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Vortex lines in superconducting Dirac semimetals with s-wave pairing realize crystal symmetry protected
gapless vortex line phases in which gapless excitations propagate inside a vortex line, in the presence of
appropriate crystal symmetry, spin-orbit coupling, and multiband structures. Here we present a general scheme
to classify possible gapless vortex line phases in s-wave superconducting states of Dirac semimetals with rotation
(or screw) symmetry and inversion symmetry, assuming that the rotation (screw) axis is parallel to the vortex
line. The rotation (screw) symmetry protected gapless modes are stable as long as they have different rotation
(screw) eigenvalues. The underlying mechanism for the formation of gapless vortex bound states depends on
irreducible representations of rotation (screw) symmetry subject to a vortex field and is classified into three
types: (i) accidental band crossing of two vortex bound-state modes under rotation symmetry; (ii) accidental and
(iii) enforced band crossing of four vortex bound-state modes under screw symmetry. We present a tight-binding
model of screw symmetry protected Dirac semimetal with an s-wave pair potential, demonstrating a gapless
vortex line phase of type (ii). We obtain four gapless modes of vortex bound states whose gapless points
(Majorana zero modes) pinned at a time-reversal invariant momentum (TRIM) when the Fermi energy is close
to the Dirac points. As the Fermi energy is moved away from the Dirac points, the four gapless modes are split
into a pair of two gapless modes with vanishing excitation energy at non-TRIMs. In closing, we discuss Nb3Pt
as a candidate material with the fourfold screw symmetry protected Dirac cones that can host a gapless vortex
line phase.

DOI: 10.1103/PhysRevB.107.214518

I. INTRODUCTION

Bound states in a vortex core of a conventional supercon-
ductor (SC) have energy spectrum with a minigap of the order
of �2/EF , where � and EF are the superconducting gap and
Fermi energy [1]. The minigap vanishes and a Majorana zero
mode is localized in a vortex core if the host superconductor
is topological [2–11].

A promising platform for Majorana zero modes is a hybrid
system of a topological insulator (TI) and a conventional s-
wave SC (SSC), where a Dirac cone on the surface of the
three-dimensional (3D) TI is proximity coupled to an s-wave
pair potential, yielding effectively a two-dimensional (2D)
chiral p-wave state [12,13]. The theoretical proposal [13]
prompted experimental studies of TI/SSC hybrid systems
[14,15] and iron-based SCs [16–21].

A vortex line in a 3D SC is in a one-dimensional (1D)
gapped topological SC phase of class D, when Majorana zero
modes are localized at the two ends of the vortex line [22–24].
On the other hand, no Majorana zero mode can exist if the
vortex line is in the topologically trivial phase of class D. In
both phases, vortex lines in 3D SCs have gapped bulk spectra
of bound states. Only when some parameter such as the Fermi
energy is tuned to a topological phase transition point, a vortex
line has a gapless spectrum of bound states [22,25–27].

This consideration leads to the following question: Can a
vortex line in a 3D SSC have a gapless phase, for a finite

range of parameters, in which vortex bound states have a
gapless excitation spectrum propagating along the vortex line?
A positive answer to this question has been given by theoret-
ical studies of superconducting Weyl and Dirac semimetals
[28–36]. As we discuss in detail in this paper, superconducting
3D Weyl and Dirac semimetals can realize gapless vortex
line (GVL) phases in which vortex bound states form gapless
modes traveling along a vortex line, the so-called 1D nodal
vortex line [31].

The GVL phases are intrinsically related to bulk Dirac
cones of the normal state via a low-energy effective Jackiw-
Rossi model [37], which is a model of 2D Dirac fermions
coupled to a vortex field. Suppose, for example, that the
normal-state band structure has Weyl or Dirac points near the
Fermi energy in addition to a metallic band with a Fermi sur-
face. When the metallic band turns into an SSC, Weyl/Dirac
fermions proximity coupled to the s-wave pair potential can
be mapped approximately to the Fu-Kane model [13] or the
Jackiw-Rossi model; a vortex line would then have a gapless
mode.

The GVL phases associated with Dirac points are protected
from a gap opening by crystalline symmetry [31], similarly to
Dirac semimetals whose Dirac points are protected by either
rotation symmetry or screw symmetry together with inver-
sion symmetry. A large variety of 3D Dirac semimetals have
been theoretically proposed [38–45] and experimentally ob-
served: Na3Bi [46,47], Cd2As3 [48–53], TlBiSSe [54], ZrTe5
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[55–59], Li(Fe1−xCox)As [60], α-Sn [61], and CaAuAs [62].
Thus, 3D Dirac semimetals have the potential of realizing
various GVL phases, but the comprehensive picture is still
missing.

In this paper, we propose a general theoretical framework
to classify GVL phases of a vortex line in SSCs that are
protected under rotation or screw symmetry in addition to
inversion symmetry, which are crystalline symmetries com-
mon to 3D Dirac semimetals. The screw symmetry is a
nonsymmorphic symmetry that consists of a nonprimitive
lattice translation and a rotation operation, and here we will
focus on screw symmetry with a half-lattice translation so
that Dirac points always exist at the Brillouin zone boundary
(kz = π ). Here we note that the “s-wave” superconductivity
actually means in this paper that the order parameter is a trivial
representation of n-fold screw (rotation) symmetry.

From symmetry analysis of effective low-energy Hamil-
tonians describing vortex bound states, we determine the
stability condition for GVL phases in terms of crystal sym-
metry in the presence of a vortex line. We show that there
are three types of mechanisms for the formation of gapless
modes: (i) accidental band crossing (ABC) in a minimal
2 × 2 effective Hamiltonian with rotation symmetry; (ii) ABC
and (iii) enforced band crossing (EBC) in a minimal 4 × 4
effective Hamiltonian with screw symmetry. Here, an ABC
occurs within a certain parameter range, while an EBC occurs
independently of parameter values. The GVL phases of type
(i) appear under n-fold rotation symmetry (n = 3, 4, 6) when
vortex bound states forming gapless modes have different
rotation eigenvalues, as discussed in previous works [30,31].
As for the GVL phases in screw symmetric systems, we point
out that the fourfold and sixfold screw symmetries protect a
pair of gapless modes through (ii) an ABC and (iii) an EBC,
respectively.

Furthermore, we discuss a fourfold screw symmetry pro-
tected GVL phase for a tight-binding model with space-group
symmetry P42/mmc, which has two Dirac points, at Z =
(0, 0, π ) and A = (π, π, π ) in the 3D Brillouin zone, pro-
tected by the fourfold screw symmetry along the z axis and
inversion symmetry. Implementing a vortex line parallel to the
screw axis in the s-wave pair potential, we numerically study
an evolution of vortex line phases with the variation of the
chemical potential. When the chemical potential is close to the
Dirac points, four Majorana zero modes are pinned at kz = π

since the low-energy Hamiltonian is equivalent to four copies
of the Jackiw-Rossi model [37]. When the chemical potential
is changed away from the Dirac cones, the four gapless modes
are split into a pair of two gapless modes located away from
kz = π , each pair of which are protected by the fourfold screw
symmetry. As the chemical potential is changed further, two
pairs of gapless modes annihilate at kz = 0 and open a gap.

We note that the zero-energy bound states at time-reversal
invariant momenta (e.g., kz = π ) are Majorana zero modes
inside a vortex line. This is an interesting feature of super-
conducting Dirac semimetals with screw symmetry having
Dirac points at kz = π . In contrast, zero-energy bound states
at kz �= 0 or π are not Majorana fermions, as they are linear
combination of ckz

and c†
−kz

, where ckz is the electron annihi-
lation operator with momentum kz. This is usually the case
with superconducting Weyl semimetals and Dirac semimetals
without screw symmetry.

In addition, we propose Nb3Pt as a candidate material
for a superconducting Dirac semimetal that has fourfold
screw symmetry protected Dirac cones at the X point and its
symmetry-related points in the Brillouin zone.

This paper is organized as follows. In Secs. II A and II B,
we introduce symmetry operations in the Dirac semimetals
and those in the s-wave superconducting states with a vortex
line. We construct an effective low-energy Hamiltonian in
Sec. II C and develop a classification of GVL phases under
rotation and screw symmetries in Sec. II D. In Sec. III A,
we model a tight-binding Hamiltonian on a tetragonal lattice
with fourfold screw symmetry protected Dirac cones and nu-
merically demonstrate a fourfold screw symmetry protected
GVL phase in the superconducting state. The application to
Nb3Pt is discussed in Sec. III B. We summarize our results in
Sec. III A.

In the Appendixes, we show topological classifications of
GVL phases using the K-theoretical method in Appendix A,
the construction of tight-binding models in Appendix B,
vortex zero-energy solutions in a low-energy Hamiltonian
in Appendix C, and influence of vortex core positions
on the fourfold screw symmetry protected GVL mode in
Appendix D.

II. SYMMETRY ANALYSIS OF GVL PHASES

A. Symmetry in Dirac semimetals

We begin with discussion of symmetry properties of 3D
Dirac semimetals of nonmagnetic materials that are invariant
under time-reversal (TR) transformation T (T 2 = −1) and
inversion transformation I (I2 = 1). All energy bands are
doubly degenerate due to the Kramers degeneracy enforced
by the T I symmetry, the combination of T and I . Therefore,
a Dirac point with fourfold degeneracy can be formed when
two energy bands cross. However, such band-crossing points
are generally unstable and gapped out by band-mixing per-
turbations that are present under the T I symmetry. This gap
opening can be prevented by an additional crystal symmetry
that is ubiquitous in solids, e.g., n-fold rotation symmetry
(n = 2, 3, 4, 6) or n-fold screw symmetry (n = 2, 4, 6). In the
presence of one of these symmetries, the Dirac points are
stable on rotation (screw) symmetric lines in the Brillouin
zone when two crossing energy bands have different rotation
(screw) eigenvalues.

The minimal Hamiltonian of a Dirac semimetal has the
form

Ĥ =
∑

k

∑
s,s′,σ,σ ′

c†
k,s,σ Hs,σ ;s′,σ ′ (k)ck,s′,σ ′ , (1)

where s and s′ are spin indices (s ∈ {↑,↓}), σ and σ ′ are
orbital (sublattice) indices (σ ∈ {1, 2}). c†

k,s,σ (ck,s,σ ) is the
creation (annihilation) operator of an electron with wave num-
ber k. The actions of TR, inversion, n-fold rotation, and screw
transformations on the Hamiltonian in momentum space are
defined by

T H (k)T −1 = H (−k), (2a)

IH (k)I−1 = H (−k), (2b)

CnH (k)C−1
n = H (Rnk), (2c)

Skz
n H (k)(Skz

n )−1 = H (Rnk), (2d)
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where Rn represents a rotation around the rotation (screw)
axis, chosen to be the z axis, in the momentum space:

Rnk =

⎛⎜⎜⎝
cos

(
2π
n

) − sin
(

2π
n

)
0

sin
(

2π
n

)
cos

(
2π
n

)
0

0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

kx

ky

kz

⎞⎟⎟⎠. (3)

The TR operator is given by T = iσ0syK , where σ0 = s0 = 12,
si (i = x, y, z) are the spin Pauli matrices, K is the complex-
conjugation operator, and 1m is the m × m identity matrix. The
unitary matrices I , Cn, and Skz

n in Eqs. (2) represent inver-
sion, rotation, and screw operators and satisfy the following
relations:

I2 = 14, (4a)

(Cn)n = −14, (4b)(
Skz

n

)n = −e−i nkz
2 14, (4c)

CnI = ICn, (4d)

S−kz
n I = eikz ISkz

n , (4e)

where the minus sign in Eq. (4b) arises due to the 2π spin
rotation. The screw operation Skz

n is defined in Eq. (4c) by
the combination of the rotation operator and a half-translation
in the z direction, where the length of the unit cell in the z
direction is set to be unity. Equation (4e) implies the anticom-
mutation relation at the Brillouin zone boundary kz = π :

Sπ
n I = −ISπ

n . (5)

Note that all crystal symmetry operators commute with the
TR operator T .

In the remainder of this section, we briefly review the
classification of 3D Dirac semimetals developed by Yang and
Nagaosa [39]. The symmetry conditions (2) and (4) allow sta-
ble Dirac points to exist on the rotation (screw) axis where two
energy bands have different rotation (screw) eigenvalues. Ref-
erence [39] clarified that there are two distinct mechanisms
for realizing a stable Dirac point: (a) in rotation symmetric
systems, a pair of Dirac points can be formed through an ABC
on the rotation axis, which move along the rotation axis and
eventually pair annihilate as material parameters are changed.
(b) In screw symmetric systems, a single Dirac point is pinned
at kz = ±π (i.e., at the Brillouin zone boundaries), which is
enforced to exist for any material parameter [40]. The differ-
ence is attributed to the different algebraic relations with the
inversion operation; see Eqs. (4d) and (5). In the following, we
will show that the difference between the rotation and screw
operations also plays an important role in the classification of
GVL phases in s-wave superconducting 3D Dirac semimetals.

B. Symmetry in superconducting Dirac
semimetals with a vortex line

We consider a superconducting Dirac semimetal in which
s-wave superconducting order is either intrinsically devel-
oped under doping or induced by the proximity effect. The
quasiparticles in the superconducting Dirac semimetal are

described by the Bogoliubov–de Gennes (BdG) Hamiltonian

ĤBdG = 1

2

∑
k

∑
s,s′,σ,σ ′

�
†
k,s,σ H̃s,σ ;s′,σ ′ (k)�k,s′,σ ′ , (6)

where

�k,s,σ =
(

ck,s,σ

c†
−k,s,σ

)
(7)

and

H̃ (k) =
(

H (k) − μ14 �

�† −HT (−k) + μ14

)
. (8)

Here H (k) is the normal-state Hamiltonian of the Dirac
semimetal in Eq. (1), μ is the chemical potential, the su-
perscript T means the transposition, and � = �0(−isyσ0)
describes the s-wave pair potential with the superconducting
gap �0. The s-wave superconducting Dirac semimetal is a
topologically trivial fully gapped state.

The symmetry operators on the BdG Hamiltonian are de-
fined by extending Eqs. (2) to the Nambu space; the extended
TR, inversion, rotation, and screw operators are given by T̃ =
diag(T, T ∗), Ĩ = diag(I, I∗), C̃n = diag(Cn,C∗

n ), and S̃kz
n =

diag(Skz
n , (S−kz

n )∗), where ∗ is complex conjugation. These
operators satisfy the same relations as Eq. (4). In addition,
the BdG Hamiltonian is invariant under the particle-hole (PH)
transformation:

CH̃ (k)C−1 = −H̃ (−k), C = τxσ0s0K (9)

where τi (i = x, y, z) are the Pauli matrices in the Nambu
space. The PH operator C commutes with the other operators
in the s-wave paring state.

Suppose that a vortex line is inserted by external magnetic
field applied along the rotation (screw) axis in the super-
conducting Dirac semimetal. In this situation the spatially
varying pair potential is written as �(r) = �(ρ)eiθ (−isyσ0)
in the cylindrical coordinate defined by ρ ≡

√
x2 + y2 and

θ ≡ arctan(y/x). Here, �(ρ) satisfies �(0) = 0 and �(ρ →
∞) = �0. Inserting a vortex line breaks the translation sym-
metry in the x-y plane and the TR symmetry. However, the
other crystal symmetries are preserved under the modification
explained below.

The BdG Hamiltonian with a vortex line is denoted by
H̃v(ρ, θ, kz ). The n-fold rotation operator [Eq. (2c)] acts on
the coordinates as (ρ, θ, kz ) → (ρ, θ + 2π

n , kz ), which gives
an additional phase factor to the pair potential �(ρ)eiθ →
�(ρ)ei(θ+ 2π

n ). To keep H̃v(ρ, θ, kz ) invariant, we include this
phase factor in the n-fold rotation operator [31],

C̃v,n =
(

eiπ/nCn 0
0 e−iπ/nC∗

n

)
, (10)

such that

C̃v,nH̃v(ρ, θ, kz )C̃−1
v,n = H̃v

(
ρ, θ + 2π

n
, kz

)
. (11)

In a similar manner, the n-fold screw operator for the BdG
Hamiltonian H̃v(ρ, θ, kz ) is given by

S̃kz
v,n =

(
eiπ/nSkz

n 0
0 e−iπ/n(S−kz

n )∗

)
. (12)
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In addition, since the inversion operation acts on the coordi-
nates as (ρ, θ, kz ) → (ρ, θ + π,−kz ), we define the inversion
operation in the presence of a vortex line as

Ĩv =
(

eiπ/2I 0
0 e−iπ/2I∗

)
, (13)

such that

ĨvH̃v(ρ, θ, kz )Ĩ−1
v = H̃v(ρ, θ + π,−kz ). (14)

The symmetry properties of the modified operators are sum-
marized as follows:

(Ĩv)2 = −18, (15a)

(C̃v,n)n = 18, (15b)(
S̃kz

v,n

)n = e−i nkz
2 18, (15c)

C̃v,nĨv = ĨvC̃v,n, (15d)

S̃−kz
v,n Ĩv = eikz ĨvS̃kz

v,n. (15e)

We notice that the right-hand side of Eqs. (15a), (15b), and
(15c) has the opposite sign to Eqs. (4a), (4b), and (4c), respec-
tively, due to the extra phase factors. Equation (15e) implies

S̃π
v,nĨv = −ĨvS̃π

v,n. (16)

On the other hand, the PH symmetry operator, already defined
in Eq. (9), satisfies

CH̃v(ρ, θ, kz )C−1 = −H̃v(ρ, θ,−kz ), (17)

and commutes with the modified operators.

C. Effective low-energy Hamiltonian

Here, we explain our strategy for classifying possible GVL
phases. Key ingredients are the symmetry relations (15) in
the presence of a vortex line, which determine the stability
of GVL phases. Since the gapless modes in a vortex are
extended along the kz direction and localized in the radial (ρ)
direction, the topology of GVL phases can be understood from
a 1D BdG Hamiltonian [27] H(kz ), which is obtained from
H̃v(ρ, θ, kz ) by regarding (ρ, θ ) as internal indices and taking
only kz as the relevant spatial direction. Thus, we can classify
GVL modes as 1D nodal superconducting phases.

The symmetry operators of H(kz ) are the PH (C), inversion
(Ĩ), and n-fold rotation or screw (C̃n or S̃kz

n ) symmetries,
which satisfy Eq. (15). The 1D Hamiltonian for GVL modes
H(kz ) commutes with C̃n (S̃kz

n ), and the energy levels are
labeled by the rotation (screw) eigenvalues. In addition, the
relation (16) leads to twofold degeneracy at kz = π , which is
important for the classification of GVL phases under the screw
symmetry.

We start with symmetry analysis at the high-symmetry
points kinv = 0 and π . Since H(kinv) commutes with the crys-
tal symmetry operators, H(kinv) can be decomposed into block
matrices in terms of irreducible representations (irreps) of
the symmetry operators. Vortex bound states form a basis of
the irreps, and the dimension of irreps gives constraints on the
number of energy bands that we need to describe the GVL
modes. Furthermore, the PH symmetry demands that irreps
for electron and hole states come together in any matrix of the

symmetry operators. Hence, H(kinv) and symmetry operators
are decomposed as

H(kinv) � ⊕αHα (kinv), (18)

C � ⊕α

(
0 1nα

1nα
0

)
K, (19)

C̃n � ⊕α

(
Cn,α 0

0 C∗
n,α

)
, (20)

S̃kinv
n � ⊕α

(
Skinv

n,α 0
0 S−kinv∗

n,α

)
, (21)

Ĩ � ⊕α

(
Iα 0
0 I∗

α

)
, (22)

where α is a label of irreps, nα is the dimension of irrep α, and
� means the equivalence under a unitary transformation. We
pick up one block matrix as a minimal Hamiltonian describing
vortex bound states at low energies (|E | 
 �0), which can be
described as

Hα (kinv) =
∑

i

ai(kinv)Mi, (23)

where Mi (i = 1, . . . , 4n2
α ) are 2nα × 2nα matrices given by

the direct product of Pauli matrices. To find the dispersion
relation around the high-symmetry points, we expand ai(kz )
at kz = kinv to the leading order of kz under the symmetry
constraints.

D. Classification of vortex line phases

We now construct the symmetry-adopted expression of
Hα (kz ) under the symmetry constraints and determine pos-
sible gapless energy modes. Since the rotation symmetry is
independent of kz and S0

n,α = Cn,α , we only need to consider
the following two cases: vortex line modes (a) around kinv = 0
protected by Cn,α and (b) around kinv = π protected by Sπ

n,α . In
the following, we address possible GVL modes for the cases
(a) and (b).

1. Rotation symmetry protected GVL modes

For the case (a), we consider the rotation operator at kz = 0
that commutes with the inversion operator. The irrep is one
dimensional (nα = 1). The crystal symmetry operators satisfy
Eqs. (15a) and (15b), so that the irreps can be written as

Cn,p = ei 2π p
n , IR = i, (24)

and the representations in the Nambu space are

C̃n,p = ei 2π p
n τz , ĨR = iτz, (25)

where p = 1, . . . , n label irreps of the rotation operator. They
satisfy [C, C̃n,p] = [C, ĨR] = 0 with the PH operator C = τxK .
Since the Hamiltonian is a 2 × 2 matrix, it can be expanded
by the Pauli matrices

HR
n,p(kz ) =

∑
i=x,y,z

ai(kz )τi, ai ∈ R (26)

where τ0 = 12 is forbidden due to the CĨR symmetry. The in-
version symmetry ĨRHR

n,p(kz )Ĩ−1
R = HR

n,p(−kz ) constrains the
coefficients ax and ay to be odd functions of kz, and az to be an
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(a) (b) (c)E E E

kz kz kz
~ ~

FIG. 1. Energy spectrum of (a) Eq. (29), (b) Eq. (39), and (c) Eq. (42) for the parameters (m0, m1) = (0.5,−2), (m1, v1, v2, v3) =
(0.5, 1.5, 1, 0.5), and (m0, v1) = (0.5, 1), respectively. The colors of the lines represent the rotation (screw) eigenvalues. The red and blue lines
indicate exp(i 2π p

n ) and exp(−i 2π p
n ) in (a), and −1 and 1 in (b); the red, blue, orange, and green lines, respectively, represent − exp[i( 2π p

n − π

2 )],
exp[i( 2π p

n − π

2 )], − exp[−i( 2π p
n − π

2 )], and exp[−i( 2π p
n − π

2 )] in (c). In (b) and (c), the bands are twofold degenerate at kz = π (k̃z = 0) due to
the screw and inversion symmetries.

even function of kz. The rotation symmetry [C̃n,p,HR
n,p(kz )] =

0 imposes an extra condition

e∓i 4π p
n a±(kz ) = a±(kz ), (27)

where we have used C̃n,pτ±C̃−1
n,p = e±i4π p/nτ± with τ± = τx ±

iτy and a± = (ax ± iay)/2. We have the following two possi-
bilities depending on whether 2p/n ∈ Z or not.

(i) 2p/n ∈ Z: a±(kz ) is generally nonzero, and the energy
eigenvalues are

ER1
± (kz ) = ±

√
a2

x (kz ) + a2
y (kz ) + a2

z (kz ). (28)

This energy spectrum is fully gapped in general since the con-
dition ax = ay = az = 0 cannot be satisfied simultaneously
when we only have one parameter kz.

(ii) 2p/n /∈ Z: The rotation symmetry imposes a±(kz ) = 0,
and the energy spectrum in the leading order of kz is then given
by

ER2
± (kz ) = ±az(kz ) = ±(

m0 + m1k2
z

)
, (29)

where m0, m1 ∈ R. Thus, a pair of gapless points can appear
due to ABC at

kz = ±
√

−m0/m1, (30)

when m0/m1 < 0 [see Fig. 1(a)]. We conclude that the GVL
phases are possible when the rotation eigenvalues are complex
values, in agreement with the previous works [30,31].

2. Screw symmetry protected GVL modes

For the case (b), we consider the screw operator at kz = π

that anticommutes with the inversion operator. The irrep is
two dimensional (nα = 2). On the basis that diagonalizing the
screw operator, the screw and inversion operators are repre-
sented by

Sπ
n,p = −iei 2π p

n σz, IS = iσx, (31)

where n = 2, 4, 6 and p = 1, . . . , n/2. σi (i = x, y, z) are the
Pauli matrices stemming from the sublattice degrees of free-

dom associated with the screw operation.1 The factor −i in
the screw operator comes from a half-translation. The repre-
sentations in the Nambu space are then given by

S̃π
n,p = ei( 2π p

n − π
2 )τzσz, ĨS = iτzσx, (32)

which satisfy [C, C̃n,p] = [C, ĨS] = 0 with the PH operator
C = τxσ0K . The effective Hamiltonian can be expanded by
4 × 4 matrices consisting of two Pauli matrices σi and τi,

HS
n,p(k̃z ) =

∑
i, j=0,x,y,z

ai j (k̃z )τiσ j, ai j ∈ R (33)

where k̃z ≡ kz − π . The (anti)symmetry of the Hamilto-
nian under the CĨS operation, i.e., {CĨS,HS

n,p(k̃z )} = 0,
imposed constraints on the Hamiltonian: a00 = a0x = a0y =
axz = ayz = azz = 0. The remaining 10 coefficients are further
constrained by the crystalline symmetries. First, the inversion
symmetry ĨSHS

n,p(k̃z )Ĩ−1
S = HS

n,p(−k̃z ) determines the mo-
mentum dependence of ai j : the four coefficients (az0, azx, axy,
ayy) are even functions of kz and the others (a0z, azy, ax0, axx,
ay0, ayx) are odd functions of kz. Second, the screw symmetry,
[S̃π

n,p,HS
n,p(kz )] = 0 gives the following constraints on the

coefficients:

azx (k̃z ) = 0, (34a)

azy(k̃z ) = 0, (34b)

−e∓i 4π p
n a±0(k̃z ) = a±0(k̃z ), (34c)

e∓i 4π p
n a±x(k̃z ) = a±x(k̃z ), (34d)

e∓i 4π p
n a±y(k̃z ) = a±y(k̃z ), (34e)

where a±i ≡ (axi ± iayi )/2 and we have used the relations

Sπ
n,pτ±σ0

(
Sπ

n,p

)−1 = −e±i 4π p
n τ±σ0, (35a)

1Note that we can choose other representations, say Sπ
n,p =

−i exp(i 2π p
n )σz and I = iσy, which are related to Eq. (31) by a

unitary transformation. Thus, we obtain the same energy eigenvalues.
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Sπ
n,pτ±σx

(
Sπ

n,p

)−1 = e±i 4π p
n τ±σx, (35b)

Sπ
n,pτ±σy

(
Sπ

n,p

)−1 = e±i 4π p
n τ±σy. (35c)

Since Eqs. (34c), (34d), and (34e) depend on n and p, the
possible forms of the Hamiltonian are discussed separately for
three cases as below.

(iii) S̃π
n,p = ±iτzσz when 2p/n ∈ Z, i.e., (n, p) = (2, 1),

(4, 2), or (6, 3); a±0 = 0 from Eq. (34c). Thus, the Hamil-
tonian is given by

HS
n,p(k̃z ) = a0zτ0σz + az0τzσ0

+ (a+xτ−σx + a+yτ−σy + H.c.), (36)

whose energy eigenvalues are

ES1
s,r (k̃z )

= s
√

(a0z + raz0)2 + (axx − rayy)2 + (axy + rayx )2, (37)

where s, r ∈ {±1}. This leads to fully gapped energy spectra
since the gapless condition ES1

s,r (k̃z ) = 0 requires a0z = −raz0,
axx = rayy, and axy = −rayx, which cannot be satisfied simul-
taneously by tuning the single parameter kz.

(iv) S̃π
n,p = ±τ0σz when (4p − n)/2n ∈ Z, i.e., (n, p) =

(4, 1) or (4, 3); we find a±x = a±y = 0 due to the constraints
(34d) and (34e). The effective Hamiltonian becomes

HS
n,p(k̃z ) = a0zτ0σz + az0τzσ0 + (a+0τ−σ0 + H.c.) (38)

with the eigenvalues

ES2
s,r (k̃z ) =sa0z + r

√
a2

x0 + a2
y0 + a2

z0. (39)

In this case, we can find a solution satisfying ES2
s,r (k̃z ) =

0 as follows. We expand the coefficients in lowest or-
der in k̃z: a0z = v1k̃z, az0 = m0, ax0 = v2k̃z, and ay0 =
v3k̃z (m0, v1, v2, v3 ∈ R). The solutions of ES2

±,∓(k̃z ) = 0 or
ES2

±,±(k̃z ) = 0 are obtained as

k̃z = ± m0√
v2

1 − v2
2 − v2

3

, (40)

which means that the ABC occurs in the parameter region
satisfying v2

1 − v2
2 − v2

3 > 0 as shown in Fig. 1(b).
(v) The other cases: Eqs. (34c), (34d), and (34e) give a±0 =

a±x = a±y = 0. Thus, the Hamiltonian consists of two terms,

HS
n,p(k̃z ) = a0zτ0σz + az0τzσ0, (41)

with the energy eigenvalues

ES3
s,r (k̃z ) = sa0z + raz0. (42)

The solution of ES3
s,r (k̃z ) = 0 is given by

k̃z = ±m0

v1
, (43)

where we put a0z = v1k̃z and az0 = m0 (m0, v1 ∈ R). The
energy spectra are shown in see Fig. 1(c). Interestingly, the
gapless mode appears whenever v1 �= 0, more robustly than
the other cases. We call this case an EBC.

TABLE I. Classification of GVL phases for 2 × 2 Hamiltonians
with the rotation symmetry around kz = 0. The Hamiltonians with
the rotation symmetry around kz = π and those with the screw sym-
metry around kz = 0 also have the same classification. The first and
second columns indicate the n-fold rotation operators, where n and p
are defined by Eq. (24). The third, fourth, and fifth columns show the
types of the Hamiltonians, the vortex line phases, and the underlying
mechanism for the formation of gapless modes. Here, ABC stands
for accidental band crossing.

n p Type Phase Mechanism

2 1,2 (i) Gapped
3 3 (i) Gapped
3 1,2 (ii) Gapless or Gapped ABC
4 2,4 (i) Gapped
4 1,3 (ii) Gapless or Gapped ABC
6 3,6 (i) Gapped
6 1,2,4,5 (ii) Gapless or Gapped ABC

In summary, the GVL phases are realized for both rotation
and screw symmetries. Their classification is summarized in
Tables I and II, in which we find that the rotation and screw
symmetry protected GVL phases can appear for the same sets
of n and p. This correspondence and the relation Cn,p = S0

n,p
imply that the gapless points can be moved from kz = π to the
vicinity of kz = 0 along the screw symmetric line by tuning
model parameters. The similar results are obtained in the K-
theoretical classification, which is discussed in Appendix A.

III. VORTEX GAPLESS MODES PROTECTED
BY SCREW SYMMETRY

A. Tight-binding model

In this section we demonstrate a screw symmetry protected
GVL phase which, to our knowledge, has not been discussed
before. We consider a model on a tetragonal lattice with the
space-group symmetry P42/mmc (SG No. 131). The lattice
structure is shown in Fig. 2(a). The unit cell has two sites
located at z = 0 and 1

2 along the z axis, where the length of
the unit cell is set to be unity in the x, y, and z directions.
We assume that an s-orbital electron resides on each site. Our
model realizes the type-(iv) GVL phase discussed in Sec. II D.

TABLE II. Classification of GVL phases for 4 × 4 Hamiltoni-
ans with the screw symmetry around kz = π . The first and second
columns indicate the n-fold screw operators defined by Eq. (31). The
third, fourth, and fifth columns are the same as Table I. Here, EBC
stands for enforced band crossing.

n p Type Phase Mechanism

2 1 (iii) Gapped
4 2 (iii) Gapped
4 1,3 (iv) Gapless or Gapped ABC
6 3 (iii) Gapped
6 1,2,4,5 (v) Gapless EBC
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FIG. 2. (a) Tetragonal lattice structure with two sites in a unit
cell. (b) Brillouin zone of the tetragonal lattice, where the red
thick lines represent high-symmetry lines. (c) Energy spectrum of
the Hamiltonian (44) along the high-symmetry lines. Every energy
band is doubly degenerate. There are two Dirac points positioned at
Z = (0, 0, π ) and A = (π, π, π ). The parameters are chosen to be
(t1, txy, tz, λ1, λ2) = (−0.05, 0.3, 0.5, 0.3, 0.1).

The tight-binding Hamiltonian in the normal state is writ-
ten as

H (k) = t1[cos(kx ) + cos(ky)]14

+ txy[cos(kx ) − cos(ky)]σzs0

+ tz
2

[σx + σx(2kz )]s0

+ λ1

2
[σx − σx(2kz )][sx sin(ky) + sy sin(kx )]

+ λ2

2
[σy + σy(2kz )]sz sin(kx ) sin(ky), (44)

where t1, txy, and tz are hopping matrix elements, λ1 and λ2

are spin-orbit couplings, si and σi (i = x, y, z) are the Pauli
matrices in the spin and sublattice spaces, respectively, and
the kz-dependent Pauli matrices are defined by

σ0(kz ) =
(

e−i kz
2 0

0 ei kz
2

)
, (45)

σx(kz ) =
(

0 ei kz
2

e−i kz
2 0

)
, (46)

σy(kz ) =
(

0 −iei kz
2

ie−i kz
2 0

)
. (47)

Note that the lattice structure in Fig. 2(a) shows only atoms
with the orbitals of our primary interest and does not show
other atoms (whose orbitals do not constitute the electronic
states of our interest) in the screw symmetric crystal. We con-
structed the tight-binding model using the symmetry-based
construction method of Ref. [42]. In this method, we add
the symmetry-allowed hopping terms: txy, λ1, and λ2 terms in
Eq. (44) which satisfy the space-group symmetry P42/mmc.
These hopping terms represent hopping processes under the
effective crystal field created by surrounding atoms which are
not illustrated in Fig. 2(a). See Appendix B for the details of
the model construction.

The Hamiltonian preserves the TR symmetry (T =
iσ0syK) and the crystal symmetry of P42/mmc, which com-

prises fourfold screw symmetry about the z axis (Skz

4z), twofold

rotation symmetry about the x axis (Ckz

2x), and inversion sym-
metry (Ikz ). The Hamiltonian is invariant under these crystal
symmetry operations,

Skz

4zH (k)
(
Skz

4z

)−1 = H (R4k), (48)

Ckz

2xH (kx, ky, kz )
(
Ckz

2x

)−1 = H (kx,−ky,−kz ), (49)

Ikz H (k)(Ikz )−1 = H (−k), (50)

where the operators are defined by

Skz

4z = e−i kz
2 σx(kz )e−i π

4 sz , (51)

Ckz

2x = iei kz
2 σ0(kz )sx, (52)

Ikz = ei kz
2 σ0(kz )s0. (53)

The twofold rotation and inversion operations satisfy
C−kz

2x Ckz

2x = −14 and I−kz Ikz = 14. The commutation relation
between Skz

4z and Ikz is given by

S−kz

4z Ikz = eikz Ikz Skz

4z, (54)

which leads to the anticommutation relation at kz = π ,{
Sπ

4z, Iπ
} = 0. (55)

The band structure of Eq. (44) is shown in Fig. 2(c), in which
all the energy bands are doubly degenerate due to the presence
of TR and inversion symmetries. The two Dirac points at
Z = (0, 0, π ) and A = (π, π, π ) are protected by the four-
fold screw symmetry [Eq. (48)] and the inversion symmetry
[Eq. (50)].

We extend the normal-state Hamiltonian [Eq. (44)] to the
BdG Hamiltonian

H̃ (k) =
(

H (k) − μ14 �

�† −HT (−k) + μ14

)
, (56)

where μ is the chemical potential and � = �0(−iσ0sy) is an
s-wave pair potential. We then introduce a vortex line along
the z axis with the vortex center located at the origin of
the xy plane. The pair potential is written in the cylindrical
coordinate (ρ, θ ) as

�0 → �0(ρ)eiθ , (57)

where the amplitude of the pair potential around the vortex
core is approximated by the hyperbolic tangent

�0(ρ) = �0 tanh

(
ρ

ξ

)
, (58)

with the coherence length ξ .
In the presence of the vortex line, the BdG Hamiltonian

is invariant under the following modified screw and inversion

214518-7



KOBAYASHI, SUMITA, HIRAYAMA, AND FURUSAKI PHYSICAL REVIEW B 107, 214518 (2023)

FIG. 3. Energy levels as a function of kz of vortex bound states of the BdG Hamiltonian (56), constructed from the normal-state Hamiltonian
(44) and the s-wave pair potential with a vortex line (58): (a) μ = 0, (b) −0.1, (c) −0.2, (d) −0.3, (e) −0.4, (f) −0.5, (g) −0.6, and (h) −0.7.
Here, we choose the same hopping parameters as in Fig. 2 and the pair potential with (�0, ξ ) = (0.1, 4). The system size is L = 21. The inset
of (a) indicates the screw eigenvalues: the yellow, green, blue, and red lines have the screw eigenvalues −i, i, 1, and −1 at kz = π , respectively.
Following the argument in Sec. II D, the yellow and green lines (the red and blue lines) can be described by the effective Hamiltonian HS

4,2(k̃z )
[HS

4,1(k̃z )]. Thus, the GVL modes are allowed in the red and blue lines.

operations:

S̃kz

4z =
(

ei π
4 Skz

4z 0
0 e−i π

4
(
S−kz

4z

)∗

)
, (59)

Ĩ kz =
(

ei π
2 Ikz 0
0 e−i π

2 (I−kz )∗

)
. (60)

On the other hand, C̃kz
2x = diag(Ckz

2x,C−kz∗
2x ) is not a symmetry

of the BdG Hamiltonian because the twofold rotation reverses
the winding of the vortex. However, the combination of C̃kz

2x

and T̃ = diag(T, T ∗) keeps the BdG Hamiltonian invariant
at arbitrary wave number kz. The combined T̃ C̃kz

2x symme-
try plays a role of time-reversal symmetry with (T̃ C̃kz

2x )2 =
14, which does not cause additional band degeneracy. The
vortex modes can be described by the low-energy effective
Hamiltonian discussed in Sec. II D; see Appendix A for
the classification of vortex line modes including the T̃ C̃2

symmetry.
The energy spectra of vortex bound states are obtained

by numerically diagonalizing the BdG Hamiltonian with the
open boundary conditions for the x and y directions and
the periodic boundary condition for the z direction. The en-
ergy levels are labeled by the kz-dependent screw eigenvalues
since the BdG Hamiltonian commutes with the screw operator
[Eq. (59)]. Here we regard (ρ, θ ) as internal indices, and the
screw operator is supplemented by a unitary transformation

that exchanges the site indices in the xy plane according to the
π/4 rotation.

In Fig. 3, we illustrate the evolution of the energy bands
of vortex bound states as μ changes from 0 to −0.7. At
μ = 0 [Fig. 3(a)], the energy bands are twofold degenerate.
In particular, there are twofold degenerate gapless helical
modes crossing at kz = ±π . These gapless modes originate
from the Dirac cones in the normal-state Hamiltonian H (k)
at Z = (0, 0, π ) and A = (π, π, π ). When coupled with the
s-wave pair potential, each Dirac cone is described by the
Jackiw-Rossi model [37] doubled by the sublattice degrees of
freedom. For each sublattice and valley (Z and A), the Jackiw-
Rossi model has a Majorana zero mode, which generates a
total of four Majorana zero modes at kz = π . The explicit
form of the zero-energy wave functions in the low-energy
effective BdG Hamiltonian is presented in Appendix C. The
twofold degeneracy of the energy bands at μ = 0 can be
understood from the following relation valid at μ = 0:

szσzτ0H̃ (kx + π, kx + π, kz )szσzτ0 = −H̃ (kx, ky, kz ). (61)

For small but finite |μ|, the energy bands of vortex bound
states are not twofold degenerate, except at the zone bound-
aries kz = ±π . Indeed, the fourfold-degenerate Majorana zero
modes remain at kz = ±π [Figs. 3(b)–3(d)]. When μ changes
further (μ � −0.3), the fourfold-degenerate zero modes are
split into a pair of twofold-degenerate gapless points apart
from kz = π . The stability of these gapless points is ensured
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FIG. 4. The evolution of vortex bound states as a function of the
chemical potential at (a), (c) kz = π and (b), (d) kz = 0. (c), (d) The
enlarged view of (a) and (b) around critical values. The hopping
parameters and the pair potential are chosen as in Fig. 3. The colors
indicating the screw eigenvalues of the energy spectra are the same
as those in Fig. 3.

by the screw symmetry since they have the different eigenval-
ues ±ie−ikz/2 of the screw operator. For μ � −0.6, we obtain
fully gapped energy spectra since a pair of twofold-degenerate
gapless points meet and annihilate at kz = 0.

Figure 4 shows the evolution of the vortex bound states at
kz = 0 or π as a function of the chemical potential. We notice
three characteristic regimes in the behavior of vortex bound
states: (I) |μ| � μc1, (II) μc1 < |μ| � μc2, (III) μc2 < |μ|,
where μc1 ≈ 0.3 and μc2 ≈ 0.58. In (I), we find the Jackiw-
Rossi–type zero-energy modes with fourfold degeneracy at
kz = π , which remain stable as long as the approximation of
the low-energy Hamiltonian to the Dirac Hamiltonian is justi-
fied. In (II), the fourfold-degenerate zero modes are split into
a pair of twofold-degenerate zero modes away from kz = π ,
and therefore a gap opens at kz = π . As |μ| is increased, the
two gapless modes move along the kz axis [Figs. 3(e) and 3(f)]
until they meet and annihilate at kz = 0 when |μ| = μc2. The
trivial phase (III) appears at |μ| > μc2. Note that μc2 signals
a topological phase transition since it accompanies the pair
annihilation of zero modes, whereas the transition between the
regimes (I) and (II) is considered to be a smooth crossover. It
is clear from Eq. (40) that the fourfold degeneracy at kz = π is
obtained by tuning the parameter m0 to zero. Since there is no
symmetry enforcing m0 = 0, we expect that the parameter m0

representing small deviations from the Jackiw-Rossi model
can be finite in (I).

We comment on the dependence on the position of the
vortex core. The results presented above were obtained for
the case when the vortex core is positioned at a lattice site.
When it is located at the center of a plaquette, we have found
that the fourfold screw symmetry protected gapless modes

disappear and a fully gapped phase is realized due to the
changes in the screw eigenvalues of low-energy levels. This
is because the fourfold screw eigenvalues of the zero-energy
modes associated with the Dirac cones depend on the position
of the vortex core. The detailed discussion is given in Ap-
pendix D. On the other hand, the stability of the sixfold screw
symmetry protected GVL phases is independent of the vortex
core position since its mechanism is the EBC.

B. Application to Nb3Pt

Finally, we discuss the Nb3X family as a material can-
didate that may realize a GVL phase. The crystal structure
of the Nb3X family is shown in Fig. 5(a). Here, we report
the electronic band structures of Nb3Pt obtained from the
calculation based on the density functional theory (DFT). We
used the ab initio code OPENMX [63] with the Perdew-Burke-
Ernzerhof (PBE) functional [64] and the valence orbital sets
Nb7.0-s3p3d3 f 1 and Pt7.0-s2p2d2 f 1. The energy cutoff for
the numerical integration was set to 150 Ry. We employed the
12 × 12 × 12 k mesh.

The crystal structure of the Nb3X family obeys space-
group symmetry Pm3̄n (SG No. 223). The Nb3X family
is a class of materials that exhibit superconductivity with
a relatively high upper critical field [65–67] due to large
electron-phonon coupling [68–71]. Interestingly, the Nb3X
family allows a wide selection of atoms in the X site, so that
we can easily tune the position of the Fermi level. Substitution
of Ta for Nb is also possible, which decreases the transition
temperature but enhances the spin-orbit coupling. Among the
Nb3X family, here we focus on Nb3Pt which exhibits super-
conductivity at Tc = 10.9 [72] since it hosts Dirac points close
to the Fermi energy (≈ −0.02 eV) at the X = (π, 0, 0) point
and its symmetry related points. The energy band structures
of Nb3Pt along high-symmetry lines are shown in Figs. 5(b)
and 5(c). All the bands are twofold degenerate due to the
TR and inversion symmetries. The Dirac point at the X point
corresponds to the one at the Z point protected by the screw
symmetry discussed in Sec. III A. There is another type of
Dirac point on the �-X line protected by the C2x rotation
symmetry. From the viewpoint of crystalline symmetry, we
expect that Nb3Pt should share the same physics with the
tight-binding model discussed in Sec. III A.

To see this, we examine the group operations of Pm3̄n,
which are generated by a fourfold screw {C4z|τd} with
τd = ( 1

2 , 1
2 , 1

2 ), a threefold rotation around the [111] direc-
tion {C3[111] |0}, a twofold rotation around the [110] direction
{C2[110] |τd}, and an inversion operator {I|0}.2 When consider-
ing an s-wave superconducting state with a vortex line along
the z axis, only {C4z|τd}, {I|0}, and the combination of TR
and {C2x|0} remain as the relevant symmetry of the system.
Comparing them with the symmetry operations in Eq. (44), we
notice that the only difference is the expression of the fourfold
screw operator; {C4z|τd} accompanies a half-translation along
the x and y axes in addition to the z axis. Thus, {C4z|τz}
with τz = (0, 0, 1

2 ) can be met when we choose the position

2The notation {g|a} is a Seitz space-group symbol with a point-
group operation g and a translation a.
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FIG. 5. (a) Crystal structure of the Nb3X family. (b) Electronic band structure of Nb3Pt. (c) The magnified band structure around the X
point. The solid and dotted lines correspond to the bands with and without the spin-orbit coupling, respectively. The energy is measured from
the Fermi level.

of the vortex core such that the translation in terms of the
x and y directions vanishes. Such a translation is given by
η = (0,− 1

2 , 0) under which {C4z|τd} changes to

{e|η}−1{C4z|τd}{e|η} = {C4z|τz}, (62)

where e is a unit element and we use the multiplication rule

{g|ag}{h|ah} = {gh|gah + ag}. (63)

As a result, the crystal symmetry that preserves supercon-
ducting states with a vortex line along the z axis becomes
G = Gvortex + {TC2x|0}Gvortex with

Gvortex = {e|0}Tz + {C4z|τz}Tz + {C−1
4z |τz}Tz

+ {C2z|0}Tz + {I|0}Tz + {IC4z|τz}Tz

+ {IC−1
4z |τz}Tz + {IC2z|0}Tz, (64)

which are equivalent to the operations in Sec. III A. Here, Tz

is the translation group in the z direction. In addition, Nb3Ir
is also a superconductor with Tc = 1.7. We can adjust the
Dirac point to the Fermi level by slightly substituting Pt for
Ir. Therefore, Nb3Pt is expected to be a good test bed to study
the relation between screw symmetry protected Dirac cones
and GVL phases, when other metallic bands become s-wave
superconducting.

IV. SUMMARY

We have studied crystal symmetry protected GVL phases
in superconducting Dirac semimetals. Under the crystal
symmetries that host Dirac semimetals, we classified pos-
sible GVL modes using the symmetry analysis of the
effective low-energy Hamiltonian and discussed the mecha-
nism of the formation of gapless vortex modes for the cases
where the Dirac cones are protected by (a) rotation symmetry
or (b) screw symmetry. In the case (a), the effective Hamil-
tonian is a 2 × 2 matrix, and the n-fold rotation symmetry
protected GVL modes appear through the ABC [Fig. 1(a)]
when the rotation eigenvalues satisfy 2p/n /∈ Z. In the case
(b), the effective Hamiltonian is enlarged to a 4 × 4 matrix due
to the twofold degeneracy at kz = π . The n-fold screw sym-
metry protected GVL modes are realized through the ABC
[Fig. 1(b)] for n = 4 and p/2 /∈ Z and the EBC [Fig. 1(c)]
for n = 6 and p/3 /∈ Z. The n = 6 EBC case is particularly

interesting in that the existence of gapless modes is deter-
mined solely by the representation of the screw symmetry,
independently of model parameters and the location of the
vortex core.

Furthermore, we have demonstrated the fourfold screw
symmetry protected GVL modes in the tight-binding model
with the space-group symmetry P42/mmc. The model hosts
two Dirac cones located at the Z and A points. We consid-
ered the s-wave superconducting state with a vortex line and
found that the vortex bound-state spectra are classified into
three regimes as a function of the chemical potential: (I) the
Jackiw-Rossi–type zero-energy modes with fourfold degener-
acy (|μ| < μc1), (II) the fourfold screw symmetry protected
GVL phase (μc1 < |μ| < μc2), and (III) the fully gapped vor-
tex line phase (μc2 < |μ|).

Finally, we have proposed Nb3Pt as a candidate material
to realize screw symmetry protected GVL phases. From the
viewpoint of crystal symmetry, we have pointed out that the
material has both the Dirac cones close the Fermi level in
its normal-state band structure and the crystal symmetry that
protects screw symmetry protected GVL modes when the
material is in an s-wave superconducting state.
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APPENDIX A: K-THEORETICAL APPROACH

Here, we discuss the K-theoretical classification of GVL
phases. As discussed in Sec. II C, the 3D BdG Hamiltonian
with a vortex line is mapped to a 1D BdG Hamiltonian. That
is, we are able to apply the classification methods developed
in the field of nodal superconductors [73–79] to the vortex
systems. Note that the classification method is also useful to
determine electromagnetic response of Majorana zero modes
[80–86]. With this in mind, we consider a 1D system with
rotation (screw) symmetry Ĉn ≡ {Cnz|0} (Ŝn ≡ {Cnz|τz}), in-
version symmetry Î ≡ {I|0}, PH symmetry Ĉ ≡ {C|0}, and
pseudo-TR symmetry T̂ ′ ≡ {TC2x|0} as the symmetries that
are preserved in the presence of a vortex line. We assume
that both the rotation (screw) axis and the vortex line are
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parallel to the z axis. Ĉ and T̂ ′ are the antiunitary operators. In
the following, we employ a method to classify stable point
nodes on a high-symmetry line [79], which can be carried
out by determining a local zero-dimensional (0D) topological
number from an effective Altland-Zirnbauer (AZ) symmetry
class derived from the Wigner’s tests in terms of TR, PH, and
chiral symmetries.

First of all, we define Gkz as a little cogroup at kz, which is
a set of point-group operations that keep kz invariant up to the
reciprocal lattice vector. Full symmetry operations are given
by, depending on whether kz = kinv = 0, π or not,

Gkz =
{

Gkinv
0 + CGkinv

0 + T ′Gkinv
0 + CT ′Gkinv

0 ,

Gkz

0 + ĈGkz

0 + T ′Gkz

0 + ĈT ′Gkz

0 ,
(A1)

where Ĉ ≡ ĈÎ and Gkz

0 is a unitary part of Gkz , i.e., Gkinv
0 =

{Ĉn, Î} and Gkz

0 = {Ĉn} for a rotation symmetric system;
Gkinv

0 = {Ŝn, Î} and Gkz

0 = {Ŝn} for a screw symmetric system.
Here, the curly brackets {· · · } represent the generators of the
group.

To formulate the Wigner’s test, we introduce γ
kz
α (ĝ) as a

double-valued (spinful) irrep α of ĝ ∈ Gkz

0 . The irreps satisfy
the multiplication rule

zĝĥkz

ĝ,ĥ
γ kz

α (ĝĥ) =
{

γ
hkz
α (ĝ)γ kz

α (ĥ), if ĝ is unitary

γ
hkz
α (ĝ)γ kz∗

α (ĥ), if ĝ is antiunitary
(A2)

where zkz

ĝ,ĥ
∈ U (1) is a so-called factor system. In addition,

in the presence of a vortex line, the gauge transformation
associated with the vortex field is applied to the irreps. Ac-
cording to Eqs. (10) and (13), the irreps are transformed, under
θ → θ + �θg, as

γ̃ kz
α (ĝ) ≡ ei�θg/2γ kz

α (ĝ). (A3)

Accordingly, Eq. (A2) is also modified as

z̃ĝĥkz

ĝ,ĥ
γ̃ kz

α (ĝĥ) =
{

γ̃
hkz
α (ĝ)γ̃ kz

α (ĥ), if ĝ is unitary

γ̃
hkz
α (ĝ)γ̃ kz∗

α (ĥ), if ĝ is antiunitary
(A4)

where z̃kz

ĝ,ĥ
∈ U (1) includes the vortex-field-induced phase

factor.
We employ the Wigner’s tests to determine effective AZ

classes in terms of the PH (Ĉ or Ĉ), TR (T̂ ′), chiral (�̂ ≡ ĈT̂ ′
or ĈT̂ ′) operators. They are explicitly formulated as [87–90]

W C
α ≡ 1∣∣Gkz

0

∣∣ ∑
ĝ∈Gkz

0

z̃kz

Ĉĝ,Ĉĝ
Tr{γ̃ kz

α [(Ĉĝ)2]} = ±1, 0, (A5)

W T
α ≡ 1∣∣Gkz

0

∣∣ ∑
ĝ∈Gkz

0

z̃kz

T̂ ′ĝ,T̂ ′ĝ
Tr{γ̃ kz

α [(T̂ ′ĝ)2]} = ±1, 0, (A6)

W �
α ≡ 1∣∣Gkz

0

∣∣ ∑
ĝ∈Gkz

0

z̃kz

ĝ,�̂

z̃kz

�̂,�̂−1ĝ�̂

Tr[γ̃ kz
α (�̂−1ĝ�̂)]∗Tr[γ̃ kz

α (ĝ)]

= 1, 0, (A7)

when kz = kinv, whereas Ĉ is replaced with Ĉ when kz �= kinv.
Here, z̃Ĉ,Ĉ = z̃T̂ ′,T̂ ′ = 1, and z̃Ĉ,ĝ = z̃ĝ,Ĉ = 1 since we con-
sider s-wave SCs. The triples (W C

α ,W T
α ,W �

α ) determine the

TABLE III. The effective AZ symmetry classes and the 0D topo-
logical numbers for kz = kinv. Here, C is replaced by C for kz �= kinv.

AZ class W T
α W C

α W �
α 0D Topo. No.

A 0 0 0 Z
AIII 0 0 1 0
AI 1 0 0 Z
BDI 1 1 1 Z2

D 0 1 0 Z2

DIII −1 1 1 0
AII −1 0 0 2Z
CII −1 −1 1 0
C 0 −1 0 0
CI 1 −1 1 0

effective AZ classes and the corresponding 0D topological
numbers as shown in Table III.

Let us perform the Wigner’s tests for a system with four-
fold screw and inversion symmetries, i.e., Gkinv

0 = {Ŝ4, Î} and
Gkz

0 = {Ŝ4}, as an example. In this case, the irreps are given by
two 2D irreps,

γ̃ π
1 (Ŝ4) =

(
0 −e−i π

4

ei π
4 0

)
, γ̃ π

1 (Î ) =
(

i 0
0 −i

)
, (A8a)

γ π
2 (Ŝ4) =

(
0 e−i π

4

ei π
4 0

)
, γ̃ π

2 (Î ) =
(

i 0
0 −i

)
; (A8b)

at kz = π , four 1D irreps,

γ̃
kz

1±(Ŝ4) = ±e−ikz/2, (A9a)

γ̃
kz

2±(Ŝ4) = ±ie−ikz/2; (A9b)

at kz �= 0, π , and eight 1D irreps,

γ̃ 0
1±(Ŝ4) = ±1, γ̃ 0

1±(Î ) = i, (A10a)

γ̃ 0
1′±(Ŝ4) = ±1, γ̃ 0

1′±(Î ) = −i, (A10b)

γ̃ 0
2±(Ŝ4) = ±i, γ̃ 0

2±(Î ) = i, (A10c)

γ 0
2′±(Ŝ4) = ±i, γ̃ 0

2′±(Î ) = −i; (A10d)

at kz = 0, where we have used the irreps in the Bilbao
Crystallographic Server [91], P42/m (SG No. 84), and the
vortex-field-induced additional phases are �θS4 = π/4 and
�θI = π/2. The compatibility relation imposes the con-
straints [92]

γ̃ π
� ↓ Gkz

0 = γ̃
kz

�+ + γ̃
kz

�−, (A11)

γ̃ 0
�± ↓ Gkz

0 = γ̃
kz

�±, (A12)

γ̃ 0
�′± ↓ Gkz

0 = γ̃
kz

�±, (A13)

where � = 1, 2 and γ̃ ↓ Gkz

0 means the decomposition of γ̃ to
irreps on Gkz

0 ⊂ Gkinv
0 . Substituting Eqs. (A8), (A9), (A10) into

the Wigner’s tests (A5), (A6), and (A7), we obtain

W C
� =

{−1 when � = 1,

1 when � = 2,
(A14)

W T
� = 1 for ∀�, (A15)

W �
� = 1 for ∀�, (A16)
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at kz = π ,

W C
�± =

{−1 when � = 1,

0 when � = 2,
(A17)

W T
�± = 1 for ∀�, (A18)

W �
�± =

{
1 when � = 1,

0 when � = 2,
(A19)

at kz �= 0, π , and

W C
�± = 0 for ∀�, (A20)

W T
�± = 0 for ∀�, (A21)

W �
�± =

{
1 when � = 1, 1′,
0 when � = 2, 2′, (A22)

at kz = 0. The obtained results mean that γ̃ π
1 and γ̃ π

2 belong
to CI and BDI in the AZ class; γ̃

kz

1± and γ̃
kz

2± to CI and A; γ̃ 0
1±,

γ̃ 0
1′±, γ̃ 0

2± γ̃ 0
2′± to AIII, AIII, A, and A, respectively. Combining

these results with the compatibility constraints and determin-
ing the corresponding 0D topological number from the AZ
class (see Table III), we find two types of node structures in
terms of kz:

irrep kz = π → kz �= 0, π → kz = 0
γ̃ π

1 (Ŝ4) 0 0 0
γ̃ π

2 (Ŝ4) Z2 Z Z
(A23)

where the leftmost column indicates the irreps at kz = π and
the other columns represent the 0D topological numbers for
each kz. Equation (A23) implies that the GVL phases are
possible for γ̃ π

2 (Ŝ4) because we have nontrivial 0D topological
numbers classified by Z at kz �= 0, π , which stabilizes a band
crossing at arbitrary kz. Interestingly, we find the different
topological numbers at kz = π , which may indicate types of
the underlying mechanisms for the formation of GVL modes.
For comparison, we show the topological classification in the
case of sixfold screw symmetry, which is obtained as

irrep kz = π → kz �= 0, π → kz = 0
γ̃ π

1 (Ŝ6) Z Z Z
γ̃ π

2 (Ŝ6) 0 0 0
γ̃ π

3 (Ŝ6) Z Z Z

(A24)

where the irreps are defined by, using the the Bilbao Crystal-
lographic Server [91], P63/m (SG No. 176),

γ̃ π
1 (Ŝ6) =

(
0 ei π

6

ei π
6 0

)
, γ̃ π

1 (Î ) =
(

i 0
0 −i

)
, (A25a)

γ π
2 (Ŝ6) =

(
0 −i
−i 0

)
, γ̃ π

2 (Î ) =
(

i 0
0 −i

)
, (A25b)

γ̃ π
3 (Ŝ6) =

(
0 ei 5π

6

ei 5π
6 0

)
, γ̃ π

3 (Î ) =
(

i 0
0 −i

)
, (A25c)

with �θS6 = π/6 and �θI = π/2. Thus, stable GVL phases
appear when the irreps at kz = π are given by γ̃ π

1 (Ŝ6) and
γ̃ π

3 (Ŝ6), and the 0D topological number at kz = π is different
from that in Eq. (A23). In view of this, Eqs. (A23) and (A24)
are consistent with the symmetry analysis of the effective
low-energy Hamiltonians in Sec. II C.

TABLE IV. The topological classification of nodal phases in a
1D superconducting vortex line with n-fold rotation symmetry. The
symmetries of the systems are the n-fold rotation symmetry {Cnz|0},
inversion symmetry {I|0}, PH symmetry {C|0}, and pseudo-TR sym-
metry {TC2x|0}. The first and second columns show the irreps of
n-fold rotation operator (24). The other columns represent the AZ
classes at kz = kinv = 0, π and kz �= kinv, where the numbers in the
parentheses are the corresponding 0D topological numbers and � is
marked for GVL phases.

n p kz = kinv kz �= kinv GVL modes

2 1,2 AIII (0) CI (0)
3 3 AIII (0) CI (0)
3 1,2 A (Z) AI (Z) �
4 2,4 AIII (0) CI (0)
4 1,3 A (Z) AI(Z) �
6 3,6 AIII (0) CI (0)
6 1,2,4,5 A (Z) AI (Z) �

The topological classifications of nodal phases in a 1D
superconducting vortex line with n-fold rotation and n-fold
screw symmetries are summarized in Tables IV and V, re-
spectively, where we use the same rotation (screw) operators
as in Tables I and II for comparison purposes. We find that
the two classifications are consistent with each other. Note
that in the fourfold screw symmetry, γ̃ π

1 (Ŝ4) and γ̃ π
2 (Ŝ4) corre-

spond to p = 2 and 1, whereas in the sixfold screw symmetry,
γ̃ π

1 (Ŝ6), γ̃ π
2 (Ŝ6), and γ̃ π

3 (Ŝ6) correspond to p = 2, 3, and 1,
respectively.

APPENDIX B: CONSTRUCTION
OF TIGHT-BINDING MODELS

The tight-binding model (44) is constructed using a
symmetry-based construction method [42], which allows to
make a tight-binding model in a tetragonal lattice with a
nonsymmorphic symmetry from the symmetry perspective.
In the following, we describe the procedures for constructing
Eq. (44) with the space-group symmetry P42/mmc (SG No.
131).

First of all, we introduce a unit cell with two sites
[Fig. 2(a)] labeled by {A, B}. Let us define c†

sσ (R) to be the
creation operator of an electron with spin s ∈ {↑,↓} and sub-
lattice σ ∈ {A, B} in the unit cell at the lattice vector R. The

TABLE V. The topological classification of nodal phases in the
case of n-fold screw symmetry {Cnz|τz}. The first and second columns
represent the irreps of the screw operator (31). In third and fourth
columns, we show the AZ symmetry classes and the 0D topological
numbers at kz = π and kz �= kinv. The classification at kz = 0 is the
same as the third column in Table IV.

n p kz = π kz �= kinv GVL modes

2 1 CI (0) CI (0)
4 2 CI (0) CI (0)
4 1 BDI (Z2) AI (Z) �
6 3 CI (0) CI (0)
6 1,2 AI (Z) AI (Z) �
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Fourier transform of c†
sσ (R) is defined as

c†
sσ (k) =

∑
R

e−ik·(R+rσ )c†
sσ (R), (B1)

where rσ indicates the position of sublattice sites in the unit
cell; rA = (0, 0, 0) and rB = (0, 0, 1/2). Note that Eq. (B1) is
not periodic under the translation of reciprocal lattice vectors
G since c†

sσ (k + G) = e−iG·rσ c†
sσ (k). That is, an associated

Hamiltonian in the momentum space is also not periodic under
the translation in terms of G such that

Hsσ ;s′σ ′ (k + G) = eiG·rσ Hsσ ;s′σ ′ (k)e−iG·rσ ′ . (B2)

To obtain the Hamiltonian with the periodicity in terms of G,
we define another Fourier transformation

c†
sσ (k) =

∑
R

e−ik·Rc†
sσ (R), (B3)

which satisfies c†
sσ (k + G) = c†

sσ (k). Equations (B1) and (B3)
are related to each other through the unitary transformation

V (k) =
(

e−ik·rA 0
0 e−ik·rB

)
σ

, (B4)

in the σ grading. The associated Hamiltonian is obtained as

V (k)H (k)V †(k), (B5)

which is invariant under k to k + G. In the following, we first
adopt the definition of Eq. (B1), which is useful to system-
atically construct symmetry-allowed tight-binding models.
Then, it is transformed to those with the periodicity through
the unitary transformation (B5).

We define the action of a space group with a point-group
operation g and a translation τ on Eq. (B1) as

c†
sσ (k) →

∑
s′σ ′

e−igk·τc†
s′σ ′ (gk)(Ug)s′σ ′;sσ

≡
∑
s′σ ′

c†
s′σ ′ (gk)

(
U k

g

)
s′σ ′;sσ , (B6)

where Ug is a 4 × 4 unitary matrix and gk represents the
rotation of wave number as in Eq. (3). For the generators of
P42/mmc, Ug is explicitly represented as

U kz
S4z

= e−i kz
2 σxe−i π

4 sz , (B7)

UC2x = iσ0sx, (B8)

UI = 14. (B9)

where si and σi (i = x, y, z) describe the Pauli matrix in the
spin and sublattice spaces, respectively, and σ0 = s0 = 12.
Likewise, the TR operation is defined as

T = iσ0syK. (B10)

We construct a tight-binding Hamiltonian that preserves
Eqs. (B7), (B8), (B9), and (B10), which must satisfy

UgH (k)U †
g = H (gk), (B11)

T H (k)T † = H (−k). (B12)

where g = S4z, C2x, and I . Following Ref. [42], we divide the
Hamiltonian into two parts:

H (k) = H0(k) + H ′(k), (B13)

which represent the nearest-neighbor hopping on the tetrag-
onal lattice and additional perturbations that lower the
symmetry of the tight-binding model to P42/mmc, respec-
tively. The nearest-neighbor hopping terms are described as

H0(k) = t1[cos(kx ) + cos(ky)]14 + tz cos

(
kz

2

)
σxs0. (B14)

Enumerating the symmetry-allowed terms, H ′(k) is deter-
mined to be

H ′(k) = txy[cos(kx ) − cos(ky)]σzs0

+ λ1 sin

(
kz

2

)
[sin(ky)σysx + sin(kx )σysy]

+ λ2 sin(kx ) sin(ky) cos

(
kz

2

)
σysz, (B15)

where txy represents the sublattice-dependent hopping term,
whereas λ1 and λ2 are sublattice-dependent spin-orbit cou-
pling terms. The physical implication of H ′(k) is a hopping
process under the effective crystal field created by surround-
ing atoms which are not illustrated in Fig. 2(a).

Applying the unitary transformation (B5), Eq. (B13) is
transformed into Eq. (44). At the same time, the symmetry
operators (B7), (B8), and (B9) are transformed to
Eqs. (51), (52), and (53), respectively, by the transformation
V (gk)U k

g V (k)†.

APPENDIX C: LOW-ENERGY DIRAC HAMILTONIAN
AND VORTEX ZERO-ENERGY MODES

In this Appendix, we derive a low-energy Dirac Hamil-
tonian of the tight-binding Hamiltonian (44) around Z =
(0, 0, π ) and A = (π, π, π ) and an associated vortex zero-
energy mode. By expanding Eq. (44) around the Z and A
points, the low-energy Dirac Hamiltonian is given by, up to
the linear order of momentum,

Hν (k) = 2νt114 + tz
2

k̃zσys0 + νλ1σx(kysx + kxsy), (C1)

where k̃z = kz − π , and ν = +1 (−1) corresponds to the Z
(A) point. When ν = −1, the 2D momentum (kx, ky) is mea-
sured from (π, π ). Similarly, the symmetry operators are also
expanded around Z and A, which result in

Sπ
4z = iσye−i π

4 sz , (C2)

Cπ
2x = iσzsx, (C3)

Iπ = σzs0. (C4)
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The s-wave superconducting state of the low-energy Dirac
Hamiltonian is described by the BdG Hamiltonian

H̃ν (k) =
(

Hν (k) − μ �0(−iσ0sy)
�∗

0iσ0sy −HT
ν (−k) + μ

)
= (2νt1 − μ)σ0s0τz + tz

2
k̃zσys0τz

+ νλ1σx(kysxτ0 + kxsyτz )

+ σ0sy[Re(�0)τy + Im(�0)τx] (C5)

with �0 being the s-wave pair potential. We use the unitary
operator U = 1√

2
(σz + σx )s0τ0 to transform the BdG Hamil-

tonian to the form of the Jackiw-Rossi model,

UH̃ν (k)U † =
(

H̃ν,+(kx, ky) i
2 tzk̃zs0τz

− i
2 tzk̃zs0τz H̃ν,−(kx, ky)

)
σ

(C6)

in the σ grading, where

H̃ν,±(kx, ky) = (2νt1 − μ)s0τz + sy[Re(�0)τy + Im(�0)τx]

± νλ1(kysxτ0 + kxsyτz ). (C7)

We implement a vortex positioned at x = y = 0 in the pair
potential, which is described by �0 = �(ρ)eiθ , kx → −i∂x =
−i[cos(θ )∂ρ − sin(θ )∂θ/ρ], and ky → −i∂y = −i[sin(θ )∂ρ +
cos(θ )∂θ/ρ]. Here we assume that �(ρ) satisfies �(ρ =
0) = 0 and �(ρ → ∞) = �0 and use the polar coordinate
(x, y) = (ρ cos(θ ), ρ sin(θ )). Note that the translation sym-
metry along the z axis is preserved. Equation (C7) is then
rewritten as

H̃ν,σ (ρ, θ ) =

⎛⎜⎜⎜⎝
−mν −σνλ1eiθ

(
∂ρ + i

ρ
∂θ

)
0 −�(ρ)eiθ

σνλ1e−iθ
(
∂ρ − i

ρ
∂θ

) −mν �(ρ)eiθ 0
0 �(ρ)e−iθ mν σνλ1e−iθ

(
∂ρ − i

ρ
∂θ

)
−�(ρ)e−iθ 0 −σνλ1eiθ

(
∂ρ + i

ρ
∂θ

)
mν

⎞⎟⎟⎟⎠, (C8)

where σ = ± and mν = μ − 2νt1. Equation (C8) is equivalent
to the Jackiw-Rossi model [37] with the mass mν . When kz =
π , the off-diagonal terms in Eq. (C6) vanish. We can find zero-
energy solutions by solving Eq. (C8). To see this, consider the
eigenvalue problem,

UH̃ν (k)U †|�ν,σ (ρ, θ )〉 = E |�ν,σ (ρ, θ )〉. (C9)

Since Eq. (C6) is block diagonalized at k̃z = 0, the eigenvalue
problems of H̃ν,+ and H̃ν,− are solved separately. Substitut-
ing |�ν,+(ρ, θ )〉 = |ψν,+(ρ, θ )〉 ⊕ 0 and |�ν,−(ρ, θ )〉 = 0 ⊕
|ψν,−(ρ, θ )〉 into Eq. (C9), the differential equation for the
zero-energy states becomes H̃ν,σ (ρ, θ )|ψν,σ (ρ, θ )〉 = 0. Fol-
lowing Refs. [37,93], we obtain

ψν,+(ρ, θ ) = Nν exp

(
−

∫ ρ

0

�(x)

λ1
dx

)

×

⎛⎜⎜⎜⎜⎜⎜⎝
J1

(
mν

λ1
ρ
)

ei(θ+ π (ν−1)
4 )

J0

(
mν

λ1
ρ
)

e−i π (ν−1)
4

J1

(
mν

λ1
ρ
)

e−i(θ+ π (ν−1)
4 )

J0

(
mν

λ1
ρ
)

ei π (ν−1)
4

⎞⎟⎟⎟⎟⎟⎟⎠, (C10)

ψν,−(ρ, θ ) = Nν exp

(
−

∫ ρ

0

�(x)

λ1
dx

)

×

⎛⎜⎜⎜⎜⎜⎜⎝
J1

(
mν

λ1
ρ
)

ei(θ− π (ν+1)
4 )

J0

(
mν

λ1
ρ
)

ei π (ν+1)
4

J1

(
mν

λ1
ρ
)

e−i(θ− π (ν+1)
4 )

J0

(
mν

λ1
ρ
)

e−i π (ν+1)
4

⎞⎟⎟⎟⎟⎟⎟⎠, (C11)

where Jk (ρ) is the kth Bessel function and Nν are normaliza-
tion constants determined by the condition

N−2
ν = 4π

∫ ∞

0
ρ dρ exp

(
−2

∫ ρ

0

�(ρ ′)
λ1

dρ ′
)

×[
J2

1 (mνρ/λ1) + J2
0 (mνρ/λ1)

]
. (C12)

The zero-mode solutions satisfy the Majorana condition

|ψν,σ 〉 = τx|ψν,σ 〉∗. (C13)

The off-diagonal components ± i
2 tzk̃zs0τz in Eq. (C6) mix

|�ν,+〉 with |�ν,−〉 and vice versa, leading to a finite energy
proportional to k̃z. The matrix elements are calculated as

〈ψν,+|s0τz|ψν,−〉 = 4π iνN2
ν

∫
ρ dρ exp

(
−2

∫ ρ

0

�(ρ ′)
λ1

dρ ′
)

× [
J2

0 (mνρ/λ1) − J2
1 (mνρ/λ1)

]
=: iνcν, (C14a)

〈ψν,−|s0τz|ψν,+〉 = −iνcν, (C14b)

where cν is a constant that depends on |mν |. Then the
matrix elements of the BdG Hamiltonian in Eq. (C6) for
(|�ν,+〉, |�ν,−〉) are given by

〈UH̃ν (k)U †〉 = −νcνtz
2

k̃z

(
0 1
1 0

)
. (C15)

To check the screw eigenvalues of the zero-energy modes,
we evaluate the matrix elements of S̃π

4 in terms of the zero-
energy solutions (C10) and (C11). From Eq. (59), S̃π

4z is
represented by

S̃π
4z = iσye−i π

4 (sz−s0 )τz , (C16)

which is transformed to

U S̃π
4zU

† = −iσye−i π
4 (sz−s0 )τz (C17)
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by the unitary transformation U . Taking into account the π/2
rotation in the real space, we calculate the matrix elements∫

ρ dρ

∫
dθ [ψν,±(ρ, θ )]†e−i π

4 (sz−s0 )τzψν,∓(ρ, θ − π/2)

= ∓ν, (C18)

to write the screw operator S̃π
4z in the basis set of

(|�ν,+〉, |�ν,−〉) 〈
U S̃π

4zU
†
〉 = +ν

(
0 1
1 0

)
. (C19)

The linear combinations

|�ν,1〉 = 1√
2

(|�ν,+〉 + |�ν,−〉), (C20)

|�ν,2〉 = 1√
2

(|�ν,+〉 − |�ν,−〉) (C21)

diagonalize Eqs. (C15) and (C19) simultaneously, yielding

〈UH̃ν (k)U †〉 = −νcνtz
2

k̃z

(
1 0
0 −1

)
, (C22)

〈
U S̃π

4zU
†
〉 = +ν

(
1 0
0 −1

)
. (C23)

The gapless Majorana modes have linear dispersion around
kz = π and the screw eigenvalues ±1, which is consistent with
the numerical results in Figs. 3(a)–3(c).

Incidentally, when μ = 0, the two masses are related
m+1 = −m−1, and c+1 = c−1. Therefore, the ν = ±1 modes
are degenerate. In fact, all the energy bands of the vortex
bound states of the BdG Hamiltonian are twofold degenerate
at μ = 0 because H̃+1 and H̃−1 have the same energy spectra,
which can be understood from the relation

σxs0τzH̃−1(k) σxs0τz|μ=0 = −H̃+1(k)|μ=0. (C24)

APPENDIX D: INFLUENCE OF VORTEX CORE
POSITIONS ON GVL MODES

As discussed in Sec. II D, crystal symmetry protected GVL
modes emerge when vortex bound states have different rota-
tion (screw) eigenvalues. Thus, the stability of GVL modes is
sensitive to the representation of rotation (screw) operators. In
the following, we discuss the effect of the vortex core position
on the fourfold screw symmetry protected GVL modes.

In Fig. 6, we show the vortex bound states of the tight-
binding Hamiltonian (44), where the lattice size is chosen to
be an even integer (L = 22), and the vortex core is located
at the center of a plaquette. Figure 6(a) shows the existence
of zero-energy modes with fourfold degeneracy at kz = ±π ,
whereas the gapless modes disappear in Fig. 6(b) as μ is
changed. This is in sharp contrast to Fig. 3(f).

Comparing Fig. 6(a) with Fig. 3(b), we notice that the gap-
less modes around kz = ±π have different eigenvalues of S̃π

4z.
In Fig. 3(b), the two gapless modes with the screw eigenvalue
ie−i π

2 = 1 (blue) have positive velocities (dE/dkz) at kz =
−π , while their velocities have opposite signs in Fig. 6(a).
The modes with the S̃π

4z eigenvalue −ie−i π
2 = −1 (red) are

0

0.1

-0.1

0

0.1

-0.1

E

0-π π 0-π π

(a)

kz kz

(b)

(c)

kz

E

kz

E(d)

FIG. 6. The evolution of vortex bound states as a function of
kz for (a) μ = −0.1 and (b) −0.5. The hopping parameters and
the pair potential are chosen as the same as in Fig. 3. The lattice
size is L = 22, and the vortex core is located at the center of the
plaquette. The color code of the energy spectra is the same as in
Fig. 3. (c), (d) Show the energy spectrum of the low-energy effec-
tive Hamiltonian (38) around kz = π . The arrow between the left
and right figures in (c) and (d) indicates the change in the spectra
due to the m0 term, which corresponds to changing the chemical
potential in the tight-binding model. The parameters are chosen to be
(m0, v1, v2, v3) = (0, 1.5, 1, 0.5) and (0.5,1.5,1,0.5) for the left and
right figures of (c); (0,1.5,2,0.5) and (0.5,1.5,2,0.5) for the left and
right figures of (d).

related to those with +1 (blue) by the PH symmetry. Accord-
ing to the low-energy effective Hamiltonian (38), the former
situation (v2

1 > v2
2 + v2

3) has stable gapless modes (against the
perturbation m0) [Fig. 6(c)], while the latter (v2

1 < v2
2 + v2

3)
does not [Fig. 6(d)].

In the following, we explain the disappearance of the
gapless modes using the low-energy Dirac Hamiltonians dis-
cussed in Appendix C. We note that the S̃π

4 eigenvalues of
zero-energy modes depend on the location of the vortex core.
To see this, we consider a 2D square lattice, where the position
of each site is defined by r(m,n) = mex + ney (m, n ∈ Z). ex

and ey are the unit vectors in the x and y directions. We set a
vortex core at (i) (m, n) = (0, 0) or (ii) ( 1

2 , 1
2 ), which corre-

spond to the site at the origin and the center of a plaquette,
respectively. Then, the fourfold rotation around the vortex
core transforms the position of sites as r(m,n) → r(−n,m) for (i)
and r(m,n) → r(−n+1,m) for (ii). To evaluate this transformation
in the momentum space, we consider the phase part of the
Bloch wave function e−ik·r(m,n) . In particular, we focus on the
Bloch wave function at the Dirac cones, which are located
at the fourfold rotation invariant momentum k0 = (0, 0) and
kπ = (π, π ). In this case, the effect of fourfold rotation is
calculated as, for (i),

e−ik0·r(m,n) = 1 → e−ik0·r(−n,m) = 1, (D1)

e−ikπ ·r(m,n) = 1 → e−ikπ ·r(−n,m) = 1, (D2)
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while for (ii), they change to

e−ik0·r(m,n) = 1 → e−ik0·r(−n+1,m) = 1, (D3)

e−ikπ ·r(m,n) = 1 → e−ikπ ·r(−n+1,m) = −1. (D4)

Thus, an extra factor −1 is multiplied to the fourfold rotation
operator S̃π

4z at k = kπ (i.e., ν = −1) when the vortex core is
positioned at the center of the plaquette. As a consequence,

the energy and screw operators in the basis of (|�ν,1〉, |�ν,2〉)
are changed to

〈UH̃ν (k)U †〉 = −νcνtz
2

k̃z

(
1 0
0 −1

)
, (D5)

〈
U S̃π

4zU
†
〉 = +

(
1 0
0 −1

)
, (D6)

where Eq. (D6) does not contain ν unlike Eq. (C23). The
results are consistent with Fig. 6(a) around kz = π and the
left panel of Fig. 6(d).
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