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The competition between antiferromagnetism and superconductivity is one of the central questions in research
involving strongly correlated systems. In this paper, we utilize a double-layer model containing Hubbard
interaction and interlayer Heisenberg interaction to reveal their competition. This model is free of the sign
problem under certain conditions, and we perform projector quantum Monte Carlo simulations to extract the
ground-state correlations of magnetism and superconductivity. Our results show that the superconductivity
emerges when the antiferromagnetism is suppressed by tuning the filling or the anisotropy of the interlayer
Heisenberg interaction. This model can be seen as an analog of unconventional superconductors and may help
us to understand the transition from an antiferromagnetic insulator to a superconductor.
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I. INTRODUCTION

It is widely known that unconventional superconduc-
tors may have magnetic parents [1]. Since the discovery
of superconductivity in doped cuprates [2], a large number
of experiments have been conducted to explore its mech-
anism and complex phase diagram [3–5], especially the
transition from an antiferromagnetic (AFM) insulator to a
superconductor, which is a critical part of the study of uncon-
ventional superconductivity. Constructing a theoretical model
that can describe these phenomena, especially the competi-
tion between antiferromagnetism and superconductivity, is an
important problem for condensed matter physicists. Hubbard-
like models have proven to be good candidates to describe
AFM insulators [6–8] and superconductors [3,9–11]. How-
ever, because of the exponential growth of Hilbert space,
the introduction of strong electronic interaction brings new
challenges to solving this model.

Many numerical methods have been developed to solve
the Hubbard model and its extensions, for example, the den-
sity matrix renormalization group method [12], the quantum
Monte Carlo method [13], dynamic mean field theory [14],
and so on. Among them, the quantum Monte Carlo method
is a great method owing to its advantage of accuracy and
the convenience of use in some sense, and it has been used
to extract ground-state or finite-temperature properties of
strongly correlated systems. In past decades, quantum Monte
Carlo simulations of Hubbard-like models have achieved
fruitful results, including pairing symmetries [15–18], a
charge density wave state [19], localization of electronic
states [20–22], unconventional superconductivity in twisted
bilayer graphene [23–26], and stripe order in two-dimensional
electronic correlated systems [27,28].
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As an analog to the cuprate superconductors, we are partic-
ularly interested in the doping case where superconductivity
emerges. However, quantum Monte Carlo algorithms are lim-
ited by the sign problem, especially when we want to use
them to investigate the transition from an AFM insulator to
a superconductor. At finite doping where superconductivity
emerges, the sign problem is severe in the original Hubbard
model and undermines the accuracy of simulations. There are
some works that attempt to eliminate or alleviate the sign
problem, for example, by expressing spinless fermions in
a Majorana representation, which can make the simulations
avoid the sign problem [29], by adiabatically switching on
the electronic interaction [30], or by constraining the phase
space [31]. There are also some works that attempt to utilize
the sign problem to analyze quantum critical points [32].
In addition, the sign problem can be eliminated by some
special symmetries. For example, a bipartite lattice such as
a square or honeycomb lattice can avoid the sign problem
at half filling because of the particle-hole symmetry. An-
other example is the attractive Hubbard model; it can avoid
the sign problem at arbitrary filling, because after Hubbard-
Stratonovich (HS) transformation in the charge channel, spin
up is identical to spin down, and so its determinant is positive
definite.

Recently, a sign-free extended bilayer Hubbard-like
model—a generalized Scalapino-Zhang-Hanke model—has
been utilized to investigate the transition from the AFM in-
sulating state to the superconducting (SC) state [33], which
provides an excellent platform to study unconventional super-
conductivity. Through time-reversal symmetry, this effective
model is free of the sign problem at arbitrary filling. It was
shown that a quantum phase transition occurs from an Ising
anisotropic AFM insulating phase or an SU(2) invariant Mott
insulating phase without the AFM ordering to a rung-singlet
SC phase with an extended s-wave symmetry driven by dop-
ing. This is an attractive feature to conduct quantum Monte
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Carlo simulations at finite doping. However, in that work, the
parameters were confined to a relatively small region at some
fixed terms, to establish AFM long-range order at half filling.

The interlayer or interorbital interactions may play an im-
portant role in some certain materials, such as monolayer
FeSe [34]. These kinds of interactions can be implemented in
ultracold-atom experiments [35]. So, in this paper we conduct
a more comprehensive investigation of this extended bilayer
Hubbard model and its interlayer interactions by using the
projector quantum Monte Carlo (PQMC) algorithm to extract
the ground-state properties of this system. We have tuned the
strength and the anisotropy of the interlayer Heisenberg inter-
action, and we find some interesting behaviors which were not
revealed in the previous work. By calculating the correlation
lengths and using the finite-size scaling technique, we care-
fully investigate the magnetism and superconductivity in this
model. We find that the system is sensitive to both the doping
and the anisotropy of interlayer interaction. The antiferro-
magnetism will fade away when hole doping is introduced,
and then superconductivity appears. At the same doping, the
anisotropy of interlayer interaction also affects the supercon-
ductivity and magnetism, where the J⊥ part of the Heisenberg
interaction may be a critical component when SC pairs are
taking shape. In some sense, this interlayer Heisenberg inter-
action is similar to the t-J model, which can be considered as
a good starting point to study cuprate superconductors [36].
The t-J model contains Heisenberg interactions at the nearest
neighbor. This is different from our model, which possesses
only interlayer interactions, and then we have different pairing
symmetries. However, the mechanics behind them may be
the same. Our results reveal the competition between anti-
ferromagnetism and superconductivity in a numerically exact
manner, which is important for us to understand the transition
from an AFM insulator to a superconductor.

II. MODEL AND METHOD

The effective model we construct is on a two-layer
square lattice, including a Hubbard interaction term and an
anisotropic Heisenberg interaction term [37,38]. The Hamil-
tonian can be written as follows:

H = −t
∑

〈i,j〉,lσ
c†

ilσ cjlσ

+
∑

i

[g1(c†
i1↑ci1↑ − c†

i1↓c1↓ − c†
i2↑ci2↑ + c†

i2↓ci2↓)2

+ g2(c†
i1↑ci1↓ + c†

i1↓ci1↑ − c†
i2↑ci2↓ − c†

i2↓ci2↑)2

+ g2(−ic†
i1↑ci1↓ + ic†

i1↓ci1↑ + ic†
i2↑ci2↓ − ic†

i2↓ci2↑)2]

= −t
∑

〈i,j〉,lσ
c†

ilσ cjlσ +
∑

i

[
JzS

z
i1Sz

i2+
1

2
J⊥

(
S+

i1S−
i2 + S−

i1S+
i2

)]

+
∑

i

U (ni1↑ni1↓ + ni2↑ni2↓) − U

2
N, (1)

where we define U = −2g1 − 4g2, Jz = −8g1, and J⊥ =
−8g2 for notational convenience. In this equation, cilσ (c†

ilσ )
means annihilating (creating) an electron at site i, layer l =
1, 2, spin σ = ↑,↓, and 〈i, j〉 indicates the nearest neighbor. In

addition, Sz
il = 1

2 nil↑ − 1
2 nil↓, S+/−

il = c†
il↑/↓cil↓/↑, and nilσ =

c†
ilσ cilσ . We set t = 1 as a unit of energy in this paper.

The main idea of the PQMC algorithm is to apply a projec-
tor to a trial wave function |�T 〉, and the observables can be
computed as

〈Ô〉 = lim
β→∞

〈�T |e−βĤ/2Ôe−βĤ/2|�T 〉
〈�T |e−βĤ |�T 〉 . (2)

The discrete HS transformation is performed; we
use the four-component HS transformation, namely,
e�τλA2 ≈ 1

4

∑
l=±1,±2 γ (l )e

√
�τλη(l )A, where A is an

operator and γ (±1) = 1 + √
6/3, γ (±2) = 1 − √

6/3 and

η(±1) = ±
√

2(3 − √
6), η(±2) = ±

√
2(3 + √

6).

〈�T |e−βĤ/2Ôe−βĤ/2|�T 〉
〈�T |e−βĤ |�T 〉 ≈

∑
s

Ps〈Ô〉s, (3)

where 〈Ô〉s = 〈�T |e−βĤs/2Ôe−βĤs/2|�T 〉
〈�T |e−βĤs |�T 〉 is the expectation at a cer-

tain auxiliary field s; here, Hs is the decomposed Hamiltonian,
namely, e−βHs = ∏

τ e−�τH0
∏

i γ (sτ,i)e
√−�τgητ,iHI,i (H0 is the

free part of the original Hamiltonian, and HI,i is the interaction

operator at site i). Ps = det(P†e−βĤs P)∑
s det(P†e−βĤs P)

(P is the matrix form

of |�T 〉) can be seen as the weight of Monte Carlo sampling.
In general, Ps is not positive definite; then the sign problem
occurs.

In this paper, we resort to time-reversal symmetry to avoid
the sign problem, which restricts the form of interaction. If
the action after HS transformation possesses time-reversal
symmetry [37], its eigenvalues are always complex-conjugate
pairs; this ensures the positive definiteness of its determinant.
As for Eq. (1), if g1 and g2 are both negative, the matrix after
HS transformation Ĥs has time-reversal symmetry, and this
can ensure the positive definiteness of Ps. For more details,
see Refs. [37,38]. Our QMC simulations employ the projector
scheme working at zero temperature with the projection time
β = 4L and the discrete imaginary time slice �τ = 0.1. We
use a noninteracting ground-state wave function as the trial
wave function, and random chemical potentials are added
on every site; otherwise the degeneracy would break the
wave function’s symmetries and lead to the sign problem.
The random potentials added can be written down as Hr p =
−∑

i di(ni1↑ + ni1↓ + ni2↑ + ni2↓), where di is a uniform ran-
dom number in [0, 0.01) generated at site i.

Next, we define antiferromagnetic and superconducting
orders and their correlations,

S(k) = 1

L2

∑
i,j

e−ik·(Ri−Rj ) · 〈(
Sz

i1 − Sz
i2

)(
Sz

j1 − Sz
j2

)〉
, (4)

where L is lattice size, and we denote SAFM = S(π, π ). The
SC correlation is defined as

P(k) = 1

L2

∑
i,j

e−ik·(Ri−Rj ) · 〈�†
i �j〉, (5)

where �i = ci1↑ci2↓ − ci1↓ci2↑ + ci2↑ci1↓ − ci2↓ci1↑, and we
denote PSC = P(0, 0).

One of the major challenges is the great computational
cost, and most of our results are confined to system size L = 8.
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FIG. 1. An illustration of phase at L = 8 and U = 1.25. The
size of the symbols indicates the value of the correlation lengths
among SC and AFM states. The color of the symbols indicates the
difference between them. The larger the AFM (SC) correlation length
is, the more red (blue) the symbol is. The dotted line indicates the
approximate boundary between them. The x axis is the value of
J⊥/Jz, and the y axis is the doping.

To characterize the competition quantitatively at a fixed sys-
tem size, we resort to the correlation length, defined as [39,40]

ξ (L)2 = 1

4 sin (π/L)2

(
Ck

Ck+δk
− 1

)
, (6)

where δk is the minimum momentum of size L and Ck can
be one of PSC or SAFM. The correlation length may not reflect
the long-range order accurately since our simulations are con-
fined to a small lattice size, but it can reveal the competition
between observables directly.

III. RESULTS AND DISCUSSION

To illustrate the competition between antiferromagnetism
and superconductivity, we compare the correlation lengths of
SC and AFM states at different hole dopings and J⊥/Jz. J⊥/Jz

reflects the anisotropy of interlayer interaction, and J⊥ = Jz

represents that there is an isotropic Heisenberg interaction
between two layers. We start by investigating the correlation
lengths at different J⊥ and Jz while fixing the value of U =
− Jz

4 − J⊥
2 , and the results are shown in Fig. 1.

Figure 1 directly reveals the competition between antifer-
romagnetism and superconductivity. The advantage of this
model is that one can enhance AFM or SC order by tuning
the parameters in Hamiltonian equation (1). The system favors
SC order when J⊥ is larger and favors AFM order when Jz is
larger. A more evident display of this phenomenon is shown
in Fig. 2, where we can see that increasing the value of J⊥/Jz

may inhibit the AFM order and enhance the SC order.
Then, we increase Jz and J⊥ simultaneously, while keeping

J⊥/Jz = 1, for which the correlation length is shown in Fig. 3.
We can see that the AFM correlation length does not in-
crease monotonically as U increases. It starts to decline when
U ≈ 1.25, accompanied by the decreasing of SC correlation
lengths. At half filling, although the magnetic order has been
suppressed by changing J⊥/Jz, superconductivity is always

1 1

FIG. 2. Correlation lengths at L = 8 and U = 1.25 at (a) half fill-
ing and (b) x = 1

8 doping with different Jz and J⊥. As J⊥/Jz increases,
the SC correlation length increases and the AFM correlation length
decreases; the AFM state is more sensitive to J⊥/Jz than the SC state
is.

absent. This might imply that there is another order we have
not discussed and the relationship between SC and AFM is
more complex at larger U values.

The disappearance of AFM can also be confirmed by finite-
size scaling. Based on the scaling hypothesis SAFM(L)/L2 =
a + b/L + cξ 2/L2, we extrapolate SAFM(L)/L2 to the thermo-
dynamic limit [41]. Besides, the b term can be ignored in the
AFM extrapolation since it comes from gapless excitations.
These results are shown in Fig. 4, where long-range AFM
order develops at small U and starts to be inhibited as U gets
larger.

The disappearance of AFM has not been observed in
a single-layer Hubbard model. Recall the definition of U ,
Jz, and J⊥: U = −2g1 − 4g2, Jz = −8g1, and J⊥ = −8g2.
The interlayer Heisenberg interaction is proportional to the
Hubbard interaction: 4U = Jz + 2J⊥. When the interlayer in-
teraction become stronger, the intralayer AFM order becomes
more and more negligible. As shown in Fig. 5, antiparallel

FIG. 3. Correlation lengths at L = 8 and Jz = J⊥. (a) At half
filling, the AFM strength increases at first and then decreases quickly,
and the peak is around U = 1.25. The SC strength also drops around
U = 1.0. (b) At x = 1

8 for doping, the AFM strength decreases
monotonically, and the SC strength increases monotonically.
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FIG. 4. Finite-size scaling of SAFM at half filling for Jz = J⊥. One
can see that the residual at the thermodynamic limit at U = 2.00 is
much smaller than that at U = 1.25. This is consistent with correla-
tion lengths shown in Fig. 2.

spins allow a virtual hopping process, and this process will
cause the energy of the system to become higher, since the in-
terlayer interaction will no longer contribute a negative value
of energy if the electron is hopping to another site. In contrast,
parallel spins forbid this virtual hopping process and may have
lower energy.

In Fig. 3, we can also see that correlations of SC and
AFM are changed by the doping. At 1

8 doping, shown in
Fig. 3(b), the SC correlation length increases monotonically
as U increases, while AFM correlation length decreases. This
indicates that the increasing interaction strength always sup-
presses AFM order and favors SC order at finite doping. Next,
we show the doping dependence of AFM and SC orders. From
Fig. 6, one can see that the SC order prefers finite doping,
and the optimal doping is dependent on J⊥/Jz. At Jz = J⊥, the
optimal doping is around 1

10 . It gets larger as Jz increases, and
at J⊥/Jz = 1

8 it is around 1
6 .

Because the maximum of SC correlation lengths is smaller
than that of AFM correlation lengths, we extrapolate the SC
structure factor to the thermodynamic limit in Fig. 7 to con-
firm the long-range properties of SC. At L = 10 and L = 6, 1

8
doping corresponds to hole numbers of 25 and 9, respectively;
these are not closed-shell fillings, and we average the SC
correlations of the nearest closed-shell fillings around them.

FIG. 5. A sketch of spin configuration shows that the interlayer
interaction affects the intralayer order.

FIG. 6. AFM and SC correlation length at different electron
numbers and with U fixed at 1.25. (a) AFM orders prefer large Jz

and half filling, while (b) SC orders prefer large J⊥ and finite doping.

From the finite-size scaling results, one can see that SC long-
range order would be established with the proper choice of
parameters. These results indicate that larger U and J⊥ favor
SC order at finite doping.

Finally, we check the effects of system size. Most of our
results are simulated on a lattice with L = 8, and in that
case there are 2 × 82 sites in total, which is fairly large. We
choose this relatively large lattice size because of the special
form of interaction in Hamiltonian equation (1). In our PQMC
simulations, the computational cost is nearly the same as that
for simulations on 4 × 82 sites of an ordinary Hubbard model.
In Fig. 8, we show the SC and AFM correlation lengths at
different lattice sizes. One can see that, in some sense, L = 8
is not large enough; when finite-size scaling results assert
that there is AFM or SC long-range order, the corresponding
ξ/L is still increasing. So we cannot use ξ at L = 8 to assert
whether there is a long-range order or not. Fortunately, the
results at different L are qualitatively consistent with each
other, and so the correlation lengths ξ can be used to compare
the strengths of SC and AFM. For analysis of long-range
order, we still resort to finite-size scaling.

FIG. 7. Extrapolations of SC correlations at L = 8 and x = 1
8 .

The SC strength becomes larger when either U increases or J⊥
increases. This is consistent with correlation lengths we computed
before.
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FIG. 8. Correlation lengths at different lattice sizes: (a) AFM
and (b) SC. In this figure, dotted lines are at half filling, and solid
lines are at 1

8 doping; U = 1.25 is fixed. We can see that the results
at L = 8 can characterize the properties of the system qualitatively,
and so we may use those results to reveal the competition between
antiferromagnetism and superconductivity.

IV. SUMMARY

In this paper, we utilize a sign-problem-free model to in-
vestigate the competition between SC and AFM order. By
performing PQMC simulations, we compare the correlation
lengths at different parameter values and use the finite-size
scaling technique to study the long-range behaviors. Our re-
sults show that in the doping case, antiferromagnetism is
suppressed by J⊥ interaction, and the superconductivity is en-
hanced. At half filling, the superconductivity does not emerge
even if the antiferromagnetism is suppressed by increasing
the interaction strength. The antiferromagnetism does not in-
crease or decrease monotonically with interaction strength U ,
and it has a peak around U = 1.25. The optimal doping of SC
is dependent on J⊥/Jz and becomes slightly larger when Jz

dominates. The finite-size scaling results are qualitatively con-
sistent with the correlation lengths. Our results may contribute
some aspects to the understanding of superconductivity and
its parent materials and may also stimulate further cold-atom
experiments to realize such a model to tune the competition
between SC and AFM order in one system.
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FIG. 9. (a)–(d) Correlation lengths of extended s-wave (ES-
wave) and d-wave superconducting pairings at L = 8, U = 2.0, and
doping x = 1

6 . Here, Jz = J⊥ = J , and T is temperature.

APPENDIX

To demonstrate the impact of J on superconducting pair-
ing symmetries, here we show some results of different J at
U = 2.0. Since the relation 4U = Jz + 2J⊥ is broken, the sign
problem will be serious, so we resort to a finite-temperature
algorithm, the determinant quantum Monte Carlo (DQMC)
method [42]. For the single-layer Hubbard model, d-wave
pairing symmetry is the dominant pairing symmetry. Here we
investigate the d-wave pairing defined in the first layer, and
the order parameter can be written as

�d
i = ci1↑ci+x1↓ − ci1↓ci+x1↑ − ci1↑ci+y1↓ + ci1↓ci+y1↑.

(A1)

Using Eqs. (5) and (6), we can get the correlation length of
d-wave pairing. We also calculate the extended s-wave pairing
defined in the main text. The results are shown in Fig. 9.

One can see that in Fig. 9, the d-wave pairing is domi-
nant at small J , and the extended s-wave pairing is dominant
at large J . In addition, the extended s-wave pairing satu-
rates early compared with d-wave pairing; as one can see in
Fig. 9(b), the d-wave pairing exceeds extended s-wave pairing
at low temperature, and it grows faster than extended s-wave
pairing at small J . Even though the sign problem stops us
from performing simulations at lower temperature, a transi-
tion from d-wave pairing to extended s-wave pairing is also
revealed as J increases in our simulations.
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