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Excess quasiparticles play a crucial role in superconducting quantum devices ranging from qubits to quantum
sensors. In this work we analyze their dynamics for phase-biased finite-length weak links with several Andreev
subgap states, where the coupling to a microwave resonator allows for parity state (even or odd) readout. Our
theory shows that almost perfect dynamical polarization in a given parity sector is achievable by applying a
microwave pulse matching a transition in the opposite parity sector. Our results qualitatively explain key features
of recent experiments on hybrid semiconducting nanowire Josephson junctions and provide theoretical guidelines
for efficiently controlling the parity state of Andreev qubits.
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I. INTRODUCTION

Superconducting Josephson devices are basal ingredi-
ents for many of the currently most advanced platforms
for quantum information processing and quantum-limited
measurements [1–5]. In such devices, nonequilibrium quasi-
particles have been identified as one of the main sources
of relaxation and decoherence [6], and different techniques
have been proposed for mitigating their effect [7–9]. On
the other hand, recent fabrication progress on few-channel
hybrid nanowires, e.g., semiconducting InAs wires with a
superconducting Al shell, has resulted in the wide avail-
ability of high-quality tunable superconducting weak links
[10–24], harboring Andreev bound states (ABSs) with phase-
dependent energy below the pairing gap (|ε| < �) [25–28]. A
qubit can be encoded by ABSs [29–33] if the fermion number
parity of the Andreev sector (referred to as “parity” below)
is conserved. In practice, coherent qubit operation is limited
to times shorter than the parity switching time τp caused,
e.g., by transitions between ABSs and above-gap continuum
levels. For even-parity [12,17] and odd-parity [18,19,21] An-
dreev qubits, coherent qubit manipulation has already been
demonstrated on timescales much smaller than τp ∼ 100 µs.
It stands to reason that reaching a thorough understanding
of, and thereby good control over, the parity dynamics in
superconducting weak links is of fundamental and applied
importance.

A remarkable recent experiment [24] has achieved long
parity lifetimes together with almost complete dynamical par-
ity polarization. An initial microwave pulse is tuned to induce
transitions to an excited many-body Andreev state within the
even- (or odd-) parity sector. After the pulse, deterministic and
close-to-ideal parity polarization in the opposite odd- (even-)
parity sector has been observed for times t � τp, while the
steady-state ABS populations are recovered only for t � τp

[24]. We here present a unified microscopic theory which
qualitatively explains basic experimental observations and
can be used as a starting point for a more detailed descrip-

tion including, e.g., spin-orbit coupling and electron-electron
interaction effects. We show that for the dynamical parity se-
lection to occur, weak links of intermediate length (harboring
at least two ABSs) are needed. While the case of short weak
links (with a single ABS) is well understood [34–38], our
theory describes the parity dynamics in superconducting weak
links of arbitrary length. Focusing on the simplest nontrivial
case with two ABSs, we arrive at an intuitive physical picture
which identifies wide parameter regimes suitable for dynami-
cal parity selection and thus for coherent qubit manipulation.

Before entering a detailed theoretical discussion, let us
briefly summarize the basic picture. As schematically shown
in Fig. 1(a), we consider a single-channel superconducting
weak link embedded in a loop geometry and coupled to an
LC circuit. The average phase difference ϕ0 is related to the
magnetic flux threading the loop. The weak link has length
L = �ξ0, with coherence length ξ0 = vF /� and Fermi veloc-
ity vF (we set h̄ = e = kB = 1). For a short link with � � 1, it
is well known that a single ABS with particle-hole-symmetric
energy levels ±ε(ϕ0) exists [28], where 0 � ε(ϕ0) < �. In
the semiconductor picture [35], there are four many-body
Andreev states at fixed ϕ0: (i) For the ground state |g〉 with
Eg = 0, taken as the reference energy for fixed ϕ0, only the −ε

level is occupied. (ii) For the excited state |e〉 with Ee = 2ε

and the same (even [35]) parity, only the +ε level is oc-
cupied. (iii) For the odd-parity states |σ = ±〉 with Eσ = ε,
the ±ε levels are either both empty or both occupied. On
the other hand, for a link of intermediate length � ∼ 1, one
typically finds two ABSs with 0 � ε1(ϕ0) � ε2(ϕ0) < �, as
illustrated in Fig. 1(b). The resulting 16 many-body Andreev
states are specified in Table I. Compared to the short-junction
limit, longer junctions harboring at least two ABSs allow
for qualitatively new phenomena such as dynamical parity
polarization. Our theory addresses precisely this situation.

In Fig. 1(c), we show the relevant states for generating
odd-parity polarization together with the dominant transition
rates due to photon-induced mixing of ABSs and contin-
uum states. Here, the initial pulse is assumed to be resonant
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(a) (b)

(d)(c)

FIG. 1. (a) Schematic setup: a loop containing a finite-length
Josephson junction is inductively coupled to a microwave resonator
with resonance frequency 	. The flux on the loop imposes the
average phase bias ϕ0 on the junction. In all panels, red wavy lines
indicate a microwave pulse with drive frequency 	d . Solid (dashed)
blue arrows show parity-changing (parity-conserving) transitions.
The associated rates determine the arrow thickness. (b) ABS en-
ergies E = ±ε1,2 vs ϕ0 for junction length parameter � = 1.3 and
transmission probability T = 0.76 [see Eq. (4)]. Thick arrows in-
dicate dominant parity-changing transitions due to resonator photon
absorption. (c) and (d) show the relevant many-body Andreev states
(see Table I) and transition rates for achieving dynamical parity po-
larization: (c) Excitation of the mixed pair transition |g, g〉 → |σ, σ̄ 〉
induces odd-parity polarization. (d) Excitation of the odd-parity tran-
sition |σ, g〉 → |g, σ 〉 leads to even-parity polarization.

with the |g, g〉 ↔ |σ, σ̄ 〉 transition, where σ ′ = σ̄ = −σ in
Table I because of spin conservation. The drive frequency
is thus given by 	d = ε1 + ε2. If spin-orbit and Coulomb
interactions are neglected, such transitions are degenerate
with the |σ, g〉 ↔ |e, σ 〉 transition in the odd sector, which
could then be excited simultaneously. However, even mild
interactions are known to remove such degeneracies [23] (see
Sec. III B for details), and one expects that single transitions
can be driven in practice. If the excited state is connected
to the lowest-energy odd-parity state by a parity-changing
transition rate 
|σ,σ̄ 〉→|σ,g〉 exceeding the relaxation rate into
the even-parity ground state, the system is quickly driven
into the odd-parity sector with almost ideal polarization. The
much smaller rate 
|σ,g〉→|g,g〉 then establishes only the final
steady-state population reached at very long times t � τp. A
similar picture applies for the dynamical stabilization of the

TABLE I. Many-body Andreev states |α, β〉 with energy Eα,β

for a weak link with two ABSs at fixed ϕ0 [see Fig. 1(b)]. The first
(second) index α (β ) ∈ {g, e, σ = ±} refers to the occupation of the
ABS pair with energy ±ε1 (±ε2).

|α, β〉 Eα,β Parity |α, β〉 Eα,β Parity

|g, g〉 0 even |σ, g〉 ε1 odd
|e, g〉 2ε1 |g, σ 〉 ε2

|σ, σ ′〉 ε1 + ε2 |e, σ 〉 2ε1 + ε2

|g, e〉 2ε2 |σ, e〉 ε1 + 2ε2

|e, e〉 2ε1 + 2ε2

even-parity sector [see Fig. 1(d)]. Our formalism allows us
to identify optimal parameters for achieving dynamical parity
selection. For instance, a key criterion is having the upper
ABS manifold with energy ε2(ϕ0) within an energy range ∼	

near the continuum threshold ε = �, together with tempera-
tures comparable to the resonator frequency 	. Under these
conditions, a thermally activated photon is available, photon
absorption becomes effective, and parity-changing transitions
are favored over parity-conserving ones.

The structure of the remainder of this paper is as fol-
lows. We discuss the model underlying our study and the
corresponding dynamical equations in Sec. II. Dynamical po-
larization effects are addressed in detail in Sec. III. The paper
concludes with a summary in Sec. IV. Technical details of our
derivations can be found in the Appendixes.

II. MODEL AND MASTER EQUATION

In this section, we describe the model underlying our study
(see Sec. II A) and the resulting quantum dynamics in the An-
dreev sector (see Sec. II B). Before studying dynamical parity
polarization effects in Sec. III, we summarize our parameter
choices and the steady-state solution in Sec. II C.

A. Model

We study a phase-biased superconducting weak link given
by a nanowire Josephson junction embedded in a loop ge-
ometry and coupled to the electromagnetic phase fluctuations
of an LC circuit [see Fig. 1(a)]. In the standard Andreev
approximation [28], the Hamiltonian HL/R for the s-wave
BCS superconductor on the left (x < 0) or right (x > 0) side
of the contact is expressed by quasiclassical Nambu spinor
envelopes ψ±(x, t ) for right and left movers with Fermi
momentum ±kF , respectively. With sL/R = ±1 and Pauli ma-
trices τx,y,z in Nambu space and assuming the same pairing
gap � on both sides, one finds [28,32,35]

Hj=L/R(t ) =
∑
±

∫
s j x<0

dx ψ
†
±(x, t )

( ∓ ivF τz∂x

+Vj (t )τz + �τxeiτzφ j (t )
)
ψ±(x, t ), (1)

where the fluctuating voltages Vj (t ) and phases φ j (t ) are
linked by the Josephson relation, Vj = φ̇ j/2, and the gauge-
invariant phase difference across the contact is ϕ(t ) = φL −
φR. Modeling the weak link as a normal-conducting constric-
tion with length L = �ξ0 and transmission probability T due
to a local scatterer, the quasiclassical envelopes on both sides
of the contact (x = 0±) are matched by a transfer matrix
[28,32,35],

√
T

(
ψ+(0−, t )

ψ−(0−, t )

)
=

(
e−iτz θ̂R r

r eiτz θ̂R

)(
ψ+(0+, t )

ψ−(0+, t )

)
, (2)

with the reflection amplitude r = √
1 − T and the dynami-

cal phase shift θ̂R(t ) = θ̂ (t ) − L
2vF

φ̇R(t )τz, where θ̂ = L
vF

i∂t =
�ω/�. Equation (2) assumes a symmetric contact with a local
scatterer at the center of the weak link. The generalization
to the arbitrary impurity position is straightforward (see Ap-
pendix A). Since our conclusions are robust when changing
this position, we focus on the symmetric case.
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We next write ϕ(t ) = ϕ0 + ϕ̃(t ), with |ϕ̃(t )| � 1, where
ϕ̃(t ) describes electromagnetic phase fluctuations. As de-
scribed in detail in Appendix A, after choosing the gauge
φL/R(t ) = ±ϕ(t )/2, we proceed by expanding Hj (t ) to linear
order in ϕ̃, gauging away ˙̃ϕ from the matching condition (2),
and expanding to linear order also in ˙̃ϕ. Finally, the phase
difference ϕ0 is gauged away from Hj (t ) such that ϕ0 appears
only through the transfer matrix. For ϕ̃ = 0, one arrives at the
analytically solvable Bogoliubov–de Gennes (BdG) equations

(−ivF τzσz∂x + �τx )�ν (x) = εν�ν (x),
√
T �ν (0−) = eiτzϕ0/2(e−iτzσzθν + rσx )�ν (0+),

(3)

where the stationary eigenstates �ν (x) for energy εν are
bispinors in Nambu and left-right mover space, Pauli matri-
ces σx,y,z act in left-right mover space, and θν = �εν/�. The
solution of Eq. (3) defines the noninteracting Hamiltonian
H0 and is given in Appendix A. The quantum numbers ν

include subgap ABS solutions, ν = ±m, with m = 1, . . . , N
and εν = ±εm(ϕ0), where we find the condition

cos−1(ε/�) − �ε/� ± sin−1[
√
T sin(ϕ0/2)] = πm. (4)

An example with N = 2 ABS pairs is shown in Fig. 1(b).
Above-gap continuum quasiparticles are instead labeled by
ν = (ε, s), with |ε| > � and s ∈ {1, 2, 3, 4} for an electron or
hole incoming from the left or right side.

We then employ a second-quantized description where the
field operator, �̂(x) = ∑

ν �ν (x)γν , is expressed in terms of
fermion annihilation operators γν . The noninteracting Hamil-
tonian is

H0 =
∑

ν

εν n̂ν, n̂ν = γ †
ν γν. (5)

From the above steps, we find Hc = 1
2Iϕ̃ for the coupling to

phase fluctuations, where the supercurrent operator I has the
matrix elements

Iνν ′ =
∫

dx sgn(−x)�†
ν

[
ωνν ′

2i
(τz − �τyσz ) + �τy

]
�ν ′ , (6)

with ωνν ′ = εν − εν ′ . The full Hamiltonian, H = H0 + Hc +
Hbath, also includes an oscillator bath term for the electromag-
netic environment [28,39,40], for which we assume a thermal
equilibrium state at temperature Tenv. For the setup in Fig. 1(a),
with resonance frequency 	, dimensionless coupling strength
κ , and damping constant η, the bath spectral density is taken
as [35,39]

J (ω) = κ2η

2π

(
1

(ω − 	)2 + η2

4

− 1

(ω + 	)2 + η2

4

)
+ Johm.

(7)

For a realistic comparison with experimental results, we here
also include a background Ohmic spectral density, Johm(ω) =
α0ωe−|ω|/ωc [39,40], with dimensionless coupling α0 � 1 and
high-frequency cutoff ωc ≈ �.

B. Master equation

We next turn to the time-dependent density matrix ρ(t )
describing the fermion sector, which follows after tracing
over the bath. Starting from H = H0 + Hc + Hbath, the den-
sity matrix of the complete (system-plus-bath) system in the
interaction picture ρ̃tot (t ) obeys the Liouville–von Neumann
equation,

˙̃ρtot (t ) = −i[Hc(t ), ρ̃tot (t )],

Hc(t ) = ϕ̃(t )

2

∑
ν,ν ′

eiωνν′ tIνν ′γ †
ν γν ′ . (8)

Integrating Eq. (8) and inserting the result back into Eq. (8),
we obtain

˙̃ρtot = −
∫ t

0
dτ {Hc(t )[Hc(t − τ ), ρ̃tot (t − τ )] + H.c.}

− i[Hc(t ), ρ̃tot (0)]. (9)

Following Refs. [39,40], we assume that the bath always
remains in thermal equilibrium, ρ̃tot (t ) ≈ ρ̃(t ) ⊗ ρbath, that
the system-bath coupling is small (Born approximation), and
that the bath has a very short memory time (Markov ap-
proximation). These conditions are met for temperatures large
against all microscopic transition rates, which for our system
parameters implies Tenv � 10−2�, and for weak system-bath
coupling κ � 1. The reduced density matrix ρ̃(t ) for the
fermionic sector is then obtained by tracing over the bath,
ρ̃(t ) = Trbath ρ̃tot (t ), resulting in

˙̃ρ =
∫ ∞

0
dτ D(τ )[I (t − τ )ρ̃(t ), I (t )] + H.c., (10)

with the bath correlation function

D(t ) = Trbath

(
ρbath

ϕ̃(t )

2

ϕ̃(0)

2

)
= D∗(−t ). (11)

Writing D(τ ) = ∫ ∞
−∞

dω
2π

e−iωτDω and introducing a bath
spectral density J (ω) = −J (−ω), we can express Dω as

Dω = 2πJ (ω)[nB(ω) + 1], (12)

with nB(ω) = 1/(eω/Tenv − 1). For the setup in Fig. 1(a), J (ω)
is given by Eq. (7).

Collecting the above results and switching to the Heisen-
berg picture, we arrive at a standard Lindblad equa-
tion [39,40],

ρ̇ = −i[H0, ρ] +
∑
ν �=ν ′


νν ′L(Qν ′ν )ρ, (13)

with L(Q)ρ = QρQ† − 1
2 {Q†Q, ρ}. For the quasiparticle

transition ν → ν ′, the jump operator Qν ′ν = γ
†
ν ′γν comes with

the transition rate


νν ′ = 2π |Iν ′ν |2 J (ωνν ′ )[nB(ωνν ′ ) + 1]. (14)

With the notation ν̄ for labeling the opposite-energy partner
obtained by particle-hole symmetry, εν̄ = −εν , the rates (14)
satisfy the symmetry relation 
ν̄ ′ν̄ = 
νν ′ . In addition, forward
and backward rates are linked by detailed balance,


νν ′ = eωνν′ /Tenv 
ν ′ν . (15)
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In general, the Lindblad equation also contains an additional
Lamb shift HL, such that H0 → H0 + HL in Eq. (13). The
Lamb shift describes a renormalization of the quasiparticle
energy levels. With Eq. (12), we find

HL =
∑
ν �=ν ′

Y (ων ′ν )|Iνν ′ |2Q†
νν ′Qνν ′ ,

Y (ω) = p.v.

∫ ∞

−∞

dω′

2π

Dω′

ω − ω′ , (16)

where p.v. indicates a principal value integration. We note that
HL commutes with H0. In fact, HL does not enter the matrix
rate equations (21) discussed below at all, and we therefore
ignore Lamb shift contributions in what follows.

Following Ref. [35], we further simplify Eq. (13) by
neglecting entanglement between Andreev and continuum
states, i.e., ρ(t ) � ρA(t ) ⊗ ρc with the reduced density matrix
ρA(t ) for the Andreev sector. Using a distribution function
np=(ε,s) to parametrize the continuum states, we write

ρc =
∏

p

(np|1p〉〈1p| + (1 − np)|0p〉〈0p|), (17)

with |1p〉 = γ †
p |0p〉. We can then trace Eq. (13) over the

continuum states. As a consequence, ρA(t ) obeys a simpler
Lindblad equation with source terms describing transitions
from or into the continuum sector,

ρ̇A = −i[H0, ρA] +
∑
λ �=λ′


λλ′L(Qλ′λ)ρA

−
∑

λ


out
λ

(
1

2
{n̂λ, ρA} − γλρAγ

†
λ

)

−
∑

λ


in
λ

(
1

2
{1 − n̂λ, ρA} − γ

†
λ ρAγλ

)
, (18)

with n̂λ in Eq. (5) and the rates


in
λ =

∑
p


pλnp, 
out
λ =

∑
p


λp(1 − np), (19)

which describe transitions from the continuum into the An-
dreev sector and vice versa. We model the presence of
excess continuum quasiparticles by a quasiequilibrium Fermi
distribution,

np=(ε,s) = 1

eε/Tqp + 1
, (20)

where the quasiparticle temperature Tqp may differ from (and
typically will exceed) the temperature Tenv characterizing the
electromagnetic environment.

Focusing on the case N = 2, we finally project Eq. (18)
into the many-body Andreev states |α, β〉 listed in Table I.
The diagonal elements of ρA contain the respective occu-
pation probabilities, Pα,β (t ) = 〈α, β|ρA(t )|α, β〉, which are
combined to form a 16-dimensional vector P(t ). Since the
dynamics of the off-diagonal part of ρA(t ) decouples from
P(t ), we obtain a matrix rate equation for the occupation
probabilities alone,

Ṗ(t ) = M P(t ), (21)

where the real symmetric 16 × 16 matrix M is expressed in
terms of the rates (14) and (19). Additional simplifications
are possible by exploiting state degeneracies in Table I, e.g.,
P+,g = P−,g. We discuss this issue and provide explicit expres-
sions for M in Appendix B. Given the eigenvalues λn � 0
and the corresponding eigenvectors Pn of M, we arrive at
the solution P(t ) = ∑

n cneλnt Pn, where the initial configura-
tion P(0) is determined by the real coefficients cn. Given the
time-dependent solution of Eq. (21), the parity-resolved total
occupation probabilities are

Peven(t ) =
∑

α,β∈{g,e}
Pα,β +

∑
σ,σ ′∈±

Pσ,σ ′ (22)

and Podd(t ) = 1 − Peven(t ).

C. Parameter choice and steady-state solution

For the numerical results shown below, we consider a weak
link with reduced length � = L/ξ0 = 1.3 and transmission
probability T = 0.76, where the ABS spectrum is shown in
Fig. 1(b). The parameters entering J (ω) in Eq. (7) were chosen
as

	 = 0.13�, κ = 0.1, η = 10−4�, α0 = 10−3. (23)

This parameter choice is aimed at describing, at least qual-
itatively, the experimental situation in Ref. [24], where the
resonator frequency was 	 ≈ 4.82 GHz (which roughly
corresponds to 	 = 0.13� for the case of Al) and the qual-
ity factor was Q ≈ 1.7 × 103 (which implies η = 	/Q ≈
10−4�). The Ohmic background constant α0 was chosen as
a fit parameter. While the parameter choice (23) is motivated
by the experimental setup of Ref. [24], it is worth emphasiz-
ing that our general conclusions are robust against parameter
changes (see Sec. III).

Let us close this section by addressing the steady state
reached for long times t → ∞. The steady-state solution of
Eq. (21), P(∞), follows from M P(∞) = 0 together with
normalization,

∑
α,β Pα,β = 1. In Fig. 2(a), we show results

for the probability difference �P(∞) ≡ Peven(∞) − Podd(∞)
as a color-scale plot in the Tenv-Tqp plane for ϕ0 = π . We
observe that the odd-parity sector becomes favorable for large
ratio Tqp/Tenv, which can be rationalized by noting that excess
continuum quasiparticles can then proliferate [see Fig. 2(a)].
In fact, for large Tqp/Tenv, the ratio


in
λ=1


out
λ=1

∼ e(�−ε1 )/Tenv np(�) (24)

can exceed unity, which turns out be a necessary condition
for population inversion of the steady-state occupations. Al-
though much more suppressed, such a population inversion
can also occur in short weak links with only a single ABS pair
[see the inset of Fig. 2(a)]. We emphasize that the steady state
typically does not allow for a large parity polarization in the
odd-parity sector. As we illustrate in Fig. 2(b), this only partial
steady-state parity polarization in addition strongly depends
on the phase difference ϕ0.
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(a)

(b)

FIG. 2. Difference �P(∞) = Peven(∞) − Podd(∞) of the
steady-state parity probabilities for � = 1.3, T = 0.76, and the
parameters (23). (a) Color-scale plot of �P(∞) in the Tenv-Tqp

plane for ϕ0 = π . The inset shows the corresponding results for
� = 0.01 and otherwise identical parameters. (b) �P(∞) vs ϕ0 for
Tqp = 0.15� and three different values of Tenv.

III. DYNAMICAL PARITY POLARIZATION

In this section, using the theory framework in Sec. II, we
provide a detailed discussion of dynamical parity polariza-
tion effects after an initial microwave driving pulse whose
frequency 	d matches a specific (even or odd) transition.
In Sec. III A, we introduce and analyze a simplified picture
for the time evolution of the state populations. We argue in
Sec. III B that in practice, resonant driving of a single transi-
tion is possible despite spurious state degeneracies of the ABS
levels predicted by our model. Subsequently, in Sec. III C,
we consider a more realistic description of the driving pulse.
However, we find results qualitatively similar to those from
the simplified picture.

A. Simplified picture for the pulse

We start by imagining that the lower state is emptied by
the resonant pulse such that the corresponding steady-state
population is completely transferred to the initial excited-state
population. Assuming complete population inversion in the

(a) (b)

(d)(c)

FIG. 3. Dynamical polarization after the initial microwave pulse
(see Fig. 1) for the parameters in Fig. 2 with Tqp = 0.15� and
Tenv = 0.07�. The shown results follow from the simplified ap-
proach in Sec. III A. (a) Dominant occupation probabilities Pα,β (t )
vs t (time in microseconds, on a logarithmic scale) for ϕ0 = π and
the case shown in Fig. 1(c), resulting in dynamical polarization of the
odd-parity sector. Even-parity (odd-parity) states are shown in blue
(red). Dashed curves indicate excited states in the respective sector.
(b) Same as (a), but for polarization of the even-parity sector [see
Fig. 1(d)]. (c) Color-scale plot of �P(t ) = Peven(t ) − Podd(t ) in the
t-ϕ0 plane for the case in (a). (d) Same as (c), but for polarization of
the even-parity sector.

respective parity sector while leaving the other one affected,
the initial state P(0) immediately after the pulse preserves
the overall steady-state populations, Peven(0) = Peven(∞) and
likewise for Podd. We then arrive at initial conditions for the
matrix rate equation (21) which simulate the effects of a
resonant driving pulse [see Eqs. (B2) and (B3)].

In Fig. 3 we illustrate the resulting time evolution after the
driving pulse. Figures 3(a) and 3(c) correspond to the case
where the driving pulse matches the mixed-pair transition in
the even-parity sector (at fixed ϕ0) and the odd-parity stabi-
lization mechanism in Fig. 1(c) operates: due to the energetic
proximity to the continuum, the relaxation from the excited
state |σ, σ̄ 〉 proceeds much faster to the odd-parity ground
state |σ, g〉 than to the even-parity ground state |g, g〉 since
the condition


|σ σ̄ 〉→|σ,g〉

|σ,σ̄ 〉→|g,g〉

∼
∣∣Iε2,�

∣∣2∣∣Iε2,−ε1

∣∣2

J (� − ε2)e−(�−ε2 )/Tenv

J (ε2 + ε1)
� 1 (25)

is satisfied in this parameter range. The validity of Eq. (25)
is mainly due to the smallness of the current matrix ele-
ment Iε2,−ε1 for phase differences near ϕ0 = π . Formally, we
find Iε2,−ε1 = 0 for ϕ0 = π from Eq. (A19) for the case of
a symmetric junction, which can be rationalized by noting
that the involved ABS wave functions have opposite pari-
ties. Although, for our parameter choice, the spectral function
J (ε2 + ε1) in the denominator of Eq. (25) is dominated by the
Ohmic contribution, its precise value is not essential for the
dynamical polarization effect as long as it does not exceed
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(a) (b) (c)

FIG. 4. Evolution of Podd (red) and Peven (blue) vs time (in microseconds and on a logarithmic scale) after an initial microwave pulse
inducing the mixed even transition, |g, g〉 → |σ, σ̄ 〉. We use the parameters in Eq. (23) together with � = 1.3, ϕ0 = π , and Tqp = 0.15�. The
shown results follow from the simplified approach in Sec. III A. (a) shows results for different transmission probabilities, T = 0.45, 0.7, 0.9,
with Tenv = 0.07�. (b) illustrates the temperature dependence, Tenv/� = 0.07, 0.15, 0.22, with T = 0.76. (c) shows results for different
resonator frequencies, 	/� = 0.03, 0.2, 0.3, 0.7, 0.99, with Tenv = 0.07� and T = 0.76. Arrows indicate increasing values for T , Tenv, and
	, respectively.

the resonance peak in J (ω) at ω ∼ 	 which determines the
|σ, σ̄ 〉 → |σ, g〉 transition rate. Estimates similar to those in
Eq. (25) also apply for the even-parity stabilization mecha-
nism in Fig. 1(b).

While the dynamical polarization stabilization is most ef-
fective for ϕ0 ∼ π , it remains robust over a broad phase
range, as shown in Fig. 3(c). We note that side features with
enhanced parity polarization are seen for 	 ≈ � − ε2(ϕ0).
For the chosen parameter set, we obtain dynamical odd-
parity polarizations Podd � 0.98 on timescales of the order of
100 µs. The Ohmic background in J (ω), although not es-
sential for the main effect, is necessary to obtain timescales
as in the experiments in Ref. [24]. Similarly, Figs. 3(b) and
3(d) illustrate the corresponding effect when exciting the
odd-parity transition |σ, g〉 → |g, σ 〉. In this case one obtains
almost full dynamical polarization in the even-parity sector,
which persists on a similar timescale, ∼100 µs. We note that
the above dynamical polarization mechanism remains robust
over a broad temperature range. However, particularly strong
polarization effects are obtained for Tqp � Tenv, where only the
ground states in each parity sector are populated in the steady
state. The couplings κ and α0 then control the parity lifetimes.

In order to test the robustness of the dynamical polarization
effect with respect to changes in various parameters, Fig. 4
shows the time evolution of Peven,odd(t ) after a driving pulse
inducing the |g, g〉 → |σ, σ̄ 〉 transition. Figure 4(a) studies
the effect of changing the transmission probability T of the
weak link. We observe that the achievable dynamical polar-
ization is rather insensitive to T , provided that the condition
	 > � − ε2(ϕ0) is met. However, with increasing T , the time
span during which the polarization of the odd-parity sector
persists becomes shorter. Figure 4(b) shows the evolution of
Peven/odd(t ) with increasing environmental temperature Tenv,
where the growing thermal imbalance between the steady-
state populations with even and odd parities comes along
with a gradual decrease of the dynamical polarization. In
particular, for Tenv > Tqp, the state |e, g〉 has an increasingly
large population probability. Finally, in Fig. 4(c), we monitor
Peven/odd(t ) as the resonator frequency 	 is varied, and we
find a decrease in the overall polarization with increasing 	.

One can rationalize this observation by noting that at fixed
temperature Tenv, the average photon number in the resonator
will decrease if 	 is increased. Since fewer resonator photons
are available for promoting a trapped quasiparticle into the
continuum, the dynamical polarization will be reduced. In
principle, one could increase it again by simply raising Tenv.
However, as detailed above, one needs to satisfy Tqp � Tenv at
the same time.

B. Spurious state degeneracies

The ABS dispersion relation found from our model [see
Eq. (4)] predicts certain degeneracies between even- and odd-
sector transitions. For instance, the |g, g〉 ↔ |σ, σ̄ 〉 transition
in the even sector is degenerate with the |σ, g〉 ↔ |e, σ 〉 transi-
tion in the odd sector. Similarly, the |σ, g〉 ↔ |g, σ 〉 transition
in the odd sector matches the |e, g〉 ↔ |σ, σ̄ 〉 transition in the
even sector. If the drive frequency 	d of the microwave pulse
corresponds to degenerate transitions, the initial conditions for
the matrix master equation [see Eqs. (B2) and (B3)] have to
be adapted accordingly.

In practice, however, such degeneracies are expected to
be removed by spin-orbit coupling and Coulomb interaction
effects. Indeed, according to Ref. [23], even a very weak
Coulomb interaction, as expected for the open junction regime
studied in Refs. [23,24], will remove degeneracies in the
even-sector transitions and change the relative position of
the transition lines in the even and odd sectors. Taking as a
reference the charging energy values quoted in Ref. [19], we
estimate that the |g, g〉 → |σ, σ̄ 〉 and |σ, g〉 → |e, σ 〉 transi-
tions exhibit an energy splitting of the order of a few µeV, due
to the Coulomb energy cost penalizing a double occupation of
the lower ABS manifold in the |e, σ 〉 state. Although giving
precise expressions for this splitting as a function of the model
parameters is difficult, we safely estimate it to exceed the
typical energy resolution in the present experiments. Leaving
aside fine-tuned values of ϕ0 where accidental degeneracies
occur, we conclude that the simultaneous driving of degener-
ate transitions is not expected in actual experiments. For the
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(a) (b) (c)

FIG. 5. Dynamical polarization after the initial microwave pulse for the same parameters as in Fig. 3(a), again using the simplified approach
in Sec. III A. (a) reproduces Fig. 3(a). (b) and (c) illustrate the detrimental effect of simultaneously driving the transitions |g, g〉 ↔ |σ, σ̄ 〉 and
|σ, g〉 ↔ |e, σ 〉, which are degenerate in the absence of interactions. We use the initial condition (B3) with (b) P̃e,σ (0) = 0.1 and P̃σ,g(0) = 0.44
or (c) P̃e,σ (0) = P̃σ,g(∞)/2 and P̃σ,g(0) = P̃σ,g(∞)/2 (see Appendix B).

results shown in this work, we have assumed that degeneracies
are lifted by such a mechanism.

Nonetheless, Fig. 5 illustrates the detrimental effects that
such simultaneous excitations can have on the dynamical
polarization effect if a degeneracy is actually present. The
extension of our theory to include spin-orbit coupling and/or
Coulomb interaction effects is an important task for future
research.

C. More realistic model for the driving pulse

So far we have assumed a simplified picture in which the
microwave driving pulse is simulated by means of appropriate
initial conditions for Eq. (21). However, in actual experiments
(see, e.g., Ref. [24]), driving pulse effects could, of course, be
more complex, and one may need to account for a finite pulse
duration, the precise drive amplitude, or the detailed pulse
shape. In the following, as a first step beyond the idealized
approach in Sec. III A, we study the ABS population dynamics
under a continuous and resonant microwave drive with drive
amplitude gd , where the drive frequency 	d matches a transi-
tion between two specific many-body Andreev states, |α1, β1〉
and |α2, β2〉, belonging to the same parity sector,

	d = Eα2,β2 − Eα1,β1 , (26)

with the respective energies Eα1,β1 < Eα2,β2 . We here assume
that the drive does not couple to other transitions. In particular,
degeneracies should be lifted as described in Sec. III B. For
	d > � − ε2, the driving field could, in principle, also cause
transitions between the Andreev sector and the quasiparticle
continuum. However, unless the corresponding drive-induced
transition rates exceed the fast (drive-independent) parity-
changing rates shown in Figs. 1(c) and 1(d), such transitions
will not have a qualitative impact on our results. In what fol-
lows, we consider weak drive amplitudes, gd � �, for which
this assumption is justified.

In order to model the continuous drive, we replace the
effective Hamiltonian in the Lindblad equation (18) for
the Andreev sector, H0 → H = H0 + Hd . In the rotating wave
approximation (RWA) and using the interaction picture, the
drive Hamiltonian Hd for the frequency 	d in Eq. (26) is

given by

Hd = gd |α2, β2〉〈α1, β1| + H.c., (27)

where RWA is justified for gd � 	d . As explained above,
Hd can then be truncated to include only transitions between
the two many-body ABSs determining Eq. (26). After pro-
jecting Eq. (18) to the many-body ABS states |α, β〉, we
take into account only off-diagonal matrix elements of ρA

(“coherences”) between the two states connected by the drive
C|α1,β1〉→|α2,β2〉

A (t ). For the three transitions studied below,
these complex-valued quantities are defined as

C|g,g〉→|σ,σ̄ 〉
A = 1

2 (〈g, g|ρA|σ, σ̄ 〉 + 〈g, g|ρA|σ̄ , σ 〉),

C|σ,g〉→|g,σ 〉
A = 1

2 (〈+, g|ρA|g,+〉 + 〈−, g|ρA|g,−〉),

C|e,g〉→|σ,σ̄ 〉
A = 1

2 (〈e, g|ρA|σ, σ̄ 〉 + 〈e, g|ρA|σ̄ , σ 〉). (28)

We next define a vector W(t ) = (P(t ),CA(t ),C∗
A(t ))T , which

contains the occupation probabilities of the many-body ABSs
in P(t ) as before but also includes the coherences CA(t ) and
C∗

A(t ) in the last two entries. Enlarging the matrix M in
Eq. (21) by zero columns and rows for the last two entries,
one then finds that Eq. (21) has to be replaced by

Ẇ(t ) = (M + Nd )W(t ), (29)

where the matrix Nd has nonzero entries only for the four
columns and rows referring to the ABS populations Pα1,β1

and Pα2,β2 or to coherences. Explicit expressions are given in
Appendix B.

Numerical results for the ABS population dynamics under
a continuous microwave drive of amplitude gd = 0.005� are
shown in Figs. 6(a) and 6(b). In Fig. 6(a), the mixed even
transition described above is resonantly driven, resulting in
a polarization of the odd sector. We observe that the drive in-
duces Rabi oscillations between the driven ABS states, which
decay on a short timescale before the dynamical polarization
behavior sets in. Since we have a continuous drive, the po-
larization of the odd sector then persists for long times. A
similar picture is observed in Fig. 6(b), where 	d matches
the mixed odd transition |σ, g〉 → |g, σ 〉 and the even sector
becomes polarized after an initial transient characterized by
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(a) (b) (c)

FIG. 6. Population dynamics Pα,β (t ) under a constant drive of amplitude gd = 0.005� for the parameters in Fig. 3(a), obtained from the
approach in Sec. III C. (a) assumes a frequency 	d in resonance with the transition |g, g〉 → |σ, σ̄ 〉. (b) assumes 	d such that the transition
|σ, g〉 → |g, σ 〉 is driven. (c) shows the dependence of �P(∞) = Peven(∞) − Podd(∞) on the drive amplitude gd . The red (blue) line is for 	d

chosen as in (a) [(b)].

damped Rabi oscillations. For both cases, the dependence of
the long-time polarization, �P(∞) = Peven(∞) − Podd(∞),
on the drive amplitude is shown in Fig. 6(c). We observe
that a rather weak drive amplitude, gd � 10−6�, is sufficient
to induce the polarization effect, and the phenomenon then
remains insensitive to the precise value of gd .

We therefore find basically the same behavior as obtained
from the idealized initialization procedure in Sec. III A. In
particular, the respective peak polarization values are very
close to the steady-state polarization values found under a
continuous resonant drive with 10−6� < gd � 	d . It is worth
emphasizing that Fig. 6 also shows that our idealized initial-
ization approach implicitly requires a sufficiently long pulse
duration compared to the decay time of the Rabi oscillations.
[We note in passing that the latter time is determined by the
inverse of the rate 
̃A in Eq. (B4).] The above results are
consistent with key observations made in Ref. [24]; that is,
optimal polarization requires a certain minimal drive ampli-
tude and decreases with the delay time. We cannot exclude,
however, that multiphoton processes (not included in our
modeling) are needed for a more quantitative explanation of
the results of Ref. [24]. In particular, the pumping of resonator
photons due to a strong drive power is not accounted for by
our theory. This effect can result in multiple photon replicas
of transition lines and was presumably observed in Ref. [24].

Finally, we consider the effects of a continuous driving of
transitions between higher-energy states. We discussed above
how to polarize the odd sector by driving the |g, g〉 → |σ, σ̄ 〉
transition. However, as illustrated in Fig. 7 for an elevated
temperature Tenv, if a small but finite steady-state population
of the state |e, g〉 is present, a polarization of the odd-parity
sector can alternatively be generated by the smaller drive
frequency, 	d ≈ ε2 − ε1. [For the case in Fig. 3(a), this also
implies 	d ≈ � − ε1.] While in the absence of interactions
this transition is degenerate with the |σ, g〉 → |g, σ 〉 transi-
tion in the odd sector, even mild interactions can split both
transitions. Such a mechanism may account for the behav-
ior observed in Ref. [24] when driving with frequencies
∼29 GHz, just above the odd-parity transition lines. We note
that at elevated temperatures, we find that a polarization in the
odd sector can also be generated by driving the excited tran-

sition |e, g〉 → |σ, σ̄ 〉, with drive frequency 	d = ε2 − ε1,
which may help to explain the experimental observations in
Ref. [24].

IV. CONCLUSIONS

Our theory suggests a simple physical mechanism for in-
ducing almost perfect dynamical parity polarization of the
subgap states in finite-length Josephson junctions. This effect
should be useful in facilitating Andreev qubit quantum manip-
ulations within a protected parity subspace. Although we have
considered a simplified model which neglects many aspects of
realistic devices, the mechanism discussed here provides a ba-
sis for qualitatively understanding the intriguing experimental
results of Ref. [24]. Our predictions on the phase dependence
[see Figs. 3(c) and 3(d)], as well as on the dependence on
temperature Tenv and resonator frequency 	, could be tested
by future experiments, where the proposed mechanism also
offers a simple strategy for optimizing the parity polarization.
Our formalism directly allows us to consider superconducting
weak links harboring more than two ABSs as well as spin-
orbit coupling effects [18,41]. Future work should clarify the
role of Coulomb interactions, e.g., by modeling the weak link
as a quantum dot [42–44].

(a) (b)

FIG. 7. Population dynamics under a constant drive of the
|e, g〉 → |σ, σ̄ 〉 transition, obtained from the approach in Sec. III C.
(a) illustrates the relevant transition rates between many-body An-
dreev states (see Fig. 1). The driving-induced rate is shown as a red
arrow. (b) shows Pα,β (t ) for gd = 0.005�, using the parameters in
Fig. 3(a) and Tenv = 0.15�.
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APPENDIX A: BOGOLIUBOV–DE GENNES EIGENSTATES

We consider a single-channel superconducting weak link
described by the Hamiltonian (1) together with a transfer
matrix

T̂ = 1√
T

(
e−iτzηθ̂R 0

0 eiτzηθ̂R

)(
1 r
r 1

)

×
(

e−iτz (1−η)θ̂R 0
0 eiτz (1−η)θ̂R

)
, (A1)

which connects the envelope functions on both sides,
�(0−, t ) = T̂ �(0+, t ). The parameter η ∈ [0, 1] determines
the position of a local elastic scatterer in the normal-
conducting weak link. We here consider the symmetric case
η = 1/2, where Eq. (A1) reduces to Eq. (2). However, it is
straightforward to adapt our formalism for η �= 1/2.

With the gauge choice φ j (t ) = s jϕ(t )/2, where s j=L/R =
±, and writing ϕ(t ) = ϕ0 + ϕ̃(t ), we next expand HL/R in
Eq. (1) to linear order in the small phase fluctuations ϕ̃(t )
caused by the electromagnetic environment. Applying the
Josephson relation, we can use the auxiliary relation

Vjτz + �τxeiτzφ j

= e−is jτzϕ0/4

(
s j ˙̃ϕ

4
τz + s j ϕ̃�

2
τy + �τx

)
eis jτzϕ0/4 + O(ϕ̃2).

(A2)

In the next step, we gauge away ˙̃ϕ from the matching condi-
tion (where α = ±),

ψα (0±, t ) → e±iατzχ (t )/2ψα (0±, t ), χ = L

4vF

˙̃ϕ, (A3)

taking into account that eiθ̂R (t ) ≈ eiθ̂ (t )eiχ (t ) ≈ eiχ (t )eiθ̂ (t ) and
neglecting all derivatives ∂n

t ϕ̃ with n � 2. At this point, we
can expand Hj also to lowest order in ˙̃ϕ and, finally, remove ϕ0

from HL/R by a gauge transformation, which correspondingly
modifies the transfer matrix. After the above sequence of
steps, we obtain H (t ) = H0 + Hc(t ), with the fermion Hamil-
tonian

H0 =
∑
±

∫
x �=0

dx ψ
†
±(x)(∓ivF τz∂x + �τx )ψ±(x). (A4)

This noninteracting problem is diagonalized by solving the
BdG equations (3). The eigenenergies εν and the correspond-
ing spinor eigenstates �ν (x) are specified below. We note

that although the matching condition (2) is nonlocal in time,
after the above expansion, we obtain a standard stationary
matching condition [see Eq. (3)]. We find from the above
steps that the coupling between fermionic quasiparticles and
the electromagnetic environment is described by

Hc(t ) =
∑
±

∫
x �=0

dx ψ
†
±(x)U±(x, t )ψ±(x), (A5)

U±(x, t ) = sgn(−x)

( ˙̃ϕ

4
(τz ∓ �τy) + ϕ̃

2
�τy

)
,

where � = L/ξ0. Using the Josephson current operator I =∑
ν,ν ′ Iνν ′γ †

ν γν ′ with the matrix elements (6), we arrive at

Hc(t ) = ϕ̃(t )

2
I (t ) + ∂t (· · · ), (A6)

where the time derivative term does not affect the dynamics
and can be omitted.

We next specify the quasiparticle spinor wave functions
�ν (x) and the corresponding eigenenergies εν , which follow
by solving the BdG problem (3). Here, � = (ψ+, ψ−)T is a
bispinor in Nambu and left-right mover space. Because of the
matching condition at x = 0±, we have the unconventional
normalization condition∫ ∞

−∞
dx|�ν (x)|2 = 1 − ζν,

ζν = L

2
[|�ν (0−)|2 + |�ν (0+)|2], (A7)

with L = �ξ0. For continuum states, we find ζν ∼
O(L/Lsc) → 0, with the length Lsc → ∞ for the
superconducting leads. However, for ABS solutions, ζν

must be accounted for in the normalization. In particular, ζν

can depend on ϕ0. For notational ease, we set vF = � = 1
below.

Andreev bound states. For |ε| < 1, we have subgap ABS
solutions with ν ≡ λ, which can be written as

�λ(x) = �(−x)eκx

(
aψh

bψe

)
+ �(x)e−κx

(
cψe

dψh

)
, (A8)

where �(x) is the Heaviside step function and ψe/h

are electron-/hole-type Nambu spinors for localized states
satisfying

(ε ∓ iκτz − τx )ψe/h = 0. (A9)

With γ = cos−1 ε ∈ (0, π ), one finds

κ = sin γ =
√

1 − ε2, ψe/h = e±iτzγ /2

√
2

(
1
1

)
. (A10)

From Eq. (A7), the scalar amplitudes (a, b, c, d ) in Eq. (A8)
obey the normalization condition |a|2 + |b|2 + |c|2 + |d|2 =
2κ/(1 + �κ ). The matching equations in Eq. (3) then yield
the relations

√
T a = eiτzγ+c + reiτzϕ0/2d,√
T b = reiτzϕ0/2c + e−iτzγ−d, (A11)
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where γ± = γ − θ ± ϕ0/2 and θ = �ε. Hence, c and d follow
from (

sin γ+ r sin(ϕ0/2)

r sin(ϕ0/2) − sin γ−

)(
c
d

)
= 0. (A12)

As a consequence, the dispersion equation for the phase-
dependent ABS levels, ε = ελ(ϕ0), takes the form in Eq. (4)
with m ∈ Z. For each solution ελ with m = mλ, another root
of Eq. (4) is given by −ελ with m = 1 − mλ.

Above-gap continuum states. We next turn to above-gap
states with quantum numbers ν ≡ p = (ε, s) and |ε| > 1.
Scattering state solutions for continuum quasiparticles can be
written as the sum of incoming and outgoing plane waves,
�p(x) = � (in)

p (x) + � (out)
p (x). There are four incoming states

labeled by s ∈ {1, 2, 3, 4}, which describe electron- or hole-
type states injected from the left or right side,

� (in)
p (x) = �(−x)

eikx

√
Lsc

[
δs,1

(
ψ̃e

0

)
+ δs,2

(
0
ψ̃h

)]

+�(x)
e−ikx

√
Lsc

[
δs,3

(
ψ̃h

0

)
+ δs,4

(
0
ψ̃e

)]
, (A13)

and the respective four outgoing states,

� (out)
p (x) = �(−x)

e−ikx

√
Lsc

(
apψ̃h

bpψ̃e

)
+ �(x)

eikx

√
Lsc

(
cpψ̃e

dpψ̃h

)
.

(A14)

Here, ψ̃e/h are electron-/hole-type Nambu spinors for con-
tinuum states satisfying Eq. (A9) with iκ → k. Introducing

γ̃ = sinh−1(
√

ε2 − 1) ∈ [0,∞) and σε = sgn(ε), we write

ε = σε cosh γ̃ , k = σε sinh γ̃ , ψ̃e/h = e±τz γ̃ /2

√
2 cosh γ̃

(
1
σε

)
.

(A15)

Using√
1 − (ε + i0+)2 = κ (ε)�(1 − |ε|) − ik(ε)�(|ε| − 1),

(A16)

we observe that the eigenstates (A8) and (A14) are related
by analytic continuation in the complex-energy plane, and the
scalar amplitudes (ap, bp, cp, dp) again follow from matching
conditions. With θ = �ε,

√
T

(
apψ̃h + δs,1ψ̃e

bpψ̃e + δs,2ψ̃h

)

= eiτzϕ0/2

(
e−iτzθ r

r eiτzθ

)(
cpψ̃e + δs,3ψ̃h

dpψ̃h + δs,4ψ̃e

)
, (A17)

with the normalization |ap|2 + |bp|2 + |cp|2 + |dp|2 = 1.
Supercurrent matrix elements. We next provide explicit

expressions for the current matrix elements in Eq. (6). First,
for two ABSs with energies ελ and ελ′ , using γλ = cos−1 ελ

and similar notation for γλ′ , we employ the relations

ψ
(λ) †
e/h τzψ

(λ′ )
e/h = ∓i sin

(
γλ − γλ′

2

)
,

ψ
(λ) †
e/h τyψ

(λ′ )
e/h = ∓ sin

(
γλ + γλ′

2

)
. (A18)

The matrix elements for ABS-ABS transitions follow with
ωλλ′ = ελ − ελ′ in the form

Iλλ′ =
[
ωλλ′

2
sin

(
γλ − γλ′

2

)
+ sin

(
γλ + γλ′

2

)]
a∗

λaλ′ − b∗
λbλ′ + c∗

λcλ′ − d∗
λdλ′

sin γλ + sin γλ′

+ i�
ωλλ′

2
sin

(
γλ + γλ′

2

)
a∗

λaλ′ + b∗
λbλ′ + c∗

λcλ′ + d∗
λdλ′

sin γλ + sin γλ′
. (A19)

We next observe that in the limit Lsc → ∞, matrix elements between continuum states, �p and �p′ , can be finite only if εp =
εp′ . However, the relations ψ̃†

e τyψ̃e = ψ̃
†
h τyψ̃h = 0 imply that such matrix elements vanish as well. We conclude that phase

fluctuations cannot induce transitions between continuum states, Ipp′ = 0.
We proceed with the matrix element connecting an ABS with energy ελ to a continuum state with energy εp. As in Eq. (A15),

we write εp = σεp cosh γ̃p and kp = σεp sinh γ̃p. The matrix elements follow by using the relations

ψ
(λ) †
e/h τzψ̃e/h = w(±z∗)√

cosh γ̃p
, ψ

(λ) †
e/h τzψ̃h/e = w(∓z)√

cosh γ̃p
, ψ

(λ) †
e/h τyψ̃e/h = iw(±z)√

cosh γ̃p
, ψ

(λ) †
e/h τyψ̃h/e = iw(∓z∗)√

cosh γ̃p
,

with

z = (γ̃p + iγλ)/2, ωpλ = εp − ελ, w(z) = �(−εp) cosh z + �(εp) sinh z, W (z) = w(z) + ωpλ

2
w∗(z).

Note that W (z∗) = W ∗(z) and W (−z) = −σεpW (z). We then obtain

Iλp = i√
Lsc cosh γ̃p

[
(a∗

λap − d∗
λdp)W (−z) + (b∗

λbp − c∗
λcp)W (z)

sin γλ − ikp
+ (a∗

λδs,1 − d∗
λδs,4)W (z∗) + (b∗

λδs,2 − c∗
λδs,3)W (−z∗)

sin γλ + ikp

]

+ �ωpλ

2
√

Lsc cosh γ̃p

[
(a∗

λap + d∗
λdp)w(−z) − (b∗

λbp + c∗
λcp)w(z)

sin γλ − ikp
+ (a∗

λδs,1 + d∗
λδs,4)w(z∗) − (b∗

λδs,2 + c∗
λδs,3)w(−z∗)

sin γλ + ikp

]
.
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TABLE II. Reduced 10 × 10 rate matrix M appearing in Eq. (21), expressed in terms of the transition rates 
λλ′ with ABS indices λ, λ′ ∈
{±1, ±2} [see Eq. (14)] and the rates 


in/out
λ in Eq. (19).

gg σg eg ge ee σσ σ σ̄ gσ eσ σe

gg −
̃gg 
in
−1 
1,−1 
2,−2 0 0 
1,−2 
in

−2 0 0
σg 2
in

1 −
̃σg 2
in
−1 0 0 
in

−2 
in
−2 
−1,−2 
1,−2 
2,−2

eg 
−1,1 
in
1 −
̃eg 0 
2,−2 0 
−1,−2 0 
in

−2 0
ge 
−2,2 0 0 −
̃ge 
1,−1 0 
1,2 
in

2 0 
in
−1

ee 0 0 
−2,2 
−1,1 −
̃ee 0 
−1,2 0 
in
2 
in

1

σσ 0 
in
2 0 0 0 −
̃σσ 0 
in

1 
in
−1 
in

−2

σ σ̄ 2
−1,2 
in
2 2
1,2 2
−1,−2 2
1,−2 0 −
̃σ σ̄ 
in

1 
in
−1 
in

−2

gσ 2
in
2 
12 0 2
in

−2 0 
in
−1 
in

−1 −
̃gσ 
1,−1 
1,−2

eσ 0 
−1,2 2
in
2 0 2
in

−2 
in
1 
in

1 
−1,1 −
̃eσ 
−1,−2

σe 0 
−2,2 0 2
in
1 2
in

−1 
in
2 
in

2 
−1,2 
1,2 −
̃σe

Finally, we note that summations over p = (ε, s) are
performed for Lsc → ∞ by using 1

Lsc

∑
p=(ε,s) · · · =∫

dε ν(ε)
∑4

s=1 · · · , where ν(ε) is the BCS density of states
(per unit length) in the leads, ν(ε) = 1

2π

|ε|√
ε2−1

�(|ε| − 1).

APPENDIX B: ON MATRIX RATE EQUATIONS

We here discuss the matrix rate equation (21) in more
detail. In our calculations, we make use of “spin” degeneracies
of the many-body Andreev levels which allow us to reduce the
effective matrix dimension for M down to 10. (However, the
resulting matrix is not symmetric anymore.) For this purpose,
for α ∈ {g, e}, we write

P̃α,σ = Pα,+ + Pα,−, P̃σ,α = P+,α + P−,α,

P̃σ,−σ = P+,− + P−,+, P̃σ,σ = P+,+ + P−,−. (B1)

Defining the 10-component vector P(t ) =
(Pg,g, P̃σ,g, Pe,g, Pg,e, Pe,e, P̃σ,σ , P̃σ,σ̄ , P̃g,σ , P̃e,σ , P̃σ,e)T , the
reduced 10 × 10 matrix M contains the transition rates

|α,β〉→|α′,β ′〉 listed in Table II. The diagonal elements are
−
̃αβ , where the respective outgoing rates are given by


̃g,g = 
−1,1 + 
−2,2 + 2
(

−1,2 + 
in

1 + 
in
2

)
,


̃e,g = 
1,−1 + 
−2,2 + 2
(

1,2 + 
in

−1 + 
in
2

)
,


̃g,e = 
−1,1 + 
2,−2 + 2
(

−1,−2 + 
in

1 + 
in
−2

)
,


̃e,e = 
1,−1 + 
2,−2 + 2
(

1,−2 + 
in

−1 + 
in
−2

)
,


̃σ,σ =
∑

λ=±1,±2


in
λ ,


̃σ,σ̄ = 
1,−2 + 
1,2 + 
−1,−2 + 
−1,2 +
∑

λ=±1,±2


in
λ ,


̃g,σ = 
−1,−2 + 
−1,1 + 
−1,2 + 2
in
1 + 
in

2 + 
in
−2,


̃σ,g = 
1,2 + 
−1,2 + 
−2,2 + 2
in
2 + 
in

1 + 
in
−1,


̃e,σ = 
1,−1 + 
1,−2 + 
12 + 2
in
−1 + 
in

2 + 
in
−2,


̃σ,e = 
1,−2 + 
2,−2 + 
−1,−2 + 2
in
−2 + 
in

1 + 
in
−1.

In Sec. III A, we discuss a simplified approach in which
an initial condition for Eq. (21) simulates the effects of a
microwave driving pulse. When driving, e.g., the transition

|σ, g〉 → |g, σ 〉 (keeping in mind that states with σ = ± are
degenerate), this initial condition is given by

P̃g,σ (0) = P̃σ,g(∞) + P̃g,σ (∞), P̃σ,g(0) = 0. (B2)

On the other hand, if the mixed even transition is driven, we
need to exchange only the populations of the |g, g〉 and |σ, σ̄ 〉
states,

P̃σ,σ̄ (0) = Pg,g(∞) + P̃σ,σ̄ (∞), Pg,g(0) = 0. (B3)

Going beyond the simplified picture, we find in Sec. III C
that Eq. (21) has to be replaced by Eq. (29) with a matrix Nd .
The nonzero entries of Nd are specified in Table III. For the
transitions considered in Sec. III C, the coherence decay rates

̃A are given by


̃
|g,g〉→|σ,σ̄ 〉
A = 1

2

(

1,2 + 
−1,2 + 
1,−2 + 
−1,2

+
2,1 + 
−1,1 + 
−2,1 + 
−2,2 + 
out
1

+ 2
out
−1 + 
out

−2 + 2
in
2 + 
in

−2 + 
in
1

)
,


̃
|σ,g〉→|g,σ 〉
A = 1

2

(

−2,1 + 
1,2 + 
−2,2 + 
−1,1 + 
2,1

+
out
1 + 2
out

−1 + 
out
−2 + 2
in

2 + 
in
−2 + 
in

1

)
,


̃
|e,g〉→|σ,σ̄ 〉
A = 1

2

(
3
1,2 + 
−1,2 + 
1,−2 + 
2,1 + 
1,−1

+
−2,2 + 2
out
1 + 
out

−1 + 
out
−2 + 2
in

2

+
in
−2 + 
in

−1

)
. (B4)

TABLE III. Nonzero matrix elements of the matrix Nd in Eq. (29).

α1β1 α2β2 CA C∗
A

α1β1 0 0 igd −igd

α2β2 0 0 −igd igd

CA igd −igd −
̃A 0
C∗

A −igd igd 0 −
̃A
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