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Piezoelectric effect and diode effect in anapole and monopole superconductors
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Superconductors lacking both inversion symmetry and time-reversal symmetry have been attracting much
attention as a platform for exotic superconducting phases and anomalous phenomena, including the su-
perconducting diode effect. Recent studies revealed intrinsic phases with this symmetry, named anapole
superconductivity and monopole superconductivity, which are PT -symmetric superconducting states with and
without Cooper pairs’ total momentum, respectively. To explore characteristic phenomena in these states,
we calculate and predict the superconducting piezoelectric effect and superconducting diode effect. A close
relationship with the finite-q pairing, asymmetric Bogoliubov spectrum, and quantum geometry is discussed.
This study reveals the piezoelectric and diode effects as potential probes to elucidate exotic superconducting
phases.
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I. INTRODUCTION

In recent years, superconductors lacking both inversion
symmetry (IS) and time-reversal symmetry (TRS) have re-
ceived much attention. For instance, nonreciprocal charge
responses are extensively studied in superconductors with
such symmetry [1–9]. In particular, the superconducting diode
effect has become a central topic in condensed matter physics,
and vast experimental and theoretical studies are conducted
[10–26]. These nonreciprocal phenomena are expected to be
ubiquitous since the simultaneous breaking of IS and TRS
can be realized in various situations. Superconductors with
noncentrosymmetric crystal structures under magnetic fields
are typical examples [1–5,10–12,18–22,25,26]. Spontaneous
breaking of TRS due to magnetism also results in the su-
perconducting diode effect [15,16,23]. Furthermore, we can
utilize the supercurrent that breaks both IS and TRS without
dissipation [6,7].

In the recent study [27], an intrinsic mechanism of sponta-
neous IS and TRS breaking is predicted for one of the multiple
superconducting phases in UTe2 [28–34]. The competing
instability of spin-triplet and spin-singlet superconductivity
causes spontaneous parity mixing of Cooper pairs. In the
centrosymmetric crystals such as UTe2, the phase difference
between the even-parity and odd-parity pair potentials is likely
to be ±π/2 [35], leading to the IS and TRS breaking with in-
tact PT symmetry in the mixed-parity superconducting state.
The PT -symmetric superconducting state is a novel quantum
condensed phase of matter, and the realization in UTe2 and
other exotic superconductors is attracting attention. Therefore,
it is eagerly desired to clarify the unique properties of the
PT -symmetric superconducting states and to explore possible
probes of them.

*chazono.michiya.84s@st.kyoto-u.ac.jp

Let us classify the PT -symmetric superconducting states.
In analogy with the PT -symmetric magnetic order [36], they
are classified into monopole, anapole, quadrupole, and higher-
order multipole superconducting states. An intriguing class
is the anapole superconductivity, where Cooper pairs can
get finite total momentum at zero magnetic field [37,38].
The anapole superconducting state is distinguished by the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [39,40] and
the helical superconducting state [41,42], which require finite
magnetic field or spin polarization. In the anapole supercon-
ductors, the finite-q pairing state is characterized by a polar
vector named the effective anapole moment, which was re-
cently revealed to arise from various origins [37,38]. On the
other hand, the other classes of PT -symmetric superconduct-
ing states are nonpolar, and Cooper pairs condensate with
zero total momentum. An example of them appears in the
classification table for UTe2 (see Table III), named (magnetic)
monopole superconductivity. The analysis of the periodic An-
derson model has shown that both anapole and monopole
superconducting states are candidate superconducting states
of UTe2 [27].

An important consequence of the IS and TRS breaking is
the asymmetric spectrum of Bogoliubov quasiparticles, which
arises from the multiband effects in anapole and monopole
superconductors [37,38]. In principle, we can distinguish all
the PT -symmetric superconducting phases by the asymmet-
ric profile of the Bogoliubov spectrum. However, the direct
measurement of the Bogoliubov spectrum is challenging, es-
pecially for low-temperature superconductors. Thus, we are
motivated to explore the macroscopic phenomena of anapole
and monopole superconductors, especially those allowed only
when symmetry breaking occurs.

For this purpose, in this paper, we study the supercon-
ducting piezoelectric effect (SCPE), a supercurrent-induced
lattice distortion that occurs only when the superconductors
lack both IS and TRS. We have investigated the SCPE in
two-dimensional helical superconductors [43], where TRS
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TABLE I. List of the irreducible representations (IRs) of the C2v

point group (Ag + iB3u anapole superconducting state) and corre-
sponding strain si j , supercurrent Jk , and SCPE mode d (SC)

i jk .

IR Strain Supercurrent SCPE mode

A1 sxx, syy, szz Jx d (SC)
xxx d (SC)

yyx d (SC)
zzx

A2 syz

B1 szx Jz d (SC)
zxz

B2 sxy Jy d (SC)
xyy

is broken by an external magnetic field. This paper focuses
on the SCPE in the anapole and monopole superconductors,
where IS and TRS are broken by spontaneous parity mixing in
Cooper pairs without noncentrosymmetric crystal structure or
external field. We also investigate the superconducting diode
effect (SDE) and predict the intrinsic SDE in the anapole
superconducting state, although it is absent in the monopole
superconducting state. As a link of the SCPE and SDE with
Cooper pairs’ momentum was shown in the helical super-
conductors [18–20,25,43], we also discuss the properties of
finite-q pairing in the anapole superconducting state for com-
parison. It is shown that the SCPE shows distinct behaviors
depending on the origin of finite-q pairing, namely, the asym-
metric Bogoliubov spectrum and quantum geometry [37,38].

This paper is organized as follows. In Sec. II, we show
a minimal model for the anapole and monopole supercon-
ducting states introduced in the previous study [37] and
formulate the SCPE based on the model. We also introduce
the classification of possible PT -symmetric superconducting
states in UTe2. In Sec. III, we show numerical results of
the SCPE coefficients and Cooper pairs’ momentum. It is
revealed that the SCPE occurs in both anapole and monopole
superconducting states. The behaviors of the SCPE are closely
related to the origin of the effective anapole moment, which
causes finite-q pairing. We demonstrate the SDE in Sec. IV as
another anomalous phenomenon in the anapole superconduc-
tors. In Sec. V, we summarize our study and discuss the future
outlook.

II. FORMULATION

A. Minimal model for anapole and monopole
superconducting states

We adopt a minimal model for the anapole and monopole
superconducting states, which was introduced in the previ-
ous study for UTe2 [37]. While UTe2 has a centrosymmetric

TABLE II. List of the IRs of the D2 point group (Ag + iAu

monopole superconducting state) and corresponding strain si j , su-
percurrent Jk , and SCPE mode d (SC)

i jk .

IR Strain Supercurrent SCPE mode

A1 sxx, syy, szz

B1 sxy Jz d (SC)
xyz

B2 szx Jy d (SC)
zxy

B3 syz Jx d (SC)
yzx

TABLE III. Point group of the mixed-parity superconducting
states in D2h systems. For the C2v point group, x, y, and z denote
the principal axis.

Ag B1g B2g B3g

Au D2 C2v (z) C2v (y) C2v (x)
B1u C2v (z) D2 C2v (x) C2v (y)
B2u C2v (y) C2v (x) D2 C2v (z)
B3u C2v (x) C2v (y) C2v (z) D2

crystal structure with D2h point group symmetry, the IS is lo-
cally broken on U sites owing to the sublattice degree of free-
dom. Using the Nambu spinor ĉT

k = (ck1↑, ck2↑, ck1↓, ck2↓)
where 1, 2 (↑,↓) denote the sublattice (spin) degree of free-
dom, we write the Bogoliubov-de Gennes (BdG) Hamiltonian
in the following form:

Hq = 1

2

∑
k

(
ĉ†

k+q ĉT
−k+q

)
HBdG(k, q)

(
ĉk+q

ĉ∗
−k+q

)
, (1)

HBdG(k, q) =
(

H0(k + q) �(k)(iσy ⊗ τ0)
(�(k)(iσy ⊗ τ0))† −H0(−k + q)T

)
, (2)

where τ (σ) represents the Pauli matrix vector for the sub-
lattice (spin) degree of freedom. We here assume Cooper
pairs’ total momentum 2q. The total momentum in the ther-
modynamically stable state is determined to minimize the free
energy

F (q) = −T

2

∑
kα

ln(1 + e−Eα (k,q)/T ), (3)

where Eα are eigenvalues of the BdG Hamiltonian,

Eα (k, q) = [U †(k, q)HBdG(k, q)U (k, q)]αα. (4)

Later, we show that q is finite in the anapole superconducting
state while q = 0 in the monopole superconducting state. The
normal state Hamiltonian H0(k) and superconducting order
parameter �(k) are defined as follows.

The sublattice degree of freedom with a locally noncen-
trosymmetric crystal structure allows the staggered antisym-
metric spin-orbit coupling (ASOC) in the centrosymmetric
materials [44]. Therefore, the normal state Hamiltonian is
given by

H0(k) = (εk − μ)σ0 ⊗ τ0 + gk · σ ⊗ τz, (5)

where εk = −2t (cos kx + cos ky + cos kz ) is a kinetic energy
and gk = (αx sin ky, αy sin kx, 0) represents the ASOC. Note
that the relation αy = −αx is not required because the local
symmetry on U sites is orthorhombic C2v , although it must be
satisfied in the tetragonal C4v systems.

We consider mixed-parity order parameters for the anapole
and monopole superconducting states, and even- and odd-
parity gap functions have π/2 phase difference consistent
with the thermodynamic stability [35]. Because of the lo-
cally noncentrosymmetric crystal structure [44], in addition
to the conventional even-parity spin-singlet and odd-parity
spin-triplet pairings, even-parity spin-triplet and odd-parity
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FIG. 1. Results of the group velocity model: α(= αx ) dependence of (a) q0, (b) d (SC)
xxx in the Ag + iB3u anapole state, and (c) d (SC)

yzx in the
Ag + iAu monopole state. We set αy = 0, β = 1, and T = 0.01.

spin-singlet pairings can be finite. To satisfy the fermion’s an-
ticommutation relation, the superconducting order parameter
is given by

�(k) = �1
(
ψ

g
kσ0 ⊗ τ0 + βdg

k · σ ⊗ τz
)

+ �2
(
ψu

k σ0 ⊗ τz + du
k · σ ⊗ τ0

)
, (6)

where ψ
g(u)
k is an even-parity (odd-parity) spin-singlet com-

ponent and dg(u)
k is an even-parity (odd-parity) spin-triplet

component of the gap function. In this paper, we assume the
even-parity component belonging to the Ag irreducible rep-
resentation, specifically, ψ

g
k = 1 and dg

k = (0, sin kx, 0). For
the odd-parity component, B3u and Au irreducible representa-
tions are examined. For simplicity, ψu

k = 0 is ignored, and we
consider spin-triplet pairing with du

k = (0, 0, sin ky) and du
k =

(0, 0, sin kz ), corresponding to the B3u and Au representations,
respectively. We choose a real �1 and a pure imaginary �2

without loss of generality. The coexistent Ag + iB3u state and
Ag + iAu state realize the anapole and monopole supercon-
ductivity, as discussed in the next subsection. These states
are predicted in a microscopic analysis of the periodic An-
derson model for UTe2 [27]. However, the following results
are expected to be general in the sense that the main conclu-
sion for the SCPE and SDE applies to other representations,
such as the Ag + iB1u state, and other candidate materials as
well. For a later discussion, in Eq. (6) we introduce β as
the strength of the staggered spin-triplet gap function allowed
in locally noncentrosymmetric superconductors [44]. We will
see that β is an important parameter for the superconducting
properties.

B. Superconducting piezoelectric effect (SCPE)

The SCPE is defined as a lattice distortion induced by a su-
percurrent [43]. In the linear response regime, it is formulated
as follows:

si j = d (SC)
i jk Jk, (7)

where si j is a strain tensor, d (SC)
i jk is a SCPE coefficient, and Jk

is a supercurrent. Because si j (Jk) is a parity even (odd) and
time-reversal even (odd) quantity, d (SC)

i jk can be finite only in
systems lacking both IS and TRS.

The structure of the SCPE tensor d (SC)
i jk depends on the

point group of the superconducting states. For a coefficient
d (SC)

i jk to be finite, corresponding si j and Jk must belong to the
same irreducible representation. Let us consider the cases of
our model. The point group of the Ag + iB3u state is polar
C2v , while that of the Ag + iAu state is nonpolar D2. Thus,
the former is the anapole superconducting state and the latter
is the monopole superconducting state in analogy with the
classification of magnetic states [45]. The classification of
the strain si j and supercurrent Jk based on the C2v and D2

point group is summarized in Tables I and II, respectively.
The SCPE modes allowed by symmetry are also shown in the
tables. We show the classification of PT -symmetric supercon-
ducting states in Table III and see that all the PT -symmetric
superconducting states belong to either C2v or D2 point group
in the orthorhombic D2h system. Thus, the classification in
Tables I and II applies the other states as well, when we choose
an appropriate twofold rotation axis for C2v (See Appendix A
for the complete results).

FIG. 2. Results of the group velocity model: β dependence of (a) q0, (b) d (SC)
xxx in the Ag + iB3u anapole state, and (c) d (SC)

yzx in the Ag + iAu

monopole state. We set αy = 0, α(= αx ) = 0.4, and T = 0.01.
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FIG. 3. The DOS in the group velocity model for the Ag + iB3u

anapole state. The parameters are (a) α(= αx ) = 0.1, β = 1, (b) α =
0.2, β = 1, (c) α = 0.4, β = 1, and (d) α = 0.4, β = 0.7. We as-
sume αy = 0 and set q0 = 0 for simplicity.

For the estimation of the strain, we calculate the ex-
pectation values of the weighted density operator, which
characterizes the modulation of the hopping parameters due
to the distortion [36,43]. Although the strain is proportional to
the weighted density, we avoid calculating the proportionality
coefficient because it strongly depends on material parame-
ters, such as electron-phonon coupling and elastic modulus.
The weighted density operator is defined as

n̂i j =
∑

k

(
ĉ†

k+q ĉT
−k+q

)
ni j (k, q)

(
ĉk+q

ĉ∗
−k+q

)
, (8)

ni j (k, q) = 1

2

(
Di j (k + q)×I4 0

0 −Di j (−k + q)×I4

)
, (9)

Di j (k) =
{

cos ki (i = j)
sin ki sin k j (i �= j) , (10)

and expectation values are calculated by

〈n̂i j〉eq,q

= 1

V

∑
kα

[U †(k, q)ni j (k, q)U (k, q)]αα f (Eα (k, q)), (11)

where f (E ) = (eE/T + 1)−1 is the Fermi distribution func-
tion. We calculate the expectation value of the supercurrent

in a similar way,

〈Ĵk〉eq,q

= 1

V

∑
kα

[U †(k, q)Jk (k, q)U (k, q)]αα f (Eα (k, q)), (12)

where

Jk (k, q) = e

2

(
∂kk H0(k + q) 0

0 −∂kk H0(−k + q)

)
. (13)

Then, we redefine the SCPE coefficient d (SC)
i jk by

d (SC)
i jk = lim

q′
k→0

〈n̂i j〉eq,q+q′
k
− 〈n̂i j〉eq,q−q′

k

〈Ĵk〉eq,q+q′
k
− 〈Ĵk〉eq,q−q′

k

, (14)

where q′
k is Cooper pairs’ momentum parallel to the supercur-

rent Jk .

C. Classification of anapole superconducting states

In the previous section, the superconducting states have
been classified based on symmetry. Here, we furthermore
classify the anapole superconducting states by their micro-
scopic properties.

The effective anapole moment in the superconducting state
is defined by the first derivative of thermodynamic potential
with respect to the Cooper pairs’ momentum [37], and thus,
finite anapole moment directly indicates the finite-q pairing
state. As clarified in our recent paper, there exist several ori-
gins of the effective anapole moment [38]. They are classified
into the group velocity term and the geometric term. While
the former arises from the asymmetric Bogoliubov spectrum
as pointed out in the previous study [37], the latter is induced
by the quantum geometric effect, which has recently attracted
attention in various fields [46–61]. Owing to the geometric
term, the finite-q pairing state can be stabilized even for an or-
dinary quasiparticle’s spectrum, where neither the asymmetry
nor the Zeeman splitting exists. Thus, the anapole supercon-
ducting states can be classified into three cases: The anapole
moment is owing to (A) purely group velocity term, (B) purely
geometric term, and (C) cooperation of the two terms.

The three cases can be represented in our model by choos-
ing the following parameters:

(A) αy = 0 and β �= 0 (group velocity model),
(B) αy �= 0 and β = 0 (geometric effect model),
(C) αy �= 0 and β �= 0 (mixed model).

FIG. 4. Results of the group velocity model: Temperature dependence of (a) q0, (b) d (SC)
xxx in the Ag + iB3u anapole state, and (c) d (SC)

yzx in the
Ag + iAu monopole state. We set αy = 0, α(= αx ) = 0.4, and β = 1 or 0.7.
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FIG. 5. Results of the geometric effect model: α dependence of (a) q0, (b) d (SC)
xxx in the Ag + iB3u anapole state, and (c) d (SC)

yzx in the Ag + iAu

monopole state. We set α = αx = −αy, β = 0, and T = 0.01.

In the group velocity model, the group velocity term is
finite while the geometric term vanishes. In contrast, the group
velocity term vanishes in the geometric effect model. Both
the group velocity and geometric terms are finite in the mixed
model. In the next section, we show that the behaviors of the
SCPE are different between the three cases.

In this study, we adopt the following parameters un-
less we explicitly state otherwise: t = 1, μ = −4, �1(T ) =
0.2

√
1 − (T/Tc), �2(T ) = 0.2i

√
1 − (T/Tc) (namely,

|�2| = �1), and the transition temperature is Tc = 0.1.

III. RESULT : SCPE

In this section, we show the numerical results of the Cooper
pairs’ momentum q = (q0, 0, 0), the SCPE coefficient d (SC)

xxx
in the Ag + iB3u anapole state, and d (SC)

yzx in the Ag + iAu

monopole state. Because we find q = 0 in the monopole state,
we show q0 only for the anapole state. We discuss the α(=
αx ), β, and T dependence of the SCPE in the three models
introduced in the previous section (Sec. II C) and compare
them with the Cooper pairs’ momentum in the anapole su-
perconducting state. A close relation between the SCPE and
Cooper pairs’ momentum is revealed.

A. Group velocity model

First, we analyze the group velocity model, where we set
αy = 0 and β �= 0. In this model, the effect of the quantum
geometry of Bloch states is negligible. The α and β depen-
dencies of d (SC)

i jk are shown in Figs. 1 and 2, together with
the Cooper pairs’ momentum q0 in the anapole state. It is
shown that the SCPE coefficients are finite in the anapole
and monopole superconducting states and their magnitudes
are comparable. Thus, we see the SCPE in the PT -symmetric
superconducting states, irrespective of whether the Cooper
pairs’ momentum is finite or zero.

On the other hand, we notice similarities between the
SCPE and Cooper pairs’ momentum by comparing the param-
eter dependence of d (SC)

i jk and q0. In particular, these quantities
are antisymmetric with respect to α and β. The antisymmetric
behavior of q0 is expected from the result of the anapole
moment Tx [38] because the relation q0 ≈ −Tx/Dxx holds with
Dxx being the superfluid weight and Tx is α (β) antisymmetric
in this model. On the other hand, it is nontrivial that d (SC)

i jk
is also antisymmetric. We can interpret the similarities by
analogy with the magnetopiezoelectric effect [36,62,63], the

counterpart of the SCPE in the normal state. It was shown
that the magnetopiezoelectric effect originates from the asym-
metric Fermi surface [36]. In the group velocity model, the
Cooper pairs’ momentum arises from the asymmetric spec-
trum. Therefore, it is reasonable that the SCPE and Cooper
pairs’ momentum show similar behaviors. Indeed, their anti-
symmetric behaviors with respect to α and β are explained
as follows. The Bogoliubov spectrum is asymmetric and it is
reversed by changing the sign of α or β in this model (see
Appendix B). Since the SCPE and Cooper pairs’ momentum
are caused by the asymmetric spectrum, it is natural that
reversing spectrum changes the sign of d (SC)

i jk and q0. We stress
that this interpretation is valid even for the monopole state.

Furthermore, d (SC)
i jk and q0 show a similar peak structure

around α = ±0.2 and drastically change around β = ±1.
These behaviors are related to the density of states (DOS)
in the low-energy region, which is shown for the Ag + iB3u

anapole state with several parameters (Fig. 3). Note that the
DOS in Fig. 3 is calculated with q0 = 0 for simplicity. Pa-
rameters leading to larger DOS around the Fermi level E = 0
correspond to larger q0 and d (SC)

i jk . This is consistent with the
fact that the asymmetric spectrum is the main source of both
q0 and d (SC)

i jk . It is also indicated that thermally excited quasi-
particles are essential. In Fig. 3, we see that the low-energy
Bogoliubov spectrum is sensitive to the parameter β. With our
parameter set, the spectrum is fully gapped for |β| < 1 while
the nodal spectrum appears with |β| � 1. To be more precise,
point nodes are present at β = 1, and when β > 1, the Bogoli-
ubov Fermi surface appears (see Appendix B), which has been
studied with interest in the topological nature [64–66]. Thus,
the low-energy DOS increases for β � 1, and therefore, the
SCPE and Cooper pairs’ momentum are enhanced.

Based on the above discussion, we expect a notable tem-
perature dependence reflecting the gap structure. Indeed, a
characteristic behavior is observed in the temperature de-
pendence of q0 and d (SC)

i jk , which are suppressed in the
low-temperature region (Fig. 4). In Ref. [38], it is shown that
the asymmetry of the Bogoliubov spectrum is reflected in the
anapole moment through the Fermi distribution function as
f (E (k)) − f (E (−k)), and therefore, the anapole moment and
q0 are suppressed in the low-temperature region of gapped
states. The SCPE is expected to be suppressed by the same
mechanism. Indeed, the SCPE shows exponential temper-
ature dependence in the full-gapped state (β = 0.7) while
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FIG. 6. Results of the geometric effect model: Temperature dependence of (a) q0, (b) d (SC)
xxx in the Ag + iB3u anapole state, and (c) d (SC)

yzx in
the Ag + iAu monopole state. We set α(= αx = −αy ) = 0.4 and β = 0.

it shows power-law dependence in the nodal state (β = 1).
These results support the fact that the SCPE in the group
velocity model relies on the asymmetric energy spectrum, like
the magnetopiezoelectric effect in the odd-parity magnetic
ordered states [36,62,63]. Hereafter, we call this mechanism
of SCPE “asymmetric origin” named after the asymmetric
Bogoliubov spectrum.

Note that we assume the second-order superconducting
transition and thus the order parameters �1(2)(T ) smoothly
become zero at T = Tc (see Sec. II C). As shown in Fig. 4,
d (SC)

i jk and q0 are sizable at just below Tc. Later we will see the
same property in the geometric effect model and mixed model.
Large q0 near the transition temperature was also reported for
the helical superconducting state [19,25].

B. Geometric effect model

Second, we set αy = −αx(= −α) and β = 0, in which
the origin of the effective anapole moment is the geometric
term since the group velocity term disappears. Note that the
point group of the monopole superconducting state with this
parameter set is D4, leading to the constraints d (SC)

xyz = 0 and
d (SC)

yzx = −d (SC)
zxy .

The α dependence of q0 and d (SC)
i jk is shown in Fig. 5,

which reveals the finite SCPE in the geometric effect model.
However, in contrast to the group velocity model, the Bo-
goliubov spectrum is symmetric in this model for q0 = 0
(see Appendix C). Indeed, q0 = 0 in the monopole state and
the spectrum is symmetric as Eα (k) = Eα (−k). Therefore,
the origin of the SCPE must be different from the group

velocity model where the asymmetric spectrum causes the
SCPE. The geometric effect model also shows a similar pa-
rameter dependence of the Cooper pairs’ momentum and
the SCPE coefficients. Considering the fact that the anapole
moment arises from the quantum geometry in this model
[38], the similarity implies that the quantum geometry plays
an essential role also in the SCPE. The α-symmetric be-
havior of the SCPE coefficients d (SC)

i jk is consistent with
this interpretation because the quantum geometry induces
the α symmetric anapole moment in the geometric effect
model [38].

The above discussion is supported by the temperature de-
pendence of q0 and d (SC)

i jk plotted in Fig. 6. Although there is
a sizable energy gap in the spectrum (see Appendix C), the
SCPE and Cooper pairs’ momentum are sizable even at low
temperatures, in contrast to the group velocity model (Fig. 4).
Indeed, the temperature dependence of q0 and d (SC)

i jk are weak.
This behavior is consistent with the above discussion because
the effect of the quantum geometry of Bloch electrons is not
suppressed by the energy gap. Hereafter, we call this case
of the SCPE “symmetric origin” named after the symmetric
Bogoliubov spectrum.

Here, we make a brief comment on the temperature de-
pendence in the geometric effect model. We can see broad
minimum and maximum of q0 and d (SC)

i jk in Fig. 6. Since
similar temperature dependence appears for other several pa-
rameter sets, these behaviors may be characteristic of the
quantum geometric effect. However, we do not touch on such
a weak temperature dependence in the following discussions
since it is not related to the main conclusion.

FIG. 7. Results of the mixed model: α dependence of (a) q0, (b) d (SC)
xxx in the Ag + iB3u anapole state, and (c) d (SC)

yzx in the Ag + iAu monopole
state. We set α = αx = −αy, β = 1 or 0.7, and T = 0.01.
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FIG. 8. The DOS in the Ag + iB3u anapole state with the follow-
ing parameters: (a) α(= αx = −αy ) = +0.4, β = 1, (b) α = −0.4,
β = 1, (c) α = +0.4, β = 0.7, and (d) α = −0.4, β = 0.7. We set
q0 = 0 for simplicity.

C. Mixed model

Finally, we set αy = −αx(= −α) and β �= 0, where both
the group velocity term and the geometric term contribute
to the effective anapole moment. As shown in Fig. 7, the α

dependence of q0 and d (SC)
i jk is asymmetric for β = 1, although

it is almost symmetric for β = 0.7. We can interpret these
features based on the results in the previous subsections: Since
q0 and d (SC)

i jk are very small in the group velocity model for
|β| < 1 (Fig. 2), the SCPE of the asymmetric origin is natu-
rally small in the mixed model. Thus, the SCPE mainly arises
from the symmetric origin, consistent with the α-symmetric
behavior similar to the geometric effect model (Fig. 5). On
the other hand, the asymmetric origin gives rise to a sizable
contribution to the SCPE when |β| � 1, making the SCPE
asymmetric with respect to α.

As we discussed for the group velocity model, the SCPE
of the asymmetric origin is related to the DOS. This is correct
in the mixed model as well. Figure 8 shows the DOS in
the mixed model. First, we see that the superconducting gap
suppresses the low-energy DOS for β = 0.7, consistent with
the negligible contribution to the SCPE by the asymmetric
origin. Second, we see sizable DOS for β = 1, and it is larger
for α = −0.4 than for α = 0.4. Thus, it is indicated that the
SCPE of the asymmetric origin is suppressed for α > 0 be-
cause of the small low-energy DOS. In other words, we see a

significant contribution of the asymmetric origin when β � 1
and α < 0. This is consistent with the parameter dependence
of the SCPE in Fig. 7.

The β dependence also supports the above discussion.
Note that the parameter sets (αx, αy, β) and (−αx,−αy,−β)
give the same results in our model. Figure 9 shows the β

dependence of the SCPE coefficients for α = 0.4. The drastic
change around β = −1 is attributed to the sizable DOS, which
is equivalent to that for (α, β ) = (−0.4, 1). Figure 9 also
reveals that the SCPE of the symmetric origin is nearly β

independent.
The SCPE in the mixed model may show a unique tem-

perature dependence as a consequence of the competition
between the asymmetric and symmetric origins. As shown in
Figs. 10(a) and 10(c), q0 and d (SC)

yzx change the sign at a certain
temperature. The sign reversal occurs because the temperature
dependence is significantly different between the SCPE of the
asymmetric origin and that of the symmetric origin (compare
Fig. 4 with Fig. 6). When the superconducting state is gapped,
the SCPE is dominated by the symmetric origin at low tem-
peratures, and thus, the quantum geometry is expected to play
an essential role. On the other hand, the asymmetric origin
related to the asymmetric Bogoliubov spectrum gives a large
contribution near the transition temperature, and it can cause
the sign change. Note that the sign reversal is not a general
property, and it is sensitive to the detail of the system and
SCPE mode. Indeed, there is no sign change in d (SC)

xxx [see
Fig. 10(b)], for instance.

It should be noticed that the Cooper pairs’ momentum q0

and the SCPE coefficients d (SC)
i jk show similar behaviors in all

the models and parameters studied in this paper. This is also
the case of the helical superconducting state studied earlier
[43]. Surprisingly, this correspondence applies to the SCPE in
the monopole superconducting state as well. Although q0 = 0
in the monopole state, the SCPE shows a similar parameter
dependence to q0 in the anapole state. From these results,
we suppose that the SCPE arises from the asymmetric Bo-
goliubov spectrum and quantum geometry like the anapole
moment [38]. Further analysis of the SCPE related to quantum
geometry is left as a future issue.

IV. FIELD-FREE DIODE EFFECT

In this section, we demonstrate the field-free SDE in the
anapole superconductors, which means the nonreciprocity in

FIG. 9. Results of the mixed model: β dependence of (a) q0, (b) d (SC)
xxx in the Ag + iB3u anapole state, and (c) d (SC)

yzx in the Ag + iAu monopole
state. We set α(= αx = −αy ) = 0.4 and T = 0.01.
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FIG. 10. Results of the mixed model: Temperature dependence of (a) q0, (b) d (SC)
xxx in the Ag + iB3u anapole state, and (c) d (SC)

yzx in the
Ag + iAu monopole state. We set α(= αx = −αy ) = 0.4 and β = 1 or 0.7.

the critical current in the absence of the magnetic field. Here,
we consider the SDE along the x axis with the Ag + iB3u

anapole superconducting state in mind. Adopting the formu-
lation for the intrinsic SDE [19], we calculate the depairing
critical current as

Jc+ = maxqx 〈Ĵx〉eq,qx , Jc− = minqx 〈Ĵx〉eq,qx , (15)

using Eq. (12). The qx dependence of 〈Ĵx〉eq,qx in the Ag + iB3u

anapole state is shown in Fig. 11 for example, by which we
determine Jc+ and Jc−. The nonreciprocal component of the
critical current is given by

�Jc = Jc+ + Jc−, (16)

and the SDE efficiency is defined as

r = �Jc/J̄c, (17)

with J̄c = (Jc+ − Jc−)/2.
The numerical results of �Jc and r are shown in Figs. 12

and 13, respectively. We obtain finite nonreciprocity in the
critical current characterized by �Jc and r in all the models
for the anapole superconducting states, namely, the (A) group
velocity model, (B) geometric effect model, and (C) mixed
model. Thus, the field-free SDE is a ubiquitous feature of
anapole superconductors. It is shown that �Jc is suppressed

 〉
 〈

FIG. 11. Supercurrent 〈Ĵx〉eq,qx as a function of qx in the mixed
model of the Ag + iB3u anapole state. We set α = αx = −αy = 0.4,
β = 1, and T = 0.01. Critical currents Jc+ and Jc− are marked by
arrows.

monotonically with increasing temperature. This behavior is
in stark contrast to the fact that the temperature dependence
of Cooper pairs’ momentum q0 and SCPE coefficients sig-
nificantly depends on the model. Note that the temperature
scaling around T = Tc is not reliable because the q depen-
dence of the magnitude of gap function is neglected in our
calculation, while it is negligible and the results are reliable
at low temperatures [19]. Interestingly, the SDE efficiency r
reaches 40%, which is comparable to the maximum value in
the helical superconducting state at high magnetic fields [19].
Thus, our results suggest a sizable SDE in the anapole super-
conducting state at the zero magnetic field. The SDE along
the x axis is allowed only in the anapole state, and it vanishes
in the monopole state. Generally speaking, the SDE occurs in
the anapole state with supercurrent in the same direction as the
Cooper pairs’ momentum q0. Therefore, the SDE is suitable
as a probe to distinguish the anapole and monopole states and
to determine the direction of the anapole moment.

V. SUMMARY AND DISCUSSION

In this paper, we formulated and demonstrated the su-
perconducting piezoelectric effect (SCPE) in the anapole
and monopole superconducting states. We also showed the
field-free superconducting diode effect (SDE) in the anapole
superconducting state. The spontaneous IS and TRS break-
ing in these PT -symmetric superconducting states allows the
off-diagonal and nonreciprocal responses without external
symmetry-breaking fields. Therefore, the SCPE and SDE di-
rectly reflect the symmetry of superconducting states, and they
can be used for probing the exotic symmetry and topology of
superconductors. In particular, the SCPE occurs under all the
symmetry groups lacking the IS and TRS. Thus, in principle,
we can distinguish the symmetry of superconducting states by
the analysis of the SCPE tensor. For instance, we provided the
classification table for the SCPE tensor in the D2h point group,
corresponding to the candidate superconductor UTe2. On the
other hand, the field-free SDE occurs only along the anapole
moment in the anapole superconducting state. Therefore, the
observation of the SDE may evidence the anapole supercon-
ductivity and determine the direction of the anapole moment.

Our calculations revealed the close relationship between
the SCPE and the Cooper pairs’ momentum. In the anapole
state, the Cooper pairs can get finite momentum like in the
FFLO and helical superconducting states, and the momentum
is proportional to the anapole moment. In our results, the
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FIG. 12. Temperature dependence of the nonreciprocal critical current �Jc in the (a) group velocity model, (b) geometric effect model,
and (c) mixed model of the Ag + iB3u anapole state. The parameters (α, β ) are (a) (0.4,1), (b) (0.4,0), and (c) (0.4,1) as in Figs. 4, 6, and 10.

SCPE coefficients show similar parameter dependence to the
Cooper pairs’ momentum. According to our recent studies
[37,38], the anapole moment and Cooper pairs’ momentum
may have several origins, namely, the asymmetric spectrum
of Bogoliubov quasiparticles and quantum geometry of Bloch
electrons. The similarity implies the same origins of the
SCPE. Interestingly, the relation is confirmed between the
SCPE in the monopole state and Cooper pairs’ momentum
in the anapole state. To clarify the microscopic origin of the
SCPE, further theoretical analysis is desired and remains to be
a future issue.

On the other hand, the SDE looks unrelated to the Cooper
pairs’ momentum unlike the results of the helical supercon-
ducting state [19,25]. Therefore, the SDE is unlikely to be
used for a probe of the magnitude of Cooper pairs’ momen-
tum. A characteristic property of the anapole superconducting
state is that the SDE occurs at the zero magnetic field.
Such field-free SDE has been searched in the recent research
of SDE, but the platform is limited at present [14–16,23].
Anapole superconductors are a platform of field-free SDE
without symmetry-breaking magnetic order or external fields.
The rectified supercurrent is parallel to the momentum of
Cooper pairs. In our calculation, a large SDE quality factor
over 40% is obtained.

We expect that the SCPE and SDE will be complemen-
tary to other observable quantities characterizing the exotic
superconducting states. For instance, our recent paper [38]
proposed a phenomenon specific to the anapole supercon-
ductor, the temperature-dependent Bogoliubov Fermi surface.
The Bogoliubov Fermi surface affects thermodynamic prop-
erties [67–69], which could be experimentally verified, in

principle. On the other hand, the SCPE and SDE occur
regardless of the presence or absence of the Bogoliubov Fermi
surface.

An intriguing future task is to examine the SCPE and
SDE in UTe2, a candidate of the anapole and monopole su-
perconductivity. A recent ultrasound measurement detected
softening of the elastic mode corresponding to the strain szx

[70]. Thus, it is expected that the corresponding SCPE mode is
enhanced. That is the B1 mode in the anapole superconducting
state while the B2 mode in the monopole superconducting
state. The former is induced by the supercurrent along the z
axis, and it is along the y axis in the latter.
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APPENDIX A: SYMMETRY ANALYSIS OF
PT -SYMMETRIC SUPERCONDUCTING STATES
AND SCPE BASED ON THE POINT GROUP D2h

We discuss the anapole and monopole superconducting
states classified based on the D2h point group. There are four
even-parity and four odd-parity irreducible representations in
the D2h point group, and accordingly, their coexistence allows
sixteen mixed-parity superconducting states. The classifica-
tion of superconducting states is summarized in Table III.

FIG. 13. Temperature dependence of the SDE efficiency r in the (a) group velocity model, (b) geometric effect model, and (c) mixed model
of the Ag + iB3u anapole state. The parameters (α, β ) are (a) (0.4,1), (b) (0.4,0), and (c) (0.4,1) as in Figs. 4, 6, and 10.
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TABLE IV. List of the IRs of the C2v (y) anapole superconducting
state and corresponding strain si j , supercurrent Jk , and SCPE mode
d (SC)

i jk .

IR Strain Supercurrent SCPE modes

A1 sxx, syy, szz Jy d (SC)
xxy d (SC)

yyy d (SC)
zzy

A2 szx

B1 sxy Jx d (SC)
xyx

B2 syz Jz d (SC)
yzz

In the mixed-parity superconducting states, the point group
symmetry is reduced from the normal state point group (D2h)
owing to the spontaneous parity violation. For instance, the
point group of the B1g + iB3u state is C2v with the principal
axis in the y direction. This means that the B1g + iB3u state is
an anapole superconducting state, where Cooper pairs can get
total momentum in the y direction, q = (0, q0, 0). In Table III,
we represent C2v (y) for such symmetry. The table reveals that
the point group of parity-mixed superconducting states may
be either C2v (x), C2v (y), C2v (z) (anapole), or D2 (monopole).
We have shown the SCPE mode in the C2v (x) anapole and
D2 monopole states in Tables I and II, respectively. For com-
pleteness, we show the possible SCPE mode in the C2v (y)
and C2v (z) anapole superconducting states in Tables IV and
V, respectively.

We here comment on the derivation of the possible SCPE
modes. Tables I, II, IV, and V are obtained by considering
the condition that the supercurrent and strain belong to the
same irreducible representation. An alternative way is to con-
sider the compatible relation of irreducible representations.
Because the SCPE tensor d (SC)

i jk becomes finite with the reduc-

tion of the symmetry of the system, d (SC)
i jk must belong to the

totally symmetric representation in the superconducting state
and not in the normal state. When we apply this condition
to the D2h point group, we find that finite SCPE coefficients
d (SC)

i jk belong to the B3u (Au) irreducible representation in the
Ag + iB3u anapole (Ag + iAu monopole) state.

APPENDIX B: ANALYSIS OF THE GROUP
VELOCITY MODEL

In this Appendix, we show some notable properties of
the group velocity model. First, we show the Bogoliubov
spectrum in Fig. 14 assuming Cooper pairs’ momentum q0 =
0. The spectrum is asymmetric in the kx direction and the
asymmetry is reversed by changing the sign of the ASOC,

TABLE V. List of the IRs of the C2v (z) anapole superconducting
state and corresponding strain si j , supercurrent Jk , and SCPE mode
d (SC)

i jk .

IR Strain Supercurrent SCPE modes

A1 sxx, syy, szz Jz d (SC)
xxz d (SC)

yyz d (SC)
zzz

A2 sxy

B1 syz Jy d (SC)
yzy

B2 szx Jx d (SC)
zxx

FIG. 14. The spectrum of Bogoliubov quasiparticles in the group
velocity model for the Ag + iB3u anapole state. We show the energy
dispersion along the kx axis by setting kz = 0 and [(a),(c)] ky = 0 or
[(b),(d)] ky = π/4. The spectrum with ky = 0 is gapless. [(a),(b)] The
solid lines represent the spectrum calculated with αx = 0.4, while
[(c),(d)] the dashed lines are obtained with αx = −0.4. We assume
αy = 0, β = 1, T = 0.01, and set q0 = 0.

αx (see the spectrum for ky = π/4). This property results
in the α-antisymmetric behavior of the SCPE and q0 in the
group velocity model. Their β-antisymmetric behavior is also
explained in the same way.

Next, we discuss the gap structure. Note that the spectrum
is symmetric on the ky = 0 and ky = π planes if we set q0 = 0
(see Fig. 14 for ky = 0). The analytic representation of the
Bogoliubov spectrum on these planes is obtained as

E (k) = ±
√

(εk − μ)2 + (∣∣�+
k

∣∣ ± β�1dg
y
)2

, (B1)

where �+
k = �1ψ

g + �2du
z . There are nodes in the super-

conducting gap when εk − μ = 0 and |�+
k | ± β�1dg

y = 0 are
simultaneously satisfied on the planes. Indeed, for β = 1,
the point node is present on the ky = 0 plane, as we see in
Fig. 14. When β > 1, Bogoliubov Fermi surfaces appear in
several regions of the Brillouin zone. For instance, Fig. 15
shows the Bogoliubov spectrum indicating the Bogoliubov
Fermi surface for β = 1.01. Thus, the superconducting gap

FIG. 15. The same plot as Fig. 14. The black solid (blue dashed)
line shows the result for αx = 0.4 and β = 1.01 (β = 1). We set ky =
−0.0481 and kz = −0.457 to show a part of the Bogoliubov Fermi
surface.
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FIG. 16. The Bogoliubov spectrum of the Ag + iB3u state with

αx = −αy = 0.4, β = 0 (geometric effect model), and T = 0.01. We
draw the spectrum on kz = 0 and ky = 0, π/8, π/4, 3π/8.

structure significantly changes around β = ±1. This is the
reason why the SCPE and q0 show remarkable β dependence
around β = ±1 in the group velocity model.

APPENDIX C: BOGOLIUBOV SPECTRUM
IN THE GEOMETRIC EFFECT MODEL

Here, we show the energy spectrum of Bogoliubov quasi-
particles in the geometric effect model. The spectrum without
q0 can be analytically calculated and obtained as

E (k) = ±
√

(|g+
k | ±

√
(εk − μ)2 + (Im�+

k )2)2 + (Re�+
k )2,

(C1)

where g+
k = gx + igy. We confirm that the spectrum is sym-

metric for k, i.e., E (k) = E (−k) in contrast to the group
velocity model. In addition, since Re�+

k = �1ψ
g > 0 is al-

ways finite in our model, gap nodes are absent at least for
q0 = 0, Indeed, we see the gapped spectrum in Fig. 16.
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