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Theory of the low- and high-field superconducting phases of UTe2
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Recent nuclear magnetic resonance and calorimetric experiments have observed that UTe2 exhibits a transition
between two distinct superconducting phases as a function of magnetic field strength for a field applied along
the crystalline b axis. To determine the nature of these phases, we employ a microscopic two-band minimal
Hamiltonian with the essential crystal symmetries and structural details. We also adopt anisotropic ferromagnetic
exchange terms. We study the resulting pairing symmetries and properties of these low- and high-field phases in
mean-field theory.
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I. INTRODUCTION

The heavy-fermion superconductor UTe2 [1] has been the
subject of extensive recent investigation due to its multifarious
manifestations of exotic superconductivity. The upper critical
field along the crystalline b axis, Hc = 40 T [1,2], is strik-
ingly large in light of the critical temperature Tc = 1.6 K, and
is indicative of an odd-parity superconducting ground state.
UTe2 belongs to a larger family of uranium-based candidate
unconventional superconductors, the rest of which exhibit
ferromagnetism coexisting with superconductivity [3–6]. In
contrast, UTe2 lacks magnetic order [1]. Thus, UTe2 offers
the opportunity to probe unconventional superconductivity
in a family of materials without the confounding effects of
magnetism. Furthermore, UTe2 is also believed to host exotic
phenomena such as reentrant superconductivity [1,7], broken
time-reversal symmetry [8,9], and pair density wave (PDW)
order [10], thus positioning it as a paradigmatic unconven-
tional superconductor.

Like the other uranium-based superconductors, UTe2

exhibits reentrant superconductivity as a function of the
strength of the magnetic field applied along the crystalline
b axis. While this phenomenon was initially attributed to
fluctuations near a ferromagnetic quantum critical point, a
few studies [11,12] offered an alternative explanation: Dis-
tinct superconducting phases at low and high magnetic field
strengths.

Recent experiments [13,14] have confirmed the existence
of two distinct superconducting phases in UTe2, distinguished
primarily by their responses to the orientation of the applied
magnetic field. The state at low magnetic field strengths has
little sensitivity to the direction of the field. In contrast, the
superconducting state at high magnetic field strengths is easily
suppressed by tilting the field away from the b axis in either
the a or c directions [7,13,14]. Thus, a fundamental ques-
tion regarding the unconventional superconductivity in UTe2

is: What are the pairing symmetries associated with these
superconducting phases?

In this work, we provide concrete predictions for the pair-
ing symmetries of the low- and high-field superconducting
phases. As we describe in Sec. III, we do this in two ways. In
both, we use a minimal Hamiltonian with the essential sym-
metries and structural details, including spin-orbit coupling.
First, we calculate the pair field susceptibility χ , which is de-
fined in Sec. III A. This reveals the dominant superconducting
tendencies of the normal state as determined by the kinetic
energy. Second, we introduce local, anisotropic ferromagnetic
pairing interactions and solve the self-consistent mean-field
gap equation with these interactions (Sec. III B). In both ap-
proaches, we find that the low- and high-field superconducting
states are odd-parity states, but with the spin pointing in dif-
ferent primary directions. At small magnetic field strengths,
the pairing state has spin predominantly in the ac plane, but at
high enough magnetic field strengths, this spin aligns with the
b axis. The change in pairing symmetry also has consequences
for the physical properties of the state. In Sec. IV, we infer the
nodal structure of the gap from our results and discuss the
properties of the phases.

II. MODEL

In this section, we describe the tight-binding Hamiltonian
used throughout this work and the symmetry classifications of
the allowed pairing states. The main assumption in our work
is that the fermions relevant for superconductivity reside on
uranium atoms, which is reflected in the pairing symmetry
classifications and the minimal Hamiltonian.

Theoretical predictions for the density of states in UTe2

find that uranium 5 f orbitals contribute the largest density
of states at the Fermi energy [15], so the uranium electrons
are likely the driver of superconductivity in the system. The
rung (sublattice) structure is also believed to play a crucial role
in determining the electronic and superconducting properties
of the material [16–18]. Thus, we anticipate that the super-
conducting properties of UTe2, including the symmetries of
the pairing states, should be qualitatively well captured by a
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TABLE I. Classifications of odd-parity states for D2h symmetry
(orthorhombic crystal). The basis functions are of the form τ j ⊗
( �d (k) · �σ )(iσy ) with j = 0, x, y; absence of a listed �d (k) indicates a
spin singlet state. Momentum labels (ki) are symmetry labels and do
not indicate the form of the functional dependence.

IR I Mx My Mz �d (k) τ

Au −1 −1 −1 −1 kxx̂, kyŷ, kzẑ τx , τ0

ẑ τy

B1u −1 1 1 −1 kyx̂, kxŷ τx , τ0

- τz

B2u −1 1 −1 1 kzx̂, kxẑ τx , τ0

x̂ τy

B3u −1 −1 1 1 kzŷ, kyẑ τx, τ0

ŷ τy

minimal model with orthorhombic symmetry and sublattice
structure.

Though we focus here on UTe2, the structural motif
mentioned here is present throughout many other candidate
unconventional superconductors; prior work [18] has studied
the effects of this structure using a complementary approach,
modeling the local physics using a Hund’s-Kondo model.

A. Symmetries

We first describe the symmetries of the crystal and classify
the possible pairing states. Due to the structure of UTe2,
the crystalline axes a, b, c may be identified with the x, y, z
axes, respectively. We will use these labels interchangeably.
In UTe2, the pairs of uranium atoms form rungs of a lad-
der, oriented in the ẑ (crystalline c) direction, which build
up a body-centered orthorhombic crystal. The pairing sym-
metry classifications are determined by the usual spin and
momentum symmetries, together with the uranium site sym-
metry. Note that the uranium site symmetry C2v has just one
spin representation, so all local Kramer’s pairs (time-reversal
symmetry related states) must have the same symmetry. The
following symmetry classifications are thus general for any
number of local orbitals, though we describe the scenario
when there is a single local orbital per uranium site and use
the terms orbital and sublattice interchangeably.

In the absence of a magnetic field (B = 0), the orthorhom-
bic symmetry group (D2h) respects inversion I and mirror
plane Mx, My, Mz symmetries, which can then be used to
classify the possible pairing states. The degrees of freedom
for the pairing states are sublattice (orbital), represented by
Pauli matrices τi, and spin, represented by Pauli matrices σi.

The inversion operation I flips momentum and inter-
changes the sublattices, I = τx(�k → −�k). The mirror plane
symmetry operators Mx and My are defined as usual, Mj =
τ0 ⊗ iσ j (k j → −k j ). Since the sublattices in UTe2 are aligned
along the z axis, Mz is defined as Mz = τx ⊗ iσz(kz → −kz ).
The odd-parity basis functions belonging to each irreducible
representation of this symmetry group are shown in Table I.
The basis functions are of the form τ j ⊗ ( �d (k) · �σ )(iσy) for
spin triplet states or τ j ⊗ (iσy) for spin singlet states ( j =
0, x, y, z). Generically, the gap function will be related to

TABLE II. Classifications of odd-parity states for Cy
2h symmetry

(orthorhombic crystal in finite b-axis magnetic field). States origi-
nally distinguished by their behaviors under Mx and Mz are now
allowed in the same symmetry classification upon the breaking of
Mx and Mz symmetries.

IR (In field) IRs (Zero-field) I My

Au Au, B2u −1 −1
Bu B1u, B3u −1 1

the basis functions listed here through a factor of the gap
magnitude.

With a finite magnetic field aligned along the crystalline
b axis, the orthorhombic symmetry is broken down to Cy

2h,
as mirror symmetries along the x and z axes are destroyed.
The irreducible representations in Table I are allowed to mix,
distinguished now only by their behavior under My, as shown
in Table II.

B. Tight-binding model for UTe2

We now adopt a minimal two-band tight-binding model
with one local orbital per uranium atom, which was previously
established in Ref. [17] and possesses the essential proper-
ties of sublattice structure and orthorhombic symmetry. This
model captures all of the possible pairing symmetries:

ht = [ε0(k) − μ]τ0 ⊗ σ0 + fAg(k)τx ⊗ σ0

+ fz(k)τy ⊗ σ0 + fy(k)τz ⊗ σx

+ fx(k)τz ⊗ σy + fAu(k)τz ⊗ σz. (1)

Here, τi are Pauli matrices on the orbitals (sublattices), and σi

are Pauli spin operators. The first three terms, with coefficients
ε0(k), fAg(k), and fz(k) describe the kinetic energy of the
itinerant electrons on the uranium atoms. They have the forms

ε0(k) = t1 cos kx + t2 cos ky

fAg(k) = m0 + t3 cos(kx/2) cos(ky/2) cos(kz/2)

fz(k) = tz sin(kz/2) cos(kx/2) cos(ky/2). (2)

The magnitude of each hopping integral (t1, t2, m0, t3, tz)
was found from DFT [17], and the precise values used in our
work are listed in Sec. VI. Since the in-plane hopping in the x̂
direction, t1, is the largest kinetic energy scale, we set this as
the unit of energy (t1 = 1).

The last three terms of Eq. (1) are anisotropic spin-orbit
couplings with momentum dependence given by

fy(k) = ty sin(ky)

fx(k) = tx sin(kx )

fAu(k) = tu sin(kx/2) sin(ky/2) sin(kz/2). (3)

We anticipate that the scale of spin-orbit coupling is dictated
by the geometry of the system as well. The interatomic dis-
tance between uranium atoms at different sites is smallest in
the a (x̂) direction and largest along the diagonal connecting
the body-centered site to the corners. Thus, throughout this
work, we consider tx > ty > tu.
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On top of the kinetic energy, we introduce a magnetic field
B, coupled to the spin via a Zeeman term,

hB = −τ0 ⊗ ( �B · �σ ). (4)

Note that, in principle, there are other ways to couple the
system to an external magnetic field (e.g., orbital-field cou-
pling), which we do not include here. We will mainly consider
magnetic fields aligned along the crystalline b axis, �B ‖ ŷ. The
full Hamiltonian is then

h(k) = ht − Bτ0 ⊗ σy. (5)

III. PAIRING SYMMETRIES OF LOW- AND HIGH
-FIELD PHASES

A. Superconducting susceptibility

Here, we evaluate the superconducting instabilities of the
normal state via the pair field susceptibility χ in the absence
of pairing interactions. Since experimental signatures of UTe2

strongly suggest odd-parity superconductivity, we will con-
sider only the instabilities towards inversion-odd pairing states
(those listed in Table I). This approach reveals the odd-parity
superconducting state favored by the band structure, as op-
posed to that favored by a specific interaction.

Within mean-field theory, the susceptibility of the normal
state to a specific pairing channel � is the linear response
function of the normal state to the pairing field with sym-
metry �. The susceptibility χ� thus quantifies how easily the
normal state forms pairs with symmetry �. Assuming that
superconductivity arises from a weak-coupling instability in
this system, the pairing channel for which χ� is maximal
determines the true superconducting order.

To compare the susceptibilities to all pairing channels in
UTe2, we construct the superconducting susceptibility matrix
χ with entries

χi j = − 1

β

∑
ωn

1

N

∑
�k′

Tr[D†
i (�k′)

× G(�k′, iωn)Dj (�k′)G(−�k′,−iωn)], (6)

where ωn are Matsubara frequencies, Di(k) and Dj (k) are
basis functions of the orthorhombic symmetry (as listed in
Table I), G(k, iω) is the normal-state single-particle Green’s
function, and the sum over k′ is taken over momenta within
an energy of 0.1t1 of the Fermi surface [as defined by Eq. (5)],
and N is the number of points in the �k′ summation. The
diagonal entries χii are the susceptibilities to forming a gap
proportional to Di(k), in response to a pairing field with the
same structure Di(k). Cross terms χi j (for i �= j) are the sus-
ceptibilities to forming a gap with structure Di(k), in response
to a pairing field of a a different form Dj (k).

Generically, if Di and Dj belong to the same irreducible
representation, χi j can be nonzero. Thus, the correct suscep-
tibilities to compare are not those between the different basis
functions but instead those between different eigenstates of
χ , which are mixtures of basis functions in the same irre-
ducible representation. The eigenvalues of χ are still a proxy
for the logarithm of the superconducting transition tempera-
tures Tc, and the true superconducting order has the form of
the eigenvector corresponding to the largest eigenvalue. The

FIG. 1. The two largest eigenvalues of the pair field suscepti-
bility matrix χ as a function of applied magnetic field strength B,
for a field aligned along the crystalline b axis. This is found at
a temperature T = 10−4t1 and with approximately 6 × 104 points
on the Fermi surface. The dominant basis functions of type Bu

are τ0 ⊗ (kxσy )(iσy ) and τx ⊗ (kxσy )(iσy ), while the dominant basis
functions of type Au are τ0 ⊗ (kxσx )(iσy ) and τx ⊗ (kxσx )(iσy ). At
around B = 1.25 × 10−4t1, there is a crossing between the largest
eigenvalues, indicating a transition between pairing states.

eigenvalues themselves depend on the density of states near
the Fermi energy and the temperature.

Figure 1 shows the evolution of the largest eigenvalues of χ

[Eq. (6)] as a function of the applied magnetic field strength B.
We confirm that the results are converged with respect to N ,
the number of points sampled around the Fermi surface, by
comparing results for increasingly fine samplings of momenta
near the Fermi surface. The eigenvalues are labeled by the
symmetry classifications that their corresponding eigenvec-
tors belong to. At low fields, states in the Bu classification
are favored, and spin-triplet states with �d ‖ ŷ [τx ⊗ kxσy(iσy)
and τ0 ⊗ kxσy(iσy)] dominate. At a critical field strength of
Bc ∼ 10−4t1, there is a crossing of the largest eigenvalues,
signaling a transition from Bu to Au. The dominant basis func-
tions at high field are spin triplet with �d ‖ x̂ (τx ⊗ kxσx(iσy)
and τ0 ⊗ kxσx(iσy)).

This level crossing may be understood as a result of the
competition between the magnetic field and spin-orbit cou-
pling. At B = 0, the spin-orbit coupling largely determines
the pairing state to be in Bu, with a primary spin component
in the ac plane. Since this is energetically unfavorable in
the presence of a magnetic field along the crystalline b axis,
increasing the magnetic field strength ultimately overwhelms
the spin-orbit coupling and drives a transition to a Au.

While the qualitative picture offered here is consistent
with the experimental observations, we find that the rela-
tive splitting between eigenvalues (effective differences in
Tc) between the two phases is very small. This may be an
indication that the competition between spin-orbit coupling
and the magnetic field is insufficient to fully explain the
transition. In the next section, we consider the effects of
ferromagnetic pairing interactions and assess the robustness
of the results described above.
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B. Self-consistent mean-field approach

Our analysis of the normal-state instabilities suggests that,
even without considering any specific pairing interactions,
there is a tendency towards a transition between super-
conducting states with distinct pairing symmetries due to
competition between spin-orbit coupling and applied mag-
netic field. We now account for interactions and determine
the pairing states favored by a potential, rather than the
kinetic, energy; we identify the nature (first or second
order) of the transition between pairing symmetries and as-
sess the effect of interactions on the value of the critical
field Bc.

We consider an on-site, opposite-sublattice ferromagnetic
interaction

HI = −
(∑

i

JxSx
i,1Sx

i,2 + JySy
i,1Sy

i,2 + JzS
z
i,1Sz

i,2

)
, (7)

where i is a site index and 1,2 are sublattice indices. While
there are a plethora of other conceivable local interactions,
we choose interactions of this particular form, as suggested
by DFT calculations [16] and supported by neutron scattering
experiments [19].

At this point, we make two remarks. First, UTe2 has
distinct magnetic properties from the other members of the
family of uranium-based superconductors. Specifically, the
effects of a magnetic field on the superconductors URhGe
[20] and UCoGe [21] may be attributed to Ising magnetic
fluctuations [22]. However, UTe2 exhibits no Ising magnetic
fluctuations, so we explore a more general ferromagnetic
interaction as shown in Eq. (7). Second, we note that the
results of Ref. [19] suggest nearest-neighbor antiferromag-
netic interactions along the y axis (favoring singlet pairing)
and nearest-neighbor ferromagnetic interactions along the x
axis (favoring the states identified in Sec. III A) in addition
to the on-site ferromagnetic interactions we have chosen here.
However, recent work incorporating this more general form of
the interaction and a different normal-state Hamiltonian [23]
identifies the same zero-field state as we do, indicating that
the results reported here are likely robust to these additional
interactions.

To find the gap function 	(k) in the presence of these inter-
actions, we take a standard mean-field approach, decoupling
the four-fermion interaction and defining the gap function in
terms of the interaction. In the spin-orbit Nambu basis, the
Bogoliubov-de Gennes (BdG) Hamiltonian takes the form

HBdG =
(

h(k) 	(k)
	†(k) −h(−k)T

)
, (8)

where h(k) and 	(k) are 4 × 4 matrices, and has eigenvectors
and eigenvalues satisfying

HBdG

( {un
kμ}

{vn
−kμ}

)
= Ekn

( {un
kμ}

{vn
−kμ}

)
. (9)

The mean-field self-consistency condition for 	(k)

is then

	μν (�k) = 1

N

∑
�k′

∑
μ′ν ′

Vμνμ′ν ′ (�k, �k′)

×
∑

n

[(
u �k′μ3

)n(
v∗

− �k′μ4

)n
tanh

(
E�k′n

2kBT

)]
, (10)

where N is the total number of points sampled near the
Fermi surface, Vμνμ′ν ′ is the pairing interaction generated from
Eq. (7) (see Appendix A 2), the sum over �k′ is over momenta
within an energy of 0.1t1 of the Fermi surface, μ′ and ν ′
are generalized spin-orbit indices, and Ekn, un

kμ, and vn
−kμ are

defined by Eq. (9). In contrast to our approach in Sec. III A,
we do not assume a particular parity of the gap function.
Instead, the solutions 	(k) to Eq. (10) are generically ad-
mixtures of the basis functions in the orthorhombic symmetry
group, which are allowed by symmetry (I , Mi) to mix. Thus,
the following results reveal which states are favored by the
pairing interactions of Eq. (7), under the symmetry constraints
provided by the normal-state Hamiltonian [Eq. (5)].

We solve Eq. (10) by iteration, starting with a random
initial matrix 	0(�k). We consider the solution to be converged
after n iterations when 	n and 	n−1 satisfy the convergence
condition |	n(�k) − 	n−1(�k)| < 10−8t1 ≈ 1 neV. Details of
the this procedure are in Appendix A 2.

While we allow for both even- and odd-parity solutions of
Eq. (10), we have found that all nontrivial solutions have odd
parity and take the form 	 = τy ⊗ ( �d · �σ )(iσy), where �d is
momentum independent. For the remainder of this section, we
will refer to the gap function by the orientation of �d , always
implicitly assuming the form 	 = τy ⊗ ( �d · �σ )(iσy). We also
absorb the gap magnitude into �d , such that |	|2 = | �d|2. In
the same spirit as Ref. [23], we will allow for anisotropy
in the interactions. We first consider how Jx, Jy, and Jz deter-
mine the pairing symmetries at zero field (B = 0) and identify
realistic values for the exchange energies.

Figure 2(a) is the phase diagram in the space of inter-
action parameters Jx/Jy and Jz/Jy, for B = 0, T = 0, and
Jy = 10−3t1. At B = 0, �d ‖ x̂, �d ‖ ŷ, and �d ‖ ẑ belong to
distinct symmetry classifications (Table I). The nature of the
transitions between the pairing states as a function of the
interactions Jx and Jz can be determined by analyzing the gap
magnitudes. Figure 2(b) shows the magnitudes of di as a func-
tion of Jx/Jy for a fixed Jz/Jy = 5. This reveals a first-order
transition between B3u and Au in the interaction parameter
space at B = 0.

The actual interactions present in UTe2 are modeled well
only by a region of the interaction space shown in Fig. 2(a).
Since the zero-field state is experimentally known to be sup-
pressed by a b-axis magnetic field, we identify the B3u state
( �d ‖ ŷ) as a good candidate for the low-field state, as it is a
triplet state with spin in the ac plane. As shown in Fig. 2(a),
the B3u state is favored for interactions Jx, Jz > Jy. The pa-
rameter range in which we find a B3u state is consistent with
expectations from the magnetic properties of the normal state.
Since the a axis is the easy magnetic axis, and the b axis is the
hard magnetic axis [1], the physical interaction parameters are
likely Jx > Jz > Jy. The separation between the realistic and

214510-4



THEORY OF THE LOW- AND HIGH-FIELD … PHYSICAL REVIEW B 107, 214510 (2023)

FIG. 2. (a) The zero-field, zero-temperature (B = 0, T = 0)
phase diagram in interaction parameter space obtained from solv-
ing the self-consistent gap equation numerically for Jy = 10−3t1.
Solutions are of the form 	 = τy ⊗ ( �d · �σ )(iσy ) in the spin-orbit
basis, with �d = �d (Jx, Jy, Jz ). The dotted line denotes the separation
between realistic (Jx > Jz > Jy) and unrealistic parameters, while the
dashed line indicates the value of Jz for the line cut plotted in (b).
(b) A representative line cut in the space of parameters, showing
a first-order transition between B3u and Au as a function of Jx/Jy.
Shown are the magnitudes of di (i = x, y, z) at Jz/Jy = 5, which ex-
hibit discontinuous jumps indicating a first-order transition between
pairing states.

unrealistic interaction parameter regimes is shown in Fig. 2(a)
as a dotted line.

So far, we have solved the self-consistency equa-
tion [Eq. (10)] for the gap function at B = 0 and T =
0, for a variety of interactions. We now consider the be-
havior of the gap at finite temperature and magnetic field
and construct a phase diagram in the space of tempera-
ture T and applied field B (along the ŷ axis), shown in
Fig. 3(a). Specifically, we investigate the nature of the tran-
sition between the Bu low-field state and the Au high-field
state as a function of applied field strength, as shown in
Fig. 3(b).

We choose a representative set of parameters correspond-
ing to a gap in the phase B3u ( �d ‖ ŷ) at B = 0 and T = 0:
Jx/Jy = 8, Jz/Jy = 6, and Jy = 10−3t1. We then solve the self-
consistent gap equation [Eq. (10)] with B > 0 and T > 0. As
shown in Fig. 3(a), at a finite field B > 0, there is a first-order

FIG. 3. Solutions to the gap equation with interaction parameters
Jx/Jy = 8, Jy = 10−3t1, Jz/Jy = 6. (a) The phase diagram in temper-
ature T and magnetic field strength B for a �B = Bŷ, as found by
solving the gap equation [Eq. (10)]. In the red region, the super-
conducting gap function has the form τy ⊗ dyσy(iσy ), while in the
blue region, the gap function has the form τy ⊗ dzσz(iσy ). The un-
shaded region indicates the region in which the gap function vanishes
(dx, dy, dz < ε, for ε the error tolerance ε = 10−5t1), such that the
system is in the normal state. The temperature-induced transitions
are second order (single line) while the field-induced transitions are
first order (double line). A dashed line at T = 10−4t1 indicates the
line cut examined in (b). (b) Gap magnitudes |di| (i = x, y, z) as a
function of applied magnetic field strength B, for a field aligned along
the crystalline b axis at temperature T = 10−4t1. At a field strength of
approximately B/t1 ∼ 5 × 10−4, there is a first-order transition from
the Bu pairing state at low fields to the Au pairing state at high fields.

transition between the pairing states with �d ‖ ŷ and �d ‖ ẑ,
while finite temperature transitions between the supercon-
ducting states and the normal state remain second order. In
principle, the high-field Au state could be an mixture of the
�d ‖ x̂ and �d ‖ z states (see Table II), but we find that any �d ‖ x̂
is suppressed by the large value of Jx.

Figure 3(b) shows the evolution of �d as a function of the
applied magnetic field strength B/t1. Upon increasing B, the
Bu state is suppressed, and we observe a first-order transition
to Au pairing symmetry at around B/t1 = 5 × 10−4. The tran-
sition is between the same symmetry classifications as those
identified in Sec. III A, but the transition occurs at an enhanced
critical field Bc, which may be attributed to the cooperation
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between spin-orbit coupling and interactions to stabilize of the
low-field state.

We now briefly comment on the differences between our
results in Sec. III A and Sec. III B. In both approaches, we find
that the basis functions transition from Bu and Au symmetry at
a critical field strength. Generically, all basis functions of a
given classification can mix, but the specific basis functions
favored in Sec. III A and Sec. III B are determined by the
microscopic details of the kinetic energy or the interactions.

IV. PROPERTIES OF THE LOW-
AND HIGH-FIELD PHASES

A. Sensitivity to angle

The low- and high-field superconducting phases in UTe2

are distinguished by their sensitivity (or lack thereof) to the
angle of the applied magnetic field with respect to the crys-
talline b axis; the high-field phase is sensitive to the angle of
the field, whereas the low-field phase is not. We now show
that our results are consistent with this observation through a
qualitative argument and by providing numerical evidence in
support of this claim.

From both the analysis of the superconducting suscep-
tibility and of the mean-field solution in the presence of
ferromagnetic interactions, we find that the low-field phase
is a triplet state with primarily �d ‖ ŷ, whereas the high-field
phase has primarily �d ‖ x̂ or �d ‖ ẑ. Since the spin in a triplet
state is proportional to �d × �d∗, a state with �d ‖ ŷ (spin in the xz
plane) will be suppressed in the presence of a large magnetic
field along the ŷ direction. However, such a state should be
relatively insensitive to a field in the x̂ or ẑ directions. This
is consistent with the experimental results in the low-field
phase. In contrast, the high-field Au phase with �d = dxx̂ + dzẑ
is stable to large fields along ŷ but is suppressed by fields
along x̂ or ẑ. More concretely, the suppression of a given
pairing state by a time-reversal symmetry breaking perturba-
tion may be quantified by the field fitness function [24–26].
For example, spin-orbit coupling determines how severely the
specific high-field solution τy ⊗ (dzσz )(iσy) found in Sec. III B
is suppressed by tilting of the field in the a and c directions
(see Appendix A 3).

We also explicitly demonstrate the responses of states
identified in Sec. III B to magnetic fields off of the b axis.
Specifically, we again solve the gap equation [Eq. (10)] at
various temperatures T and with interactions (Jx, Jy, Jz ) =
(2.8 × 10−3t1, 1.5 × 10−3t1, 2.6 × 10−3t1). We consider two
fixed values of By, corresponding to the low-field state at �B =
(0, 5 × 10−6t1, 0) and the high-field state at �B = (0, 2.5 ×
10−4t1, 0) and introduce finite Bx and Bz. Once the magnetic
field is misaligned with the crystal axes, all mirror symmetries
are destroyed, and there is only one symmetry classification
for the resulting gap function (which is now generically a
mixture of all basis functions favored by the interaction).

Though they cannot be distinguished by symmetry in the
presence of a field pointing in arbitrary directions, the natures
of the low- and high-field phases may still be distinguished
based on how the gap magnitudes change as the field acquires
a Bx or Bz component. Note that the choice of interactions here
is different from those used in Sec. III B; for the parameters

FIG. 4. Phase diagrams in temperature T and magnetic fields Bx

or Bz, for solutions of the gap equation with interaction parameters
(Jx, Jy, Jz ) = (2.8 × 10−3t1, 1.5 × 10−3t1, 2.6 × 10−3t1) for (a) By =
5 × 10−6t1 and (b) By = 2.5 × 10−4t1. At Bx = Bz = 0, the solution
at (a) By = 5 × 10−6t1 is τy ⊗ (dyσy )(iσy ) (red shaded region, cir-
cles), and the solution at (b) By = 2.5 × 10−4t1 is τy ⊗ (dzσz )(iσy )
(blue shaded region, triangles). In the presence of a field misaligned
with the crystal axes, all mirror symmetries are broken, and there
is only one irreducible representation (purple shaded region, pen-
tagons). The unshaded region indicates the region in which the
gap function vanishes (dx, dy, dz < ε, for ε the error tolerance ε =
1 × 10−6t1), such that the system is no longer superconducting.

in this section, Tc of the high- and low-field phases are more
comparable when �B ‖ ŷ, allowing for a better comparison of
their behaviors in the presence of a misaligned magnetic field.
Qualitatively, the results of Sec. III B and those shown here
do not depend sensitively on the choice of interactions. As
shown in Fig. 4, the critical temperature of the low-field state
does not change significantly upon the introduction of Bx or
Bz. In contrast, the critical temperature of the high-field state
decreases with increasing Bx or Bz. There is a quantitative
difference between the suppression of the high-field state as
shown in Fig. 4(b) and the experimentally-measured angle
sensitivity of the high-field state; we conjecture that taking
orbital-field coupling into account may increase the sensitivity
of the high-field state to the field orientation in our model.
Qualitatively, the behaviors shown in Fig. 4 for the low- and
high-field states match the experimental observations [13,14].

B. Nodal structure

We now consider the nodal structure of the zero-field
state found in the self-consistent calculation. Calorimetric
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measurements [1,27–29], magnetic penetration depth mea-
surements [30], and NMR 1/T1 relaxation rate measurements
[31] in UTe2 at zero field show evidence of point nodes
in the superconducting gap function, but there is no global
consensus on the locations of these nodes. We expect that the
specific form of the pairing state at zero field may depend on
microscopic details and the interaction chosen, so we focus on
predicting the nodal structure of an arbitrary mixture of basis
states in the same symmetry classification as the solution of
the self-consistent solution to Eq. (10) in zero field (B = 0).
We find (described below) that arbitrary admixtures of states
in the candidate zero-field (B3u) symmetry classification have
point nodes along the a axis.

In a one-band system, the nodal structure of a gap can
be deduced from its symmetry classification. This is because
the momentum dependence of the basis functions dictates
the nature of the nodes (none, point, or line). However, in
a multiband system, the nodal structure cannot be straight-
forwardly related to the symmetry classification of the gap,
as the basis functions gain nontrivial structure in the band
basis [32–34].

We thus identify the nodal structure of the solution to
Eq. (10) by projecting 	 into the band basis. To simplify
our calculation, we consider the projection only at kz = 0
( fz = fu = 0) (see Appendix A 4). For a given pairing state,
the stable nodes are those which are not suppressed by adding
an arbitrary mixture of other pairing states within the same
symmetry classification. This projection at kz = 0 yields that
the candidate zero-field (B3u) phase has stable point nodes
along the a axis. These results are consistent with transport
measurements [28], which identify point nodes in the ab plane
and field-angle-resolved measurements of the specific heat
[27], which identify point nodes along the a axis for the
zero-field superconducting state.

V. DISCUSSION

In this work, we have determined the pairing symmetries of
the low- and high-field phases of UTe2 within mean-field the-
ory for a minimal Hamiltonian. We find that the field-induced
transition between pairing symmetries in UTe2 is a transition
from states of the Bu classification at low fields to states of
the Au classification at high fields. These pairing states are
consistent with the experimental signatures within each phase,
namely the suppression of the high-field phase upon tilting the
magnetic field away from the b axis and the lack thereof in
the low-field phase. Furthermore, our predictions of the nodal
structure of the gap at zero field are consistent with the results
of thermal transport measurements.

However, the T -B phase diagram found in our calcula-
tions [Fig. 3(a)] does not reflect the phenomenon of reentrant
superconductivity. This suggests that fluctuations, which are
neglected in our mean-field approach, may be responsible for
an increase of Tc with increasing B in the high-field phase.
The details of reentrant superconductivity and other the phe-
nomena in UTe2 are also undoubtedly influenced by factors
such as disorder [35], vortex formation [36], and orbital-field
coupling, which we have also neglected. Even so, the minimal
model used here, which includes only the most essential struc-

tural elements of UTe2, captures the field-driven transition
between different pairing symmetries and qualitative signa-
tures of these high- and low-field phases at low temperatures.
This suggests that the orthorhombic crystal symmetry and
sublattice structure of UTe2 play the largest roles in determin-
ing its superconducting states.

While our approach using itinerant electrons successfully
determines the nature of superconductivity in UTe2, the
underlying mechanisms behind superconductivity remain un-
explained. Specifically, we assume here a particular form for
the local ferromagnetic interaction [Eq. (7)] and a specific
hierarchy of the anisotropic spin-orbit couplings. A deriva-
tion of the interaction and SOC are beyond the scope of
this work, but we acknowledge that symmetry principles can
justify the general form of the model and the anisotropic
nature of the interactions and SOC but cannot fully explain
the origins of these terms. Below, we conjecture how a com-
plementary perspective may supply a satisfactory conceptual
understanding.

UTe2 is found to have signatures of a strong-coupling su-
perconductor, and agreement between DFT and experiments
depends sensitively on the Hubbard interaction parameter
[22], suggesting that correlation effects in UTe2 are essential.
Thus, the more fundamental questions about the origins of
interactions and mechanisms responsible for superconduc-
tivity may be better answered from a perspective of local,
microscopic physics complementary to the one presented
here. More generally, a complete description of the phe-
nomena in UTe2 and related heavy-fermion superconductors
likely requires a combination of both the local and itinerant
perspectives.
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APPENDIX

1. Parameters of the tight-binding model

The constants in Eq. (2) and Eq. (3) used in this
work are listed here. For the calculation of the pair
field susceptibility and its eigenvalues and eigenstates
(Sec. III A), we use (t1, μ, t2, m0, t3, tz, tx, ty, tu) =
(−1, 1.446, 0.76,−0.695, 0.83,−0.83, 0.785, 0.224, 0.112).
For the solution of the self-consistent gap equa-
tion (Sec. III B), we use (t1, μ, t2, m0, t3, tz, tx, ty, tu) =
(−1, 1.446, 0.76,−0.695, 0.83,−0.83, 0.448, 0.224, 0.112).
In Sec. IV A, we use (t1, μ, t2, m0, t3, tz, tx, ty, tu) =
(−1, 1.446, 0.76,−0.695, 0.83,−0.83, 0.15, 0.12, 0.11).
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2. Solving the self-consistent gap equation
with ferromagnetic interactions

Generically, a two-body interaction in real space takes the
form HI = ∑

i, j

∑
μ,ν,μ′,ν ′ U

μνμ′ν ′
i c†

i,μci,μ′c†
j,νc j,ν ′ . Here, i and

j are site labels, while μ(′), ν(′) are generalized spin-orbit
indices. Via a Fourier transform, one can always express this
interaction in BCS form as

HI =
∑
k,k′

Vμ1,μ2,μ3,μ4 (�k, �k′)c†
k,μ1

c†
−k,μ2

c−k′,μ3 ck′,μ4 , (A1)

where V is the effective BCS pairing interaction entering
Eq. (10) and repeated indices are summed over.

For the local ferromagnetic interaction described in Eq. (7),

Vμ1,μ2,μ3,μ4 (�k, �k′)c†
k,μ1

c†
−k,μ2

c−k′,μ3 ck′,μ4

=
∑

a=x,y,z

Jaσ
s′s
a σ p′ p

a c†
k,τ=1,s′c

†
−k,τ=2,p′c−k′,τ=2,sck′,τ=1,p.

(A2)

for σa Pauli matrices on the spins and τ indexing the sublat-
tices. Then, the matrix V is written:

Vμ1,μ2,μ3,μ4 (�k, �k′) = εμ1μ2εμ3μ4
∑

a=x,y,z

Ja

2

[(
Pτ

1 σa
)μ1μ4

× (
Pτ

2 σa
)μ2μ3 + (

Pτ
2 σa

)μ1μ4
(
Pτ

1 σa
)μ2μ3

]
(A3)

We use iteration to solve the self-consistent gap equation
Eq. (10) with the interactions described by Eq. (A3).

3. Field-fitness functions for the solutions of the gap equation

While the numerical solutions to the gap equation show
how the gap magnitudes of different pairing states evolve
under a magnetic field, they do not offer insight as to what
controls the suppression of a given pairing state by a given
field. We quantify the pair-breaking effects of a magnetic
field on the solutions of the self-consistent gap equation (τy ⊗
σy(iσy) at low fields and τy ⊗ σz(iσy) at high fields) by the
field-fitness function as defined by Cavanagh et al. [26]. If the
field-fitness function for a given pairing state and perturbation
vanishes (Fk = 0), then the perturbation does not have any
depairing effects; on the other hand, Fk = 1 indicates maximal
pair breaking.

To understand the suppression of the high-field phase, we
find the field-fitness functions for τy ⊗ σz(iσy) in a magnetic
field in the x̂ or ẑ directions. The result is

Fk (B ‖ x̂)d‖z ∝ f 2
x f 2

Ag(
f 2
x + f 2

y + f 2
z

)(
f 2
z + f 2

Ag + f 2
y

) (A4)

Fk (B ‖ ẑ)d‖z ∝ f 2
z

(
f 2
x + f 2

y + f 2
z + f 2

Au + f 2
Ag

)
(

f 2
x + f 2

y + f 2
z

)(
f 2
z + f 2

Au + f 2
Ag

) . (A5)

Generically, these will be nonzero over the Fermi surface, thus
resulting in suppression of the high-field phase.

TABLE III. Momentum dependence of the low-field phase: Bu (in-field) basis functions in the band basis.

	 (SO basis) D2h Classification Momentum dependence

τ0kyσx (iσy ) B1u sin ky

⎛
⎝ fy√

f 2
x + f 2

y
ẑ + f 2

Ag fx

√
f 2
x + f 2

y

(
f 2
Ag+ f 2

x + f 2
y +

√(
f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

) ŷ

⎞
⎠

τ0kxσy(iσy ) B1u sin kx

⎛
⎝ fx√

f 2
x + f 2

y
ẑ + f 2

Ag fy

√
f 2
x + f 2

y

(
f 2
Ag+ f 2

x + f 2
y +

√(
f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

)) x̂

⎞
⎠

τxkyσx (iσy ) B1u sin ky

(
fx√

f 2
x + f 2

y
ŷ + fAg fy√

f 2
x + f 2

y

(√
f 2
Ag+ f 2

x + f 2
y +

√
f 2
x + f 2

y

) ẑ

)
+ sin ky

fAg fy

f 2
Ag+ f 2

x + f 2
y +

√(
f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

)
τxkxσy(iσy ) B1u sin kx

(
− fy√

f 2
x + f 2

y
ŷ + fAg fx√

f 2
x + f 2

y

(√
f 2
Ag+ f 2

x + f 2
y +

√
f 2
x + f 2

y

) ẑ

)
+ sin kx

fAg fx

f 2
Ag+ f 2

x + f 2
y +

√(
f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

)
τz(iσy ) B1u

f 2
x + f 2

y +
√(

f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

)
f 2
Ag+ f 2

x + f 2
y +

√(
f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

)
τ0kzσy(iσy ) B3u sin kz

⎛
⎝ fx√

f 2
x + f 2

y
ẑ + f 2

Ag fy

√
f 2
x + f 2

y

(
f 2
Ag+ f 2

x + f 2
y +

√(
f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

)) x̂

⎞
⎠

τ0kyσz(iσy ) B3u sin ky
fAg√

f 2
Ag+ f 2

x + f 2
y

x̂

τxkzσy(iσy ) B3u sin kz

(
− fy√

f 2
x + f 2

y
ŷ + fAg fx√

f 2
x + f 2

y

(√
f 2
Ag+ f 2

x + f 2
y +

√
f 2
x + f 2

y

) ẑ

)
+ sin kz

fAg fx

f 2
Ag+ f 2

x + f 2
y +

√(
f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

)
τxkyσz(iσy ) B3u sin kyx̂
τyσy(iσy ) B3u

fy√(
f 2
Ag+ f 2

x + f 2
y

) x̂ ∼ sin kyx̂
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TABLE IV. Momentum dependence of the high-field phase: Au (in-field) basis functions in the band basis

	 (SO basis) D2h Classification Momentum dependence

τ0kxσx (iσy ) Au sin kx

⎛
⎝ fy√

f 2
x + f 2

y
ẑ + f 2

Ag fx

√
f 2
x + f 2

y

(
f 2
Ag+ f 2

x + f 2
y +

√(
f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

) ŷ

⎞
⎠

τ0kyσy(iσy ) Au sin ky

⎛
⎝ fx√

f 2
x + f 2

y
ẑ + f 2

Ag fy

√
f 2
x + f 2

y

(
f 2
Ag+ f 2

x + f 2
y +

√(
f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

)) x̂

⎞
⎠

τ0kzσz(iσy ) Au sin kz
fAg√

f 2
Ag+ f 2

x + f 2
y

x̂

τxkxσx (iσy ) Au sin kx

(
fx√

f 2
x + f 2

y
ŷ + fAg fy√

f 2
x + f 2

y

(√
f 2
Ag+ f 2

x + f 2
y +

√
f 2
x + f 2

y

) ẑ

)
+ sin kx

fAg fy

f 2
Ag+ f 2

x + f 2
y +

√(
f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

)
τxkyσy(iσy ) Au sin ky

(
− fy√

f 2
x + f 2

y
ŷ + fAg fx√

f 2
x + f 2

y

(√
f 2
Ag+ f 2

x + f 2
y +

√
f 2
x + f 2

y

) ẑ

)
+ sin ky

fAg fx

f 2
Ag+ f 2

x + f 2
y +

√(
f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

)
τxkzσz(iσy ) Au sin kzx̂

τyσz(iσy ) Au

√
f 2
x + f 2

y√(
f 2
Ag+ f 2

x + f 2
y

) x̂

τ0kzσx (iσy ) B2u sin kz

⎛
⎝ fy√

f 2
x + f 2

y
ẑ + f 2

Ag fx

√
f 2
x + f 2

y

(
f 2
Ag+ f 2

x + f 2
y +

√(
f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

) ŷ

⎞
⎠

τ0kxσz(iσy ) B2u sin kx
fAg√

f 2
Ag+ f 2

x + f 2
y

x̂

τxkzσx (iσy ) B2u sin kz

(
fx√

f 2
x + f 2

y
ŷ + fAg fy√

f 2
x + f 2

y

(√
f 2
Ag+ f 2

x + f 2
y +

√
f 2
x + f 2

y

) ẑ

)
+ sin kz

fAg fy

f 2
Ag+ f 2

x + f 2
y +

√(
f 2
x + f 2

y

)(
f 2
Ag+ f 2

x + f 2
y

)
τxkxσz(iσy ) B2u sin kxx̂
τyσx (iσy ) B2u

fx√(
f 2
Ag+ f 2

x + f 2
y

) x̂ ∼ sin kxx̂

We compare these to the field-fitness functions of the low-
field phase:

Fk (B ‖ x̂)d‖y ∝ f 2
Au f 2

Ag(
f 2
z + f 2

y + f 2
Au

)(
f 2
z + f 2

Ag + f 2
y

) (A6)

Fk (B ‖ ẑ)d‖y ∝ f 2
y f 2

Ag(
f 2
z + f 2

y + f 2
Au

)(
f 2
z + f 2

Ag + f 2
Au

) . (A7)

The kinetic energy scale is taken to be larger than the spin-
orbit coupling energy scale: f 2

z , f 2
Ag > f 2

y , f 2
x , f 2

Au. Since the x
direction is the shortest bond, we expect that fx > fAu. This
leads to Fk (B ‖ x)d‖z > Fk (B ‖ x)d‖y.

Additionally, Fk (B ‖ z)d‖z > Fk (B ‖ z)d‖y for a similar rea-
son. In summary, we argue here that the low-field Bu phase
is less suppressed by fields in the x̂ and ẑ directions than the
high-field Au phase; this agrees with experimental results and
the claims in Sec. IV, and it provides some intuition for the
terms responsible for pairing suppression.

4. Gap functions in the band basis

In the band basis, the basis functions may be pro-
jected onto a single band. The momentum dependence of
the gap in the band basis determines the nodal struc-
ture. Since basis functions of a given symmetry are
able to mix, we identify nodes of a given symmetry as
those which survive under arbitrary mixing of the basis
functions.

Tables III and IV list the momentum dependence of each
basis function in Table I found using simplified Hamilto-
nian at kz = 0. From the momentum dependence of the basis
functions in each irreducible representation, we find that ar-
bitrary mixtures of functions in the B1u classification have
point nodes where kx = 0,±π and ky = 0,±π ; mixtures of
B2u have point nodes where kx = 0,±π and kz = 0,±π ;
and mixtures of B3u have point nodes where ky = 0,±π and
kz = 0,±π . Mixtures of the Au basis functions have no nodes
generically.
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