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Refined room-temperature equation of state of Bi up to 260 GPa

Daniel J. Campbell , Daniel T. Sneed, E. F. O’Bannon, III, Per Söderlind, and Zsolt Jenei
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA

(Received 17 March 2023; accepted 31 May 2023; published 15 June 2023)

At room temperature, bismuth undergoes several structural transitions with increasing pressure before taking
on a body-centered cubic (bcc) phase at approximately 8 GPa. The bcc structure is stable to the highest measured
pressure and its simplicity, along with its high compressibility and atomic number, makes it an enticing choice
as a pressure calibrant. We present three data sets on the compression of bismuth in a diamond anvil cell in a
neon pressure medium, up to a maximum pressure of about 260 GPa. The use of a soft pressure medium reduces
deviatoric stress when compared to previous work. With an expanded pressure range, a higher point density,
and a decreased uniaxial stress component, we are able to provide more reliable equation of state parameters.
We also conduct density functional theory electronic-structure calculations that confirm that the bcc phase is
energetically favored at high pressure.
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I. INTRODUCTION

Elemental bismuth has been the subject of extensive in-
vestigation at high pressure. At ambient temperature, it has a
series of structural transitions under 10 GPa, passing through
four different phases. Bi-I is rhombohedral and present up
to about 2.5 GPa [1–3]. Bi-II is monoclinic and stable over
less than 0.5 GPa. Bi-III is a complex host-guest phase [1–3].
Bi-IV is only observed above 150 ◦C, over approximately the
same range as Bi-III. The final ambient temperature structure,
body-centered cubic (bcc) Bi-V, emerges at around 8 GPa
and has been shown to be stable through at least 200 GPa
[4]. Dynamic compression work has shown that these phase
boundaries are not necessarily fixed. The II and III phases may
not appear in shock compression experiments [5–7] and other
solid-solid or solid-liquid boundaries can move as much as
several GPa depending on the compression rate [3,8].

Despite the complexity of the lower-pressure phase dia-
gram, the stability of bcc Bi-V to high pressure is unques-
tioned. This simple structure is one reason why Bi has been
an enticing choice for a pressure calibrant for experiments
surpassing 100 GPa. Bi also has the highest atomic number
of any nonradioactive element, resulting in a strong x-ray
diffraction (XRD) signal. In addition to that, it is softer than
many of the other materials (Au, Cu, Pt, NaCl) whose lattice
parameters are used for determining pressure in XRD exper-
iments. This means that the volume change with pressure is
larger. This increases the precision of pressure determination,
which is especially important at ultrahigh compression where
the pressure-volume curve flattens out.

Despite the many reports on the structural transitions of Bi,
only a limited number have extended far into the bcc phase.
The highest pressure work, which reached 220 GPa, did not
use a pressure-transmitting medium (PTM), counting on Bi
itself to redistribute anisotropic stress [4]. We have carried out
x-ray diffraction experiments on bismuth at ambient temper-
ature up to 260 GPa, using neon as a soft pressure medium.
With both Cu and Ne as reference pressure calibrants, we find

good agreement among three independent data sets. Differ-
ences in measured Bi volume at high pressure from previous
reports are evidence that a soft pressure medium is necessary
to minimize the uniaxial stress on the sample. In this way we
are able to provide a more accurate Bi equation of state (EOS),
extended to higher pressure. We also show the importance of a
soft PTM in deriving accurate EOS values. The data presented
in this paper will enable Bi to be used for precise pressure
calibration at high pressures.

II. METHODS

Experiments were carried out at Sector 16 of the Advanced
Photon Source, as part of the High-Pressure Collaborative
Access Team (HPCAT), on three different samples loaded
in diamond anvil cells (DACs). A set each of 200-µm flat
and 100-µm/300-µm beveled culet anvils were used for
experiments at station 16-BMD with 25-keV x rays, and 50-
µm/300-µm beveled culets at 16-IDB with 30-keV x rays.
We refer to the different experiments as runs A, B, and C,
in decreasing order of culet size. Gaskets were indented to
thicknesses of about 25 µm (A and B) and 20 µm (C), and
holes were drilled in the center of the gaskets with diame-
ters of 120, 55, and 20 µm for A, B, and C, respectively.
The investigated samples were 5-µm-thick pieces of Bi foil
(Goodfellow, 99.97%) cut to an appropriate size and placed in
the gasket hole normal to the incoming x rays. The 200-µm
culet DAC also contained copper foil (Goodfellow, 99.97%,
5 µm in thickness) and ruby for pressure calibration, while
the 100-µm DAC contained a copper sphere approximately
10 µm in diameter. Neon gas served as the pressure medium
in all cases and was introduced into the gasket hole with a
high-pressure gas loader. The maximum pressure reached in
each experiment was, in order, 89, 184, and 259 GPa. Pressure
was increased during experiments via a helium gas membrane
attached to the DAC. High-quality x-ray diffraction patterns,
with good signal-to-noise ratio, were collected up to the high-
est pressures, as demonstrated in Fig. 1, which shows the 2D
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FIG. 1. The intensity as a function of Q at (a) 184 and (b) 259 GPa for runs B and C, respectively. These represent the highest pressures
reached in each experiment. Ticks below the data mark the peaks for each material present (B had a Cu pressure marker, and C did not).
The insets show the original two-dimensional detector images. Panels (c) and (d) are the corresponding cake images, created by unrolling the
detector image to present it as a function of Q with the azimuthal angle along the y axis.

detector image, the caked diffraction image, and the intensity
as a function of Q for the highest pressure points of Runs B
and C. The detector configuration was the same in Runs A and
B but different in Run C, where it covered less Q than in the
other measurements.

Several crystal structures were considered in our theo-
retical modeling of Bi, namely, Bi-I (rhombohedral), Bi-II
(monoclinic), simple cubic (sc), hexagonal close-packed
(hcp), face-centered cubic (fcc), and finally the Bi-V structure
(bcc). Structural relaxation was performed for the Bi-I and
Bi-II phases, and the hcp phase was calculated with both an
ideal c/a axial ratio (1.633) and an optimized (relaxed) axial
ratio. Because we are primarily focused in this report on the
high-pressure behavior, we do not consider the low-pressure
Bi-III phase, which has a complex host-guest structure [1].
We apply DFT with the generalized gradient approximation
(GGA) for the electron exchange and correlation functional.
The methodology is implemented in an all-electron code
to avoid the commonly used pseudopotential approxima-
tion that is often assumed in DFT calculations but tends to
cause inaccuracies at very high compression. Specifically, we
employ a full-potential linear muffin-tin orbital (FPLMTO)
method [9] that has been shown to be very accurate for high-
pressure studies for many materials including bismuth up to
100 GPa [10].

The FPLMTO technique does not make any approxima-
tions beyond that of the GGA and limitations of the basis
set. Basis functions, electron densities, and potentials are

calculated without any geometrical approximation and these
are expanded in spherical harmonics inside non-overlapping
(muffin-tin) spheres surrounding each atom and in Fourier
series in the region between these muffin-tin spheres. There
is a choice in how to define the muffin-tin sphere radius; here
it is chosen as 0.74 of the radius of a sphere with a volume
equal to the atomic volume (Wigner-Seitz radius). The radial
parts of the basis functions inside the muffin-tin spheres are
calculated from a wave equation for the l = 0 component of
the potential that includes all relativistic corrections including
spin-orbit coupling for d and f states but not for the p states,
following the comprehensive discussions of the spin-orbit in-
teraction in Refs. [11,12]. All calculations utilize semicore
states and valence states with two fixed-energy parameters
each for the s semicore state, the p semicore state, and the
valence states. There are six tail energies ranging from −3
to −0.2 Ry. Furthermore, we define 14 basis functions with
5s, 5p, and 4 f semicore states in addition to the 6s, 6p, 5d ,
and 5 f valence states. The number of k-points included in
the electronic-structure calculations depends on the particular
crystal structure but we generally use about 1000 k-points or
more for one atom/cell calculations and less for cells with
many atoms. Each energy eigenvalue is broadened with a
Gaussian having a width of 20 mRy. Total energies for each
phase were calculated on a dense volume mesh of about
0.3 Å3. The phonon dispersions for bcc Bi at about 21 GPa
were calculated using the small displacement method [13]
and a 27-atom supercell. The atomic forces required for the
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phonons were extracted from the electronic structure total
energies as previously described [14]. The resulting phonons
showed no indications of any instability.

III. PRESSURE-VOLUME RELATION

At ambient temperature, Bi-I transitions to Bi-II, Bi-III,
and finally Bi-V, while Bi-IV appears only above room
temperature [2]. We saw evidence for all four ambient tem-
perature structures during the initial pressure increase, with
some coexistence of Bi-III and Bi-V past the latter’s first
appearance at around 8 GPa. Above 10 GPa in all runs, only
Bi-V was observed in the pattern, and so all Bi-V data used for
analysis start at 10 GPa. For Runs A and B the position of the
Cu [111] reflection was used to calculate pressure [16]. For
Run C pressure was determined using the Ne [111] peak. Our
Ne EOS was calculated using the results of the 100-µm culet
experiment, by calibrating the lattice parameter as determined
by the Ne [111] reflection to the pressure as determined by
Cu. Using a Vinet EOS form,

P = 3K0

(
1 − (V/V0)

1
3

(V/V0)
2
3

)
e

3
2 (K ′

0−1)(1−(V/V0 )
1
3 ), (1)

and fixing the ambient pressure atomic volume of Ne V0 =
22.234 Å3 as in Ref. [17], we obtain a bulk modulus K0 =
1.046 ± 0.030 GPa and its pressure derivative K ′

0 = 8.38 ±
0.05. The process of calibrating Ne to our own Cu data
minimizes the uncertainty that could be introduced by using
multiple pressure markers with separately determined equa-
tions of state. This method ensures that the pressure values in
our data derive from the same source with the fewest interme-
diate steps possible. While they are independent of each other,
preparation for Runs B and C was very similar. Our calibration
also extends to 184 GPa, while some other commonly used
Ne equations of state have only been determined up to around
100 GPa [18]. Our EOS parameters are very similar to the
parameters determined by Dewaele et al. [17] up to 209 GPa,
(K0 = 1.070 ± 0.016 GPa and K ′

0 = 8.40 ± 0.03, with the
same V0 = 22.234 Å3 in both cases) (Ref. [19], Table S-II).
However, as shown in the Supplemental Material (Ref. [19],
Fig. S1), even the slight difference between the two leads to
a 10-GPa difference at the maximum pressure and a clear
difference in curvature when comparing multiple data sets.

Figure 2(a) shows the volume of Bi as a function of pres-
sure for all three of our data sets, starting at 10 GPa when we
observe only the bcc phase. The extracted lattice parameters
for Bi-V, Cu, and Ne for all runs are available in the Supple-
mental Material (Ref. [19], Table S-III). Maximum pressures
reached were 89, 184, and 259 GPa for the 200-, 100/300-,
and 50/300-µm culet cells, respectively. For Run C, few data
points were obtained below 100 GPa. Figure 2(b) shows a
comparison to the previous data [4,15]. For the experiments
of Ref. [4] no PTM was used, with only Bi foil and Pt (the
pressure calibrant) in the cell. We would expect this to result
in more anisotropic stress than in experiments with Ne as the
PTM. While Ne solidifies above 4 GPa at ambient pressure, it
is still much more compressible than Bi. Indeed, the upward
deviation of the data of Ref. [4] at high pressure, clearest in
the inset to Fig. 2(b), is what would be expected under less
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FIG. 2. (a) Pressure-volume relationship for Bi-V obtained from
our three experiments, with 200-µm (red circles), 100-µm/300-µm
(blue triangles), and 50-µm/300-µm (green squares) culets. The solid
line is a fit to all three data sets using the Vinet equation of state with
K0 = 38.2 GPa, K0 = 5.8, and V0 = 31.67 Å3. (b) The same data in
panel (a) compared to data from Refs. [4,15] and our own theoretical
calculations (solid line). The lower volume for a given pressure in
our data is what would be expected for reduced deviatoric stress.
The inset shows the highest-pressure region for Run C, the two runs
of Ref. [4], and the calculated results.

hydrostatic conditions. Our three data sets also combine to
give a much higher point density over the covered range.

We fit an EOS of the form given in Eq. (1) to extract K0,
K ′

0, and V0. One issue with Bi is that, since the bcc structure
is not stable at ambient pressure, the V0 of Bi-V is not known,
and small variations dramatically change the corresponding
K0 and K ′

0. We calculated the bulk modulus and its derivative
for two different V0 values: 32.23 and 31.67 Å3. The theoret-
ical ambient pressure volume of bcc Bi stemming from our
calculations is 32.23 Å3. The value of 31.67 Å3 is the result
of letting all parameters of the fit vary. Notably, this value
is quite similar to the volume obtained by accounting for the
lattice collapse at each phase transition. The I-II, II-III, and
III-V transitions produce volume collapses of 5.2%, 3.6%, and
2.3%, respectively, for a total of 10.7% volume decrease as a
result of structural transitions alone [3]. Applied to the Bi-I
ambient pressure volume of 35.46 Å3, that gives us a value of
31.7 Å3 for Bi-V. Table I shows the K0 and K ′

0 obtained using
fits with each volume and a fit to the calculated data, as well
as values from other works. The theoretical values in Table I
were obtained by a Vinet EOS fit to the calculated data points.
In comparing two fits to the same experimental data, we find
that while the choice of V0 significantly changes K0 and K ′

0,
it has less impact on the actual pressure-volume curves. In
Fig. 2(a) we use the values for V0 = 31.67 Å, but Fig. 3(a)
shows that the two curves are nearly indistinguishable over
much of the range, as the changes in the bulk modulus and
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TABLE I. Vinet equation of state parameters extracted from fits of all Bi data sets and our theoretical results. For fits stemming from this
work, the data points from all three runs above 10 GPa were used. Uncertainty values are those obtained from the fit. V0 was fixed to the value
obtained via the theoretical calculation value for one of the fits, marked by an asterisk. Reference [15] provides several sets of EOS parameters
from different experiments; we list those done in Ar, which extended to highest pressure.

K0 (GPa) K ′
0 V0 (Å3) Pmax (GPa) Ref.

38.2 ± 1.5 5.8 ± 0.06 31.67 ± 0.19 259 Exp.
34.0 ± 0.2 6.0 ± 0.02 32.23∗ 259 Exp.
36.8 ± 1.0 6.0 ± 0.03 32.23 ± 0.13 462 Th.
35.22 6.303 31.60 222 [4]
42.7 5.3 — 52 [15]

the derivative are compensated by the change in the starting
volume. The difference between the two only exceeds 1 GPa
below 10 GPa, a pressure range where the Bi-V phase cannot
be isolated [Fig. 3(b)]. Meanwhile, comparison to previous
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FIG. 3. (a) The P-V relation for Bi-V from Vinet equation of
state fits to the data in Fig. 2 using two different ambient pressure
volumes. Lines are different thicknesses as the data nearly com-
pletely overlap above 10 GPa. (b) The deviation from the fit with
V0 = 31.67 Å3, for the other choice of V0 and literature values.
The latter transition from solid to dotted lines above the maximum
pressure reached in the experiment. The inset shows a closeup of the
0–50 GPa range.

work shows much more substantial spread, with a difference
of more than 15 GPa from the EOS of Ref. [4] by the maxi-
mum pressure reached in that study (220 GPa).

IV. THEORETICAL RESULTS

Density functional theory calculations for the atomic vol-
ume of Bi-V at various pressures are shown in Fig. 2. In
addition to that, we performed calculations of the energy
difference between the bcc Bi-V structure and several other
candidates: Rhombohedral (Bi-I), monoclinic (Bi-II), fcc, sc,
and hcp with either an ideal or relaxed c/a axial ratio. En-
ergies for the Bi-III structure were not calculated because of
the complicated nature of the Bi-III host-guest structure and
the fact that this work is mainly focused on higher pressures.
We present the results as enthalpy (H = E + PV ) differences
of the various structures relative to the bcc (Bi-V) phase as
functions of pressure.

While our focus in this work is on the pressure range where
the bcc phase is clearly favorable, we will comment briefly
on the low-pressure region where there is more competition
[Fig. 4(b)]. The DFT model reproduces the correct ambient-
pressure Bi-I phase and the pressure-induced transition to
Bi-II. Experimentally, the transition takes place at around
2.5 GPa [3] while our calculations indicate a transition below
1 GPa. The relatively small discrepancy is not unusual for a
first-principles approach and could be due to uncertainty in
the DFT (e.g., the electron exchange or correlation functional)
or the fact that the calculations assume zero temperature. A
transition from Bi-II to Bi-V is predicted to occur at about
2.7 GPa. This is less relevant as we did not consider the Bi-III
phase, though the experimental II-III transition does occur at
a similar pressure. Far beyond 100 GPa, bcc is at far lower
enthalpy over the two hcp phases, the next closest in energy,
and the difference increases with pressure. Interestingly, the
pressure behavior of fcc is rather similar to bcc but at an
appreciably higher energy.

V. EVALUATION OF NONHYDROSTATIC STRESS

It is possible to quantify the amount of uniaxial stress on
the sample via the shift in d spacing for different values of the
Miller indices h, k, and l . Extensive discussion and analysis
of this lineshift has been performed in other works [4,20–22].
For a cubic system, the basic equation for the nonhydrostatic
lattice parameter from a specific hkl combination, am, is

am(h, k, l ) = M0 + M1[3�(1 − 3sin2θ )], (2)
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FIG. 4. Calculated enthalpy differences of various potential
structures of bismuth relative to bcc Bi-V (the solid line at �H = 0)
as functions of pressure. Panel (a) shows the entire pressure range
over which calculations were performed. The bcc structure is clearly
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closeup of the low-pressure region. The first pressure-induced phase
(Bi-II) becomes favored over the ambient ground-state (Bi-I) phase
below 1 GPa. The Bi-III phase is not calculated (see Methods).

with

M0 = aP{[1 + (αt/3)(1 − 3sin2θ )

× (S11 − S12) − (1 − α−1)(2GV )−1]}
(3)

M1 = −aP(αSt/3) (4)

�(h, k, l ) = (h2k2 + k2l2 + h2l2)/(h2 + k2 + l2)2, (5)

where aP is the hydrostatic lattice parameter, Si j are the com-
ponents of the compliance tensor, S = S11 − S12 − S44/2, and
GV is the shear modulus of randomly oriented polycrystals
under isostrain conditions. t is the quantity of interest, and
represents σ 3 − σ 1, the difference between the radial and ax-
ial stress components. To simplify things, we can approximate
M0 � aP, meaning that at each pressure am will be a linear
function of 3(1 − 3sin2θ )�, with both θ and � functions only
of h, k, and l . Therefore, a linear fit of am vs 3(1 − 3sin2θ )�
gives us M0 and M1, and from Eq. (4) we can solve for
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FIG. 5. Values of αt of Bi, assumed to be the material strength,
for all three experiments, using lineshift analysis as described in the
text. Error values are derived from the uncertainty of the d spacing
from the peak-fitting program.

αt = −3 M1
M0

1
S . α determines the weighting of the shear moduli

and takes on values ranging between 1 (for stress continuity)
and 0.5 (halfway between stress and strain continuities). Since
we cannot determine its value from our data, we present the
combined product αt of our three data sets [Fig. 5].

Calculating αt requires values of the compliance tensor
at each pressure point. Since these have not been measured
experimentally up to such high pressures, we fit the theoretical
results of Ref. [23] for the elastic tensor Ci j up to 191 GPa
to a power law of the form Ci j (P) = Ci j (0) + aPn, with n �
0.9 for each of C11, C12, and C44. These values were then
extrapolated up to 259 GPa and converted to the necessary
compliance tensor results via Si j = C−1

i j .
Our three data sets are shown in Fig. 5, where for each run

the [110], [200], and [211] peak positions of Bi-V were used
to calculate αt at each pressure. Error bars were estimated
from the uncertainty of the initial fitting of each peak. This
does not account for other sources of uncertainty, for example
the extrapolation of fits of the elastic constants used to calcu-
late S. The three data sets have three different trends. Run A
has low values over its entire range, even becoming negative at
higher pressure. For run B there is a peak in αt near 100 GPa.
This may correspond to a deformation of the cell or gasket, as
such a process is known to happen in the intermediate range
of the loading curve, and the difference from Run A could be
the use of beveled anvils [24]. Overall for both runs values are
quite low, indicating good hydrostatic conditions.

Run C displays more variable behavior and higher absolute
values, though like with the other data they are still less than
1% of the total pressure (Ref. [19], Fig. S2). The larger spread
in values can be linked to the reduced area covered by the
detector (compare the two panels on the right-hand side of
Fig. 1), making it harder to view complete rings on the detec-
tor that are necessary to precisely evaluate differential stress.
It may also be due to challenges associated with the smaller
culet size and the inevitable differences in preparation of each
experiment. A negative αt would correspond to the radial
stress on the sample being larger than the axial stress, which is
hard to reconcile with the fact that pressure is applied axially.
While this is also the case with Run A, for that experiment
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positive values are within the error and the overall conclusion
is that αt is too small to be reliably measured.

We note that t is linearly related to the shear strength of the
material. The high compressibility of Bi means it is unable to
support a large deviatoric stress, keeping t low. This is part of
what makes it a good pressure calibrant and was part of the
argument used elsewhere for why Bi itself could serve as a
pressure medium. However, our results for the first two runs
are a little lower than those of other studies that did not use
a soft PTM [15,22], where t values of around 0.5 GPa were
seen by 200 GPa, though this is again hampered by the large
relative uncertainty. We attribute the difference to the use of
the soft Ne pressure medium, which is even more malleable
than Bi and thus even better able to redistribute the applied
stress, a conclusion backed up by the comparison of P(V )
data.

VI. SUMMARY

Our data show that by 260 GPa the volume of Bi is about
45% of its estimated ambient pressure value. This can be
compared to values for some common pressure markers: 70%,
63%, 58%, and 40% for Pt, Au, Cu, and NaCl (B2, CsCl-type
phase), respectively [16,25]. Bismuth has a larger change in
volume than the three coinage metals, which is especially
beneficial to experimental precision at higher pressure, where
V (P) flattens out. While not quite as compressible as NaCl,
Bi has a much higher density and molar mass, leading to a

stronger XRD signal. At high pressure, once it is fully in the
bcc phase, Bi thus has advantages over typical calibrants.

In three different experiments, we have seen consistent
behavior of the volume of the bcc Bi-V phase up to 260 GPa.
These data show good overlap and can be readily fit to a Vinet
equation of state. The upward deviation of previous P(V ) data
over 200 GPa and the conclusions of lineshift analysis show
that Ne better reduces anisotropic stress than Bi alone. As seen
in Fig. 3, at relatively low pressure the difference is minor. But
when extending to the highest measured pressures or consid-
ering experiments beyond this range, the differences become
significant. The information provided here can help motivate
interest in Bi as a pressure calibrant above 10 GPa in XRD
experiments. It also makes clear that the use of the softest
pressure medium possible is necessary to reduce deviatoric
stress and obtain accurate equations of state.
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