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Quantum geometry induced anapole superconductivity
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Anapole superconductivity recently proposed for multiband superconductors [S. Kanasugi and Y. Yanase,
Commun. Phys. 5, 39 (2022)] is a key feature of time-reversal (T ) symmetry broken polar superconductors. The
anapole moment was shown to arise from the asymmetric Bogoliubov spectrum, which induces finite center of
mass momenta of Cooper pairs at the zero magnetic field. In this paper, we show an alternative mechanism of
anapole superconductivity: the quantum geometry induces the anapole moment when the interband pairing and
Berry connection are finite. Thus, the anapole superconductivity is a ubiquitous feature of T -broken multiband
polar superconductors. Applying the theory to a minimal model of UTe2, we demonstrate the quantum geometry
induced anapole superconductivity. Furthermore, we show the Bogoliubov Fermi surfaces (BFS) in an anapole
superconducting state and predict an unusual temperature dependence of BFS due to the quantum geometry.
Experimental verification of these phenomena may clarify the superconducting state in UTe2 and reveal the
ubiquitous importance of quantum geometry in exotic superconductors.
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I. INTRODUCTION

Parity-mixed superconductors, in which even- and odd-
parity pairings coexist, are attracting much attention, as the
parity-mixing phenomena are closely related to the space in-
version (P) symmetry breaking. Stimulated by the discovery
of noncentrosymmetric superconductivity in heavy fermions
and artificial heterostructures, time-reversal (T ) symmetric
parity-mixed pairing states such as the s + p-wave state have
been investigated intensively [1,2]. For a long time, studies
focused on the crystals lacking the P symmetry allowing
an antisymmetric spin-orbit coupling (ASOC). Consequently,
the Rashba superconductor and the Ising superconductor
have become fundamental concepts in condensed matter
physics [1,2].

On the other hand, centrosymmetric crystals were re-
cently shown to be an intriguing platform of spontaneously
P-symmetry breaking superconductivity [3–5]. In the absence
of the ASOC, additional T -symmetry breaking is expected
[3–5] as the ±π/2 phase difference between even- and odd-
parity pairing potentials, such as the s + ip-wave pairing
state, is energetically favored. As a result, both the P and
T symmetry are broken while the combined PT symmetry
is preserved. The three-dimensional s + ip-wave pairing state
in single-band superconductors was theoretically studied as
a superconducting analog [6–8] of axion insulators [9,10].
Such a paring state in Sr2RuO4 was theoretically proposed
[11]. Furthermore, a recently discovered candidate for spin-
triplet superconductor UTe2 [12,13] is predicted to realize
the s + ip-wave pairing state [14], as it is consistent with
the experimentally observed multiple superconducting phases
[15–21] and multiple magnetic fluctuations [22–27].
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Clarification of the PT -symmetric parity-mixed super-
conductivity has been awaited to uncover an exotic state
of matter. However, properties of the PT -symmetric parity-
mixed superconductivity are almost unresolved. In particular,
theoretical studies of multiband superconductors have not
been carried out except for Ref. [28], although it is known
that intriguing superconducting phenomena such as the intrin-
sic polar Kerr effect [29–31] and Bogoliubov Fermi surfaces
(BFS) [32,33] may appear from multiband properties. In
Ref. [28], the anapole superconductivity was discussed as an
exotic feature of the PT -symmetric parity-mixed pairing state
in multiband superconductors. If some conditions are satis-
fied, an asymmetric Bogoliubov spectrum (BS) arises from
the interband pairing [28]. When the symmetry of supercon-
ductivity has a polar property, such as in the Ag + iB3u pairing
state proposed for UTe2 [14], the asymmetric BS induces an
effective anapole moment, which is defined as the first-order
coefficient of the free energy in terms of the center of mass
momenta of Cooper pairs. The anapole moment characterizes
the anapole superconductivity as it does the anapole order in
magnetic materials [34–38] and the nucleus [39].

The anapole moment is a polar and T -odd vector [34],
which shares the symmetry as the velocity and momentum.
Therefore, it is not surprising that the effective anapole mo-
ment induces finite center of mass momenta of Cooper pairs
q even in the absence of the magnetic field. The mechanism
of finite-q pairing is different from the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) superconductivity [40,41] and helical
superconductivity [1,2], which require a finite magnetic field.
For example, helical superconductivity can be stabilized in
parity-mixed s + p-wave pairing states of noncentrosymmet-
ric superconductors [1,2,42]. However, s + p-wave pairing
does not cause T -symmetry breaking which is needed for
helical superconductivity, and therefore, an external mag-
netic field has to be applied. In contrast, s + ip-wave pairing
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intrinsically breaks P- and T -symmetry and may stabilize
finite-q pairing anapole superconductivity in the field-free
condition.

Therefore, in contrast to the FFLO and helical supercon-
ductivity, the anapole superconductivity can be studied with
avoiding experimental difficulties due to vortices induced by
an external magnetic field. For instance, the anapole domain
switching [28], superconducting piezoelectric effect [43,44],
and Josephson effect [45,46] may uncover intrinsic properties
of anapole superconductivity. Therefore, the anapole super-
conductivity may be the key to elucidating the PT -symmetric
parity-mixed pairing state, and it may realize and clarify the
finite-q pairing state which has been searched for a long time
[1,2,47].

In this paper, we show that the anapole superconductivity is
a ubiquitous feature more than revealed in the previous paper
[28], considering the quantum geometry extensively studied
in various fields [37,38,48–59]. Recently, an essential role of
the quantum geometry in the superfluid weight, namely, the
second-order derivative of the free energy, has been revealed
[60–63]. Thus, it is naturally expected that the quantum ge-
ometry may be essential for the anapole superconductivity.

First, we provide a thorough formulation of the anapole
moment based on the Bardeen-Cooper-Schrieffer (BCS)
mean-field theory. The obtained formula contains two terms;
one is the geometric term and the other is the group velocity
term. Only a part of the group velocity term was derived in
the previous literature [28]. Based on the general two-band
model with the Kramers degeneracy, the microscopic origin
of the geometric term is revealed to be the interband pairing
and the Berry connection, while the group velocity term is
induced by the asymmetric BS. Then, applying the theory to
a model of UTe2, we demonstrate the quantum geometry in-
duced anapole superconductivity. Moreover, we show unique
features of anapole superconductivity. When the system has
a small gap minimum as expected for UTe2 [13], the anapole
moment induces the BFS. The BFS may show a reappearing
behavior as decreasing the temperature, causing anomalies in
the density of states (DOS) and thermodynamic quantities.

II. GENERAL FORMULA FOR ANAPOLE MOMENT

An order parameter of the anapole superconductivity is the
anapole moment which is defined by the first-order coefficient
of the free energy with respect to q. In the previous study [28],
the anapole moment is derived only when the k-derivative of
the normal-state Hamiltonian is proportional to the identity
matrix, namely, ∂μHk ∝ 1. We adopt the notation ∂μ = ∂kμ

,
and Hk is the matrix representation of the single-particle
Hamiltonian. Below, we formulate the anapole moment in the
general case based on the BCS mean-field theory.

The normal state is assumed to be P and T symmetric, and
therefore, Hk = UT HT

−kU †
T is satisfied, where UT = iσy ⊗ 1

is the unitary part of the T operator with the Pauli matrix for
the spin space σμ (μ = 0, x, y, z). Thus, the Bogoliubov–de
Gennes (BdG) Hamiltonian for a finite-q pairing state can be
written as (see Appendix A)

ĤBdG = 1

2

∑
k

�̂
†
k,qHBdG

k,q �̂k,q, (1)

HBdG
k,q =

(
Hk+q �k

�†
k −Hk−q

)
, (2)

�̂
†
k,q = (

ĉ†
k+q ĉT

−k+qU
†
T

)
. (3)

Here, we denote ĉ†
k=(ĉ†

↑1k · · · ĉ†
↑ f k ĉ†

↓1k · · · ĉ†
↓ f k ), where ĉ†

σ lk
is the creation operator for spin σ and the other internal
degree of freedom l . We consider general cases, including
multi-orbital and multi-sublattice systems, and f is the total
number of degrees of freedom other than spin.

The off-diagonal part �k = �
g
k + �u

k is the gap func-
tion in the matrix representation, where �

g(u)
k is the P-even

(-odd) component of the pair potential. Coexistence of Cooper
pairs with different parities, i.e., parity-mixed state, leads to
broken P symmetry. Furthermore, the T -symmetry breaking
is theoretically predicted [3–5], when the normal state pre-
serves the P symmetry, Thus, we assume the ±π/2 phase
difference between �

g
k and �u

k, consistent with the theoretical
prediction [3–5]. As a result the P and T symmetry are broken
by the parity-mixed gap function while the PT symmetry is
preserved. In addition, to make the anapole moment finite,
throughout the paper, we assume the gap function �k belongs
to polar irreducible representation.

Expanding the free energy by q as Fq = T · q + · · · , we
obtain the anapole moment as

Tμ = 1

2

∑
k

∑
a

f (Eak) 〈ψak| ∂μH+
k |ψak〉 , (4)

H+
k =

(
Hk 0
0 Hk

)
. (5)

Here, we use the eigenvalue equation HBdG
k |ψak〉 = Eak |ψak〉

with HBdG
k ≡ HBdG

k,0 and the Fermi-distribution function f (E ).
The derivation of Eq. (4) is shown in Appendix A. When the
anapole moment in superconductors Tμ is finite, a supercon-
ducting state due to Cooper pairs with finite center of mass
momenta becomes most stable.

To obtain further insights, using the Bloch wave function
which follows Hk |unχk〉 = εnk |unχk〉, we expand |ψa(k)〉 as
|ψak〉 = (

∑
n,χ φa+

nχk |unχk〉
∑

n,χ φa−
nχk |unχk〉)T . Because of

the Kramers degeneracy, we distinguish two degenerate bands
by the helicity χ =↑↓. Here, φa±

nχk is the matrix element of the
unitary matrix which diagonalizes the band representation of
the BdG Hamiltonian. After calculations, the anapole moment
Eq. (4) is divided into two parts,

Tμ = T velo
μ + T geom

μ , (6)

where

T velo
μ =

∑
k

∑
n,χ

Cnχnχk∂μεnk, (7)

T geom
μ =

∑
k

∑
n 	=m,χχ ′

Cnχmχ ′k

× (εmk − εnk) 〈unχk|∂μumχ ′k〉 , (8)

Cnχmχ ′k = 1

2

∑
a

f (Eak)
(
φa+∗

nχk φa+
mχ ′k + φa−∗

nχk φa−
mχ ′k

)
. (9)
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T velo
μ in Eq. (7) is called the group velocity term as it contains

the group velocity ∂μεnk. In the next section, using the general
two-band model, we show that this term arises from the asym-
metric BS. Equation (9) for T geom

μ is named the geometric
term because it contains the Berry connection 〈unχk|∂μumχ ′k〉.
Through the Berry connection in the geometric term, the
geometric properties of Bloch electrons may contribute to
the anapole moment. Some conditions have to be satisfied
for a finite group velocity term, which vanishes in simple
models [28]. On the other hand, the geometric term has been
overlooked in the previous study. Owing to the geometric
term, the anapole superconductivity becomes recognized as a
ubiquitous feature of the PT -symmetric mixed-parity pairing
state in multiband superconductors.

Before going to the next section, we give an intuitive under-
standing of the origin of anapole superconductivity based on
the group velocity and geometric terms. From the viewpoint
of symmetry, the anapole moment should arise from an odd
structure in the wave-number space. Since the group velocity
term comes from k-space structure of the band dispersion, i.e.,
∂μεn(k), this term arises from the odd structure of BS, namely,
asymmetric BS. In contrast, the geometric term arises from the
k-space geometric properties of Bloch wave functions, i.e.,
〈unχ (k)|∂μumχ ′ (k)〉. Therefore, the odd structure which does
not appear in BS can induce the anapole moment through
the geometric term. These intuitive understandings will be
justified in the next section. However, readers who are not in-
terested in the detailed discussion about the origin of anapole
superconductivity can skip the next section and directly go to
Sec. IV, where the anapole superconductivity is demonstrated
in the minimal model of UTe2.

III. ORIGIN OF ANAPOLE SUPERCONDUCTIVITY

A. General discussion

Before demonstrating the anapole superconductivity due
to quantum geometry, we discuss the physical origin and
the microscopic process of the anapole moment using the
Ginzburg-Landau (GL) theory. We also discuss their relation
to the group velocity and geometric terms. Up to the second
order of the gap function �k, the anapole moment is given by

T GL
μ = 1

β

∑
kωn

tr
[
Gp

kωn
∂μHkGp

kωn
�

g
kG

h
kωn

�u†
k

− Gp
kωn

∂μHkGp
kωn

�u†
k Gh

kωn
�

g
k

] + (g ↔ u), (10)

where tr represents the trace over normal-state degrees of
freedom. Here, Gp(h)

kωn
= (iωn ∓ Hk)−1 is the Green function

for the particle (hole) part. The derivation of the formula
(10) is shown in Appendix B. From this formula, we see
that P- and T -symmetry breaking is needed for the anapole
superconductivity (see also Appendix B).

We can rewrite the formula in the Bloch band basis,

T GL
μ = 1

β

∑
kωn

∑
nmp

∑
χnχmχp

CGL
nmpkωn

tr
[
Pnχnk∂μHkPmχmk

× (
�

g
kPpχpk�

u†
k − �u†

k Ppχpk�
g
k

)] + (g ↔ u), (11)

where CGL
nmpkωn

= (iωn − εnk)−1(iωn − εmk)−1(iωn + εpk)−1,
and Pnχnk = |unχnk〉 〈unχnk| is the projection operator. For
n = m = p, the summand of Eq. (11) vanishes (see
Appendix C for details). Therefore, at least two pairs of
n, m, and p must be nonequivalent for a finite contribution to
the anapole moment. In other words, two interband processes
are necessary for the anapole superconductivity.

The above necessary condition for n, m, and p can be
satisfied in three cases. The first case, n = m 	= p, corresponds
to the group velocity term, and the odd- and even-parity
interband pairings play the role of two interband processes.
In the following subsection, it is shown that the group velocity
term is closely related to the asymmetric BS. The effect of
asymmetric BS on the group velocity term is also discussed in
Appendix D.

The remaining two cases correspond to the geometric term
since the Berry connection is necessary. In the second case,
n 	= m and n = p (or m = p), the Berry connection of Bloch
electrons and either odd-parity or even-parity interband pair-
ing play the role of two interband processes. Finally, in the
third case, n 	= m 	= p 	= n, all of the even-parity interband
pairing, odd-parity interband pairing, and the Berry connec-
tion appear in the contribution to the anapole moment. In
both cases, via the Berry connection, the Bloch electrons
undergo an interband transition from the initial band to the
different band, which is coupled to the initial band through
the interband Cooper pairs. Thus, the two or more interband
processes, due to the Berry connection and interband Cooper
pairs, induce the anapole moment. which is a physical picture
of quantum geometry induced anapole superconductivity.

B. General two-band model

Next, for a more transparent understanding, we derive the
anapole moment in general two-band superconductors with
the Kramers degeneracy. Although we here adopt a two-band
model, the following results can be applied to any multi-
band model with multiple bands near the Fermi surface. The
normal-state Hamiltonian is written as

Hk = h0k1 + hk · γ, (12)

by using the 4 × 4 gamma matrices γ = (γ1 · · · γ5)
that anticommute with each other. Here, h0k and hk =
(h1k · · · h5k) depend on the details of the model. The
energy dispersion is given by ε±,k = h0k ± |hk|. Note that
the 4 × 4 normal-state Hamiltonian has two bands due to the
Kramers degeneracy.

The PT -symmetric parity-mixed pair potential is ex-
pressed as [28]

�k = �
g
k + �u

k, (13)

�
g
k = η0k1 + ηk · γ, �u

k = i

2

∑
i j

η̃i jkγiγ j, (14)

where η0k, ηk = (η1k · · · η5k) and η̃i jk = −η̃ jik are the
complex valued order parameters for even- and odd-parity
pairing channels. Here, taking appropriate U(1) gauge, η0k and
ηik are real while η̃i jk becomes pure imaginary.
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Because of the Kramers degeneracy, the particle Green
function can be projected to the two degenerate bands as [64]

Gp
kωn

= akωn 1 + bkωn H̃k, (15)

akωn = 1

2

∑
±

(iωn − h0k ± |hk|)−1, (16)

bkωn = 1

2

∑
±

∓(iωn − h0k ± |hk|)−1, (17)

with H̃k = (hk · γ )/|hk| = ĥk · γ . The hole Green function is
also given by

Gh
kωn

= ckωn 1 + dkωn H̃k, (18)

where akωn = −ck−ωn and bkωn = −dk−ωn . Hereafter, we omit
the (k, ωn) dependence for simplicity. Inserting these expres-
sions of Green functions into Eq. (10), we get

T GL
μ = 1

β

∑
k

∑
ωn

(a2ctr[∂HM (1)
− ] + a2dtr[∂HM (2)

− ]

+ abctr[{∂H, H̃}M (1)
− ] + abdtr[{∂H, H̃}M (2)

− ]

+ b2ctr[H̃∂HH̃M (1)
− ] + b2dtr[H̃∂HH̃M (2)

− ]). (19)

Here, we introduce the P- and T -odd bilinear products
[28,33,64,65],

M (1)
− = [�g,�u†] + (g ↔ u), (20)

M (2)
− = [�gH̃�u† − �u†H̃�g] + (g ↔ u). (21)

According to Eq. (19), the presence of finite bilinear products
is a necessary condition for the anapole superconductivity.

One of the bilinear products M (1)
− is obtained as

M (1)
− = m1 · γ, (22)

[m1] j = −4
∑
i( 	= j)

Im[ηiη̃
∗
i j]. (23)

It has been shown that M (1)
− is needed for the asymmetric BS

[28], and thus, m1 represents the role of the asymmetric BS.
More specifically, the necessary condition of the asymmetric
BS is given by m1 · ĥ 	= 0 [28]. To elucidate the origin and
physical meaning of another bilinear product M (2)

− , we in-
troduce the interband and intraband superconducting fitness
(SCF) [66,67], F C

g(u) and F A
g(u), which are defined by

F C
g(u) = [H̃,�g(u)], F A

g(u) = {H̃,�g(u)}. (24)

Using this, we can rewrite M (2)
− as

M (2)
− = 1

4

([
F A

g ,�u†
] + [

F A
u ,�g†

]
− {

F C
g ,�u†} − {

F C
u ,�g†}) + H.c. (25)

This means that both interband and intraband pairings lead
to a finite bilinear product M (2)

− . Each term in Eq. (25) is
calculated as [

F A
g ,�u†

] + H.c. = 2m2 · γ, (26)[
F A

u ,�g†
] + H.c. = 2m3 · γ, (27)

{
F C

g ,�u†
} + H.c. = −2m3 · γ + 2(m1 · ĥ)1, (28){

F C
u ,�g†

} + H.c. = −2m2 · γ + 2(m1 · ĥ)1, (29)

where

[m2] j = −4
∑
i( 	= j)

ĥiIm[η0η̃
∗
i j], (30)

[m3] j = −2
∑

i1i2i3i4

εi1i2i3i4 j ĥi1 Im
[
ηi2 η̃

∗
i3i4

]
. (31)

Here, we use the relationship

γ j = −1

4!

∑
i1i2i3i4

ε ji1i2i3i4γi1γi2γi3γi4 , (32)

with the Levi-Civita tensor εi1i2i3i4i5 . Inserting these expres-
sions into Eq. (25), we obtain

M (2)
− = −(m1 · ĥ)1 + (m2 + m3) · γ . (33)

The first term comes from the asymmetric BS, which origi-
nates from the interband SCF. On the other hand, the second
and third terms arise from either the intraband SCF or inter-
band SCF. To be more precise, the term m2 · γ (m3 · γ) needs
the P-even (P-odd) intraband SCF or the P-odd (P-even)
interband SCF. This implies that m2 (m3) contains information
of even-parity (odd-parity) intraband pairing and odd-parity
(even-parity) interband pairing. Thus, introducing the SCF
helps understand the role of P-even and P-odd interband
parings in the anapole superconductivity.

After a tedious but straightforward calculation we can get
the group velocity term and geometric term in the GL theory,

T GL = T GL:velo + T GL:geom, (34)

T GL:velo = 4

β

∑
kωn

[(2abc − a2d − b2d )∂h0

− (2abd − a2c − b2c)∂|h|]m1 · ĥ, (35)

T GL:geom = 4

β

∑
kωn

(a2 − b2)|h|∂ĥ · [cm1 +d (m2 + m3)].

(36)

It should be noted that the group velocity term contains a
factor m1 · ĥ, which is closely related to the asymmetric BS.
Therefore, we conclude that the asymmetric BS is an origin
of the group velocity term (see also Appendix D for a simple
case).

On the other hand, the Berry connection is essential
for the geometric term, as Eq. (36) contains ∂ĥ which makes
the Berry connection finite. More specifically, the geometric
term arises from various contributions, which are understood
by Eq. (36). For the first term of Eq. (36), in addition to the
Berry connection, asymmetric BS is also essential in this con-
tribution. In contrast, the second (third) term of Eq. (11) can
be finite without even- (odd-)parity interband pairing. Thus,
either odd-parity or even-parity interband pairing causes the
anapole superconductivity owing to the quantum geometry,
although the group velocity term needs both odd-parity and
even-parity interband pairing. In other words, whenever the
group velocity term is finite, finite Berry connection ensures
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the presence of the geometric term. Moreover, even when
the group velocity term is absent, the geometric term can be
finite due to m2 and m1. Therefore, necessary conditions for
the anapole superconductivity are relaxed by appropriately
considering the quantum geometric effect, which was ne-
glected in Ref. [28]. Later, we will also show that the anapole
moment is dominated by the geometric term at low tempera-
tures.

IV. QUANTUM GEOMETRY INDUCED ANAPOLE
SUPERCONDUCTIVITY IN UTe2

In this section, we first show a general theory for anapole
superconductivity in locally noncentrosymmetric supercon-
ductors (Sec. IV A) and next focus on UTe2 (Secs. IV B
and IV C).

A. Locally noncentrosymmetric superconductors

Many exotic superconductors of recent interest have multi-
ple sublattices which do not lie on the inversion center. UTe2

[13] and CeRh2As2 [68] are examples of such locally non-
centrosymmetric superconductors, and a part of materials is
listed in a review article [69]. Before demonstrating the quan-
tum geometry induced anapole superconductivity in UTe2, we
show that the locally noncentrosymmetric superconductors
are generically the platform of anapole superconductivity and
clarify the conditions for it. While the following discussions in
this subsection are based on the GL expansion, the BCS theory
reproduces the results for the anapole moment quantitatively,
as shown in Sec. IV C.

We consider the locally noncentrosymmetric two-
sublattice model [28], which is adopted as a minimal model
for UTe2 later,

H = ξσ0 ⊗ τ0 + wxσ0 ⊗ τx + wyσ0 ⊗ τy + g · σ ⊗ τz,

(37)

�g = �g

⎡
⎣ ∑

μ=0,x,y

φμ
g σ0 ⊗ τμ + dz

g · σ ⊗ τz

⎤
⎦, (38)

�u = �u

⎡
⎣ ∑

μ=0,x,y

dμ
u · σ ⊗ τμ + φz

uσ0 ⊗ τz

⎤
⎦. (39)

Here, σμ and τμ are the Pauli matrices for the spin and
sublattice spaces, ξ is the single-particle kinetic energy, and
g = (gx, gy, gz ) is the staggered-type ASOC due to the lo-
cal P-symmetry breaking at atomic sites. For example, in
UTe2, U atoms form a ladder structure, which consists of two
sublattices lacking the P symmetry at the atomic sites. The
local point group descends to C2v from D2h, and therefore,
the Rashba ASOC naturally appears. Since the two sublattices
are related by the global P symmetry, the Rashba ASOC
shows a staggered form proportional to τz.

The superconducting pair potentials are divided into the
spin-singlet component φ

μ
g(u) and the spin-triplet component

dμ
g(u). The local inversion symmetry breaking also leads to

sublattice-dependent parity mixing of the pair potential. Thus,
the sublattice-independent spin-singlet (spin-triplet) pairing
component and the staggered spin-triplet (spin-singlet) one

TABLE I. Correspondence between Pauli and Dirac matrices.

Pauli Dirac

σ ⊗ τz (γ1 γ2 γ3)
σ ⊗ τy (−iγ1γ4 − iγ2γ4 − iγ3γ4)
σ ⊗ τx (iγ1γ5 iγ2γ5 iγ3γ5)
σ ⊗ τ0 (−iγ2γ3 iγ1γ3 − iγ1γ2)
σ0 ⊗ τ (γ4 γ5 − iγ4γ5)

coexist in the even-parity (odd-parity) pair potential. To
preserve the PT symmetry while breaking the T symme-
try, the relative phase between the complex-valued order
parameters �g and �u is assumed to be π/2, and thus,
4Im(�g�u∗) 	= 0.

We show the correspondence between the Pauli matrices
and the Dirac matrices in Table I [70], from which the condi-
tion for anapole superconductivity can be derived based on
the discussions in Sec. III. The results are summarized in
Table II, where conditions for the finite group veloc-
ity term and the geometric term are explicitly presented.
Here, we define ĝ = g/|h| and ŵx(y) = wx(y)/|h| with |h| =

TABLE II. Conditions for the anapole superconductivity in lo-
cally noncentrosymmetric systems. The corresponding SCF is also
shown. We assume 4Im(�g�u∗) 	= 0, which is satisfied in the parity-
mixed T -symmetry breaking superconductors. When an inequality
listed in the table is satisfied, (a) the group velocity term and (b) the
geometric term are finite.

Condition (Dirac) Condition (Pauli) SCF

(a) Group velocity term

∂ε±m1 · ĥ 	= 0 ∂ε±dz
g · dy(x)

u ŵx(y) 	= 0 FC
g , FC

u 	= 0

∂ε±φy(x)
g φz

uŵx(y) 	= 0

∂ε±φy(x)
g dx(y)

u · ĝ 	= 0

∂ε±(dz
g × d0

u ) · ĝ 	= 0

(b) Geometric term

m1 · ∂ĥ 	= 0 dz
g · dy(x)

u ∂ŵx(y) 	= 0 FC
g , FC

u 	= 0

φy(x)
g φz

u∂ŵx(y) 	= 0

φy(x)
g dx(y)

u · ∂ ĝ 	= 0

(dz
g × d0

u ) · ∂ ĝ 	= 0

m2 · ∂ĥ 	= 0 φ0
g ĝ · dy(x)

u ∂ŵx(y) 	= 0 F A
g , FC

u 	= 0

φ0
gŵy(x)φ

z
u∂ŵx(y) 	= 0

φ0
gŵy(x)d

x(y)
u · ∂ ĝ 	= 0

φ0
g (ĝ × d0

u ) · ∂ ĝ 	= 0

m3 · ∂ĥ 	= 0 ĝ · (dz
g × dy(x)

u )∂ŵy(x) 	= 0 FC
g , F A

u 	= 0

ŵx(y)d
z
g · d0

u∂ŵy(x) 	= 0

ĝ · (φx(y)
g d0

u )∂ŵy(x) 	= 0

ŵx(y)(d
z
g × dx(y)

u ) · ∂ ĝ 	= 0

ŵx(y)φ
y(x)
g d0

u · ∂ ĝ 	= 0

(ĝ × (φx(y)
g dx(y)

u )) · ∂ ĝ 	= 0

(ĝ × dz
gφ

z
u ) · ∂ ĝ 	= 0
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TABLE III. Classification of parity-mixed superconducting
states in the D2h point group symmetry. Direction of anapole mo-
ment is shown for the anapole superconducting state. The other
pairing states are monopole superconducting states and represented
as “monopole.”

Ag B1g B2g B3g

Au monopole Tz Ty Tx

B1u Tz monopole Tx Ty

B2u Ty Tx monopole Tz

B3u Tx Ty Tz monopole

√
w2

x + w2
y + |g|2. Note that all the terms of anapole moment

are proportional to 4Im(�g�u∗), which is finite by assump-
tion. The geometric term can be finite in a relatively simple
situation. For example, the m2 term gives a finite anapole
moment when φ0

g (ĝ × d0
u) · ∂ ĝ 	= 0. This condition is satisfied

in the presence of an usual spin-singlet pairing component φ0
g

and an interband pairing component ĝ × d0
u when the corre-

sponding Berry connection is finite. If the s + ip-wave pairing
state is realized in UTe2 as proposed [14], the even-parity
s-wave component, φ0

g , and the odd-parity p-wave component,

d0
u, naturally exist, and the Berry connection arises from the

staggered Rashba ASOC. Thus, the anapole superconductivity
is likely to occur in UTe2 owing to the quantum geometry
when the s + ip-wave state is stabilized.

B. Symmetry classification in the D2h point group

Here, we show the classification of parity-mixed su-
perconducting states assuming the crystals of D2h point
group symmetry with UTe2 in mind. Combination of the
four even-parity irreducible representations (Ag, B1g, B2g,
B3g) and odd-parity ones (Au, B1u, B2u, B3u) gives 4 × 4 =
16 classes of parity-mixed pairing states. They are classi-
fied into either the anapole superconductivity or monopole
superconductivity.

The anapole superconducting state has the polarity and
shares the symmetry with the magnetic toroidal ordered state,
while the monopole superconducting state is a superconduct-
ing analog of the magnetic monopole state [71]. In the D2h

point group, the order parameter of anapole superconductivity
breaks the C2 rotation symmetry which flips the polar axis.
In contrast, the C2 rotation symmetry of all directions is pre-
served in the monopole superconducting state, which means
that the anapole moment vanishes and the finite-q pairing
states are prohibited.

Table III shows the finite component of the anapole mo-
ment for the 12 anapole superconducting states, while we
denote “monopole” for the monopole superconducting state.
For instance, the Ag + iB3u pairing state is an anapole super-
conducting state with the anapole moment along the x axis.
On the other hand, the Ag + iAu pairing state is a nonpolar
monopole superconducting state, where the anapole moment
vanishes.

C. Anapole superconductivity in UTe2

In the theoretical calculation which constructs a
24-orbital model for UTe2 [14], competing ferromagnetic and
antiferromagnetic fluctuations have been shown, implying
the competition between the s-wave and p-wave pairings.
Comparing the theoretical results with the experimentally
observed multiple superconducting phases, the parity-mixed
T -symmetry-broken s + ip-wave state was proposed for
UTe2. Such s + ip-wave superconducting state was also
discussed in experimental studies [72,73]. In this scenario,
P- and T -symmetry breaking necessary for the anapole
superconductivity is predicted. To examine the possible
anapole superconductivity in UTe2, we adopt a model for
UTe2 and show unique features which have microscopic
origins beyond the GL theory.

Here, one of the purposes is to derive the minimal condition
and universal properties of anapole superconductivity, which
are independent of the detailed band structure. Therefore, we
focus on the sublattice and spin degrees of freedom in UTe2,
giving rise to multiple bands near the Fermi level. Actually,
most of the following results are independent of the details of
band structure, as is also discussed in Sec. V. Thus, we set the
normal-state Hamiltonian Eq. (37) as

wx = wy = 0, (40)

ξ = t
∑

μ cos kμ − μ, (41)

g = α(sin ky,− sin kx, 0), (42)

with (t, μ, α) = (0.2, 0.4,±0.04). In this model, the energy
dispersion is given by ε± = ξ ± |g|. In Table II, some terms
of the anapole moment are first order in g, implying that
the anapole moment may depend on the sign of the ASOC
coupling constant α. Thus, we examine the two cases, α =
±0.04. We will actually show that the properties of anapole
superconductivity depend on the sign of α.

First, we consider the superconducting pair potential,

�g(T ) = �0(T )φ0
gσ0 ⊗ τ0, (43)

�u(T ) = i�0(T )d0
u,zσz ⊗ τ0, (44)

with φ0
g = 1 and d0

u,z = sin ky, which belongs to the Ag +
iB3u irreducible representation of the D2h point group.
The temperature dependence is assumed to be �0(T ) =
�max

0 tanh[1.74
√

(Tc − T )/T ], where �max
0 = 3.53

2 Tc = 0.02.
Based on the GL theory, we expect that the group velocity

term vanishes in this case, i.e., m1 · ĥ = 0. However, since the
d vector for the B3u representation is not parallel to the g vec-
tor for the ASOC of the C2v point group, odd-parity interband
pairing is always finite in addition to intraband pairing. In
other words, ĝ × d0

u 	= 0 leads to odd-parity interband pairing.
Therefore, the geometric term is finite because the condi-
tion m2 · ∂ĥ = φ0

g (ĝ × d0
u) · ∂ ĝ 	= 0 in Table II(b) is satisfied.

As a result, Ag + iB3u representation of superconductivity in
UTe2 ensures the presence of the quantum geometry induced
anapole superconductivity regardless of the size of the inter-
band pairing.

We calculate the anapole moment by Eqs. (6)–(9) and
show the temperature dependence of Tx in Fig. 1(a). Note that
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FIG. 1. The temperature dependence of the anapole moment for
the pair potential Eqs. (43) and (44). (a) The orange, blue, and pink
lines show the group velocity term, geometric term, and total anapole
moment, i.e., T velo

x , T geom
x , and Tx , respectively. The blue and pink

lines coincide because T geom
x = Tx in this case. (b) The purple and

red lines show the superfluid weight Ds
xx and the most stable center

of mass momenta of Cooper pairs qc. We also show −Tx/Ds
xx by the

green line, which almost coincides with the red line for qc.

Ty = Tz = 0 owing to the symmetry of the Ag + iB3u irre-
ducible representation (Table III). The anapole moment does
not depend on the sign of α in this case. We denote the total
anapole moment as T a

μ in all figures to avoid the confusion
with the temperature T . We find that the group velocity term
(orange line) is always zero, revealing that the prediction
based on the GL theory is exact. Therefore, the geomet-
ric term (blue line) determines the anapole moment (pink
line). In Fig. 1(b), we also plot the superfluid weight Ds

xx,
defined as the second-order q derivative of the free energy
at q = 0 (see Appendix E for details). We can evaluate the
center of mass momentum of Cooper pairs in the anapole
superconducting state by −Tx/Ds

xx (see Appendix E). We also
directly calculate the center of mass momentum qc, which
minimizes the free energy, and compare it with −Tx/Ds

xx
in Fig. 1(b). Since −Tx/Ds

xx almost coincides with qc, we
confirm that −Tx/Ds

xx provides a good estimation for qc,
indicating that higher-order q derivatives can be ignored.
Thus, we conclude that the finite-q pairing state due to the
anapole superconductivity is determined by the anapole mo-
ment. We stress that the asymmetric BS does not appear in this
model, and the anapole superconductivity has a purely quan-
tum geometric origin. More specifically, the Berry connection
of Bloch electrons and the interband pairing play essential
roles.

Next, we consider the superconducting pair potential,

�g(T ) = �0(T )
(
φ0

gσ0 ⊗ τ0 + dz
g,yσy ⊗ τz

)
, (45)

�u(T ) = i�0(T )d0
u,zσz ⊗ τ0, (46)

with dz
g,y = sin kx, which also belongs to the Ag + iB3u irre-

ducible representation. Thus, Ty = Tz = 0 is satisfied as in
the previous case. We assume the same temperature depen-
dence of �0(T ) as before. In this case, the group velocity
term becomes finite as expected based on the GL theory
since the condition ∂ (h0 ± |h|)m1 · ĥ = ∂ε±(dz

g × d0
u) · ĝ 	= 0

in Table II(a) is satisfied. Similarly, the geometric term is
also finite because m1 · ∂ĥ = (dz

g × d0
u) · ∂ ĝ and m2 · ∂ĥ =

φ0
g (ĝ × d0

u) · ∂ ĝ are finite. As the group velocity term is first
order in α according to the GL theory, we expect that the sign
of the ASOC coupling constant α is essential for the group
velocity term [74]. In addition, a part of the geometric term
due to m1 · ∂ĥ is the first-order term, and the sign of α also
affects the geometric term.

In Figs. 2(a) and 2(b), we show the temperature depen-
dence of the anapole moment for α = 0.04 and α = −0.04,
respectively. We also show the superfluid weight and qc in
Figs. 2(c) and 2(d). We find that the sign of α drastically
changes the group velocity term, whose sign is opposite be-
tween α = 0.04 and α = −0.04. The magnitude is different
between the two cases, provably due to an effect beyond the
GL theory. On the other hand, the sign of the Rashba ASOC
α only slightly changes the geometric term. Note that other
physical quantities also depend on the sign of α since the
band representation of the gap function depends on α, as
φ0

g + dz
g,ygy/|g|. Actually, we see that the superfluid weight

depends on the sign of α.
In both Figs. 2(a) and 2(b), the group velocity term de-

cays in the low-temperature regime, which is attributed to
the fact that the group velocity term is induced by the
asymmetric BS. The asymmetric BS, namely, Eak 	= Ea−k,
leads to nonequivalent distribution of Bogoliubov quasiparti-
cles, f (Eak) 	= f (Ea−k). This effect mainly induces the group
velocity term. However, the Fermi distribution function is
reduced to the step function in the low-temperature region,
f (Eak) � θ (−Eak), which leads to f (Eak) � f (Ea−k) in the
gapped system and suppresses the group velocity term (see
also Appendix D). Therefore, the anapole moment is mainly
determined by the geometric term in the low-temperature re-
gion. On the other hand, the relation θ (Eak) = θ (Ea−k) does
not hold when the BFS are present. Thus, the group velocity
term can be sizable at T = 0 when large BFS appear at q = 0.
This case is shown in Appendix D.

In the model adopted in this section, while the BFS do not
exist at q = 0, they appear in the anapole superconducting
state as a result of the center of mass momentum of Cooper
pairs. In Figs. 3(a) and 3(b), we show the BS in the stable
state q = qcx̂ for α = 0.04 and α = −0.04, respectively. In
the figures, the inset shows the presence of BFS. In our model
for q = 0, the spin-triplet pairing component of the pair po-
tential gives rise to the anisotropic gap structure. Therefore,
Bogoliubov quasiparticles with almost zero energy are
present. As a result, when the anapole moment tilts the BS
along the direction of q = qcx̂, the BFS appear near the gap
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FIG. 2. (a), (b) The anapole moment and (c), (d) the superfluid weight and qc for the pair potential Eqs. (45) and (46). We assume α = 0.04
in the panels (a) and (c), while α = −0.04 in (b) and (d). The lines with colors show the same quantities as in Fig. 1.

minimum. Therefore, the anapole superconductivity can be
verified by measuring the BFS.

Finally, we show an intriguing phenomenon originating
from the competition of the group velocity and geometric
terms in the anapole moment. In Figs. 2(a) and 2(c), the
anapole moment as well as qc change the sign as the tem-
perature decreases. This is because the geometric term has
the opposite sign of the group velocity term and the group
velocity term vanishes at the zero temperature. As we men-
tioned above, the BFS are absent when the anapole moment
is small Tx � 0, while they appear for large Tx. Therefore, the

BFS appear below T = Tc, disappear in the intermediate tem-
perature region, and reappear in the low-temperature region
by following the nonmonotonic temperature dependence of
the anapole moment. This is confirmed by the temperature
dependence of the DOS in Fig. 4. The DOS at the Fermi
level is zero around T = 0.0085 since the anapole moment
is small. On the other hand, the DOS is finite in the high- and
low-temperature regions where the magnitude of the anapole
moment is sizable. This behavior is consistent with the reap-
pearance of BFS, which is a characteristic feature of the
anapole superconducting state with competing group velocity

FIG. 3. BS in the anapole superconducting state with q = qcx̂ for the pair potential Eqs. (45) and (46). Here, we plot Eak,q which follows
the eigenvalue equation HBdG

k,q |ψak,q〉 = Eak,q |ψak,q〉. (a) BS on the line (ky, kz ) = (−0.0713998, 0) for α = 0.04 and T = 0.002. (b) BS on the
line (ky, kz ) = (0.499799, 0) for α = −0.04 and T = 0.01. The inset shows the enlarged view, which underlines the presence of BFS.
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FIG. 4. The temperature dependence of the DOS at the Fermi
level calculated by

∑
k

∑
a δ/π (δ2 + E 2

ak,qc
) with δ = 1 × 10−6. We

assume the same parameters as Figs. 2(a) and 2(c).

and geometric terms. Thus, the role of quantum geometry on
anapole superconductivity can be studied by measuring the
zero-energy DOS.

V. DISCUSSION

In this paper, we showed some unique features of quantum
geometry induced anapole superconductivity. A candidate
material is UTe2 and our result may pave the way for clarify-
ing the symmetry of superconductivity in UTe2. Thus, toward
the experimental verification of anapole superconductivity in
UTe2, we give some discussions in this section.

A concern which is not limited to UTe2 is the stability
of finite-q pairing against the quantum fluctuation. For the
s-wave superconductivity in the isotropic and continuum
model, the mean-field solution of the FFLO superconductiv-
ity is known to be unstable due to the quantum fluctuation
[75,76]. This is attributed to the infinite degeneracy of finite-q
pairing states ensured by the isotropic symmetry. In contrast,
in the anapole superconductivity, the stable momentum of
Cooper pairs q is restricted to only one direction, and addi-
tional degeneracy does not occur. Therefore, it is expected
that anapole superconductivity is stable against quantum fluc-
tuation. The argument is also supported by the fact that
the finite-q pairing state is stable in the anisotropic three-
dimensional system [76]. Our main target is the anisotropic
three-dimensional systems, the case of UTe2.

Then, we give some comments and remarks on the results
relating to UTe2, which include (1) the justification of the
results obtained by the simplified model, (2) future issues,
(3) methods for observing the anapole superconductivity, and
(4) the relationship between our results and the recent experi-
ments.

(1) In this paper, we dealt with a simplified model for
UTe2, where the orbital degree of freedom, electron correla-
tion effect, detailed band structure, and so on are neglected for
simplicity. Therefore, we discuss the situations in which our
results are adaptable. First, to derive the quantum geometry
induced anapole superconductivity in UTe2, we only assumed
the presence of the ASOC due to the locally noncentrosym-
metric structure as the characteristic normal-state property.
Since the presence of the ASOC is universal for the crystal

structure of UTe2, we conclude that quantum geometry in-
duced anapole superconductivity is also realized in more
complicated models for UTe2. Also, the decay of the group
velocity term is universal when the BFS is absent for the zero
center of mass momenta of Cooper pairs. Therefore, these
results are adaptable for a wide range of the models for UTe2.

Next, we comment on the BFS induced by the anapole
moment and the sign change of the center of mass momenta,
which are model-dependent. For the BFS to appear from the
anapole moment, there must be gap minimum or node which
depends on the Fermi surface and the order parameters. Such
gap minimum or node is realistic and often obtained in mi-
croscopic calculations. Especially, we would like to note that
highly anisotropic momentum dependence in both even-parity
and odd-parity pair potentials have been obtained based on
the periodic Anderson model for UTe2 [14]. As for the sign
change, competition between the geometric and group veloc-
ity terms is needed, which also depends on the band structure
and order parameters. In addition, in our model the presence
or absence of the sign change depends also on the ASOC,
which is hard to be predicted. As a result, the sign change
of the center of mass momenta and the associated reentrant
BFS depend on the model. Thus, the BFS is likely to appear
if the anapole superconductivity is realized in UTe2, but the
reappearing behavior of the BFS is not universal and should
be verified by further calculations.

(2) From the above discussion, it is desired to study a
more realistic model for UTe2, as we have carried out for
FeSe based on the first-principles calculation [59,63]. In a
model taking account of various degrees of freedom, we may
obtain significant contributions from the quantum geometry.
Our previous study [63] has shown that the band degeneracy
near the Fermi surfaces induces a large geometric contribution
to the superfluid weight, implying that the band degeneracy
may also be advantageous for the quantum geometry induced
anapole superconductivity.

It is also desired to solve multiple gap equations self-
consistently, determining the amplitude and temperature
dependence of two-component gap functions. While the nec-
essary condition of the anapole superconductivity does not
depend on such details, the self-consistent calculation of real-
istic models may enable quantitative estimation of the anapole
moment, which, in turn, predicts the presence/absence of the
sign change of the anapole moment. Such quantitative studies
are beyond the scope of this paper and are left for future
works.

(3) The anapole superconductivity can also be verified
by other methods. For example, the Josephson junction
experiment, which was proposed to detect the helical su-
perconductivity [45,46], can apply to observe the anapole
superconductivity. In addition, some of the authors proposed a
unique vortex structure on anapole domains, current-induced
anapole domain switching [28], and nonreciprocal optical and
Meissner responses [77,78]. Recently, we also showed the
superconducting piezoelectric effect [43] and intrinsic super-
conducting diode effect [79] in the anapole superconductors,
which will be presented in another publication [44].

(4) We would like to stress that the symmetry of supercon-
ductivity in UTe2 is unsettled. One of the unresolved issues
is the T -symmetry breaking in the superconducting state,
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reported by the STM [80] and the polar Kerr effect [81].
Here we comment on the unidirectional property observed in
the STM. It may be related to the anapole superconductivity,
which is a unidirectional superconducting state in the bulk.
Further studies are desired and ongoing to elucidate the exotic
superconductivity in UTe2.

While we focused on the superconducting state at the zero
magnetic field in this paper, an anapole superconducting state
with finite-q pairing may also appear at finite magnetic fields.
The observation of the double superconducting transitions in
UTe2 under the magnetic field along the b axis implies the
superconducting phases with distinct symmetry [72,73]. If
the superconducting state around Hb � 15 T is the s + ip-
wave pairing state as discussed [72], it is either finite-q
anapole superconductivity or monopole superconductivity.
Although the PT symmetry is broken by the magnetic field
in this phase, it does not suppress the finite-q pairing. The
possibility of anapole superconductivity under the magnetic
field is also discussed in Ref. [73].

VI. SUMMARY

In this paper, we showed that the quantum geometry of
Bloch electrons induces the anapole superconductivity when
the superconducting state breaks the P and T symmetry and
has the polar symmetry. Formulating the anapole moment
characterizing the anapole superconductivity thoroughly, we
find the group velocity term and geometric term with different
origins. Based on the theory a model for UTe2 was analyzed,
and characteristic features of anapole superconductivity were
clarified.

We identified microscopic processes for the group ve-
locity term and geometric term of the anapole moment. At
least two interband processes are necessary. The previous
study [28] revealed that the asymmetric BS can induce the
anapole superconductivity. This mechanism corresponds to
the group velocity term. For the interband processes both
even-parity and odd-parity pair potentials must have interband
components. In contrast, the normal-state Berry connection
represents the interband process and gives rise to the geomet-
ric term. Since quantum geometry arises from the geometric
structure of Bloch wave functions, the geometric term does
not need the asymmetric structure of BS. Even when the odd
structure of Cooper pairs does not affect the BS, the geometric
term can be finite and cause the anapole superconductivity.
In other words, the quantum geometry can extract the odd
structure of Cooper pairs which does not appear in the BS,
and reflect it in the anapole moment. Therefore, the anapole
superconductivity may have a quantum geometric origin. This
case requires only either even-parity or odd-parity interband
pair potential.

Furthermore, we clarified the general and unique features
of anapole superconductivity. First, in the low-temperature
region, the anapole superconductivity is purely induced by the
quantum geometry. This is because the group velocity term is
suppressed by the superconducting gap. In other words, the
quantum geometry is needed for the anapole superconduc-
tivity in the ground state. Second, the BFS appears in the
anapole superconducting state, when the gap is sufficiently
anisotropic. Third, when the group velocity term and the

geometric term are competing, the anapole moment changes
the sign as decreasing the temperature. This sign change may
lead to the nonmonotonic evolution of the BFS. A candidate
superconductor UTe2 may host an anisotropic superconduct-
ing gap [13], and therefore, the appearance of the BFS is
expected. Observation of the BFS and their unique tem-
perature dependence would not only evidence the anapole
superconductivity in UTe2 but also provide a strong constraint
on the symmetry of superconductivity (see Table III for sym-
metry classification of parity-mixed superconducting states).
Therefore, search for BFS in UTe2 is desirable.

In conclusion, the quantum geometry ubiquitously in-
duces the anapole superconductivity in the PT -symmetric
parity-mixed pairing state in multiband superconductors. The
anapole superconducting state may show unique phenomena
which can be experimentally tested. Thus, we propose a way
to clarify the superconducting state in UTe2.
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APPENDIX A: DERIVATION OF ANAPOLE MOMENT

In this section, we derive the anapole moment in the
superconducting state. We start from the BdG Hamiltonian
written as

ĤBdG = 1

2

∑
k

ˆ̃�†
k,qH̃BdG

k,q
ˆ̃�k,q, (A1)

H̃BdG
k,q =

(
Hk+q �kUT

U †
T �†

k −HT
−k+q

)
, (A2)

ˆ̃�†
k,q = (

ĉ†
k+q ĉT

−k+q

)
. (A3)

Using the unitary operator,

UThole =
(

σ0 ⊗ 1 0
0 UT

)
, (A4)

we can rewrite the BdG Hamiltonian as

ĤBdG = 1

2

∑
k

ˆ̃�†
k,qU

†
Thole

UThole H̃
BdG
k,q U †

Thole
UThole

ˆ̃�k,q

= 1

2

∑
k

�̂
†
k,qHBdG

k,q �̂k,q. (A5)

Thus, we define the Nambu Green function with
Matsubara frequency ωn as GBdG

k,q,ωn
= [iωn − HBdG

k,q ]−1.
Using this, the free energy is obtained as Fq =
− 1

2β

∑
kωn

Tr ln[GBdG−1
k,q,ωn

], where Tr represents the trace
over all internal degrees of freedom. The anapole moment is
defined as the first-order coefficient of the superconducting
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free energy with respect to q [28]:

Tμ = lim
q→0

dFq

dqμ

,

= lim
q→0

(
∂qμ

Fq +
∑

l

∂qμ
�l (q)∂�l (q)F (q)

)
,

= lim
q→0

∂qμ
Fq,

= 1

2β
lim
q→0

∑
kωn

Tr
[
GBdG

k,q,ωn
∂qμ

HBdG
k,q

]
,

= 1

2β

∑
kωn

Tr
[
GBdG

k,ωn
∂μH+

k

]
, (A6)

where GBdG
k,ωn

= GBdG
k,q,ωn

|q=0. Here, we use the relationship
∂�l (q)F (q) = 0, in which �l (q) denotes the k-independent
part of each component of the gap function, since the super-
conducting state is stable. Taking the sum of the Matsubara
frequencies, we get the formula of the anapole moment as

Tμ = 1

2

∑
k

∑
a

f (Eak) 〈ψak| ∂μH+
k |ψak〉 . (A7)

APPENDIX B: ANAPOLE MOMENT FROM GL THEORY

Here, we derive the formula of the anapole moment using
the GL expansion. Since we focus on the superconducting
state, we ignore the free-electron term and rewrite the free
energy as

Fq = − 1

2β

∑
kωn

Tr ln
[
GBdG−1

k,q,ωn

]

= − 1

2β

∑
kωn

Tr
[

ln(1 − Gk,q,ωnVk) + ln
(
G−1

k,q,ωn

)]

= 1

2β

∞∑
c=1

∑
kωn

Tr
[
Gk,q,ωnVkGk,q,ωnVk

]c + · · · , (B1)

where

Vk =
(

0 �k

�†
k 0

)
, (B2)

G−1
k,q,ωn

= GBdG−1
k,q,ωn

+ Vk. (B3)

Up to the second order of the superconducting order parame-
ter, the free energy can be written as

F GL
q = 1

2β

∑
kωn

Tr
[
Gk,q,ωnVkGk,q,ωnVk

]

= 1

2β

∑
kωn

tr
[
Gp

k,q,ωn
�kGh

k,q,ωn
�†

k

+ Gh
k,q,ωn

�†
kG

p
k,q,ωn

�k
]

= 1

β

∑
kωn

tr
[
Gp

k,q,ωn
�kGh

k,q,ωn
�†

k

]
, (B4)

with Gp(h)−1
k,q,ωn

= iωn ∓ Hk±q. Then, expanding Eq. (B4) with
respect to the q up to the first order, we get

F GL
q = 1

β

∑
kωn

tr
[
∂μGp

k,ωn
�kGh

k,ωn
�†

k

− Gp
k,ωn

�k∂μGh
k,ωn

�†
k

]
qμ + · · ·

= 1

β

∑
kωn

tr
[
Gp

k,ωn
∂μHkGp

k,ωn
�kGh

k,ωn
�†

k

+ Gp
k,ωn

�kGh
k,ωn

∂μHkGh
k,ωn

�†
k

]
qμ + · · · . (B5)

Here, we use ∂μGp(h)
k,ωn

= (−)Gp(h)
k,ωn

∂μHkGp(h)
k,ωn

. Using the rela-
tionship, Gp

kωn
= −Gh

k−ωn
, we obtain

T GL
μ = 1

β

∑
kωn

tr
[
Gp

kωn
∂μHkGp

kωn
�kGh

kωn
�†

k

− Gp
kωn

∂μHkGp
kωn

�†
kG

h
kωn

�k
]
. (B6)

In the remaining part of this section, we discuss the
symmetry constraint on the anapole moment and simplify
Eq. (B6). We assume that the normal-state Hamiltonian is

P and T symmetric, i.e., Hk
P−→ UPH−kU †

P = Hk and Hk
T−→

UT H∗
−kU †

T = Hk, where UP is the unitary operator for the
P symmetry. Here, we require that the T operator commute
with the P operator, i.e., UT KUP = UT U ∗

PK = UPUT K
with complex conjugate operator K and the P operator is
its own inverse, i.e., U 2

P = 1. In addition, the T operator
satisfies UT KUT K = UT U ∗

T = −1, since we consider spinful
electron systems.

Let us consider the T symmetry in the supercon-
ducting state. Under the T operation, the pair potential

follows �kUT
T−→ UT �∗

−kU ∗
T U T

T . The fermionic antisymme-
try, �kUT = −U T

T �T
−k, leads to UT �∗

−kU ∗
T U T

T = −�†
kU T

T =
�†

kUT since UT U ∗
T = −1 is satisfied, which means �k

T−→
�†

k. As a result, when the pair potential is T symmetric,
the first term of Eq. (B6) cancels out the second term, and
therefore, the anapole moment vanishes.

Next, we consider the P symmetry. Since UT U ∗
P =

UPUT and U 2
P = 1 lead to UPUT = UT U T

P , the pair

potential follows �kUT
P−→ UP�−kUT U T

P = UP�−kU †
PUT ,

which means �k
P−→ U †

P�−kUP = �gk − �uk. Therefore, be-
cause of UPGp(h)

−kωn
U †
P = Gp(h)

kωn
and UP∂−μH−kU †

P = −∂μHk

with ∂−μ = ∂
∂ (−kμ ) , the P-even part of the effective anapole

moment,

T GL:even
μ = 1

β

∑
kωn

tr
[
Gp

kωn
∂μHkGp

kωn
�

g
kG

h
kωn

�
g†
k

− Gp
kωn

∂μHkGp
kωn

�u†
k Gh

kωn
�u

k

] + (g ↔ u), (B7)

vanishes due to the cancellation between k and −k. Thus, only
the P-odd and T -odd part of the anapole moment becomes
finite and we arrive at Eq. (10) in the main text.
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APPENDIX C: INTERBAND EFFECT
ON ANAPOLE MOMENT

Here, we show that at least two interband processes are
needed for the anapole moment. We start from Eq. (11) based
on the GL theory and consider the contribution from the
purely intraband process, namely, the case n = m = p. Below,
the k dependence is omitted for simplicity. When χn = χm =
χp is satisfied, the first and second terms of Eq. (11) obvi-
ously cancel out each other. Therefore, we consider the other
cases.

First, when we fix the U(1) gauge of the Bloch wave
function, we can define the relationship between the Kramers
doublet through the PT symmetry as UPT |u∗

n↑〉 = |un↓〉
with UPT = UPUT ; this leads to − |un↑〉 = UPT |u∗

n↓〉 be-
cause of UPT U ∗

PT = −1. As a result, in the case of χn 	=
χm, the velocity operator of the normal state vanishes as
follows:

〈
unχn

∣∣ ∂H
∣∣unχm

〉 = ( 〈
unχm

∣∣ ∂H
∣∣unχn

〉 )∗

= 〈
u∗

nχm

∣∣ ∂H∗ ∣∣u∗
nχn

〉
= 〈

u∗
nχm

∣∣U †
PT UPT ∂H∗U †

PT UPT
∣∣u∗

nχn

〉
= − 〈

unχn

∣∣ ∂H
∣∣unχm

〉
= 0, (C1)

since either χn or χm corresponds to the state ↓. Therefore, the
contribution to Eq. (11) vanishes, and we have only to con-
sider the rest case, χn = χm 	= χp. In this case, contribution to
Eq. (11) from each k and ωn can be written as

1

β

∑
n,χn 	=χp

CGL
nnn∂εn

( 〈
unχn

∣∣�g
∣∣unχp

〉 〈
unχp

∣∣�u†
∣∣unχn

〉

+ 〈
unχp

∣∣�g†
k

∣∣unχn

〉 〈
unχn

∣∣�u
k

∣∣unχp

〉 ) − (g ↔ u). (C2)

Because of �g = �g† and �u = −�u† except for the
U(1)-gauge dependence of Cooper pairs, the first and second
terms of Eq. (C2) cancel out each other. Thus, we found
that the purely intraband process cannot produce the anapole
moment. This means that at least two interband effects are
needed for the anapole superconductivity, as we discuss in
Sec. III A.

APPENDIX D: GROUP VELOCITY TERM,
ASYMMETRIC BS, AND BFS

In this section, we discuss the group velocity term of
anapole moment. The following discussions are based on the
general two-band model introduced in Sec. III B.

First, we show the close relationship between the group ve-
locity term and asymmetric BS and elucidate the mechanism
of the decay of the group velocity term in the low-temperature
region. Assuming h0k � |hk|, we approximate the velocity
operator in the BdG form,

∂μH+
k = ∂μh0k1. (D1)

FIG. 5. BS on the line (ky, kz ) = (−0.862398, 0). We assume
α = 0.04 and the pair potential in Eqs. (D3) and (D4). Different from
Fig. 3 in the main text, we set the center of mass momenta q = 0. The
inset illustrates the presence of the BFS.

When the polar direction is denoted as μ, the anapole moment
is obtained from Eq. (4) as

Tμ = 1

2

∑
k

∑
a

f (Eak)∂μh0k

= 1

2

∑
k(kμ>0)

∑
a

[ f (Eak) − f (Ea−k)]∂μh0k, (D2)

which corresponds to the group velocity term since ∂μh0k

is the group velocity. Thus, f (Eak) − f (Ea−k), which rep-
resents the asymmetric structure of BS, induces the group
velocity term. However, the Fermi distribution function is
approximated by the step function, f (Eak) ≈ θ (−Eak), in the
low-temperature region, and therefore, f (Eak) − f (Ea−k) = 0
at the zero temperature when Eak and Ea−k have the same sign.
Thus, the group velocity term vanishes at T = 0, unless the
BFS are present.

On the other hand, when the system has the BFS, f (Eak) −
f (Ea−k) 	= 0 even at T = 0. Thus, we expect that the group
velocity term does not completely disappear at T = 0. To
verify this expectation, we consider the superconducting pair
potential,

�g(T ) = 1
2�0(T )φ0

gσ0 ⊗ τ0 + �0(T )dz
g,yσy ⊗ τz, (D3)

�u(T ) = i�0(T )d0
u,zσz ⊗ τ0. (D4)

The difference from Eqs. (45) and (46) is only the factor 1/2
in the first term of Eq. (D3). We show the BS for q = 0 in
Fig. 5. Different from the cases discussed in Sec. IV C, the
BFS appear even for q = 0. The temperature dependence of
the anapole moment is shown in Fig. 6, and indeed, we see
that the group velocity term is not completely suppressed at
T = 0. Thus, the presence of the BFS at q = 0 enhances the
group velocity term, consistent with the above expectation. In
this case, the anapole moment at T = 0 is not determined only
by the geometric term. Even in this case, the sign change of
the anapole moment can occur.
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FIG. 6. The temperature dependence of the anapole moment for
the pair potential Eqs. (D3) and (D4). All colors show the same
quantities as in Fig. 1(a).

APPENDIX E: SUPERFLUID WEIGHT AND CENTER OF
MASS MOMENTA OF COOPER PAIRS

Here, we consider the variation of free energy with respect
to the center of mass momentum of Cooper pairs qμ in a
direction along which the anapole moment Tμ is finite. Up

to the second order of qμ, the superconducting free energy is
expressed as

Fq = 1
2 Ds

μμq2
μ + Tμqμ + F0. (E1)

The superfluid density Ds
μμ is given by the formula [63]

Ds
μμ = 1

2

∑
k

∑
a

f (Eak) 〈ψak| ∂μ∂μH−
k |ψak〉

+ 1

2

∑
k

∑
ab

f (Eak) − f (Eak)

Eak − Ebk

× 〈ψak| ∂μH+
k |ψbk〉 〈ψbk| ∂μH+

k |ψak〉 , (E2)

where

H−
k =

(
Hk 0
0 −Hk

)
. (E3)

The superconducting free energy is rewritten as

Fq = 1
2 Ds

μμ

(
qμ + Tμ/Ds

μμ

)2 − T 2
μ /2Ds

μμ + F0. (E4)

Thus, the center of mass momentum qc realizing the minimum
free energy is estimated as −Tμ/Ds

μμ. This formula is valid
when qc is small.
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