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Competing topological superconducting phases in FeSe0.45Te0.55
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We demonstrate that recent angle-resolved photoemission spectroscopy experiments provide strong evidence
for the existence of two competing topological superconducting phases in FeSe0.45Te0.55. The coupling of their
underlying microscopic mechanisms—one based on a three-dimensional topological insulator, one based on
two-dimensional superconductivity—stabilizes topological superconductivity over a wide range of parameters,
and gives rise to two disjoint topological regions in the phase diagram of FeSe0.45Te0.55. We show that the
topological origin of these regions can be identified by considering the form of Majorana edge modes at domain
walls.
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I. INTRODUCTION

Topological superconductors harbor Majorana zero modes,
whose non-Abelian braiding statistics and robustness against
disorder and decoherence provide a new platform for the
implementation of topological quantum computing [1]. Over
the past few years, strong evidence for the existence of
topological surface superconductivity in the iron-based su-
perconductor FeSe0.45Te0.55 has emerged, ranging from the
observation of a surface Dirac cone [2–5] to that of Ma-
jorana zero modes (MZMs) in vortex cores [6–9] and of
Majorana edge modes at domain walls [10]. However, the
microscopic origin of these topological features has re-
mained unclear. Although they were originally attributed
[2,11–13] to topological surface superconductivity arising
from a Fu-Kane-like mechanism [14] of proximity-induced
superconductivity in the surface Dirac cone of a three-
dimensional topological insulator—referred to as the 3DTI
mechanism—, recent experiments have cast doubt on this
interpretation. In particular, angle-resolved photoemission
spectroscopy (ARPES) experiments [3–5] on FeSe1−xTex and
quantum sensing experiments on FeSe0.3Te0.7 [15], reported
evidence for surface ferromagnetism [4], which can readily
destroy the 3DTI mechanism [16]. An alternative scenario
[17,18]—the two-dimensional topological superconductivity
(2DTSC) mechanism—was, therefore, proposed in which the
2D nature of superconductivity in the α, β and γ bands
of FeSe0.45Te0.55 [19–23], in combination with the observed
surface magnetism [3–5,15] induces topological supercon-
ductivity. Interestingly enough, the experimentally observed
opening of a gap at EF in the Dirac cone at Tc [4]—reflecting
proximity induced superconductivity—implies a coupling of
these two competing mechanisms. The question, thus, nat-
urally arises of how the interplay between the competing
2DTSC and 3DTI mechanisms determines the topological
properties and phase diagram of FeSe0.45Te0.55.

In this article, we address this question and demonstrate
that the competition between these two mechanisms can not
only explain the experimentally observed opening of two gaps
in the surface Dirac cone of FeSe0.45Te0.55 —at EF and at the
Dirac point [4]—but also gives rise to two disjoint topologi-
cal regions in the phase diagram: a small magnetic moment

region in which topological superconductivity arises from
the 3DTI mechanism, and a large magnetic moment region
whose topological properties are determined by the 2DTSC
mechanism. We demonstrate that the topological nature of
these regions can be unambiguously identified by considering
the electronic structure and currents near spin and π -phase
domain walls. Our results provide unique characteristics al-
lowing future experiments to elucidate the microscopic origin
of the topological superconducting phases of FeSe0.45Te0.55.

II. THEORETICAL FORMALISM

To study the emergence of topological surface supercon-
ductivity in FeSe0.45Te0.55, we consider a 3D system with
Nz layers [see Fig. 1(a)]. The originally proposed 2DTSC
mechanism [17] utilizes a five-orbital model [24], arising from
the five Fe d orbitals, that has been previously employed to
successfully describe the two-dimensional superconducting
properties of the iron-based superconductors [23]. However,
to meet the computational demands of the present study we
are required to utilize a simplified version of this 2DTSC
model [17], which nevertheless preserves its salient features
(see Appendix A). In particular, the simplified version still
reproduces the experimentally observed [25] two Fermi sur-
faces that are closed around the � point, which are relevant for
the coupling to the Dirac cone. Moreover, the quasi-2D nature
of superconductivity in FeSe1−xTex as observed by ARPES
experiments [20–23] implies zero direct coupling between the
2DTSC layers, yielding the Hamiltonian,

H2DT SC = − t
∑

〈rr′〉,σ,n

f †
n,r,σ fn,r′,σ − μ

∑
r,σ

f †
n,r,σ fn,r,σ

+ �0

∑
n,r

f †
n,r,↑ f †

n,r,↓ + H.c.

+
∑

n=1,Nz

gn

⎛
⎝iα

∑
r,δ,σ,σ ′

f †
n,r,σ [δ × σ]z

σ,σ ′ fn,r+δ,σ ′

− JS
∑

r,σ,σ ′
f †
n,r,σ σ z
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⎞
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FIG. 1. (a) Schematic representation of the coupled 3DTI and
2DTSC systems with Nz layers. (b) Surface electronic struc-
ture: solid red and black lines represent the decoupled 3DTI and
2DTSC (V = 0) systems, respectively, dashed lines the coupled ones
(V �= 0). (c) Fermi surface of the coupled system. Parameters are
(JS, α, μ, μc ) = (0, 0.1, 3.8, 0.06)t .

where f †
n,r,σ creates an electron with spin σ at site r in

layer n = 1, . . . , Nz, −t is the electronic hopping amplitude
between nearest-neighbor sites on a 2D square lattice, μ is
the chemical potential, �0 is the s-wave superconducting or-
der parameter, α is the Rashba spin-orbit coupling, J is the
magnetic exchange coupling, and S is the ordered moment.
We take the experimentally observed out-of-plane magnetism
and Rashba spin-orbit interaction arising from a broken inver-
sion symmetry to be present on the top and bottom surfaces
only with g1 = −gNz = 1 as required by symmetry (see Ap-
pendix A).

In contrast, the 3DTI mechanism is based on the observa-
tion that the hybridization of the dxy and pz orbitals along the
z axis in FeSe0.45Te0.55 leads to a band inversion and the emer-
gence of a 3D topological insulator. Computational demands
require that we simplify the actual 3DTI electronic struc-
ture of FeSe0.45Te0.55 by utilizing the following four-band
Hamiltonian that was previously employed [26] to describe
three-dimensional topological insulators,

H3DT I =
∑

r, j=1,2,3

(
	

†
r+ê j

−t�1 − iλ� j+1

2
	r + H.c.

)

+
∑

r

	†
r (μc�

0 + m�1)	r, (2)

with spinor 	†
r = (c†

r,1,↑, c†
r,2,↑, c†

r,1,↓, c†
r,2,↓) where cr,a,σ an-

nihilates an electron with spin σ in orbital a = 1, 2 at site r,
�0,...,4 = (1 ⊗ 1, 1 ⊗ sz,−σy ⊗ sx, σx ⊗ sx,−1 ⊗ sy) with σi

and si (i = x, y, z) being Pauli matrices, μc is the chemical
potential, and λ is the spin-orbit coupling. We take m = 2t
and, for simplicity, choose λ = t such that the system is in the
topological phase [26] and consider a 3DTI with Nz layers.
The coupling between the 3DTI and the 2DTSC layers is

described by the Hamiltonian,

Hhyb = −
∑

n,r,a,σ

Vn,a,σ f †
n,r,σ cn,r,a,σ + H.c., (3)

with Vn,a,σ being the hybridization strength in the n′th layer.
The relative signs of Vn,a,σ are determined by the rotation
symmetry of the coupled system (see Appendix B).

III. RESULTS

In Fig. 1(b), we present the electronic dispersion of the
decoupled (V = 0) and coupled (V �= 0) 3DTI and the 2DTSC
systems above Tc where JS = 0. The dispersion exhibits a
Dirac cone with a Dirac point located at ED and two hole-
like bands of the 2DTSC, which are split by the Rashba
spin-orbit interaction [25]. For V �= 0, the 3DTI and 2DTSC
bands hybridize, thus, opening a hybridization gap at the band
crossings. The resulting Fermi surfaces shown in Fig. 1(c),
with the innermost (red) one arising predominantly from the
Dirac cone, and the two outer (black) ones due to the 2DTSC
bands, are in qualitative agreements with the experimental
ARPES observations [2]. To describe the experimentally ob-
served temperature evolution of the spectral function below
Tc [4], and specifically, the opening of gaps at the Fermi
energy and at the Dirac point, we assume an onset of the
magnetic order (JS �= 0) at Tc with JS increasing with de-
creasing temperature. The resulting evolution of the electronic
structure and (3DTI) c-electron surface spectral functions is
shown in Fig. 2 (the f -electron spectral function is shown in
Appendix C). Just below Tc, [see Fig. 2(a)], the hybridization
between the 2DTSC and the 3DTI system proximity induces
a superconducting gap �SC in the 3DTI Dirac cone at EF .
At the same time, a nonzero magnetization JS �= 0 leads to a
magnetic polarization in the Dirac cone, opening a gap �D

at the Dirac point. As we demonstrate below, this renders
the system a Fu-Kane-type topological superconductor [14].
With increasing JS, both �SC and �D further increase [see
Fig. 2(b)], in good qualitative agreement with the tempera-
ture dependence of the spectral function observed in ARPES
experiments [3–5] (see, e.g., Fig. 4 in Ref. [4]). Eventually,
�SC closes at the � point [see Fig. 2(c)] at (JS)pt , which is
a general feature of the coupled system and part of a line of
gap closings occurring only at the � point (see Appendix D),
resulting in two disjoint regions in the (V, JS) plane [see
Fig. 2(d)]. This naturally raises the question of whether this
gap closing represents a topological phase transition, and if
so, what the topological nature of the involved phases in
regions I and II are. To answer this question, we first note that
the gap closing occurs only in the surface spectral function,
whereas the bulk remains gapped, implying that it is associ-
ated with a transition affecting the topological nature of the
surface phase. Moreover, we can consider two limiting cases:
at JS = 0 and V �= 0, the proximity-induced superconducting
gap in the 3DTI Dirac cone is expected to lead to Fu-Kane-
type [14] topological surface superconductivity, which should,
thus, hold for the entire region I. In contrast, for V → 0, the
gap closing line terminates at a value of (JS)pt such that,
for JS > (JS)pt , the system is topological whereas for JS <

(JS)pt , it is trivial. Note that for V = 0 and JS > (JS)pt , the
2DTSC is in the topological C = −1 phase. This is the same
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FIG. 2. Evolution of the electronic structure (left column) and
spectral functions (right column, for ky = 0) below Tc with increas-
ing JS: (a) (JS, μc ) = (0.1, 0.06)t , (b) (JS, μc ) = (0.2, 0.04)t , and
(c) (JS, μc ) = (0.45, 0.04)t . (d) Gap at the � point as a function of
V and JS. Parameters are (V,�0, α, μ) = (0.07, 0.1, 0.1, 3.8)t and
Nz = 5.

topological phase obtained using a five-band model with an
s±-wave superconducting order parameter [17] (see also the
discussion in Ref. [27]), thus, justifying the simplified model
of Eq. (1). We, thus, conclude that in region II, the system
exhibits topological surface superconductivity arising from
the 2DTSC mechanism, and that the gap closing line, thus,
indeed represents a topological phase transition. However,
as the spectral weight in the negative energy branch of the
band in which the gap closing occurs is vanishingly small
[see Fig. 2(c)], the gap closings might be difficult to detect in
ARPES experiments [28]. To further elucidate the topological
nature of regions I and II, we next consider their electronic
structure near vortices and domain walls.

IV. MZMS IN A VORTEX CORE

To explore the emergence of Majorana zero modes in
magnetic vortices, we consider a system with a finite extent
in the x, y, and z direction, and model a vortex [16] by as-
signing a phase to the local superconducting order parameter,
�(r) = |�0|eiφ(r), where φ(r) is a position-dependent angle

FIG. 3. Local density of state (LDOS) as a function of energy
and distance from the vortex core on the top surface for (a) the c
electrons in region I, and (b) the f electrons in region II (for details,
see Appendix F). (c) and (d) Spatial plot of the zero-energy LDOS
corresponding to (a) and (b), respectively.

(for details see Appendices E and F). In Figs. 3(a) and 3(b),
we present the zero-energy LDOS along a line-cut through the
vortex core in regions I and II of the phase diagram, respec-
tively. In both cases, the LDOS exhibits a low-energy state at
E = ±ε, whose spatial structure at +ε is shown in Figs. 3(c)
and 3(d), respectively. The localization of the LDOS at the
site of the vortex core, together with ε → 0 with increasing
system size (see also the discussion in Ref. [29]), implies
that this (near) zero-energy state is an MZM and that in both
regions, the superconducting surface phase is topological in
nature. However, the existence of MZMs in both regions also
implies that their experimental observation cannot discrimi-
nate between these two regions; this, however, can be achieved
by considering the electronic structure near domains walls.

V. MAJORANA EDGE MODES ALONG DOMAIN WALLS

The emergence of Majorana edge modes at certain types
of domain walls was shown to provide insight into the micro-
scopic origin underlying topological superconductivity [17].
In particular, in a 2DTSC, a chiral Majorana edge mode
emerges at a spin domain wall (SDW), where the magneti-
zation flips its orientation S → −S, but not a π -phase domain
wall (PPDW) where the superconducting order parameter un-
dergoes a sign change, �0 → −�0 [17]. In contrast, in a
Fu-Kane-type topological superconductor, a Majorana edge
mode emerges at a PPDW only [14]. To test whether this
qualitative difference allows us to identify the topological
nature of regions I and II, we present in Figs. 4(a)–4(d) the
electronic dispersion along a domain wall for a PPDW and
SDW for representative parameter sets in both regions. In
region I, only the PPDW exhibits an in-gap mode that tra-
verses the superconducting gap [Fig. 4(a)], which together

214514-3



XU, WONG, MASCOT, AND MORR PHYSICAL REVIEW B 107, 214514 (2023)

FIG. 4. (a)–(d) Electronic dispersion as a function of momentum, k‖ along a PPDW and SDW domain wall for parameter sets characteristic
of regions I and II (see Appendix G). Corresponding spectral functions of the (e) and (f) c electrons, and (g) and (h) f electrons. (i)–(l) Currents
along the domain walls (denoted by a dashed gray line).

with its robustness against disorder effects (see Appendix G),
identifies it as a Majorana edge mode. In contrast, the SDW
only possesses trivial in-gap states [Fig. 4(b)], implying that
topological surface superconductivity in region I arises from
the Fu-Kane-like 3DTI mechanism [14]. Conversely, in region
II, only a SDW exhibits a Majorana edge mode [Fig. 4(d)],
which is unaffected by disorder (see Appendix G), whereas
the PPDW does not [Fig. 4(c)]. Thus, in region II, topological
superconductivity arises from the 2DTSC mechanism. More-
over, the complementary emergence of Majorana edge modes
along a PPDW and SDW in regions I and II also implies that
the topological phases arising from these two mechanisms are
mutually exclusive and, thus, competing, rather than coexist-
ing. Moreover, a plot of the spectral functions at the domain
walls [see Figs. 4(e)–4(h)] reveals that the Majorana mode
along the SDW in region II is chiral in nature [cf. Figs. 4(d)
and 4(h)] (see Appendix G), whereas that of the PPDW in
region I is neither helical nor chiral. This qualitative difference
can be detected using quasiparticle interference spectroscopy
[30] as the parallel Majorana branches in Fig. 4(h) lead to
a nearly dispersionless peak in the quasiparticle interference
spectrum [31].

The observation of a Majorana edge mode along a domain
wall is, in general, not sufficient to identify the underlying
microscopic origin, unless the nature of the domain wall
is known. The latter can be achieved by considering the
screening currents in the vicinity of domain walls (see
Appendix H) as shown in Figs. 4(i)–4(l). Although both the
PPDW and the SDW induce screening currents, the resulting
current pattern is qualitatively different. Since the Chern
number, and, hence, the chirality, is reversed at a SDW, the
currents on both sides of the domain wall are symmetric,
leading to a nonzero net current along the domain wall.

In contrast, the current patterns on both sides of a PPDW
are antisymmetric, and the net current is, thus, zero. Since
the net current along a domain wall can be measured using
a superconducting quantum interference device [32], its
presence or absence is a crucial feature distinguishing a SDW
from a PPDW. Thus, the presence or absence of a Majorana
edge mode together with that of a net current allows one to
unambiguously identify the nature of the domain wall and,
thus, the origin of the underlying topological phase.

VI. CONCLUSIONS

We demonstrated that the opening of two gaps in the
surface Dirac cone of FeSe0.45Te0.55 as reported by re-
cent ARPES experiments [4], provides strong evidence for
the existence of two competing mechanisms underlying the
emergence of topological superconductivity. The compe-
tition between these mechanisms—the 2DTSC and 3DTI
mechanisms—while giving rise to robust topological surface
superconductivity over a large range of parameters, also pro-
duces two disjoint topological regions in parameter space.
By considering the emergence of Majorana edge modes at
a SDW and a PPDW, we showed that topological super-
conductivity in region I arises from the 3DTI mechanism,
whereas that in region II is due to the 2DTSC mechanism. An
important outstanding question remains: which mechanism
is responsible for the topological features of FeSe0.45Te0.55,
such as vortex core MZMs [7], experimentally observed at
millikelvin temperatures? Although the experimental ARPES
observations [4] together with our results in Fig. 2 suggest that
topological superconductivity just below Tc arises from the
3DTI mechanism, they also show that with decreasing temper-
ature, the system approaches, and potentially even crosses the
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FIG. 5. (a) Surface electronic dispersion of the 3DTI (μc = 0.06t) in normal state, revealing a Dirac cone. Spectral function of the (3DTI)
c electrons (b) on the surface layer and (c) on the first layer below the surface.

topological phase transition into region II; a transition which
might be difficult to observe via ARPES due to the vanish-
ingly small spectral weight in the gap closing bands. Clearly,
future experiments are required to elucidate the nature of the
topological phase in FeSe0.45Te0.55 at the lowest temperatures.
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APPENDIX A: THE 2DTSC AND 3DTI HAMILTONIANS

To study the emergence of topological surface supercon-
ductivity in FeSe0.45Te0.55, we consider a 3D system with Nz

layers [see Fig. 1(a)]. The 2DTSC model previously intro-
duced [17] to describe the emergence of topological surface
superconductivity in FeSe0.45Te0.55, starts from the quasi-2D
nature of superconductivity in FeSe1−xTex, utilizing a five-
band model that was shown to explain the emergence of
a superconducting phase with s±-wave symmetry in the α,
β, and γ bands, which arise predominantly from the Fe d
orbital [19–22]. These bands exhibit Fermi surfaces that are
closed around the � and X/Y points in the 1Fe Brillouin
zone. However, as we need to consider a 3D systems with Nz

layers (in order to obtain Dirac cones on the 3DTI surfaces),
the inclusion of the full five-band model is computationally
prohibitive. We, therefore, consider a simplified version of the
2DTSC model [17] as given in Eq. (1), which nevertheless
preserves the salient features of the full five-band model. In
particular, it reproduces the experimentally observed [25] two
Fermi surfaces that are closed around the � point, which
are relevant for the coupling to the Dirac cone, as shown in
Fig. 1(b).

Moreover, the magnetic nature of Fe suggests that
the experimentally observed magnetism on the surface of

FeSe0.45Te0.55 [3–5] arises from the Fe d orbitals, rather than
the Te/Se orbitals, or the hybridized Te pz and Fe dxz orbitals
that give rise to the 3DTI [2,11–13]. We, therefore, included
the effect of the experimentally observed magnetization into
the 2DTSC Hamiltonian as previously discussed [17]. As a
result, not only superconductivity, but also a magnetization is
proximity induced into the 3DTI. Finally, we note that rota-
tional symmetry of the system requires that the magnetization
and Rashba spin-orbit interaction possess opposite signs on
the top and bottom surfaces, i.e., J → −J and α → −α.

Moreover, for the calculations presented in the main text,
we consider a 3DTI with a finite number of layers in the z
direction, Nz. As a result, a Dirac cone appears on the top and
bottom surfaces of the system. To demonstrate this, we present
in Fig. 5(a) the electronic dispersion of the 3DTI only (V = 0)
in the normal state, which exhibits the characteristic Dirac
cone. A comparison of the (3DTI) c-electron spectral function
on the surface layer [see Fig. 5(b)], and in the first layer
below the surface [see Fig. 5(c)], demonstrates that the Dirac
cone exists only on the surface of the 3DTI, and essentially
possesses no spectral weight in the layers below the surface.

APPENDIX B: DERIVATION OF THE HYBRIDIZATION
MATRICES BETWEEN THE 2DTSC

AND THE 3DTI SYSTEMS

To derive the form of the hybridization elements, Vn,a,σ [see
Eq. (3)], we use that the coupled 2DTSC and 3DTI systems
with a finite number of Nz layers in the z direction is invariant
under rotation around the x axis. In the following, we first
consider the symmetry properties of the 3DTI and 2DTSC
separately, followed by a symmetry study of the coupled sys-
tem.

1. Rotation symmetry of the 3DTI

The Hamiltonian of the 3DTI [26] in Eq. (2) can be
written as H3DT I = ∑

k 	
†
kĤ(k, λ)	k with spinor 	

†
k =

(c†
k,1,↑, c†

k,2,↑, c†
k,1,↓, c†

k,2,↓) and

Ĥ(k, λ) =

⎛
⎜⎜⎜⎝

−μc + ξk iλ sin(kz ) 0 λ[i sin(kx ) + sin(ky)]
−i λ sin(kz ) −μc − ξk λ[i sin(kx ) + sin(ky)] 0

0 λ[−i sin(kx ) + sin(ky)] −μc + ξk iλ sin(kz )
λ[−i sin(kx ) + sin(ky)] 0 −iλ sin(kz ) −μc − ξk

⎞
⎟⎟⎟⎠, (B1)
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where ξk = m − 2t[cos(kx ) + cos(ky) + cos(kz )]. The Hamiltonian is invariant under a simultaneous rotation around the x axis,
both in real and in spin space, and λ → −λ, which is achieved using the unitary transformation,

M̂x = σx ⊗ σz, (B2)

with σi being the Pauli matrices, such that

M̂xĤ(kx,−ky,−kz, λ)M̂†
x = Ĥ(kx, ky, kz, λ). (B3)

For the system considered in the main text, the 3DTI consists of a finite number of Nz layers in the z direction. Moreover, as
superconductivity is proximitized into the 3DTI, we need to write the Hamiltonian for the 3DTI with Nz layers in Nambu space,
resulting in

Ĥ[kx, ky, i = (1, . . . , Nz ), λ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ĥ1 T̂z 0 0 0
T̂ †

z Ĥ2 T̂z 0 0

0 . . .
. . .

. . . 0

0 0 T̂ †
z ĤNz−1 T̂z

0 0 0 T̂ †
z ĤNz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

with spinor 	
†
k = (	†

1,k, 	
†
2,k, . . . , 	

†
Nz,k

) where

	
†
i,k = (c†

i,k,1,↑, c†
i,k,2,↑, c†

i,k,1,↓, c†
i,k,2,↓, ci,−k,1,↑, ci,−k,2,↑, ci,−k,1,↓, ci,−k,2,↓), (B5)

and i being the layer index. Moreover, Ĥi is the Hamiltonian in Nambu space of the i’th layer of the 3DTI given by

Ĥi(kx, ky) =
(
Ĥn

i (kx, ky) 0

0 −[Ĥn
i (−kx,−ky )]T

)
, (B6)

where Ĥn
i is the normal state Hamiltonian of the i’th layer of the 3DTI given by

Ĥn
i =

⎛
⎜⎜⎜⎝

−μc + εk 0 0 λ[i sin(kx ) + sin(ky)]
0 −μc − εk λ[i sin(kx ) + sin(ky)] 0

0 λ[−i sin(kx ) + sin(ky)] −μc + εk 0

λ[−i sin(kx ) + sin(ky)] 0 0 −μc − εk

⎞
⎟⎟⎟⎠, (B7)

with εk = m − 2t[cos(kx ) + cos(ky)]. The hopping matrix T̂z is given by

T̂z =
(

t̂z 0
0 −t̂ T

z

)
, (B8)

where

t̂z =

⎛
⎜⎜⎝

t −λ 0 0
λ −t 0 0
0 0 t −λ

0 0 λ −t

⎞
⎟⎟⎠. (B9)

Defining next

Ŝx =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 N̂x

0 · · · 0 N̂x 0
...

...
. . .

...
...

0 N̂x 0 · · · 0
N̂x 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠, (B10)

where

N̂x =
(

M̂x 0
0 M̂z

)
, (B11)

the symmetry of Eq. (B3) becomes

Ŝ†
x Ĥ[kx,−ky, i = (Nz, . . . , 1), λ]Ŝx = Ĥ[kx, ky, i = (1, . . . , Nz ), λ]. (B12)
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2. Rotation symmetry of the 2DTSC

The Hamiltonian for a single layer of the 2DTSC can be written as HT SC = ∑
k �

†
kĤT SC (k, α, J )�k with spinor �

†
k =

( f †
k,↑, f †

k,↓, f−k,↑, f−k,↓) and

ĤT SC (k, α, J ) =

⎛
⎜⎜⎜⎜⎝

ξk + J 2α[i sin(kx ) + sin(ky)] 0 �

2α[−i sin(kx ) + sin(ky)] ξk − J −� 0

0 −� −ξk − J 2α[−i sin(kx ) + sin(ky)]

� 0 2α[i sin(kx ) + sin(ky)] −ξk + J

⎞
⎟⎟⎟⎟⎠,

(B13)

where εk = −2t[cos(kx ) + cos(ky)] − μ. Next, we define a unitary matrix Ûx via

Ûx = σz ⊗ σx =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠, (B14)

which yields

Û †
x ĤT SC (kx,−ky,�,−α,−J )Ûx = ĤT SC (kx, ky,�, α, J ). (B15)

As we show in the next section, this symmetry operation is required, as a rotation of the entire coupled system around the x
axis exchanges the top and bottom 2DTSC surfaces, which possess an opposite sign in the magnetization and Rashba spin-orbit
interaction.

3. Rotation symmetry of the coupled 3DTI and 2DTSC systems

We next consider the rotation symmetry of the coupled 3DTI and 2DTSC systems. To this end, we consider a 3DTI with Nz

layers, and only two layers of the 2DTSC system that are coupled to the top and bottom surfaces of the 3DTI system. As we
discuss in the main text, and explicitly show in Appendix E, the bulk bands of the 2DTSC do not affect the electronic structure
or topological phase on the surface of the system. Moreover, as the 2DTSC bulk layers do not contain a Rashba spin-orbit
interaction or ferromagnetic magnetization, their rotation properties are trivial, and we will, therefore, omit them below for
clarity of the derivation.

The Hamiltonian of the 3DTI with Nz layers and of the two 2DTSC layers is given by

ĤS (kx, ky, Nz, α, J, λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĤT SC (α, J ) V̂t 0 0 0 0

V̂ †
t Ĥ1 T̂z 0 0 0

0 T̂ †
z Ĥ2 T̂z 0 0

0 0 . . .
. . .

. . . 0

0 0 0 T̂ †
z ĤNz V̂b

0 0 0 0 V̂ †
b ĤT SC (−α,−J )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B16)

with spinor 	
†
k = (�†

1,k, 	
†
1,k, 	

†
2,k,, . . . , 	

†
Nz,k

,�
†
Nz,k

), and V̂t,b are the hybridization matrices between the 2DTSC layers and
the top and bottom 3DTI surface layers as described by Eq. (3). Using next

P̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 Ûx

0 0 0 0 N̂x 0
0 0 0 N̂x 0 0
0 0 · · · 0 0 0
0 N̂x 0 0 0 0

Ûx 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B17)

the invariance of the coupled system under rotation around the x axis yields

P̂†ĤS (kx, ky, Nz, α, J, λ)P̂ = ĤS (kx,−ky, Nz, α, J, λ). (B18)

This equation holds if

Û †
x V̂bN̂x = V̂ †

t ,

N̂†
x V̂tÛx = V̂ †

b , (B19)
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which is satisfied by choosing

V̂t = V

⎛
⎜⎜⎝

1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 −1 1

⎞
⎟⎟⎠, Vb = V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 −1 0
0 0 −1 0
0 0 0 −1
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B20)

For the results shown in the main text, we consider only coupled systems with an odd number of layers Nz. In this case, and
to preserve the symmetry of the system, we take the hybridization matrices in layers n = 1, . . . , (Nz − 1)/2 to be identical to
V̂t , the hybridization matrices in layers n = (Nz − 1)/2 + 2, . . . , Nz to be identical to V̂b, and the hybridization matrix in layer
n = (Nz − 1)/2 + 1 to be zero.

APPENDIX C: EVOLUTION OF SPECTRAL
FUNCTIONS BELOW Tc

In Figs. 2(a)–2(c), we presented the evolution of the
electronic dispersion and of the (3DTI) c-electron spectral
function with increasing JS below Tc. In Fig. 6, we reproduce
the results of Figs. 2(a)–2(c), together with the spectral func-
tion of the (2DTSC) f electrons. It is interesting to note that
neither the spectral function of the c electrons, nor that of the
f electrons possesses any considerable weight in the negative
energy branch of the band in which the gap closing occurs (see
Fig. 6). Thus, independent of whether ARPES experiments

probe the c- or f -electron orbitals [28], the gap closing will
be difficult to observe.

APPENDIX D: GAP CLOSINGS IN THE (V, JS)-PLANE

As mentioned in the main text, a gap closing in the (V, JS)
plane occurs only at the � point. Here, we demonstrate that
there are no additional gap closings that occur at any other
momenta in the Brillouin zone. To this end, we define the gap
Emin as the minimum positive energy for any momentum in the
Brillouin zone, i.e., Emin = mink∈BZ (|Ek|). Since determining

FIG. 6. Evolution of the electronic dispersion (left column), (3DTI) c-electron (middle column) and (2DTSC) f -electron spectral functions
(right column) below Tc with increasing JS as a function of kx for ky = 0: (a) (JS, μc ) = (0.1, 0.06)t , (b) (JS, μc ) = (0.2, 0.04)t , and
(c) (JS, μc ) = (0.45, 0.04)t . Parameters are (V,�0, α, μ) = (0.07, 0.1, 0.1, 3.8)t .
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FIG. 7. Emin of the coupled 3DTI and 2DTSC systems as a function of JS for (a) V = 0.05t , (b) V = 0.07t , and (c) and V = 0.1t .

Emin for an extended range of parameters on the (V, JS) plane
is computationally very demanding, we consider only line
cuts of Emin as function of JS for several values of the hy-
bridization strength V as shown in Fig. 7. For all line cuts we
considered, only a single gap closing occurs, which coincides
with the gap closing at the � point shown in Fig. 2(d). Thus,
we conclude that for the coupled 2DTSC and 3DTI systems,
gap closings, which indicate a topological phase transition,
occur only at the � point.

APPENDIX E: RELEVANCE OF BULK 2DTSC LAYERS

We argued in the main text that the bulk 2DTSC layers
that couple to the bulk 3DTI layers do not affect the sur-
face electronic structure or the topological surface phase. The
reason for this is twofold. First, the 2DTSC system itself ex-
hibits a (quasi-)2D structure with no direct coupling between
the 2DTSC layers. This implies that the bulk 2DTSC layers
cannot directly couple to the 2DTSC or 3DTI surface layers,
only indirectly by hybridizing with the bulk 3DTI layers. This
hybridization, however, is strongly suppressed since, second,
the bulk 3DTI layers possesses a gap of Eg = t . Thus, the bulk
3DTI layers cannot hybridize with the low-energy states of
the bulk 2DTSC layers. Here, we demonstrate this explicitly
by computing the electronic structure on the surface with and
without the 2DTSC bulk bands, retaining in both cases the two
2DTSC layers that couple to the top and bottom surface layers
of the 3DTI. In Fig. 8, we present the resulting surface elec-
tronic structure for several values of JS when surface and bulk
2DTSC layers are included (black solid line), and when only

the two surface 2DTSC layers are included (red dashed line).
These two results are essentially indistinguishable, implying
that the bulk 2DTSC layers have no effects on the low-energy
electronic structure of the surface. Moreover, we find that the
absence of the bulk 2DTSC layers does also not alter the gap
map shown in Fig. 2(d), implying that the bulk 2DTSC layers
do not affect the topological surface state of the hybridized
system. To reduce the computationally complexity of our cal-
culations, and to ensure that we can consider sufficiently large
system sizes, we, therefore, neglect the bulk 2DTSC layers
when studying the electronic structure in vortex cores and
along domain walls.

APPENDIX F: MZM IN A VORTEX CORE

For the calculation of the electronic structure around a
vortex core, we consider a system that is finite in the x, y, and
z directions with the system’s length in these directions given
by li = Nia0 (i = x, y, z) with a0 being the lattice constant.
For the results shown in Fig. 3, we use two parameter
sets characteristic of regions I and II. For region I [see
Figs. 3(a) and 3(c)], we present the c-electron LDOS (summed
over both orbitals) for parameters (JS,�0, μc,V, α, μ) =
(0.0, 0.1, 0.06, 0.07, 0.1, 3.8)t and system size
(Nx, Ny, Nz ) = (81, 81, 7). For region II, we present [see
Figs. 3(b) and 3(d)] the f -electron LDOS with parameters
(JS,�0, μc,V, α, μ) = (0.9, 0.6, 0.04, 0.07, 0.1, 3.8)t and
system size (Nx, Ny, Nz ) = (151, 151, 3). To simulate a
magnetic vortex core in such a system, one typically
introduces the magnetic field via a Peierls’ substitution [17],

FIG. 8. Evolution of the electronic dispersion below Tc with increasing JS as a function of kx for ky = 0: (a) (JS, μc ) = (0.1, 0.06)t ,
(b) (JS, μc ) = (0.2, 0.04)t , and (c) (JS, μc ) = (0.45, 0.04)t . Black solid (red dashed) line represents the electronic structure when all surface
and bulk 2DTSC layers (when only the surface 2DTSC layers) are included. Parameters are (V,�0, α, μ) = (0.07, 0.1, 0.1, 3.8)t and Nz = 5.
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FIG. 9. Phase angle φ(r) as a function of position for the calcu-
lations shown in Fig. 3.

and computes the superconducting order parameter
self-consistently. This approach, however, is computationally
very demanding for the coupled 2DTSC and 3DTI systems,
and the required system sizes. We, therefore, employ a
simpler approach, which has previously been used to study
the emergence of MZMs in vortex cores [16]. In this approach,
one simulates a vortex core by imposing a phase winding
of the superconducting order parameter �(r) = �0eiφ(r)

around the vortex core. The spatial dependence of the phase
φ(r) is shown in Fig. 9. As the magnetic flux penetrates the
system from the bottom to the top surface, we assign the
same superconducting phases on both surfaces. The LDOS in
the vicinity of a vortex core for parameters characteristic for
regions I and II are shown in Fig. 3.

We note that the small energy splitting of the MZMs shown
in Fig. 3 is the result of the finite size of the system, and
the resulting hybridization between MZMs. Specifically, in
region I, where the topological phase arises from the 3DTI
mechanism, the energy splitting between the MZMs decreases
with increasing number of layers Nz, i.e., with increasing sepa-
ration between the two MZMs on the top and bottom surfaces.
In contrast, in region II, the energy splitting decreases with
increasing Nx, Ny as the 2DTSC exhibits MZMs not only in
a vortex core, but also at the edge of the system as was
previously discussed [29]. A comparison of the LDOS as a
function of energy and distance from the vortex core in region

II on the top surface [see Fig. 10(a)], and on the first layer
below the surface [see Fig. 10(b)], using the same intensity
scale, shows that the MZM as well as the trivial CdGM states
are entirely confined to the surface layer. This is expected for
the MZM as only the surface layer is topological. However,
since the CdGM states shown Fig. 10(a) are associated with
the superconducting gap that is opened in the Dirac cone (the
latter existing only on the surface, see Fig. 5), they are also
necessarily confined to the surface.

APPENDIX G: MAJORANA EDGE MODES
AT DOMAIN WALLS

In Fig. 4, we computed the electronic dispersion
near a PPDW and SDW in regions I and II us-
ing the parameters (V, α, μ) = (0.07, 0.1, 3.8)t . For re-
gion I, we used a characteristic parameter set given by
(JS,�0, μc) = (0.1, 0.1, 0.06)t , whereas for region II, we
used (JS,�0, μc) = (0.9, 0.6, 0.04)t . The system is imple-
mented using periodic boundary conditions such that it
possesses two domain walls. The spectral functions are shown
to the right of the domain walls, which are located between
two columns of sites. We computed the electronic structure for
the PPDW in region I (region II) using a scattering potential
of U0 = 0.1t. (U0 = 0.5t) [see Eq. (G1)].

Moreover, since the systems exhibits two domain walls,
we can investigate the helical or chiral nature of the Majo-
rana edge modes by considering the spin-resolved spectral
functions at both domain walls. In Fig. 11(a) we present the
the electronic dispersion shown in Fig. 4 for the PPDW in
region I, and in Figs. 11(b)–11(e) the spin-resolved (3DTI)
c-electron spectral functions at both domain walls. Although
the spectral functions exhibit a significant spin dependence,
they are identical at both domain walls, implying that the
Majorana edge mode at a PPDW is neither helical nor chiral.
In contrast, a comparison of the electronic dispersion for a
SDW in region II, shown in Fig. 11(f), and the corresponding
spin-resolved (2DTSC) f -electron spectral functions shown
in Figs. 11(g)–11(j), clearly reveal the chiral nature of the
Majorana edge mode.

Moreover, Majorana edge modes are topologically pro-
tected and, thus, robust against disorder effects. To demon-
strate this robustness, we study the effects of disorder on the
Majorana edge modes at a PPDW in region I [see Fig. 4(a)],
and at a SDW in region II [see Fig. 4(c)]. To this end, we
introduce a nonmagnetic scattering potential along the domain

FIG. 10. LDOS as a function of energy and distance from the vortex core in region II (a) on the top surface, and (b) on the first layer below
the surface. Parameters are (JS, �0, μc,V, α, μ) = (0.9, 0.6, 0.04, 0.07, 0.1, 3.8)t , and system size (Nx, Ny, Nz ) = (71, 71, 5).

214514-10



COMPETING TOPOLOGICAL SUPERCONDUCTING PHASES … PHYSICAL REVIEW B 107, 214514 (2023)

FIG. 11. (a) Electronic dispersion as a function of momentum along a PPDW in region I. (b)–(e) Corresponding spin-resolved (3DTI)
c-electron spectral functions to the right of domain-wall 1 (left column) and domain-wall 2 (right column). The spectral functions are summed
over both c-electron orbitals, and parameters are (V, α, μ, JS, �0, μc,U0 ) = (0.07, 0.1, 3.8, 0.1, 0.1, 0.06, 0.1)t . (f) Electronic dispersion as a
function of momentum along a SDW in region II. (g)–(j) Corresponding spin-resolved (2DTSC) f -electron spectral functions to the right side of
domain-wall 1 (left column) and domain-wall 2 (right column). Parameters are (V, α, μ, JS, �0, μc,U0 ) = (0.07, 0.1, 3.8, 0.9, 0.6, 0.04, 0.0)t
and Nz = 5.

wall on the two surfaces, defined via

Ĥscat =U0

∑
n=1,Nz

∑
R

∑
k‖

×
⎛
⎝ f †

n,k‖,R,σ
fn,k‖,R,σ +

∑
a=1,2

c†
n,k‖,R,a,σ

cn,k‖,R,a,σ

⎞
⎠,

(G1)

where U0 is the scattering strength, n is the layer index, R de-
notes sites next to the domain wall (which is located between
two lattice points), and k‖ is the momentum parallel to the
domain wall. In Fig. 12, we present the electronic dispersion
for a PPDW in region I and a SDW in region II for different
values of U0. Note that the existence of Majorana edge modes
as well as the number of these modes are unaffected by the
scattering potential as expected for topologically protected
Majorana edge modes.

Finally, we considered the effects of a finite width of the
spin-domain wall on its electronic structure in region II. To
this end, we assume that the spin rotates gradually in the
plane perpendicular to the direction of the domain wall by
an angle of θ = π/Nw between neighboring sites, where Nw

is the width of the domain wall. In Figs. 13(a) and 13(b),
we present the electronic dispersion as a function of the
momentum parallel to the domain wall for a domain wall
of width Nw = a0 [see Fig. 13(a)], corresponding to the do-
main wall discussed in Fig. 4 and of width Nw = 10a0. In
agreement with the bulk-boundary correspondence, we find
that the finite width of the domain wall does not affect the
existence of the chiral Majorana edge modes. A line cut of the
(normalized) zero-energy LDOS perpendicular to the domain

wall, as shown in Fig. 13(c), demonstrates that for both cases,
Nw = a0 and Nw = 10a0, the Majorana modes is localized at
the domain wall, although the localization length increases
with increasing domain-wall width. We, thus, conclude, that
a finite width of the spin domain wall does not have any

FIG. 12. Electronic dispersion at domain walls in the presence
of a nonmagnetic scattering potential for a PPDW in region I (left
column) and a SDW in region II (right column). (a) Electronic
dispersions for a scattering potential of U0 = 0.1t . (b) Electronic
dispersions for zero scattering potential. (c) Electronic dispersions
for U0 = −0.1t . Parameters in region I are (V, α, μ, JS, �0, μc ) =
(0.07, 0.1, 3.8, 0.1, 0.1, 0.06)t , whereas, in region II, we employed
(V, α, μ, JS, �0, μc ) = (0.07, 0.1, 3.8, 0.9, 0.6, 0.04)t .
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FIG. 13. Electronic dispersion as a function of momentum along the domain wall for spin-domain walls of width (a) Nw = a0, and (b) Nw =
10a0 in region II. In both cases, a chiral Majorana edge mode exists at the domain wall, in agreement with the results shown in Fig. 4. (c) Line
cut of the zero-energy LDOS perpendicular to the domain wall for Nw = a0 and Nw = 10a0. To facilitate a comparison of the results, we have
normalized the LDOS by its largest value along the line cut. Parameters are (V, α, μ, JS, �0, μc ) = (0.07, 0.1, 3.8, 0.9, 0.6, 0.04)t .

qualitative effect on the existence of a chiral Majorana edge
mode or the localization of the mode. The results presented
in Fig. 4, thus, also hold for a finite width of the domain
walls.

APPENDIX H: PERSISTENT SUPERCURRENTS
ALONG DOMAIN WALLS

The supercurrents flowing parallel to the domain wall
possess two contributions, one each from a current flowing
between the 2DTSC f orbitals and the 3DTI c orbitals. There
is no current flowing between the 2DTSC and the 3DTI or-
bitals parallel to the domain wall as the hybridization is local,
i.e., on site.

The persistent supercurrent associated with the hopping
of an electron from a site r to a nearest-neighbor site r + δ

between 3DTI orbitals is given by

I3DT I
r,r+δ = − 2e

h̄

∑
σ,σ ′

∑
a,b=1,2

∫
dω

2π
Re{[−taaδabδσσ ′

+ iλ(δ × σ )z
σσ ′δab̄]g<

b,σ ′;a,σ (r + δ, r, ω)}, (H1)

where −taa is the intraorbital hopping amplitude between
nearest-neighbor sites, and λ is the Rashba spin-orbit inter-
action in the 3DTI system, see Eq. (2). The persistent current
between the 2DTSC orbitals is given by

I2DT SC
r,r+δ = − 2e

h̄

∑
σ,σ ′

∫
dω

2π
Re{[−tδσσ ′ + iα(δ × σ )z

σσ ′]

× g<
σ ′;σ (r + δ, r, ω)}, (H2)

where −t is the hopping amplitude between nearest-neighbor
sites, and α is the Rashba spin-orbit interaction in the
2DTSC system, see Eq. (1). Moreover, g<

a,σ ;b,σ ′ (r, r + δ, ω)
[g<

σ ;σ ′ (r, r + δ, ω)] are the (a, σ ; b, σ ′) [(σ ; σ ′)] elements in
Nambu space of the lesser Green’s function matrices in the
3DTI [2DTSC] system. To compute the lesser Green’s func-
tions, we rewrite the Hamiltonian of Eq. (B16) for a ribbon
geometry. Diagonalizing this Hamiltonian then allows us to
compute the lesser Green’s functions from the resulting eigen-
vectors and eigenvalues [17].
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