappears and the only remaining
information is the total number of spins, i.e., the volume V .
A simple argument shows that for the Curie-Weiss model, the
relaxation time goes as τ ∼ V 1/2. Let us consider the Fokker-
Planck equation for the magnetization:

∂P(m, τ )

∂τ
= ∂

∂m
[(A(T − Tc)m + Bm3)P(m, τ )]

+ D̃

V

∂2

∂m2
P(m, τ ), (5)

where A and B are arbitrary constants and the diffusion co-
efficient depends on the system size as D̃

V . Then, at criticality
(T = Tc), the equilibrium distribution has the form P(eq)(m) =
Be− C

V m4
, which implies 〈m2〉 ∼ V −1/2. Since at criticality the

magnetization remains small and the dynamics is expected to
be purely diffusive, if we initialize the system at m = 0 we get
that 〈m2〉 ≈ D

V t . Thus we can conclude that the time needed to
reach the equilibrium is t ∼ V 1/2. Consequently, in the MF
region we expect τ ∼ Ld/2. At the crossing point σ = d/2,
renormalization group calculations show that the model is
Gaussian and the system is in a free superdiffusive regime in

which the dynamical exponent z is expected to be

z = 2d

ds
, (6)

where ds is the spectral dimension, as defined in Ref. [42]. In
long range systems the spectral dimension is exactly d (LR)

s =
2d/σ [44], which means z = σ . As soon as σ > d/2 we
expect the free random walk behavior z = σ to be perturbed
by the presence of interactions, leading to a slightly larger
value of z. This is consistent with the behavior of short range
models, in which a small perturbation to the free diffusion
is observed. In d = 1 such a perturbed diffusive behavior
should characterize the critical dynamics up to σ = 1 where
critical dynamics disappears. In d = 2, 3 we know that for
the equilibrium critical exponents the short range behavior
is recovered at σ = 2 − ηSR. On the other hand, the non in-
teracting dynamics of free random walks shows anomalous
diffusion z = σ up to σ = 2 where normal diffusion (z = 2)
is recovered. For the dynamical exponent z is not clear if the
short range behavior is recovered at σ = 2 − ηSR or at σ = 2.
We show that our simulations seem to support the second
hypothesis.

B. The numerical measure of the autocorrelation time

Let us call mi (i = 1 . . . N) the time series of the magne-
tization at a Monte Carlo step. The autocorrelation time τ of
mi is related to the error E on the mean m by the following
relation [45]:

E2

E2
1

= τ, (7)

where E2
1 =

∑N
i=1(mi−m)2

N (N−1) is the estimate of the error on m as if
the system was uncorrelated. The error E can be estimated by
using the the Jackknife resampling method. We construct new
samples aggregating bigger and bigger temporally consecu-
tive blocks of magnetization. The aggregation is performed
by taking the mean value of the block and then we calculate
the error of the new sample, i.e.

E (tBS )2 =
∑N/tBS

i=1

(
mBS

i − 〈m〉)2

N/tBS (N/tBS − 1)
, (8)

where tBS indicates the block size and mBS
i is the mean value

of the i-th block of aggregated magnetization. At large enough
block sizes tBS , E (tBS )2 turns out to be independent of tBS and
the limit value of E (tBS ) is the best estimator of the error on
the mean of the time series. At criticality in a finite system
we expect the model to scale with the only intrinsic time in
the dynamical evolution i.e. Lz. Since the block size of the
Jackknife procedure is a time length, that we introduce to
probe the system, we obtain:

EN (tBS, L) ≡ E (tBS, L)

E (1, L)
= Lz/2Ẽc(

√
tBSL−z ), (9)

where Ẽc is a scaling function. Notice that for tBS � τ we
have EN (tBS, L) = τ 1/2 ∼ Lz/2, so that Ẽc(x) is constant in
the limit of large x. On the other hand, for tBS � τ the variance
of the resampled system in blocks tBS should be equal to the
variance of the original time series. Therefore from Eqs. (8,9)
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FIG. 4. Upper: E2
N for σ = 1.75. The value of the autocorrelation

time is the plateau. Lower: Rescaled EN with z = 1.75, the collapse
improves with increasing size. The differences at small sizes are due
to finite size effects.

we obtain Ẽc(x) ∼ x for x ∼ 0. Eq. (9) has been obtained
exactly at T = Tc. Close to criticality we expect a gen-
eral scaling relation EN (tBS, t, L) = Lz/2Ẽ (

√
tBSL−z, tL1/ν ),

where t is the reduced temperature. Since our simulations
have been performed for each size L at a temperature
corresponding to the peak of the susceptibility χ , from
Eq. (2), tL1/ν = xM is constant in the different simulations.
So we obtain EN (tBS, L) = Lz/2Ẽ (

√
tBSL−z, xM ) where the

new scaling function Ẽ (
√

tBSL−z, xM ) = Ẽ (
√

tBSL−z ) displays
the same asymptotic features of the critical scaling function
Ẽc(

√
tBSL−z ) = Ẽ (

√
tBSL−z, 0).

The numerical data are analyzed using the exponent z that
gives the best collapse at different sizes L for the rescaled
functions L−z/2EN as a function of

√
tBSL−z, see Appendix C

for details and error estimate.
In Fig. 4 we show an example with σ = 1.75, before and

after rescaling. In the upper panel, we clearly see the effect of
critical slowing down, by looking to the fast increasing plateau
with the size. The rescaling is performed with the best value of
z, showing a collapse which improves with increasing system
size.

The method we introduced turns out to be quite efficient. In
fact, for systems with strong finite size effects, a good estimate
of z requires including in the scaling analysis even sizes where
the simulation times are not much larger than the decorrelation
time. This can be observed in Fig. 4 for L = 512, where a
plateau is not yet reached at large block sizes tBS and the
decorrelation time cannot be directly calculated by Eq. (7)

FIG. 5. z The dynamical critical exponent as obtained from DLL
(see Appendix C) for the one-dimensional case. The black dashed
line represents the theoretical prediction at leading order, as dis-
cussed in the text. Numerical data are illustrated in Table IV in
Appendix D.

by measuring a stable asymptotic value. Nevertheless, with
our method the system at L = 512 can be included in finite-
dimensional rescaling, providing an important contribution
to the estimate of z. An alternative way to measure the z
exponents using even shorter simulations is through a critical
quench [46], in which equilibration of the system is not even
required. This method, however, implies knowledge of the
static equilibrium critical exponents.

C. Results in one and two dimension

We collect the results for both one and two-dimensional
case in Tables IV and V, and in Figs. 5 and 6. We recall that,
in the one-dimensional case, there is no phase transition in
the SR region. In the two-dimensional case for this region

FIG. 6. The dynamical critical exponent as obtained from DLL
(see Appendix C), for the two-dimensional case. Again, the black
dashed line represents the leading order, following the Sak’s static
prediction. The lighter dashed line represents the leading order in
the case where the SR behavior is recovered at σ = 2. The dark
horizontal line at higher values of σ is the value of z with its error
as found in Ref. [47], z = 2.14(2). Numerical data are illustrated in
Table V in Appendix D.
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we compare our results with z = 2.14 ± 0.02, as taken from
Ref. [47].

The values obtained for the one-dimensional case are
consistent with our analysis. For the more interesting two-
dimensional case, in Fig. 6 the darker line represents the short
range behavior according to Sak’s hypothesis on the onset
of LR and SR regimes. If σ ∈ (1.75, 2) corresponds to SR
region, we should observe a rapid deviation from the free
super-diffusive behavior z = σ so that the short range behav-
ior should be recovered at σ = 1.75. Instead we found that it
seems to be recovered smoothly at σ = 2. In this perspective,
in order to obtain a clear picture on the transition in the dy-
namical exponent from the LR to the SR regime, more exten-
sive simulations are required to clarify the picture in the region
σ ∈ (1.75, 2), together with some analytic renormalization
group argument which is beyond the scope of our work.

VI. CONCLUSION AND PERSPECTIVES

In this work we have presented an analysis of the equi-
librium critical exponents and of the dynamical exponent z at
criticality for one and two-dimensional Ising models with long
range interactions. The numerical values of the exponents
have been obtained using a dynamical algorithm, the DLL,
designed for the study of models with long range interactions.
The algorithm corresponds, in practice, to a Monte-Carlo
analysis on a diluted temporal graph. The dynamics has
relatively small computational cost, avoiding the typical scal-
ability problems of long range interactions, preserves locality,
and can be adapted to a wide range of situations beyond Ising
interactions. However, since detailed balance is not satisfied
and the stationary distribution is not known, the equivalence
between our model and the long range Ising equilibrium
distribution has been checked. Our results are in line with
the present literature. Exploiting the local nature of our al-
gorithm, we then obtain a first measure of the dynamical
critical exponent z, which shows a peculiar behavior near
the LR-SR crossing point. Interestingly, the SR regime seems
to be reached at larger values of σ than in the equilibrium
case. Extensive simulations and new analytical arguments are
needed to clarify this scenario. The effect of a different choice
of q on the dynamics is still to be carefully tested. Our choice
q = 3 is driven by the results of the fully connected model,
in which analytical calculations can be performed exactly.
[20,21] Our choice gives a quite effective dynamics, how-
ever more efficient choices could be possible. The locality
of the algorithm makes it widely applicable to study out-of-
equilibrium properties, for example to investigate aging in
critical quenches or the effect of long range interaction in
coarsening phenomena [8], in which topology is expected to
have non trivial effects such as pinning [9,48–50]. Finally,
the numerical approach can be easily extended to different
models. In particular, the XY model in d = 2 is expected to
show non trivial features in the presence long range inter-
actions, due to the three different phases, i.e., paramagnetic,
ferromagnetic, and Kosterlitz-Thouless transition [38].
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APPENDIX A: ALGORITHM IMPLEMENTATION

In the algorithm of the DLL, we start by choosing a uni-
formly random spin σi. Next we choose a list Sq of q spins,
which will be neighbours of i during this temporal step. Such
q spins σ j are drawn from the distribution P(ri j ) ∝ r−(d+σ )

i j ,
with ri j being the distance between nodes i and j and σ the
decay parameter. A precise definition of P(ri j ) requires the in-
troduction of boundary conditions, that will be discussed later.
Chosen i and its q neighbors, we apply the standard dynamics,
for example Metropolis or Glauber, using as flipping energy

E = 2 · J · σi · ∑

j∈Sq
σ j . Applying N times this procedure

defines a Monte Carlo step. The procedure is summarized in
Algorithm 1.

Algorithm 1. DLL (single Monte Carlo step)

Require: q ∈ N and σ ∈ R+

1: Choose a random spin σi

2: Draw a node j �= i from the probability distribution
P(ri j ) ∼ r−(d+σ )

i, j where ri j is the distance between nodes
i and j. Repeat the extraction q times so that you get q
random nodes, (allow for the extraction of the same node
more than one time in the list Sq).

3: Calculate the interaction energy 
E = 2 · J · σi · ∑
j∈Sq

σ j

4: Flip σi following a dynamics, Metropolis or Glauber,
using 
E as flipping energy

5: Repeat steps 1-5 O(N ) times

In the fully connected standard q-Ising model, i.e., P(ri j ) =
constant, analytical calculations show that for q < 2 the sys-
tem does not present a phase transition at finite temperature
i.e. Tc = 0; with Metropolis dynamics, for q = 3 there is
a continuous phase transition of the mean-field universal-
ity class while for q > 2 a first-order transition is observed
[20,21]. For Glauber dynamics instead, a continuous tran-
sition is always observed for q > 2. For this reason we
choose the Glauber dynamics and set q = 3 so that we ex-
pect a second-order phase transition, as we indeed observe in
our simulations. In particular, we verify that both lowering
and increasing the temperature of the system never presents
hysteresis. A small value of q allows for an efficient imple-
mentation of the algorithm while large values are typically
more demanding since the algorithm requires the extraction
of q random numbers in a microscopic step. In general the
study of the dependence on q of the dynamical evolution is
an interesting open issue. Let us briefly discuss the choice
of the boundary conditions. As it is well known for the fully
connected long range model the results at small σ are strongly
affected by finite size effects and by the choice of boundary
conditions. The most natural choice is to extract as a dis-
tance ri j a d-dimensional integer vector, from the probability
distribution p(�ri j ) ∼ |�ri j |−(d+σ ) with

√
d/2 < |�ri j | < L/2 and

then impose periodic boundary conditions. In Ref. [29] it is
shown that a more efficient choice of the boundary condition
is to use copies (images) of the original configuration; in
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FIG. 7. Parable extrapolation of the maximum of χ for d = 2,
σ = 1.2 and L = 16, which result is drawn in the same color of the
points. The star is the extrapolated maximum of the curve, with its
respective error bar.

our DLL this means to draw the integer vector �ri j from the
probability distribution p(�ri j ) ∼ |�ri j |−(d+σ ) with

√
d/2 < |�ri j |

(no upper limit to the distribution). The site j is then obtained
with periodic boundary condition where now �ri j can wind
around the torus an arbitrary number of times. We verify
indeed that also for our model this choice is more efficient
in simulations. A further choice of the boundary conditions
turns out to be even slightly better. In particular, we draw
again the vector �ri j from the integer probability distribution
p(�ri j ) ∼ |�ri j |−(d+σ ) with

√
d/2 < |�ri j | (no upper limit); then

we fix σ j = 0 if |�ri j | > L/2; while for |�r| < L/2 the node j is
obtained when imposing periodic boundary conditions; in this
way when faraway coordinates are considered we take into
account that interaction occurs with nodes of zero magneti-
zation on average, while spin-spin correlations are relevant
only at distances smaller than L. In d = 2 finite size effects
are large and we adopt this last prescription for the boundary
conditions, which better reproduces Sak predictions on the
exponent η. On the other hand, in d = 1 the results seem
independent of the choice since we deal with very large L.

APPENDIX B: SIMULATION DETAILS - THE
SUSCEPTIBILITY

During the Monte Carlo simulation we save the value of the
magnetization m = L−d

∑N
i=1 σi, for a total of O(106) realiza-

tion for each temperature. Then we compute the susceptibility
as

χ = kbT L−d (〈m2〉 − 〈|m|〉2 (B1)

where the constant kb is set as equal to 1. The error for each χ

is calculated taking the standard deviation of different Markov
chain realizations. These errors are propagated in every suc-
cessive fit we make, always checking that the reduced χ2 is
compatible with the unity, for each one of those. To find the
maximum value of χ , we concentrate our simulations near
the peak and then we extract the maximum with a quadratic
fit, propagating the errors as mentioned before. A sketch of
this procedure can be seen in Fig. 7. Therefore, we perform
a linear fit with the logarithm of the maximum, in particular

FIG. 8. Finite size extrapolation example for d = 1 and σ =
0.35. Each line is the result of a linear fit of two consecutive sizes
and it is clear how the slope changes with increasing sizes.

from Eq. (2) we get

log (χmax(L)) = y · log L + C, (B2)

with χmax the maximum of χ and C a constant.
Typically Eq. (B2) is affected by strong finite size effects

and the linear behavior in the log-log plot is not observed.
Thus our strategy is to measure the variation of the slope
y as a function of the size L as illustrated in Fig. 8. For
such size dependent slopes y(L) we extrapolate the value at
L = ∞ by means of a linear fit against L−1, i.e. we assume
the intercept of this fit as an estimate of the exponent. Again,
at this step we propagate the errors coming from the quadratic
fits. The result of this simple extrapolation procedure is shown
in the circle of Fig. 3 evidencing that still important finite
size effects are present in the estimate. Indeed, in Ref. [29] it
has been shown that the correction to the scaling at σ = 1.75
vanishes more slowly than linearly according to Eq. (3). In
this perspective we extrapolate the value of y by fitting linearly
the size dependent estimates y(L) as a function of (1/L)δ and
we obtain the data shown with blue stars in Fig. 3 which
confirm Sak’s prediction on the exponent η. In this second
approach errors are larger (see Fig. 3) since it assumes larger
scaling corrections. Figure 9 shows that corrections to scaling
according to Eq. (3) are indeed consistent with our numerical

FIG. 9. Linear dependence of χL−(2−η) for σ values near the SR-
LR crossing point. Straight line are the result of the linear fit with
respect to L−δ .
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FIG. 10. a
b ratio for different values of σ . The logarithmic scale

on the y axis, shows how fast this ratio grows as we move away from
the SR-LR crossing point.

simulations. In particular, the quantity χL−(2−η) displays a lin-
ear dependence respect to L−δ with δ = 0.42. Then we study
the ratio a

b where a and b are the coefficient in Eq. (3) obtained
from the linear fit in Fig. 9. In Figure 10 we find that a

b has
a sharp minimum for σ = 1.75 and it grows when moving
away from the SR-LR crossing point. This confirms that the
corrections to scaling are bigger in this transition regime.

APPENDIX C: SIMULATION DETAILS - Z
EXTRAPOLATION

In this section we briefly explain the method we used to
calculate the z dynamical critical exponent, since there is
no standard way to measure it. We define a function which
depends on z, whose minimum indicates the best estimate of
the exponent. The function is defined as follows. First, we take
a value of z and we rescale EN , as mentioned previously in the
text, i.e., we look at the curves L−z/2EN (t̃, L) as function of
t̃ ≡ (tBSL−z )1/2, at different sizes L. Then, for each value of
t̃ , we compute the difference between consecutive curves in
size, defining the function:


EN (t̃, L) ≡ EN (t̃, L)L−z/2 − EN (t̃, L/2)(L/2)−z/2. (C1)

To take into account finite size effects, we extrapolate the
thermodynamic limit of 
EN (t̃, L), by assuming a linear de-
pendence of L−1:


EN (t̃, L) = AL−1 + 
EN (t̃,∞). (C2)

In this case, a next to leading correction to the scaling, e.g.,
as L−δ with δ �= 1, seems to have a small effect on the final
value of z, at least for the size and errors we are considering in
our simulation. Finally, we take the square sum of 
EN (t̃,∞)
for all the values of t̃ , to penalize the discrepancies from
0. Indeed, the best value of z is the one for which, in the
thermodynamic limit, the curves at different size collapse.
Thus, for each value of z we have defined the function:


EN (z) ≡
∑

{t̃}

E2

N (t̃,∞), (C3)

where the sum is extended to all value of t̃ . Our best estimate
of z is the one for which this function has a minimum. For
the error, we look at the values of ze for which 
EN (ze) =
5 × 
EN (zmin).

APPENDIX D: NUMERICAL DATA

In this Appendix we present in Tables I–V the numerical
results for the exponents y and z obtained from our simula-
tions.

TABLE I. y exponent extrapolation for a one-dimensional spin
chain. The last column indicates the discrepancy with respect to the
expected theoretical exponent.

σ Experiment 
y

0.35 0.507 ± 0.015 0.007 ± 0.015
0.6 0.612 ± 0.016 0.012 ± 0.016
0.8 0.761 ± 0.032 0.039 ± 0.032
0.9 0.861 ± 0.041 0.039 ± 0.041

TABLE II. y exponent extrapolation for a two-dimensional lat-
tice. The last column indicates the discrepancy with respect to the
expected theoretical exponent.

σ Experiment 
y

0.5 0.95 ± 0.03 0.05 ± 0.03
0.9 1.019 ± 0.025 0.019 ± 0.025
1.2 1.168 ± 0.033 0.032 ± 0.033
1.5 1.424 ± 0.061 0.076 ± 0.061
1.75 1.608 ± 0.032 0.142 ± 0.032
1.9 1.679 ± 0.046 0.071 ± 0.046
2.0 1.685 ± 0.048 0.065 ± 0.048
2.15 1.705 ± 0.038 0.045 ± 0.038
2.5 1.754 ± 0.026 0.004 ± 0.026

TABLE III. y exponent extrapolation for a two-dimensional lat-
tice when using second-order correction δ = 0.42, as discussed in
the text.

σ Experiment 
y

0.5 1.022 ± 0.059 0.022 ± 0.059
0.9 0.995 ± 0.051 0.005 ± 0.051
1.2 1.169 ± 0.064 0.031 ± 0.064
1.5 1.516 ± 0.062 0.016 ± 0.062
1.75 1.766 ± 0.068 0.016 ± 0.068
1.9 1.766 ± 0.069 0.016 ± 0.069
2.0 1.761 ± 0.07 0.011 ± 0.07
2.15 1.793 ± 0.076 0.043 ± 0.076
2.5 1.789 ± 0.075 0.039 ± 0.075
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TABLE IV. z exponent extrapolation for the one-dimensional case.

σ z

0.35 0.52 ± 0.05
0.6 0.63 ± 0.04
0.8 0.85 ± 0.04
0.9 0.97 ± 0.03

TABLE V. z exponent extrapolation for the two-dimensional case.

σ z

0.5 1.01 ± 0.04
0.9 1.01 ± 0.04
1.2 1.2 ± 0.035
1.5 1.55 ± 0.04
1.75 1.76 ± 0.02
1.9 1.91 ± 0.03
2.0 2.016 ± 0.035
2.15 2.07 ± 0.06
2.5 2.12 ± 0.04
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