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Stability and dynamics of many-body localized systems coupled to a small bath
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It is known that strong disorder in closed quantum systems leads to many-body localization (MBL), and
that this quantum phase can be destroyed by coupling to an infinitely large Markovian environment. However,
the stability of the MBL phase is less clear when the system and environment are of finite and comparable
size. Here, we study the stability and eventual localization properties of a disordered Heisenberg spin chain
coupled to a finite environment, and extensively explore the effects of environment disorder, geometry, initial
state, and system-bath coupling strength, using the steady-state value of magnetization as a probe. Focusing on
nonequilibrium dynamics and steady-state properties, our results indicate that within system sizes amenable
to exact diagonalization, a strongly localized system interacting in a junction configuration retains remnant
information on its initial state at long times despite coupling to a finite ergodic environment. In contrast, in
a ladder configuration, strong dependencies on the initial state and coupling strength are observed, which can
lead to either the loss or retention of information. Finally, we highlight and discuss discrepancies that can arise
when similar methodologies are employed to infer localization or thermalization, revealing the need for careful
interpretation.
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I. INTRODUCTION

Dynamics in ergodic systems typically lead to thermal-
ization, in which the system converges to a thermodynamic
equilibrium state independent of its initial state [1–3]. Yet,
from the point of view of quantum information processing, un-
derstanding conditions in which thermalization fails—thus re-
sulting in the local retention of information—is attractive. In-
teracting many-body quantum systems that are able to locally
retain information, said to exhibit many-body localization
(MBL) [4–7], allow us to contrive dynamics which maintain
quantum information in the presence of interactions. It is now
generally accepted that strong disorder can drive closed er-
godic systems into localization, a fact supported by large bod-
ies of theoretical [8–10], experimental [11–16], and numerical
[6,17,18] work, barring a few studies on whether it constitutes
a true phase of matter in the thermodynamic limit [19–24].

In practical situations, quantum systems are not ideally
isolated and may be coupled to an ergodic environment to
varying extents. Even in the ideal isolated situation, rare re-
gions of low disorder that form amid a disordered system
effectively act as ergodic subsystems with the potential to
thermalize the larger system via an avalanching mechanism,

*Present address: IBM Quantum, Seattle, WA 98101, USA.

depending on dimensionality and the nature of the couplings
[25–28]. An understanding on the resulting fate of such in-
teractions between localized and ergodic phases is therefore
important to establish the stability and robustness of MBL,
and whether it can survive in higher dimensions [29–32]. This
is also experimentally interesting [14,33], especially in higher
dimensional systems which are still inaccessible to numerical
simulations.

While one can model the system-bath interaction with
quantum master equations such as the Lindblad master equa-
tion, the number of degrees of freedom of the bath is assumed
to be large compared to that of the system, and with this
approach the system is expected to thermalize at long times
[34–37]. However, the situation is less clear if the number
of degrees of freedom of the environment is comparable to
that of the system, in which backaction and proximity ef-
fects can be significant. Under certain conditions, it has been
shown that these effects can prevent quantum systems from
thermalization [31,38–40], which can be a desirable scenario
for quantum information processing. Moreover, there has been
less emphasis on understanding the effects of such couplings
from a dynamical perspective, and its relation to results ob-
tained from the entire eigenspectrum of MBL systems, which
is important in understanding many existing experimental re-
sults [11–14,16].

In this article, we focus on the situation where (i) the num-
ber of degrees of freedom of the environment is comparable
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FIG. 1. A schematic depiction of a disordered spin chain in-
teracting with a bath. We consider two types of system-bath
configurations: (a) the system is connected to the bath with a single
connection and (b) the system is attached to the bath in a ladder
configuration.

to that of the system, and (ii) the system is in the strongly
localized regime, asking whether such couplings preserve
or destroy the localization properties of the system or the
environment. Does a strongly localized system lose its local-
ization properties when coupled to an ergodic bath, or is the
bath localized instead? Do they retain their initial localization
properties? If so, to what extent?

We numerically investigate these questions by studying
the dynamics of a prototypical system exhibiting MBL—the
disordered s = 1/2 Heisenberg chain [6,18]—when specific
initial states are coupled together under different config-
urations (either in a junction or ladder configuration; see
Fig. 1). By investigating these configurations for a range of
parameters and system sizes, we wish to understand how the
strength and geometry of couplings to a small bath affect
the localization properties of both the system and the bath—
concretely, if information about the system’s initial conditions
can still be recovered after long evolution times. Allowing
two chains of differing disorder to interact with different in-
teraction strengths, we study their dynamics and steady-state
localization properties, using the staggered magnetization as
a diagnostic of localization [12,41,42].

The study of these configurations can be treated as ide-
alizations of the local physics of an ergodic spot appearing
within a strongly localized 1D (2D) system in the junction
(ladder) configuration, where thermalization of the localized
subsystem from its boundary signals the onset of an avalanch-
ing thermalization across the larger system [27,28,32,43,44].
Indeed, in the limit of large system sizes, such ergodic spots
with anomalously weak disorder necessarily appear, with the
capacity to trigger this avalanche if the overall system is not
sufficiently localized. Additionally, in the case of a strongly
localized system interacting with an ergodic spot, we wish
to understand the roles played by the strength and geometry
of their interactions. The ongoing study to understand this
mechanism reveals crucial information about the stability of
the MBL phase in the thermodynamic limit and in different
dimensions.

Our numerical results indicate a complex interplay of
disorder strength, system-bath geometry, coupling, and the
choice of initial states. For a strongly localized system
interacting in the junction configuration, the system and
environment tend to independently retain their localization
properties, insensitive to the system-environment interaction
strength, in the form of remnant magnetization and fidelity
(with the initial state). For the ladder configuration, we ob-
serve a similar conclusion for system-environment interaction
strengths that are comparable or smaller than the ladder’s
intrachain interaction strength—there is no domination of
localization or ergodicity, only a weakening of both character-
istics. Numerics on larger system sizes support this conclusion
in both configurations. On the other hand, for large interaction
strengths, the system and environment are characterized by
the dimerization of each 2-qubit ladder rung. The eventual
dynamics and steady-state behavior of the dimerized chain
are then dependent on initial conditions, which can tend to-
ward information loss or retention, which we illustrate with
analyses on the dynamics of individual spins.

As we will describe, the limited system sizes accessible
do not allow concrete claims on the ergodic/MBL transition
point to be made. Moreover, directly interpreting the preser-
vation (or lack thereof) of magnetization as a signature of
localization in the thermodynamic limit by extrapolating from
these sizes leads to discrepancies with related studies that
involve more detailed probes or larger system sizes, revealing
the need for careful interpretation in existing experimental
studies.

Our results supplement existing studies on MBL systems
coupled to small baths [29,31,33,39,43–46], and generalize
them by exploring the effects of different geometries, inter-
action strengths, environment disorders, and nonequilibrium
initial states. Using an experimentally accessible diagnostic of
localization, we hope to shed light on the interplay between
localization and ergodicity, and the potential for localized
systems to retain encoded information.

We structure the article as follows: In Sec. II, we describe
the model and the two interaction configurations considered.
In Sec. III, we define and motivate the use of staggered magne-
tization as a dynamical signature to detect localization. Next,
we present our main numerical results in Sec. IV, along with
additional numerics for different system sizes, comparisons
with existing work, and discussions on apparent discrepan-
cies. In Sec. V, we discuss the applications of our results
in quantum memory. Finally in Sec. VI, we conclude and
reiterate our main results.

II. SYSTEM-ENVIRONMENT MODEL

The total Hamiltonian of the system and its environment
can be written as

Htot = Hs + He + Hint, (1)

where Hs, He, and Hint are the system, environment, and
interaction Hamiltonians, respectively. In the following anal-
yses, we take the system and environment to be 1D isotropic
Heisenberg spin-1/2 chains of l spins (forming a total of
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L = 2l spins) with disordered transverse magnetic field and
open boundary conditions:

Hs = J
l−1∑
i=1

�Si · �Si+1 +
l∑

i=1

h(s)
i Sz

i , (2)

He = J
2l−1∑

i=l+1

�Si · �Si+1 +
2l∑

i=l+1

h(e)
i Sz

i , (3)

where �Si = (Sx
i , Sy

i , Sz
i ) is the vector of local spin operators

at site i, with i ∈ [1, l] denoting the l system spins and
i ∈ [l + 1, 2l] denoting the l environment spins. J is the in-
trachain interaction strength while h(s)

i (h(e)
i ) is the disorder

parameter of the system (environment), which is a random
real number uniformly distributed in the interval [−Ws,Ws]
([−We,We]). Taken independently, the critical disorder at
which the ergodic-MBL transition occurs for Hamiltonians
Eq. (2) and Eq. (3) has been extensively studied with various
numerical methods, with the location of this transition (as de-
termined by exact diagonalization methods) increasing from
W ≈ 2J up to W ≈ 3.7J as the number of spins increases
from 6 to 22 [6,18,47,48]. We will consider total system sizes
within the regime of exact diagonalization of up to L = 16 in
our following analyses, keeping in mind the inexactness of the
critical disorder’s location.

The system and its environment are then allowed to interact
via spin-spin interactions in two configurations:

(1) Junction configuration:

H (junc)
int = Jint �Sl · �Sl+1. (4)

(2) Ladder configuration:

H (ladder)
int = Jint

l∑
i=1

�Si · �Si+l . (5)

Here Jint represents the strength of the system-environment
coupling. Figure 1 schematically illustrates these two system-
bath configurations. Throughout the article, we set J = 1. We
will also set the disorder of the system to be Ws = 9 so that the
system always lies well within the strongly localized regime at
all investigated system sizes, while allowing the environment
disorder We to vary from We = 0 (representing an ergodic
phase) to We = Ws (representing a strongly localized phase).

III. DYNAMICAL SIGNATURES OF LOCALIZATION

An important signature of MBL systems is the existence
of a set of local conserved operators, referred to as quasilocal
integrals of motion (LIOMs). This integrability constrains the
system’s dynamics, leading to atypical dynamical properties
such as a logarithmic growth of entanglement and boundary-
law scaling of entanglement entropy [8,9,49]. The dynamical
signature that we focus on is the equilibration of local observ-
ables to nonthermal values under a quantum quench [6,50],
in particular that of the local physical spin operators Sz

i . The
LIOM theory predicts that at long times, 〈Sz

i 〉 will equilibrate
to values that carry information about the initial state. This is
in contrast to thermalizing systems which retain no long-term
memory, evolving into a temperature-dependent equilibrium
state with no memory of the initial states.

As we will subsequently restrict our attention to initial
Néel states of the form |↑↓↑↓ . . .〉 (chosen as an instance
of a highly nonthermal initial state) to measure the collective
effect of the equilibration of 〈Sz

i 〉 across the entire chain, it is
instructive to measure the (normalized) staggered magnetiza-
tion, defined as

M(t, [a, b]) = 1

|b − a|
b∑

i=a

(−1)i 〈ψ (t )| Sz
i |ψ (t )〉 , (6)

where 1/|b − a| is a normalization factor, and [a, b] is the
portion of subsystem of interest. We further denote Msys ≡
M([1, l]) and Menv ≡ M([l + 1, 2l]) the staggered magneti-
zation of the system and environment chains, respectively. As
a probe of localization [48], the staggered magnetization has
the advantage of being experimentally accessible [12], and
is equivalent to the particle imbalance probed in cold-atom
setups [11].

We will be interested in the disorder-averaged quasi-
steady-state behavior of M at late times, i.e., the behavior of

M([a, b]) = 1

�tSS

∫
tSS

M(t, [a, b]) dt (7)

when it is averaged over numerous disorder realizations, with
an appropriately chosen steady-state window tSS that does not
contain transient behavior. The bar denotes averaging over the
steady-state window, and we will always consider disorder-
averaged quantities (the notation of which we suppress). We
thus expect that if an initial highly nonthermal state of the
form |ψ (0)〉 = |↑↓↑↓ . . .〉 is subjected to a quench, M should
remain close to its initial value of M = 1 if the system is fully
localized, while decaying to M = 0 in the ergodic case.

The staggered magnetization can also be rescaled to define
the Hamming distance:

D(t ) = 1
2 [1 − M(t )], (8)

which is 0.5 for a thermal state and 0 for a fully localized
Néel state. Also a quantifier of localization, it has been studied
in MBL models [41,42], including an experimental demon-
stration of MBL in a disordered long-range Ising model with
ultracold ions [12]. For initial states that are not in the Néel
form, a more general measure is desirable, and in Appendix A
we study the fidelity, which is a quantifier of localization that
does not depend upon the initial state being in the Néel form.
Alternatively, one may use state-independent generalizations
of the staggered magnetization that reduces to Eq. (6) for the
Néel state as in Refs. [51,52].

To compute the long-time averages of observables, in lieu
of an evolution over a finite duration and averaging over a
window at late times as we have done, we note that one can
in principle obtain the infinite-time average with the diagonal
ensemble [3] (this is explored in Appendix C). However,
the latter approach requires an exact diagonalization of the
Hamiltonian, which we observed to be more computationally
demanding than an evolution in a closed system for finite time.
Since we observe good agreement in values and qualitative be-
havior from both approaches (see Fig. 2), subsequent analyses
will be done with the former approach.
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FIG. 2. (a) Dynamics of staggered magnetization, M(t ), and
(b) steady-state spatial distribution of local spin expectation values
for parameters Jint = J = 1, Wenv = 0, and Wsys = 9, averaged over
100 disorder realizations. The steady-state window �tss = 2.4 cor-
responding to t ∈ [9.6, 12] is used to compute the steady-state spin
distribution of (b). Error bars are too small to be displayed. The red
line in panels (a) and (b) indicates staggered magnetization and local
spin values obtained with the diagonal ensemble, respectively (see
Appendix C).

IV. NUMERICAL RESULTS

In this section, we present numerical results on the dy-
namics under the junction and ladder configurations, and
investigate features that arise. To study the steady-state lo-
calization properties of the system, we initialize the total
system in a highly nonthermal initial product state |ψ (0)〉 =
|ψ s(0)〉 ⊗ |ψe(0)〉, allow it to evolve under H , and study the
subsequent dynamics of |ψ (t )〉. Each individual chain starts as
a Néel state, and we denote |ψeven〉 ≡ |↓↑↓↑↓↑〉 and |ψodd〉 ≡
|↑↓↑↓↑↓〉 to distinguish between Néel states with positive
spins at even-numbered sites and those with positive spins at
odd-numbered sites, respectively. This distinction is important
for the localization dynamics of the ladder configuration, as
shown in Sec. IV B. To quantify the extent of localization or
the preservation of the initial state, we study the staggered
magnetization M as defined in Eq. (7), which measures the
deviation of |ψ (t )〉 from the initial Néel state.

A. Junction

We first consider the junction configuration and the initial
state |ψ (0)〉 = |ψ s

even〉 ⊗ |ψe
even〉, in which case the ergodic

and localized 1D subsystems interact through a single contact
point. The resulting physics can be treated as an idealization
of the local physics of an ergodic spot appearing within a
strongly localized 1D chain, where compared to higher dimen-
sional systems, the area of contact between the two phases is
independent of the size of spontaneously appearing ergodic
spots.

To illustrate the quenched dynamics and equilibration at
long times of the staggered magnetization, we consider a
strongly localized system (Wsys = 9) coupled to a strongly
ergodic environment (Wenv = 0) with interchain interaction
strength Jint = J . Figure 2(a) shows the dynamics of Msys

and Menv. Starting from the initial state with Msys(t = 0) =
Menv(t = 0) = 1, both curves display a rapid decrease in M
at short times, before fluctuating about different equilibrium
values (Msys ≈ 0.4 and Menv ≈ 0) after a transient period.
Figure 2(b) further shows the equilibrated spatial distribution

FIG. 3. Steady-state staggered magnetization of the system, Msys

(left), and environment, Menv (right), for the junction configuration.
The tuples (Jint,Wenv) form a grid separated by 0.5 intervals. Each
point is averaged over 200 disorder realizations, evolved for Jt = 50.

of local spin expectation values 〈Sz
i 〉, averaged over the steady-

state window t ∈ [9.6, 12], appropriately chosen beyond the
transient period.

The large value of Msys ≈ 0.4 reflects the preservation of
information in the localized system half chain despite its cou-
pling to an ergodic environment. On the other hand Menv ≈ 0
signals information loss in the other ergodic environment half
chain. This can also be seen from the spin distribution in
Fig. 2(b)—the system retains its alternating local spin ex-
pectation values 〈Sz

i 〉, while the environment retains no such
feature.

We also note that the spin belonging to the system closest to
the boundary (i = 6) has equilibrated to a value close to zero,
potentially signifying the penetration of ergodicity into the
localized system. While spins close to the boundary contribute
to the value of the equilibrated staggered magnetization, this
contribution is expected to decrease as the length of the chain
is increased.

Under these parameters, we thus observe that both
the system and environment retain their localization
properties—measured by the retention (or lack thereof) of
magnetization—despite the coupling. That is, they evolve as
independent half chains, even with contrasting localization
properties, as the only interaction between the two chains
occurs at the boundary. Indeed, we find that this conclusion
can be further extended to a larger range of values for Jint and
Wenv, as we summarize in Fig. 3, which shows the values of
Msys (left) and Menv (right) for Jint ∈ [0, 10] and Wenv ∈ [0, 9].
We note the large values of Msys, regardless of Jint and Wenv;
the system retains its magnetization (in particular, even when
the system is interacting strongly with a highly ergodic bath).

Additionally, we observe that the system environment cou-
pling shifts the apparent ergodic-MBL transition point to
larger disorder values for this system size, visible by com-
paring the values of Menv at Jint = 0 with finite Jint in Fig. 3.
Nonetheless, we expect this shift to vanish for increasing
system sizes, as the number of interactions do not scale with
chain length. This is confirmed later in Sec. IV C, where
additional numerical simulations for increasing total system
sizes indicate the retention of localization properties in both
the system and environment. With increasing system size, the
contribution of the system-environment coupling to M will
also tend to zero, visible in Fig. 2(b) at sites 6 and 7, and in
Fig. 8(b).
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FIG. 4. Illustration of different initial states for the ladder con-
figuration: (a) aligned state, |ψA〉, and (b) misaligned state, |ψB〉.

B. Ladder

Next, we consider a more physically realistic situation, in
which the system-bath interactions scale with system sizes.
One possible configuration is the ladder configuration de-
scribed by H = Hs + He + H (ladder) from Eqs. (2), (3), and
(5) in which every spin in the system interacts with an en-
vironment spin with interaction strength Jint [illustrated in
Fig. 1(b)].

It is known that the physical properties of this configuration
depend on the ratio γ ≡ J/Jint [53]. In the limit where Jint = 0,
the two chains decouple and evolve independently of one an-
other. A small but nonzero Jint then acts as a weak perturbation
to each chain. On the other hand, in the limit where J = 0
and so γ = 0, each ladder rung decouples from the other and
evolves independently under the local rung Hamiltonian:

Hi = Jint �Si · �Si+l . (9)

The eigenstates of (9) are the triplets |↑↑〉, |↓↓〉, 1√
2
(|↑↓〉 +

|↓↑〉) with total spin 1, and the singlet state 1√
2
(|↑↓〉 − |↓↑〉)

with total spin 0; each rung is effectively a site that can exist
as a spin-0 or spin-1 particle (or a superposition of both).

In the following, we again follow a similar analysis to that
of the previous section by studying the quenched dynamics
of an initial state |ψ (0)〉 evolving under the Hamiltonian H =
Hs + He + H (ladder)

int . Fixing J = 1, we start in the limit Jint = 0
where both chains are decoupled and vary the ratio γ = J/Jint

by increasing Jint.
The subsequent results indicate that the steady-state lo-

calization properties of the system will persist for small to
intermediate interchain coupling strength Jint, but at large Jint

different dynamics emerge, which depend strongly on the
initial state of both the system and the environment. We will
consider two different initial states: we call |ψA〉 ≡ |ψeven〉 ⊗
|ψeven〉 the aligned state, and |ψM〉 ≡ |ψeven〉 ⊗ |ψodd〉 the mis-
aligned state (see Fig. 4). Importantly, the two initial states
have different energy densities due to the interaction terms
H (ladder)

int . This term is positive for the aligned case and negative
for the misaligned case. In the regime where Jint is large, its
contribution to the energy density becomes significant, result-
ing in distinct dynamics for the two different initial states.

Figure 5 shows the values of Msys (left) and Menv

(right) for Jint ∈ [0, 10] and Wenv ∈ [0, 9], for both choices of
initial states. In the following, we analyze our results in the
weak, intermediate, and strong system-environment interac-
tion regimes independently.

FIG. 5. Steady-state staggered magnetization for the system,
M̄sys (left), and environment, M̄env (right), for the ladder configura-
tion. The upper two plots were obtained with the aligned initial state
|ψA〉 ≡ |ψeven〉 ⊗ |ψeven〉, while the bottom two plots were obtained
with the misaligned initial state |ψM〉 ≡ |ψeven〉 ⊗ |ψodd〉. The tuples
(Jint,Wenv) form a grid separated by 0.5 intervals. Each point is
averaged over 200 disorder realizations, evolved for Jt = 50.

1. Weak-interaction regime: Jint � J

For Jint much smaller compared to J , the system and en-
vironment are reduced to independently evolving chains that
weakly perturb one another. This is consistent with our ex-
pectations, illustrated by the independence between Msys and
Wenv in Fig. 5 at small values of Jint. For Jint = 0, when Wenv

is increased, the environment transitions from being ergodic
to localized, while the localized system remains so, with Msys

unchanged.

2. Intermediate regime: Jint ≈ J

In this regime, the ladder configuration represents an in-
termediate configuration between 1D and 2D. In the case
of J = Jint, this has been studied in the context of MBL to
exhibit localization beyond a critical disorder strength across
the entire ladder [54]. Since our focus is on the coupling
between two systems of different localization properties, the
above situation is effectively a special case of our results when
Wenv = Wsys.

For J ≈ Jint, while Menv responds to changes in Wenv,
the near constant value of Msys ≈ 0.3 in Fig. 5 indicates
the preservation of localization in the system, regardless
of the environment disorder. The system and environment
thus evolve independently from one another, illustrated by the
strong independence between Msys and Menv. In particular,
this observation is consistent with the fact that the critical
disorder strength for a ladder of the same model with Jint = J
has been determined to be W = (8.5 ± 0.5)J by analyses on
the scaling of entanglement entropy and spectral statistics
[54]. This parameter choice corresponds to points close to
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the upper-left corner of the plots of Fig. 5, i.e., the points
(Jint,Wenv) = (1, 8.5).

We note the drop of Msys when the system is coupled to the
environment at J ≈ Jint, which is independent of the environ-
ment disorder Wenv. Consistent with the ladder’s larger critical
disorder strength of W = (8.5 ± 0.5)J , this is because the
two chains effectively form a quasi-2D configuration, which
localizes at a larger disorder.

We conclude that in this regime, the initially localized sys-
tem and environment both retain their localization properties
in the form of remnant magnetization upon coupling, albeit
to a lesser extent than if they were connected via the junction
configuration. This degradation can be attributed to the transi-
tion from a 1D system to a quasi-2D one, which requires larger
disorder to be localized. Additional simulations performed
in this regime for different total system sizes in Sec. IV C
indicate that the above conclusion continues to hold.

3. Strong-interaction regime: Jint � J

For large values of Jint, Fig. 5 indicates that Msys and Menv

become strongly correlated, with Msys ≈ Menv. The boundary
at which this occurs is seen from the figures at values of Jint ∈
[4, 6], depending on Wenv. The values of M also depend now
on the initial state, with M ≈ 0.55 for the aligned initial state
(blue regions in top plots) and M ≈ 0 for the misaligned initial
state (red regions in bottom plots).

The values of Msys and Menv in each case can be explained
by the large interaction strength Jint between qubits in the top
and bottom rung reducing the ladder into a series of dimers
that interact with their neighbors. That is, in the timescale Jt ,
the spin-1/2 ladder is reduced to a single spin chain consist-
ing of particles that have both spin-0 and spin-1 degrees of
freedom. The quenched dynamics of the ladder thus depends
strongly on the rungs’ initial configuration.

For an initial aligned state |ψA〉, each rung is either |↑↑〉
or |↓↓〉, which correspond to two of the triplet states. More
generally, if the top and bottom spins of a rung are initially
aligned in the same direction, it is an eigenstate of the Jint

term of the total Hamiltonian; the resulting two-qubit product
state can always be written as a superposition of the triplets.
An evolution generated by the same term will therefore only
result in the multiplication of a global phase factor. As J �
Jint, in the timescale Jt , the two spins of a rung are therefore
strongly coupled, with a common direction that can effectively
be described by a total spin vector. This total spin vector
then interacts with its neighbors via the J terms of the total
Hamiltonian. In this case the ladder is reduced to a chain of
interacting spin-1 particles with an effective external disorder
that depends on both Wsys and Wenv, with the steady-state
staggered magnetization indicating the strength of localization
arising from the effective disorder. This is the reason we
observe the preservation of remnant magnetization in the top
two plots of Fig. 5.

The dynamics of staggered magnetization for different
values of Wenv shown in Fig. 6 illustrates this behavior. For
Jint = 20, the values of Msys and Menv for each disorder
strength W are strongly correlated and close to one another,
such that for larger Jint we expect Msys ≈ Menv. Their dy-

FIG. 6. Dynamics of staggered magnetization for the aligned
initial state in the ladder configuration, for different disorder W
and interaction strength Jint = 20. Solid line indicates system stag-
gered magnetization Msys while dashed lines indicate environment
staggered magnetization Menv. When Jint/J  1, the dynamics is
qualitatively similar to that of a 1D chain, and 〈Sz

i 〉 ≈ 〈Sz
i+l〉.

namics and final steady-state values are thus qualitatively
similar to that of a disordered spin-1/2 chain, where the
staggered magnetization scales with disorder strength, tran-
sitioning from thermal to localized. The large values of Msys

and Menv in Fig. 5 also indicate that memory of the initial
configuration is retained, encoded in the +1 and −1 total
spin vectors of each dimer. We discuss and provide further
numerical analysis on the reduction of the spin-1/2 ladder to
a spin-1 chain in Appendix B.

For the misaligned initial state |ψM〉, each rung is either
|↑↓〉 or |↓↑〉, which are superpositions of both singlet and
triplet states. The dynamics in this case is separated into two
timescales: the dynamics of the chain controlled by J , and
the internal dynamics of each dimer controlled by Jint. This is
shown in Fig. 7(a), where the dynamics of staggered magneti-
zation consists of high-frequency oscillations bounded by an
envelope, with a time average of zero. The internal oscillations
arise from the Jint terms of the total Hamiltonian, which cause
each dimer to oscillate between spin-0 and spin-1 modes with
a frequency proportional to Jint [see inset of Fig. 7(a)]. On the
other hand, the envelope originates from interactions between
neighboring dimers due to the J terms, and the presence of
disorder. Both effects serve to introduce phase differences be-
tween the dimers, leading to the suppression of the amplitude
of the envelope. Figure 7(b) shows this suppression effect
as the neighboring interaction (controlled by J) and disorder
(controlled by Wsys or Wenv) are successively turned on. Ulti-
mately, the steady-state staggered magnetization averages to
zero, leading to the red regions in Fig. 5 (bottom) at large
Jint. This situation is expected to occur whenever a two-qubit
rung is in a superposition of spin-0 and spin-1 modes; the
subsequent dynamics then consists of oscillations between the
two spin degrees of freedom, resulting in the loss of remnant
magnetization.

In a generic situation where the system and environment
initial states are uncorrelated, we therefore expect the loss of
remnant magnetization in this regime, leading to dynamics of
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FIG. 7. Dynamics of staggered magnetization for the misaligned
initial state in the ladder configuration, showing internal oscillations
with frequencies proportional to Jint (top) and the suppression of
amplitude due to disorder and neighboring interactions (bottom).

the type shown in Fig. 7(a). Only in the rare case where the
spins are aligned in the same direction can dimerization occur,
mapping the dynamics to that of a chain of spin-1 particles
shown in Fig. 6. The onset of this regime is observed to be
between Jint ∈ [4, 6]. For larger system sizes, the same con-
clusions are expected to hold, due to the dimerization between
top and bottom qubit pairs.

C. Scaling for different total system sizes

In this section, we provide numerical evidence that sim-
ilar conclusions hold in both the junction configuration of
Sec. IV A and the ladder configuration of Sec. IV B 2 in the
intermediate coupling regime for larger system sizes.

Figure 8 shows additional numerical results for different
total system sizes of L ∈ {4, 6, 8, 10, 12, 14, 16}. We consider
both the junction and ladder configurations in the intermediate
coupling regime Jint = J = 1, with the system’s disorder fixed
at Wsys = 9, starting from the aligned initial state. Figures 8(a)
and 8(b) show Msys and Menv as functions of Wenv and L,
respectively.

For all system sizes, Msys remains at nonzero values as Wenv

is changed (top two blue plots), indicating the preservation
of magnetization regardless of the environment’s localiza-
tion properties. On the other hand, the environment shows

FIG. 8. Steady-state staggered magnetization M for different
system sizes, for both the junction and ladder configurations in the
intermediate regime Jint = J = 1. Top four curves of (a) in blue show
response against Wenv, while bottom four curves of (b) in red show
response against L. Both sets of curves are plotted from the same
data set. We find similar qualitative results for the misaligned initial
state, which we omit.

a transition from retention to loss of magnetization as its
disorder Wenv is changed (bottom two blue plots). The curves
of M against Wenv also appear to be converging to a fixed
function as L increases, or equivalently that the gradients
of the M against L curves (red curves) are decreasing with
increasing L.

Within the system sizes amenable to the numerics, these
two observations taken together suggest that the main con-
clusion of the previous sections—that in the intermediate
coupling regime, the system and environments both retain
their localization properties—persists for larger system sizes.
Even if the total system may eventually equilibrate, display-
ing either localization or thermalization for both parts when
approaching the thermodynamic limit, we note that the rate at
which this is obtained is substantially different depending on
whether the subsystem exhibits disorder or not.
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D. Discussion and comparison with relevant work

We compare and discuss our results in relation to existing
work that seeks to identity the ergodic/MBL crossover point
in the thermodynamic limit more precisely.

Reference [43], which studies an effective model with
exponentially decaying system-bath interaction strength (ef-
fectively a configuration that is intermediate between our
junction and ladder configurations), observed thermalization
using numerous eigenstate probes. Reference [45] studies
the junction configuration with increasing system sizes, and
observes a slow transition to thermalization with increas-
ing system sizes, using the statistics of local observables
across different eigenstates. For a model closest to our work,
Ref. [54] studies Heisenberg chains arranged in a ladder con-
figuration as one single system, arriving at a critical disorder
of ≈8.5 for small system sizes within the capacity of ED.
The above works consider quantities such as entropies and
the statistics of local observables which are taken over the
entire eigenspectrum, distinct to our approach of considering
specific initial states.

Most relevant to us in terms of methodology, Ref. [32]
considers hard-core bosons interacting (among others) in a
ladder configuration, and infers thermalization based on the
dynamics of local observables [48], arriving at a critical disor-
der of ≈12 by considering up to 2 × 20 spins with non-ED
methods. This conclusion was carefully obtained by taking
the halting of a power-law decay of magnetization to be the
ergodic-MBL crossover point, starting from a striped initial
state (equivalent to the aligned initial state considered in our
work).

Comparing with our junction results in Fig. 8, where we
instead observed clear signatures that a system coupled to a
small bath retains its magnetization [Msys remains at nonzero
values for increasing system sizes (red curves, top-left plot)],
a discrepancy appears if the preservation of magnetization
observed within system sizes amenable to ED is directly
taken to be an indicator of localization in the thermodynamic
limit. These discrepancies further establish the presence of a
strong finite-size drift for the ergodic/MBL crossover point in
the thermodynamic limit, when the steady-state value of the
staggered magnetization at small system sizes is used as a sig-
nature of localization. Limited numerics with the steady-state
fidelity in Fig. 9 also appear to indicate similar conclusions.

A possible explanation of the discrepancy may be that the
system’s disorder of Wsys = 9 considered in our work is too
strong (compared to the known critical disorder of Wc ≈ 3.7
for individual half chains), leading to the inability of the
ergodic bath to wash away the magnetization of the initial
states. Weaker disorder is expected to more strongly trigger
the avalanching mechanism, with direct consequences on the
steady-state values of local observables and fidelities. We
delegate the exploration of this important question to further
work, choosing to presently focus on the different choices of
initial states and interaction strengths.

Comparing with studies focusing on quantities such as en-
tropies and the statistics of local observables which are taken
over the entire eigenspectrum [6,17,39,55], our approach of
studying the steady-state properties of different initial states
reveals that general conclusions may differ for initial states

FIG. 9. Steady-state fidelity for the system, F sys, for different
parameters Wenv and Jint. System-environment are in the ladder con-
figuration, with an initial aligned state |ψA〉 ≡ |ψeven〉 ⊗ |ψeven〉. The
tuples (Jint,Wenv) form a grid separated by 1 intervals. Each point is
averaged over 200 disorder realizations.

that are far from equilibrium, in our case significantly affect-
ing the steady-state magnetization after quenching. A related
issue is the presence of the MBL mobility edge [18,38,54,56],
where states with different energy densities can give rise to
different localization properties. This is illustrated in Fig. 5,
where dynamics under an MBL Hamiltonian with the same W
and Jint results in significantly different magnetization values,
depending on the energy density of the initial state.

As our approach is consistent with a large number of exper-
imental investigations of MBL [11–14,16,56] (since separable
initial states such as the Néel state can be easily prepared
and local observables can be easily extracted), the above
discussion highlights that conclusions gained from similar
methodologies concerning the stability and scaling properties
of the MBL phase should be interpreted with care, with the
underlying dynamics and energy densities taken into account.

V. IMPLICATIONS ON INFORMATION RETENTION
PROPERTIES

In the actual implementation of many-body quantum sys-
tems for technological applications, unwanted dissipation and
couplings to the environment cannot be completely elimi-
nated. While a simple model treating the environment as
an infinitely large system can be described by a quantum
master equation, the neglect of backaction effects eventually
drives the MBL system toward a thermal state logarithmically
[39,57]. As a first step in studying whether such a finite bath
can lead to a different picture, it is instructive to consider both
the system and the environment as a closed system.

Our numerical approach answers the question for the case
when the system and environment belong to the same type and
size. This is relevant for future implementations of many-body
quantum systems; as isolation from the external environment
with a large number of degrees of freedom improves, the
dominant source of noise and decoherence then shifts toward
the system itself, where subsystems act as internal baths.

In this situation, our results indicate that the MBL phase
remains robust even when coupled to an ergodic (or local-
ized) environment in a configuration where the number of
interaction terms scales with system size (the ladder config-
uration), provided that the coupling strength, controlled by
Jint, is comparable to (or smaller than) the system’s internal
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interaction strength, J . This conclusion is supported by the
numerical results obtained with different total system sizes.
With the steady-state staggered magnetization as a diagnostics
for the preservation of information about the system’s initial
state, we find persisting magnetization that does not decay
over time. Moreover, this behavior does not depend on the
initial configuration of the system and environment; memory
of the system’s initial state can thus be retained and extracted
from local spin expectation values, regardless of the system’s
initial configuration and a coupling to an ergodic environment.

As Jint is increased, a different dynamics emerges, which
depends on the system’s and environment’s initial configura-
tions. We identify this behavior as resulting from the ladder
being reduced into a chain of particles with both spin-0 and
spin-1 degrees of freedom. The dynamics then depends on
whether each dimerized ladder rung can oscillate between the
two spin states under the given Hamiltonian.

Our analysis is also relevant for applications in quantum
memory devices, involving the storage of information of an
initial state over prolonged periods of time. Focusing on the
case where the system and environment are both in the MBL
phase (i.e., with large disorder) and disregarding the labels
“system” and “environment,” we treat the entire ladder from
the previous section as a closed memory device. If information
is encoded in local spins, our results indicate the persistence
of information when Jint is comparable to or lower than J .
However, in the regime where Jint  J , the inhomogeneity
in energy scales in the Hamiltonian generally leads to local
oscillations that destroy localization, a process dependent on
the initial state of the configuration. This imposes restrictions
on the relative strengths of Jint and J if these local oscillations
are to be avoided.

VI. CONCLUSION

In this work, we investigate the localization properties
of MBL systems interacting with a finite environment by
studying the magnetization dynamics of disordered Heisen-
berg spin chains. We extensively explore the interplay
between system/environment disorder strengths, geometry,
initial state, and system-environment coupling strengths. We
show that in most cases a strongly localized system retains its
localization properties despite the coupling to the environment
in the form of remnant magnetization at long times, albeit
to a reduced extent. This is supported by numerics on larger
system sizes. However, in cases where the system is strongly
coupled to the environment in a ladder configuration, the
eventual localization properties are highly dependent on the
initial state, and could lead to either the loss or retention of
magnetization. Our study can be experimentally implemented
in multiple platforms such as trapped ion and neutral ion
systems [58–60], since the staggered magnetization probed
here is easily accessible in experiments. Additional numerical
results using fidelity as a measure of localization and differ-
ent system sizes show that our conclusions are general. Our
findings are relevant to quantum technological applications as
quantum devices are increasingly miniaturized and isolated;
the bath could simply be regions of quantum devices where
we have limited control. Finally, we find that discrepancies
can arise if the persistence of magnetization (or lack thereof)

at relatively small system sizes is directly taken as a probe
of localization in the thermodynamic limit, calling for more
careful interpretation of conclusions obtained from similar
methodologies.

Furthermore, our results shed new light on quantum dy-
namics in the strong system-environment coupling limit with
highly nonequilibrium initial states, a regime highly nontriv-
ial for standard master equation approaches. Our findings
demonstrate that the dynamics in this regime are qualitatively
different from those in the weak and intermediate coupling
regimes, and call for the development of new analytical and
numerical tools to investigate open quantum systems in these
limits.
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APPENDIX A: FIDELITY AS A STATE-INDEPENDENT
DIAGNOSTIC OF LOCALIZATION

Instead of the staggered magnetization, which we use to
measure the deviation from an initial Néel state, more general
quantifiers that are state-independent such as the fidelity or
trace distance can be monitored instead. In this section, we
track the fidelity instead of the staggered magnetization as an
indicator of localization.

The fidelity between two mixed states ρ and σ is defined
as

F (ρ, σ ) =
(

Tr
√√

ρσ
√

ρ

)2

(A1)

and reduces to the squared inner product if the two states are
pure. To measure how much a quantum state has deviated
from its initial state after a quantum quench, we measure the
fidelity F (ρ(t ), ρ(0)) between a time-evolved state ρ(t ) and
its initial state ρ(0), where ρ can be chosen as a subsystem of
a larger system.

When ρ is chosen to be the pure state of the entire system-
environment, F (ρ(t ), ρ(0)) reduces to the return probability
|〈ψ (0)|ψ (t )〉|2 [42]. Following the system-environment par-
tition in our configuration, we define Fs ≡ F (ρs(t ), ρs(0))
and Fe ≡ F (ρe(t ), ρe(0)) to be the system and environment
fidelities, respectively, where ρe ≡ Trsρ and ρs ≡ Treρ. We
can thus track localization in individual subsystems, as we did
in previous sections by studying Msys and Menv. The overline
F similarly denotes an average over the steady-state window
of the fidelity.

Concretely, we replicate the analysis in Sec. IV B by
evolving an initially aligned strongly interacting ladder of
12 spins under the Hamiltonian H = Hs + He + H (ladder)

ing [see

Fig. 1(b)], with the initial aligned state |ψA〉. Computing F sys

and F env for different parameters Jint ∈ [0, 10] and Wenv ∈
[0, 9], we obtain Fig. 9.

Notably, Fig. 9 is qualitatively similar to the upper two
plots of Fig. 5, reproducing the characteristics described in
Sec. IV B on the weak, intermediate, and strong interaction
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regimes for the aligned initial state. F can therefore be moni-
tored in place of the staggered magnetization for states that are
not in the Néel form |↑↓↑ . . .〉 as a diagnostic of localization.

APPENDIX B: RELATION BETWEEN SPIN CHAINS
AND STRONGLY COUPLED ALIGNED LADDERS

While the spin-1/2 ladder configuration consisting of a
localized and an ergodic leg was introduced in the previous
section to model the coupling of a spin chain to an external en-
vironment, Fig. 6 indicates that in the Jint  J regime, rungs
with initially aligned spins can encode and retain information,
even when one of the legs is strongly ergodic with Wenv = 0.
Each rung then acts as a effective spin-1 particle which forms
a localized 1D chain.

In this section, we compare the retention of information
between such ladders and a 1D chain of qubits at various dis-
order strengths by monitoring the local magnetization. More
precisely, suppose we wish to encode and store a binary string
in a chain of localized qubits that evolve under the Hamilto-
nian Eq. (2), with 〈Si〉 > 0 and 〈Si〉 < 0 corresponding to the
two possible values of a bit. Alternatively, the results in the
previous section indicate that a bit could also be encoded as
the −1 and +1 states of a spin-1 particle, which we prepare
as |↓↓〉 and |↑↑〉 states that evolve under Eq. (1) in the ladder
configuration Eq. (5) in the Jint  J regime. The binary string
1010 . . . can then be encoded as a qubit chain in the Néel
initial state |↑↓↑↓ . . .〉 and as an aligned ladder state in the
form |ψA〉 ≡ |ψeven〉 ⊗ |ψeven〉. As a measure of information
retention, we again monitor the steady-state staggered mag-
netization, M̄. For the qubit chain, we vary the disorder W
across the chain, while for the ladder, we vary both Wsys

and Wenv.
Figures 10(a) and 10(b) show the steady-state staggered

magnetization M for the ladder (as Wsys and Wenv are varied,
with Jint = 20) and qubit chain (as W is varied), respectively.
In Fig. 10(a), as the system and environment are equivalent
and interchangeable, the matrix Msys[Wsys,Wenv] is symmetric,
and we display only the lower triangular portion. Moreover,
Msys ≈ Menv (as J � Jint; see Sec. IV B 3), so we display
only Msys.

From Fig. 10(b), we observe that a strongly interacting
aligned ladder with Wsys = Wenv = W (dotted blue line) can
reproduce the localization properties of a 6-qubit chain with
disorder W (red line). That is, the same amount of information
can be encoded in the +1 and −1 states of a spin-1 particle or
in the +1/2 and −1/2 states of a spin-1/2 particle with the
choice Wsys = Wenv = W ; information loss to the 0 state of
the spin-1 mode and the spin-0 mode appear negligible. We
also observe from Fig. 10(a) that different choices of Wsys and
Wenv can lead to the same staggered magnetization [there are
multiple regions with the same color in Fig. 10(a)].

FIG. 10. (a) Values of Msys for a strongly coupled aligned lad-
der for different pairs of Wsys and Wenv at Jint = 20. As the system
and environment are equivalent and interchangeable, the matrix
Msys[Wsys,Wenv] is symmetric, and we display only the lower trian-
gular portion. (b) Values of M for a 6-qubit chain for different W
(solid red line). For comparison, we also include the diagonal entries
of the matrix Msys[W,W ] for the ladder considered in (a) (dotted blue
line). Each point is averaged over 200 disorder realizations, and error
bars are too small to be displayed.

APPENDIX C: DIAGONAL ENSEMBLE

Here, we briefly describe how infinite-time averages of
observables can be obtained by considering the diagonal en-
semble [3], as we did in Fig. 2. For an initial state |ψ (0)〉 =∑

i Ci |φi〉 expanded in the eigenbasis {|φi〉} of a Hamiltonian
H , its evolution under the same Hamiltonian is

|ψ (t )〉 =
∑

i

Cie
−iEit |φi〉 . (C1)

The expectation value of any observable Ô then evolves as

〈ψ (t )|Ô|ψ (t )〉 =
∑
i, j

C∗
i Cje

−i(Ei−Ej )t 〈φi|Ô|φ j〉. (C2)

Taking the infinite-time average of this quantity, the off-
diagonal terms of O are oscillatory and hence average to zero,
leaving the diagonal terms remaining:

〈ψ (t )|Ô|ψ (t )〉 =
∑

i

|Ci|2〈φi|Ô|φi〉. (C3)

We can thus compute infinite-time averages of observables
such as the staggered magnetization in Eq. (6) by diagonal-
izing H to obtain {|φi〉}. Alternatively, one can take the time
average of the observable after evolving the system for a long
time as in Eq. (7). Figure 2 shows expectation values obtained
from the two approaches for the staggered magnetization and
local spin operators. We find good agreement between the two
approaches, and expect that evolving and averaging over a
longer period of time will yield convergence to the diagonal
ensemble values.
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[50] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. B 90,
174302 (2014).

[51] Q. Guo, C. Cheng, H. Li, S. Xu, P. Zhang, Z. Wang, C. Song,
W. Liu, W. Ren, H. Dong et al., Phys. Rev. Lett. 127, 240502
(2021).

[52] W. Morong, F. Liu, P. Becker, K. Collins, L. Feng, A.
Kyprianidis, G. Pagano, T. You, A. Gorshkov, and C. Monroe,
Nature (London) 599, 393 (2021).

[53] P. Bouillot, C. Kollath, A. M. Läuchli, M. Zvonarev, B.
Thielemann, C. Rüegg, E. Orignac, R. Citro, M. Klanjšek, C.
Berthier et al., Phys. Rev. B 83, 054407 (2011).

[54] E. Baygan, S. P. Lim, and D. N. Sheng, Phys. Rev. B 92, 195153
(2015).

[55] A. Nico-Katz, A. Bayat, and S. Bose, Phys. Rev. B 105, 205133
(2022).

[56] Q. Guo, C. Cheng, Z.-H. Sun, Z. Song, H. Li, Z. Wang, W.
Ren, H. Dong, D. Zheng, Y.-R. Zhang et al., Nat. Phys. 17, 234
(2021).

[57] B. Everest, I. Lesanovsky, J. P. Garrahan, and E. Levi, Phys.
Rev. B 95, 024310 (2017).

[58] C. E. Wieman, D. E. Pritchard, and D. J. Wineland, Rev. Mod.
Phys. 71, S253 (1999).

[59] L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys,
G.-O. Reymond, and C. Jurczak, Quantum 4, 327 (2020).

[60] J. V. Porto, S. Rolston, B. Laburthe Tolra, C. J. Williams, and
W. D. Phillips, Philos. Trans. R. Soc. A 361, 1417 (2003).

224202-11

https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1007/s10955-016-1508-x
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1038/nphys3783
https://doi.org/10.1126/science.aaf8834
https://doi.org/10.1103/PhysRevX.7.041047
https://doi.org/10.1126/science.aao1401
https://doi.org/10.1103/PhysRevLett.120.050507
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevE.102.062144
https://doi.org/10.1209/0295-5075/128/67003
https://doi.org/10.1103/PhysRevLett.124.186601
https://doi.org/10.1016/j.aop.2021.168415
https://doi.org/10.1103/PhysRevB.104.L201117
https://doi.org/10.1103/PhysRevB.105.224203
https://doi.org/10.1002/andp.201600326
https://doi.org/10.1098/rsta.2016.0422
https://doi.org/10.1103/PhysRevLett.121.140601
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1103/PhysRevB.95.035132
https://doi.org/10.1103/PhysRevB.97.054201
https://doi.org/10.1103/PhysRevB.92.245141
https://doi.org/10.1103/PhysRevLett.125.155701
https://doi.org/10.1103/PhysRevX.9.041014
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.160401
https://doi.org/10.1103/PhysRevB.93.094205
https://doi.org/10.1103/PhysRevLett.120.070501
https://doi.org/10.1103/PhysRevLett.115.186601
https://doi.org/10.1103/PhysRevB.102.064304
https://doi.org/10.1103/PhysRevB.88.014206
https://doi.org/10.1103/PhysRevB.92.134204
https://doi.org/10.1103/PhysRevA.93.022332
https://doi.org/10.1103/PhysRevLett.119.150602
https://doi.org/10.1103/PhysRevB.105.174205
https://doi.org/10.1103/PhysRevB.99.195145
https://doi.org/10.1016/j.nuclphysb.2019.114886
https://doi.org/10.21468/SciPostPhys.5.5.045
https://doi.org/10.1103/PhysRevB.98.174202
https://doi.org/10.1088/1742-5468/2013/09/P09005
https://doi.org/10.1103/PhysRevB.90.174302
https://doi.org/10.1103/PhysRevLett.127.240502
https://doi.org/10.1038/s41586-021-03988-0
https://doi.org/10.1103/PhysRevB.83.054407
https://doi.org/10.1103/PhysRevB.92.195153
https://doi.org/10.1103/PhysRevB.105.205133
https://doi.org/10.1038/s41567-020-1035-1
https://doi.org/10.1103/PhysRevB.95.024310
https://doi.org/10.1103/RevModPhys.71.S253
https://doi.org/10.22331/q-2020-09-21-327
https://doi.org/10.1098/rsta.2003.1211

