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Multiple localization transitions and novel quantum phases induced by a staggered on-site potential
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We propose a one-dimensional generalized Aubry-André-Harper (AAH) model with off-diagonal hopping
and staggered on-site potential. We find that the localization transitions could be multiple reentrant with the
increasing of staggered on-site potential. The multiple localization transitions are verified by the quantum static
and dynamic measurements such as the inverse or normalized participation ratios, fractal dimension, and survival
probability. Based on the finite-size scaling analysis, we also obtain an interesting intermediate phase where the
extended, localized, and critical states are coexistent in certain regimes of model parameters. These results are
quite different from those in the generalized AAH model with off-diagonal hopping, and can help us to find
novel quantum phases and new localization phenomena in the disordered systems.
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I. INTRODUCTION

Quantum localization has been an important research topic
in condensed matter physics since the pioneer works of
Anderson et al. [1,2]. It is argued that the delocalization-
localization transition cannot happen in low dimensions
because the weak disorder can localize the eigenstates [3,4].
However, it is demonstrated that one-dimensional quasiperi-
odic incommensurate lattices can exhibit the localization
transition. The most famous system is the Aubry-André-
Harper (AAH) model [5,6], which indeed undergoes the
localization transition at the critical point due to the existence
of self-duality symmetry.

Later, it is found that when self-duality of the standard
AAH model is broken, there are many variants of the standard
AAH model, where the localization transition could have an
energy-dependent single-particle mobility edge, which sepa-
rates the extended states from the localized ones due to the
breaking of self-duality symmetry [7–17]. The existence of
the mobility edge gives that the system has an intermediate
phase where the extended and localized states are coexistent
in the energy spectrum.

In the Anderson model, the states after localization transi-
tion are always localized with the increasing of the disorder
potential. However, recent studies show that the localization
transition in some quasiperiodic systems such as the AAH
model with staggered on-site potential can occur many times
[18–27]. Thus the localization transition can be reentrant.
Some localized states after first localization become extended.
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Then the extended states could be localized again by the
disorder and the second localization transition arises.

Recently, the critical states have caused much attention
[28–39]. In the AAH model with incommensurate modu-
lations on both the on-site potential and the off-diagonal
hopping, besides the extended states and localized ones, there
also exist the critical states which have some wonderful prop-
erties such as certain fractal structures. The complete phase
diagram of the system includes the extended phase where all
the states are extended, the localized phase where all the states
are localized, and the critical phase where all the states are
critical [40]. Obviously, the system does not have the mobility
edge. Another interesting progress is that the tight-binding
model with nearest-neighbor hopping and quasiperiodic on-
site potential has an anomalous mobility edge and a quantum
phase in which the critical and localized states coexist [38,41].
By proposing a quasiperiodic optical Raman lattice model
which includes the hopping, spin-orbital coupling, and Zee-
man terms, the coexistent phase of localized, extended, and
critical states is predicted [42].

At present, the localization transitions and quantum phases
related with the AAH model and its generalization have many
applications in the cold atoms [7,8,43,44], optical lattices
[45,46], and non-Hermitian systems [47–50]. The many-body
localization phenomena in the interacting systems are also
studied extensively [31–33,51–54].

In this paper, we study a generalized AAH model with off-
diagonal hopping and staggered on-site potential. By using
the inverse participation ratio, normalized participation ratio,
fractal dimension, and the quantum dynamics measurements,
we find that the system has multiple localization transitions
accompanied with several intermediate phases with the in-
creasing of quasiperiodic potential. Based on the multifractal
analyses of eigenstates and finite-size behavior, we obtain that
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there indeed exists a quantum phase with coexisting localized,
extended, and critical states in certain regimes of model pa-
rameters. These results are quite different from those in the
AAH model with off-diagonal hopping, which only has the
localized, extended, and critical phases.

This paper is organized as follows. In Sec. II, we intro-
duce the generalized AAH model and its Hamiltonian. In
Sec. III, we introduce the measurements, such as the inverse
participation ratio, normalized participation ratio, and fractal
dimension. In Sec. IV, the phase diagrams of the system and
the multiple localization transitions are studied. Based on the
finite-size analysis of eigenstates in the intermediate phase,
we obtain a quantum phase where the localized, extended,
and critical states are coexistent in the thermodynamic limit,
which is explained in Sec. V. In Sec. VI, we study the dynamic
evolution of some initial states. The summary of the main
results and concluding remarks are presented in Sec. VII.

II. THE SYSTEM

The generalized AAH model considered in this paper is
described by the Hamiltonian

H =
L∑

j=1

{t j (c
†
j+1c j + H.c.) + [λ j + (−1) j�]n j}. (1)

Here c†
j and c j are the fermionic creation and annihilation

operators at jth site, respectively. L is the system size, which
is chosen as the Fibonacci number. Thus the critical states in
this quasiperiodic system have certain fractal structures. nj =
c†

j c j is the particle number operator. t j = t + Vj quantifies
the nearest-neighbor hopping, and t = 1 is energy unit. Vj =
V2 cos[2π ( j + 1/2)α + θ ] is the off-diagonal hopping, V2 is
the hopping amplitude, and α is an irrational number. In this
paper, we chose α = limm→∞

Fm−1

Fm
=

√
5−1
2 , and Fm is the mth

Fibonacci number defined recursively by Fm = Fm−2 + Fm−1

and F0 = F1 = 1. λ j = V1 cos(2π jα + θ ), where V1 and θ are
the modulation amplitude and phase factor, respectively. It is
clear that the on-site potential is staggered due to the existence
of (−1) j�, and � is the strength. In general, the phase factor
θ is the random numbers in the interval [0, 2π ). The boundary
condition of the system (1) is the periodic one.

The model (1) has following generations.
(i) If V2 = 0 and � = 0, the model (1) is reduced to the

AAH model. The system is in the extended phase if V1 is small
and is in the localization phase if V1 is big. The localization
transition happens at the critical point of V1 = 2. The system
does not have the single-particle mobility edge thus the inter-
mediate phase.

(ii) If � = 0, the model (1) is reduced to the AAH model
with off-diagonal hopping and on-site quasiperiodic potential.
The phase diagram of the system contains three phases: The
extended, localized, and critical ones [28–33].

III. THE MEASUREMENTS

In this section, we introduce several observable phys-
ical quantities to distinguish the extended, critical, and
localized states and the corresponding phases. The first typ-
ical measurements are the inverse participation ratio (IPR)

and the corresponding fractal dimension (FD). For a given
single-particle normalized eigenstate ψn, we can use the
quantities [13]

In(q) =
∑

j

∣∣ψ j
n

∣∣2q ∝ L−γn (q) (2)

to characterize the detailed information of the eigenstate.
Here, ψ

j
n is the jth element of ψn and γn(q) = Dn(q)(q − 1).

In our calculation, we choose q = 2 and the inverse participa-
tion ratio IPRn = In(2) and the fractal dimension γn = Dn(2).
IPRn and γn take different values of the different regions in the
large-L limit: IPRn tends to 1/L and γn = 1 if ψn is extended,
IPRn tends to 1 and γn = 0 if ψn is localized and 0 < γn < 1,
and IPRn tends to L−γn if ψn is critical. The quasiperiodic
system (1) also has the critical states which are extended but
nonergodic. In order to characterize the critical states, we need
to introduce the fractal dimension γn of an eigenstate. From
Eq. (2) and setting q = 2, we can get

− ln(IPRn)/ ln(L) = −c/ ln(L) + γn, (3)

where c is a size-independent coefficient. We can extrapolate
the γn by the intercept of the curve in the space spanned by
1/ ln(L) and − ln(IPRn)/ ln(L). For a large-size system, we
can simply ignore −c/ ln(L) and get

γn = − ln(IPRn)/ ln(L). (4)

With the help of the fractal dimension γn, it is easy to
determine the detailed states in the phases of the system.
Taking the average of all the {γn}, we obtain the mean fractal
dimension γ ,

γ̄ = 1

L

L∑
n=1

γn, (5)

which can be used to distinguish the different phases. The
system is in the extended phase if γ = 1, in the localized
phase if γ = 0, and in the intermediate or critical phase if
0 < γ < 1. When 0 < γ < 1, in order to know exactly which
phase it belongs to, we need to further analyze the energy
spectrum with γn. If all the eigenstates {ψn} are critical, the
system is in the critical phase.

These localization transitions are further complemented by
inspecting the behavior of other parameters of interest such
as the Shannon entropy and the normalized participation ratio
(NPR). The Shannon entropy is defined from a single-particle
state as Sn = −∑

j |ψ j
n |2 ln |ψ j

n |2 [23,55,56], which vanishes
for the localized states due to participation from a single
site only and approaches its maximum value ln(L) for the
extended states where the wave amplitude is finite for all
lattice sites. The NPR is written as NPRn = (L

∑
j |ψ j

n |4)−1.
Taking the average of all the {IPRn} and that of {NPRn},
we obtain

〈IPR〉 = 1

L

L∑
n=1

IPRn, 〈NPR〉 = 1

L

L∑
n=1

NPRn. (6)

Then we conclude that in the thermodynamic limit where
L tends to infinity, the system is in the extended phase if
〈IPR〉 � 0 and 〈NPR〉 is finite, in the localized phase if 〈IPR〉
is finite and 〈NPR〉 � 0, and in the intermediate phase if both

224201-2



MULTIPLE LOCALIZATION TRANSITIONS AND NOVEL … PHYSICAL REVIEW B 107, 224201 (2023)

FIG. 1. The localized and critical properties of the system (1) with � = 0. (a) Phase diagram of the system, where the red regime denotes
the extended phase, green regime denotes the critical phase, and blue regime denotes the localized phase. This phase diagram is obtained by
calculating mean fractal dimension γ̄ (see the text for details). The skew phase boundary is determined by V1 = 2V2. (b) Density distribution
|ψ j

n |2 of ground state (n = 1). The images from top to bottom correspond to extended, critical, and localized state. Here, the system size is
L = 610. (c) The even-odd δe−o (red) and odd-even δo−e (blue) level spacings for the system size L = 17 711. The images from top to bottom
correspond to extended, critical, and localized phase in (a), where points of different colors are used to mark and correspond to the phase
in (a).

〈IPR〉 and 〈NPR〉 are finite. We rely on the 〈IPR〉 and 〈NPR〉
and obtain the phase diagrams by computing an introduced
quantity η [13,19,23], which is defined as

η = log10[〈IPR〉 × 〈NPR〉]. (7)

For our calculation, we set system size L = 610. When 〈IPR〉
and 〈NPR〉 ∼O(1), we get −2.4 � η � −1.0 in the inter-
mediate phase. When one of them is close to 1/L, we get
η � − log10 L as L ∼ 103/2, so η � −2.5 in the extended
and localized phases. We can use the quantity η to clearly
distinguish the intermediate region from the fully extended or
the fully localized regions in the phase diagram.

In order to distinguish the extended, critical, and lo-
calized states more clearly, we can define the even-odd
(odd-even) level spacings of the eigenvalues as δe−o

n = E2n −
E2n−1 (δo−e

n = E2n+1 − E2n) [23,34,56,57]. E2n and E2n−1 de-
note the even and odd eigenenergy in ascending order of the
eigenenergy spectrum, respectively. In the extended states, the
eigenenergy spectrum for the system is nearly doubly degen-
erate and causes δe−o

n to vanish. Hence there is an obvious gap
between δe−o

n and δo−e
n . In the localized states, δe−o

n and δo−e
n

are almost the same and the gap no longer exists. In the critical
states, δe−o

n and δo−e
n have scatter-distributed behavior, which

are different from extended and localized phases. Our results
demonstrate that the different distributions of eigenvalues can
be utilized to distinguish the different phases of the system (1).
All these quantities together confirm the multiple localization
transitions and the existence of a novel phase with extended,
critical, and localized states.

IV. PHASE DIAGRAMS AND MULTIPLE
LOCALIZATION TRANSITIONS

Now, we are ready to calculate the phase diagram of the
system (1). Because the effect of θ in the large-size system
can be ignored, we consider the case of θ = 0 for the conve-
nience of calculation. Thus the system (1) has three free model

parameters �, V1, and V2. The phase diagram can be studied
in the �-V1 plane with fixed V2 and in the �-V2 plane with
fixed V1.

The phase diagram of the system (1) with � = 0 is shown
in Fig. 1(a). From it, we see that the system has three phases:
The extended, localized, and critical ones. There is only
one type of state in each phase. For example, all eigenstates
are critical in the critical phase. In order to more intuitively
see the difference between the critical, extended, and localized
states, we plot the density distribution of the ground state
corresponding to different phases at system size L = 610 in
Fig. 1(b). We also show the even-odd ln δe−o (blue) and odd-
even ln δo−e (red) level spacings in Fig. 1(c) corresponding to
different phases in Fig. 1(a) for the system size L = 17 711.
We can find the level spacing distribution of the critical phase
is scattered in the middle of Fig. 1(c). For the extended phase
there exists a gap between ln δe−o and odd-even ln δo−e. For
the localized phase, the gap vanishes.

There are four cases of localization transitions in Fig. 1(a).
(i) Along the line V2 = 0.5, there is a transition from extended
to localized phases, where the critical point is V1 = 2. (ii)
Along the line V2 = 1.5, there is a transition from critical to
localized phases at the critical point of V1 = 3. (iii) Along
the line V1 = 1, there is a transition from extended to critical
phases at the critical point of V2 = 1. (iv) Along the line
V1 = 3, there is a transition from localized to critical phases at
the critical point of V2 = 1.5. According to these observations,
the values of V2 in the phase diagram of the system (1) in the
�-V1 plane are chosen as 0.5 and 1.5, and the values of V1 in
the �-V2 plane are chosen as 1 and 3.

A. Phase diagram in the �-V1 plane

We first study the phase diagram of the system (1) in
the �-V1 plane with fixed V2 = 0.5. Based on the analyses
of mean fractal dimension γ and η, we obtain the phase
diagram, which is shown in Figs. 2(a) and 2(b). Compared
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FIG. 2. (a) Phase diagram of the system (1) in the �-V1 plane with fixed V2 = 0.5, where the red regions denote the extended phase,
green regions denote the intermediate phase, and blue regions denote the localized phase. This phase diagram is also obtained by calculating
mean fractal dimension γ̄ (see the text for details). (b) Complement to phase diagram of (a) by calculating η, which can distinguish the
intermediate phase clearly. The blue regions represent the extended and localized phase, while other regions represent the intermediate phase.
In (a) and (b), the system size is L = 610. (c) The extrapolated values 〈IPR〉 (dashed red), 〈NPR〉 (dashed blue) by calculating system size
L = 1597, 2584, 4181, 6765 and 〈S〉/ ln L (solid green) for L = 17 711 versus staggered on-site potential �, where V1 = 1.5, V2 = 0.5. From
the values of 〈IPR〉, 〈NPR〉, and 〈S〉/ ln L, we see that the initial phase with � = 0 is extended while the final phase is localized, and the
localization transitions happen three times with the increasing of �. Here, the gray boxes mark intermediate phases.

with Fig. 2(a), the existence of the intermediate phase can
be seen more clearly in Fig. 2(b). We see that the system
has three phases: The extended, intermediate, and localized
ones. In Fig. 2(b), the blue regions represent the extended
and localized phases, while the other regions represent the
intermediate phase.

In the regime of V1 > 2, the system is in the localized phase
for any values of staggered on-site potential �. Thus there is
no the localization transition.

In the regime of V1 < 2, the initial phase where � = 0 is
extended. With the increasing of �, the phase changes from
extended to intermediate, then to localized. For some values of
V1 such that they are small, the localization transition happens
once. The most interesting thing is that for some intermedi-
ate values of V1, the localization transition can be reentrant
with the increasing of �. In order to show this phenomenon
clearly, we plot the extrapolated value of 〈IPR〉 and 〈NPR〉
and 〈S〉/ ln L versus � with the fixed V1 = 1.5. The extrap-
olation of 〈IPR〉 and 〈NPR〉 will be introduced below. Here,
〈S〉/ ln L indicates to sum the Sn of all eigenstates and average
ln L, which can control the value range from 0 to 1. For the
extended phase and localized phase, 〈S〉/ ln L tends to 1 and
0 in the large-size system, while for the intermediate phase,
〈S〉/ ln L is finite. The results are given in Fig. 2(c). We see
that with the help of three intermediate phases (gray regions),
the localization transition occurs three times.

Then we fix � and tune V1. We find that when the given
� is very large, the localization transition happens once. The
significant thing is that when the staggered on-site potential �

is suitable, the localization transition can be reentrant with the
increasing of V1.

Next, we consider the phases of the system (1) with fixed
V2 = 1.5. In this case, the extended phase is missing and the
initial phase with � = 0 is the critical one. After inducing
the staggered on-site potential �, only the transition from the
intermediate phase to localized phase occurs. We find that the
� can decrease the critical values of V1.

Here, we also have performed the finite-size analysis
to confirm that the multiple localization transitions are not
a finite-size effect. In Figs. 3(a) and 3(c), we compute
〈IPR〉 and 〈NPR〉 for different system sizes L such as L =
610, 987, 1597, 2584, 4181. We choose some special � val-
ues for different L to fit and draw the curve of 〈IPR〉 and
〈NPR〉 as a function of 1/L in Figs. 3(b) and 3(d), respectively.
When 1/L tends to 0, we can deduce the 〈IPR〉 and 〈NPR〉
values for L → ∞. In this way, we can derive 〈IPR〉 and
〈NPR〉 corresponding to L → ∞ with different � by finite-
size analysis. Then we plot the curve of 〈IPR〉 and 〈NPR〉 as
a function of � for different system sizes including L → ∞

FIG. 3. (a) The 〈IPR〉 for different system sizes such as L =
610, 987, 1597, 2584, 4181 including L = ∞ (light to deep red
curves) when V1 = 1.5 and V2 = 0.5. (b) Finite-size extrapolation of
〈IPR〉 as a function of 1/L for some selected values of �. (c) The
〈NPR〉 for different system sizes including L = ∞ (light to deep red
curves). (d) Finite-size extrapolation of 〈NPR〉 as a function of 1/L
for some selected values of �.
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FIG. 4. The even-odd ln δe−o(blue) and odd-even ln δo−e(red)
level spacings as a function of n/L for the system with different
staggered on-site potentials � = 0 (a), 0.4 (b), 2.1 (c), and 3 (d).
Here, V1 = 1.5,V2 = 0.5 and the system size L = 17 711. (a) and
(d) represent the case of fully expanded and localized phases, re-
spectively. (b) and (c) represent the case of the intermediate phase,
where the difference is that there exist critical states in (b) but not in
(c).

in Figs. 3(a) and 3(c). We find this system indeed under-
goes three localization transitions and has three intermediate
phases with increasing � when V1 = 1.5 and V2 = 0.5.

To further distinguish the different phases and understand
clearly the behavior of the eigenstates in the intermediate
phase, we also plot the even-odd ln δe−o (blue) and odd-even
ln δo−e (red) level spacings in Fig. 4. For the extended phase,
there exists a gap between ln δe−o and ln δo−e shown as in
Fig. 4(a). For the extended phase, the gap no longer exists
in Fig. 4(d). However, we find there exist extended, critical,
and localized states for the intermediate phase in Fig. 4(b)
when V1 = 1.5, V2 = 0.5, and � = 0.4. We find the two level

spacings spectrum is scattered and induce that there exist
critical states when n/L ∈ (0.2, 0.25). The extended states
exist around n/L � 0.6 and n/L � 0.8. In Fig. 4(c), we show
there exist extended and localized states in the intermediate
phase when V1 = 1.5, V2 = 0.5, and � = 2.08. We can see
there exists a gap around n/L � 0.6, which means the exis-
tence of extended states.

B. Phase diagram in the �-V2 plane

The phase diagram of the system (1) in the �-V2 plane with
fixed V1 = 1 is shown in Figs. 5(a) and 5(b). We first analyze
the regime of V2 < 1. When the staggered on-site potential
� is small, the system is in the extended phase. With the
increasing of �, there exists the localization transition. In cer-
tain regimes of model parameters, the localization transition
can be reentrant. For example, if V2 = 0.5, from the values of
〈IPR〉, 〈NPR〉, and 〈S〉/ ln L given in Fig. 5(c), we see that the
localization transition happens twice. We should note that if
� is larger than 2, the system is always in the localized phase.
Thus the localization transition and its reentrant occur only for
the small �. In the regime of V2 > 1, the initial intermediate
phase with � = 0 is the critical one. With the increasing of �,
the intermediate phase transits to the localized phase. We find
that with the increasing of the staggered on-site potential, the
critical value of V2 at the transition point from the extended
phase to intermediate phase is decreased. Thus the critical
states are sensitive to the staggered potential. Here, we also
perform finite-size analysis using same method to confirm that
the reentrant transition is not a finite-size effect in Fig. 6. The
relevant calculations are the same as in the previous section.
We find this system indeed undergoes two localization transi-
tions and has two intermediate phases with increasing � when
V1 = 1.0 and V2 = 0.5.

Similarly, we also plot the even-odd ln δe−o (blue) and odd-
even ln δo−e (red) level spacings for system size L = 17 711
in Fig. 7 the same as in Fig. 4. For the extended phase, there

FIG. 5. (a) Phase diagram of the system (1) in the �-V1 plane with fixed V1 = 1.0, where the red regions denote the extended phase,
green regions denote the intermediate phase, and blue regions denote the localized phase. This phase diagram is also obtained by calculating
mean fractal dimension γ̄ (see the text for details). (b) Complement to phase diagram of (a) by calculating η, which can distinguish the
intermediate phase clearly. The blue regions represent the extended and localized phases, while other regions represent the intermediate phase.
In (a) and (b), the system size is L = 610. (c) The extrapolated values 〈IPR〉 (dashed red), 〈NPR〉 (dashed blue) by calculating system size
L = 610, 987, 1597, 2584, 4181 and 〈S〉/ ln L (solid green) for L = 17 711 versus staggered on-site potential �, where V1 = 1.0, V2 = 0.5.
From the values of 〈IPR〉, 〈NPR〉, and 〈S〉/ ln L, we see the localization transitions happen twice with the increasing of �. Here, the gray boxes
mark intermediate phases.
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FIG. 6. (a) The 〈IPR〉 for different system sizes such as L =
610, 987, 1597, 2584, 4181 including L = ∞ (light to deep red
curves) when V1 = 1.0 and V2 = 0.5. (b) Finite-size extrapolation of
〈IPR〉 as a function of 1/L for some selected values of �. (c) The
〈NPR〉 for different system sizes including L = ∞ (light to deep red
curves). (d) Finite-size extrapolation of 〈NPR〉 as a function of 1/L
for some selected values of �.

exists a gap between ln δe−o and ln δo−e shown as in Fig. 7(a)
when V1 = 1.0, V2 = 0.5, and � = 0. For the localized phase,
the gap no longer exists in Fig. 7(d) when V1 = 1.0, V2 = 0.5,
and � = 3. For the intermediate phase, we also induce there
exist extended, critical, and localized regions in Fig. 4(b)
when V1 = 1.5, V2 = 0.5, and � = 0.7. We find there exist
critical states when n/L ∈ (0.25, 0.4). The extended states
exist around n/L ∈ (0.5, 0.8). In Fig. 7(c), we show there exist
extended and localized states in the intermediate phase when
V1 = 1.0, V2 = 0.5, and � = 1.8. We can see there exists a

FIG. 7. The even-odd ln δe−o (blue) and odd-even ln δo−e (red)
level spacings as a function of n/L for the system with different
staggered on-site potential � = 0 (a), 0.7 (b), 1.8 (c), and 3.0 (d).
Here, V1 = 1.0,V2 = 0.5 and the system size L = 17 711. (a) and
(d) represent the case of fully expanded and localized phase, respec-
tively. (b) and (c) represent the case of the intermediate phase, where
the difference is that there exist critical states in (b) but not in (c).

gap around n/L ∼ 0.6, which means the existence of extended
states.

V. COEXISTENT PHASE WITH EXTENDED, CRITICAL,
AND LOCALIZED STATES

The next task is that we should analyze the detailed states
in the intermediate phases and check whether the critical
phase survives when the staggered on-site potential is added.
For this purpose, we study the fractal dimension γn of each
eigenstate ψn. As mentioned above, the fractal dimension γn

is finite for the critical state, zero for the localized state, and
one for the extended state in the thermodynamic limit. Here
we use the following method to calculate the limit behavior
of γn with L → ∞ [41,42,58]. The γn is determined by the
staggered parameter � and thus the eigenenergy E . We fist
calculate the energy spectrum of the system. Based on them,
we obtain the patterns of γn versus E . Please note that the
system size L is chosen as the mth Fibonacci number Fm,
and the patterns of γn have certain fractal structures. Accord-
ing to the patterns, we choose some small energy zones and
calculate the mean fractal dimensions {γ̄m} of these zones.
Obviously, the values of {γ̄m} depend on the system size. Thus
we take the finite-size scaling analysis of {γ̄m} and obtain the
values of {γ̄m} in the thermodynamic limit. We denoted the
final results as {γn}. If γn is finite, the corresponding eigen-
states are critical. If γn = 1, the corresponding eigenstates
are extend, and if γn = 0, the corresponding eigenstates are
localized.

We first consider the intermediate phase shown in Fig. 2(b),
where the model parameters V1 = 1.5, V2 = 0.5, and � is free.
The energy spectrum and fractal dimension of each eigenstate
versus � are shown in Fig. 8(a). We see that the intermediate
phase is not the critical phase, because the extended and lo-
calized states are included. Thus after inducing the staggered
potential �, the critical phase is broken.

Usually, the intermediate phase of the quasiperiodic sys-
tem is a mixture of extended and localized states. Here we
obtain that when the staggered potential � is suitable, the
intermediate phase can include the critical states, which is
very rare. Now we demonstrate this conclusion. We fix
� = 0.4 and plot the curve of fractal dimension γn of
each eigenstate versus the eigenenergy E , which is shown
in Fig. 8(b). We see that the the fractal dimensions have
some patterns. Meanwhile, the patterns move up or down
with the increasing of system size L. Choosing some small
energy intervals, we calculate the mean fractal dimensions
{γ m}. The finite-size scaling behavior of {γ m} is shown
in Fig. 8(c), where 1/m is the rescaled system size. In
the thermodynamic limit where 1/m → 0, we find that
some of {γ m} tend to 0, which corresponds to the local-
ized states, some of {γ m} tend to 1, which corresponds to
the extended states, and that in the energy interval (1.3,1.34)
are finite, which means the eigenstates in this energy in-
terval are critical. Then we conclude that the system has a
phase where the extended, localized, and critical states are
coexistent.

Next, we consider the intermediate phase shown in
Fig. 5(b). The energy spectrum and fractal dimension of
each eigenstate versus the staggered potential � are shown
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FIG. 8. (a) and (d) The energy spectrum E and fractal dimension γn of each eigenstate of the system (1) versus � with L = 610, where
(a) V1 = 1.5, V2 = 0.5 and (d) V1 = 1, V2 = 0.5. The red and green lines in (a) and (d) represent the two cases we consider respectively. (b) and
(e) The fractal dimension γn of each eigenstate versus E with (b) V1 = 1.5, V2 = 0.5, � = 0.4 and (e) V1 = 1.0, V2 = 0.5, � = 0.7 for different
system size L = 2584 (blue) and L = 6765 (orange). The red and green boxes in (b) and (e) represent regions of critical states. (c) and (f) The
finite-size analysis of the mean fractal dimensions {γ m} in different energy intervals, where (c) V1 = 1.5, V2 = 0.5, � = 0.4 and (f) V1 = 1.0,
V2 = 0.5, � = 0.7. Here, we choose m to equal 11 to 19. We see that the eigenstates in the energy intervals (1.3,1.34) in (c) and (−1.81, −1.75)
in (f) are critical.

in Fig. 8(d). The patterns of fractal dimensions with fixed
� = 0.7 are shown in Fig. 8(e), and the finite-size scaling
behavior of mean fractal dimensions {γ m} in some energy
intervals is shown in Fig. 8(f). We see that the eigenstates
in the energy interval (−1.81,−1.75) are critical, while the
eigenstates in other intervals are either extended or local-
ized. Therefore, the critical states can be coexistent with the
extended and localized states. We shall note that this phe-
nomenon is absent in the AAH model only with off-diagonal
hopping.

In addition, in order to make our conclusion more con-
vincing, we pick out three different states in different energy
intervals, and draw the density distribution of the three
different eigenstates at different system sizes such as L =
2584, 4181, 6765, respectively, in Fig. 9. For example, when
V1 = 1.5, V2 = 0.5, and � = 0.4, we pick some critical states
with the eigenenergy in the range (1.3,1.34) in Fig. 9(a). Here,
it is possible to choose a critical state with E = 1.32248
for different system sizes. We pick some extended and lo-
calized states with eigenenergy in the range (1.85,2.0) and
(2.26,2.46). We find there is still a critical state with the
system size increasing. Similarly, when V1 = 1.0, V2 = 0.5,
and � = 0.7, we pick a critical state with the eigenenergy
E = −1.804259 in the range (−1.81,−1.75) and draw the
density distribution of different eigenstates in Fig. 9(b).

We also perform the finite-size analysis on the corre-
sponding three states for the two cases we considered. We

choose three eigenstates whose corresponding eigenenergy
equals the ones in the top of Figs. 9(a) and 9(b). We calcu-
late γn of different states for different system sizes L = Fm,
m = 14, 15, 16, 17, 18, 19, in Fig. 10. When 1/m → 0, it is
possible to extrapolate γn at the thermodynamic limit L →
∞. We prove there exist three states—extended (γn = 1),
critical (0 < γn < 1), and localized (γn = 0) states in this
system at the thermodynamic limit as shown in Figs. 10(a)
and 10(b).

VI. DYNAMIC EVOLUTION

In this section, we study the dynamic properties of the
system (1) with open boundary conditions. The time evolution
of a given initial state |�(0)〉 is determined by

|�(t )〉 = e−iHt |�(0)〉, (8)

where H is given by Eq. (1) and we have set h̄ = 1. Here
the initial state is chosen as the j0th basis of the Hilbert
space, |�(0)〉 = | j0〉; i.e., a particle locates at the j0th site
of the chain at the initial time. Because the system (1)
is a single-particle model, the state |�(t )〉 can be decom-
posed as |�(t )〉 = ∑L

j=1 ψ j (t )| j〉, where ψ j (t ) is the time-
dependent wave function. With the help of ψ j (t ), a dynamic
quantity named the root-mean-square displacement σ (t ) is
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FIG. 9. Density distribution |ψ i
j |2 of different states in some energy regions for different system sizes L = 2584, 4181, 6765. Here, we

consider two case (a) V1 = 1.5,V2 = 0.5, � = 0.4 and (b) V1 = 1.0,V2 = 0.5, � = 0.7 and plot the density distribution of different states—
extended (red), critical (green), and localized (blue) states for different system sizes. The top is L = 2584, the middle is L = 4181, and the
bottom is L = 6765.

FIG. 10. The finite-size analysis of fractal dimensions γn as a function of 1/m for the three states corresponding to ones in the top of
Figs. 7(a) and 7(b), where system size L = Fm. Here, we consider two cases (a) V1 = 1.5,V2 = 0.5, � = 0.4 and (b) V1 = 1.0,V2 = 0.5, � =
0.7. The red line and dots represent the extended states. The green and blue represent the critical and localized states, respectively.
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FIG. 11. (a) The time evolution of σ̄ (t ) with different stag-
gered quasiperiodic potentials, where L = 610, V1 = 1.5, and V2 =
0.5. (b) The survival probability Pr and σt/σmax at t = 105 versus
�, where L = 2584, r = 40, V1 = 1.5, and V2 = 0.5. We see that
there indeed exist the multiple localization transitions, as given by
Fig. 2(b). Here, the gray boxes mark intermediate phases.

proposed [59,60]:

σ (t ) =
√√√√

L∑
j=1

( j − j0)2|ψ j (t )|2. (9)

Because the localized states do not diffuse in the long-
time evolution, the saturation value of σ (t ) in the localized
phase is smaller than those in the extended or intermediate
phase. Here, we also perform averaging over different initial
states, i.e., a particle initialized on randomly chosen sites far
enough from the chain boundaries, so that we get the mean
value of the σ (t ), σ̄ (t ) = 〈σ (t )〉 j0 , where 〈. . .〉 j0 represents
averaging over different initial states in which a particle is
randomly located at the j0th site. Here, we choose 100 dif-
ferent j0 from the region [L/3, 2L/3] to perform numerical
calculations. The results show that the dynamical properties
are independent of the choice of the initial localized states,
but depend on the parameters of the system. According to
Eq. (9), we take j0 = L/2 and denote the value of σ (t ) after
a long-time evolution as σt . We consider the quantity σt/σmax,
where σmax is the value of σt with certain model parameters in
the extended phase. Here, σmax = σt |�=0. Then σt/σmax can

FIG. 12. (a) The time evolution of σ̄ (t ) with different �, where
L = 610, V1 = 1.0, and V2 = 0.5. (b) The survival probability Pr and
σt/σmax at t = 105 versus �, where L = 2584, r = 40, V1 = 1.0, and
V2 = 0.5. We see that there indeed exist the multiple localization
transitions, as given by Fig. 5(b). Here, the gray boxes mark inter-
mediate phases.

be used to distinguish the different phases. σt/σmax tends to 1
in the extended phase, tends to 0 in the localized phase, and is
finite in the intermediate phase.

By using the wave function ψ j (t ), another observable
physical quantity named the survival probability Pr (t ) is pro-
posed [20,60],

Pr (t ) =
� L

2 �+r∑
j=� L

2 �−r

|ψ j (t )|2, (10)

where �L/2� means the smallest integer not less than L/2, and
r is a small integer. Obviously, after a long-time evolution, if
the system is in the extended phase, the survival probability Pr

tends to 0. If the system is in the localized phase, Pr tends to
1. The Pr is finite in the intermediate phase.

The time evolutions of σ̄ (t ) with some fixed � are shown
in Figs. 11(a) and 12(a). The σt/σmax and Pr (t ) with r = 40
at the time t = 105 versus the � are shown in Figs. 11(b) and
12(b). We see that there indeed exist the multiple localization
transitions with the increasing of �. These results are consis-
tent with the ones obtained by 〈IPR〉 and 〈NPR〉.

VII. SUMMARY

In this paper, we have studied localization transitions and
dynamical properties in the generalized AAH model with a
staggered on-site potential. Based on the analyses of 〈IPR〉,
〈NPR〉, and mean fractal dimension, we obtain the phase
diagram of the system. We find that the critical phase is broken
after inducing the staggered on-site potential. The system has
the mobility edge; thus the extended and localized phases
are separated by the intermediate phase. Interestingly, the
staggered on-site potential can induce the multiple localiza-
tion transition phenomena. Most importantly, by using the
energy spectrum, patterns of fractal dimensions, and finite-
size analysis, we obtain a novel quantum phase where the
extended, localized, and critical states are coexistent in some
regimes of model parameters. We also study the dynamic evo-
lution in different phases with the help of root-mean-square
displacement and survival probability. Our theoretical results
may be experimentally simulated in the future [36,37,42]. It is
worth exploring whether the interacting quasiperiodic system
may have reentrant many-body localization transitions or may
find a novel many-body intermediate phase with coexisting
extended, critical, and localized states [32,61].
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