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Flat-band superconductivity in a system with a tunable quantum metric: The stub lattice
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Over the past years, one witnesses a growing interest in flat band (FB) physics which has become a playground
for exotic phenomena. In this study, we address the FB superconductivity in one-dimensional stub chain. In
contrast to the sawtooth chain or the Creutz ladder, for a given strength of the attractive electron-electron
interaction, the stub chain allows the tuning of the real space spreading of the FB eigenstates (quantum metric or
QM). We study in detail the interplay between the interaction strength and the mean value of the QM 〈g〉 on the
pairings and on the superfluid weight Ds. Our calculations reveal several interesting and intriguing features. For
instance, in the weak coupling regime, Ds with respect to 〈g〉, exhibits two different types of behavior. Despite the
fact that the pairings differs drastically, Ds scales linearly with the QM only when its 〈g〉 is large enough (small
gap limit). On the other hand, when the QM is of small amplitude an unusual power law is found, more precisely
Ds ∝ 〈g〉ν , where ν → 2 in the limit of large single particle gap. In addition to the numerical calculations, we
have provided several analytical results which shed light on the physics in both the weak and strong coupling
regime. Finally, we have addressed the impact of the thermal fluctuations on the superfluid weight.
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I. INTRODUCTION

For the last two decades, the interest in flat bands (FB)
material has been growing a lot, placing this emerging family
of compounds at the heart of the physics of strongly correlated
systems [1–6]. Due to destructive quantum interference, the
eigenstates can be localized [7], leading to a constant energy
band over the whole Brillouin zone (BZ). The kinetic energy
being quenched, the interaction energy becomes the unique
relevant energy scale, and exotic phases of quantum matter
can emerge in such materials. On top of those quantum phases
stands the superconductivity which has been intensively stud-
ied lately. Experimentally, superconducting phases, which are
very likely of FB origin, have been reported in graphene based
material such as the twisted bilayer graphene (TBG) [8–10]
as well as in graphite [11,12], while theoretical studies have
covered a wide range of low dimensional systems. Despite
the Mermin-Wagner theorem [13,14], two-dimensional sys-
tems such as the TBG [15], the Lieb lattice [16,17], or the
dice lattice [18] are often considered as systems in which a
superconducting phase transition of topological nature can
occur without spontaneous continuous symmetry breaking.
It corresponds to the Berezinsky-Kosterlitz-Thouless (BKT)
transition [19–21]. More recently, one-dimensional systems
are getting under the spotlights [22–25]. Indeed, one and
quasione-dimensional systems are good candidates to facili-
tate the understanding of the underlying physics and may as
well be relevant for the superconductivity in anisotropic sys-
tems [26–28]. In FB superconductors, the superfluid weight
has two kind of contribution: a conventional intraband com-
ponent (vanishing in the strictly FB limit), and an interband
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term of geometric nature. In the weak coupling regime, the
geometric contribution varies linearly with the quantum met-
ric (QM) tensor as defined in Ref. [29] and with the interaction
strength [30].

The purpose of the present work is to consider a FB system
where the QM is tunable. The lattice chosen to pursue this
study is a bipartite chain with three atoms per unit cell, so-
called the stub lattice, as illustrated in Fig. 1(a). Unlike the
sawtooth chain or the Creutz ladder, the stub chain is bipartite
and hosts a FB for any value of the out-of-chain hopping, αt in
Fig. 1(a), which provides the freedom to tune the QM. Despite
its absence of natural realization, one should mention that the
artificial stub lattice can be experimentally engineered, for
instance, within the optical lattice framework [31], or even by
the realization of micropillar optical cavities [32].

II. MODEL AND METHODS

Electrons in the stub lattice, in the presence of attractive
electron-electron interaction, are described by the Hubbard
model,

Ĥ =
∑

〈iλ, jη〉,σ
tλη
i j ĉ†

iλ,σ ĉ jη,σ − μN̂ − |U |
∑

iλ

n̂iλ↑n̂iλ↓, (1)

where the operator ĉ†
iλσ creates an electron of spin σ at site

riλ, i being the cell index and λ = A, B, and C. The sums run
over the lattice, 〈iλ, jη〉 refers to nearest-neighbor pairs for
which the hopping integral tλη

i j is t for (AB) pairs and αt for

(AC) pairs. N̂ = ∑
iλ,σ n̂iλ,σ is the particle number operator,

μ is the chemical potential, and finally, |U | is the strength
of the on-site attractive electron-electron interaction. In what
follows, the lattice spacing a will be set to one.

To address the FB superconductivity in the stub chain,
we propose to handle the electron-electron interaction term
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(a)

(c)(b)

FIG. 1. (a) Schematic representation of the attractive Hubbard
Hamiltonian (Eq. (1) in the main text) for electrons in the stub lattice.
Quasi-particle dispersions for |U |/t = 0 (dashed lines) and |U |/t =
1 (continuous lines) with respectively α = 0.1 (b) and α = 1 (c). The
symbol ‘×2’ means that the eigenvalues are twofold degenerate.

within the mean-field Bogoliubov-De-Gennes (BdG) ap-
proach. Before we proceed, it is crucial to justify the relevance
and accuracy of BdG as compared to methods such as
exact diagonalization (ED), density matrix renormalisation
group (DMRG), Quantum-Monte-Carlo (QMC) and dynam-
ical mean field theory (DMFT). In the case of the Lieb lattice,
a good agreement was found between BdG and ED calcu-
lations of the superfluid weight Ds [16]. Similarly, in the
case of FB superconductivity in CuO2 layers, BdG has fairly
reproduced the pair structure factor as obtained in the QMC
simulations [17]. Moreover, in one-dimensional systems, such
as the sawtooth chain, the Creutz ladder and other quasi-
one dimensional FB systems, the calculation of Ds by BdG
and DMRG has revealed an impressive quantitative agree-
ment [23,24]. Furthermore, We should mention that the BCS
wavefunction is the exact ground-state for any bipartite lat-
tice hosting FB while the FB is gapped and |U | is smaller
than the gap [16,30]. In addition, we quote as well the fact
that the mean field unrestricted Hartree-Fock theory has been
shown to be very accurate to describe the magnetic phases
of strongly correlated electrons in two-dimensional decorated
lattices which exhibit quasi-FB in the vicinity of the Fermi
energy [33]. Thus, one can confidently and safely consider
that the BdG approach is a suitable and reliable tool to address
quantitatively the FB superconductivity in the stub lattice.

Before discussing our results, we recall briefly the
BdG theory. The U-term is decoupled as follows,
n̂iλ,↑n̂iλ,↓ −→ 〈n̂iλ,↓〉thn̂iλ,↑ + 〈n̂iλ,↑〉thn̂iλ,↓ − �iλ

|U | ĉ
†
iλ,↑ĉ†

iλ,↓ −
�∗

iλ
|U | ĉiλ,↓ĉiλ,↑ − Ciλ where �iλ = −|U |〈ĉiλ,↓ĉiλ,↑〉th are the
pairing order parameters, and Ciλ = 〈n̂iλ,↑〉th〈n̂iλ,↓〉th +
〈ĉiλ,↓ĉiλ,↑〉th〈ĉ†

λ,↑ĉ†
iλ,↓〉th. For a fixed temperature and a

given density of electrons, the pairings and the occupations
are calculated self-consistently. Notice that translation
invariance implies that the thermal average 〈. . .〉th of a
local operator is cell-independent. Thus, we drop the cell
index. We consider as well a paramagnetic ground-state,

〈n̂λ,↑〉th = 〈n̂λ,↓〉th = 〈n̂λ〉th/2. Eq. (1) becomes,

ĤBdG =
∑

k

[ĉ†
k↑ ĉ−k↓]

[
h↑(k) �̂

�̂† −h↓(−k)

][
ĉk↑

ĉ†
−k↓

]
, (2)

where ĉ†
kσ

= (ĉ†
kA,σ

, ĉ†
kB,σ

, ĉ†
kC,σ

), c†
kλ,σ

is the Fourier trans-

form (FT) of c†
iλ,σ . ĥσ (k) = ĥ0(k) − μ − V̂σ where ĥσ

0

is the FT of the tight-binding term in Eq. (1), V̂σ =
|U |
2 diag(〈n̂A〉th, 〈n̂B〉th, 〈n̂C〉th) and �̂ = diag(�A,�B,�C ).

III. RESULTS AND DISCUSSIONS

A. Quasi particles dispersions

In the present study we focus our attention on the half-filled
case for which μ = −|U |/2 and nλ = 1 as it is predicted by
the uniform density theorem in bipartite lattices [34]. Fig-
ures 1(b) and 1(c) plotted the quasiparticle (QP) dispersions
for |U |/t = 0 and |U |/t = 1, with α = 0.1 and α = 1, respec-
tively. First, for U = 0, a gap δ0 of amplitude |α|t opens up in
the one particle spectrum between the FB and the dispersive
bands at k = π (bands are degenerate). When U is switched
on, the degeneracy of each band is lifted. For small values of
α (α = 0.1), we observe pronounced differences between the
vicinity of k = 0 and k = π . The splitting of the high energy
bands is significant in vicinity of k = π , whilst in the rest of
the Brillouin zone (BZ) it is negligible. On the other hand, the
former FB remain flat except near the BZ boundary where it
behaves as a massive Dirac excitation, with a small QP gap
�QP of the order of 0.025 t (α = 0.1) for |U |/t = 1. Notice
that the splitting between the quasi-FBs is of the order of |U |
at the zone center. In contrast, for larger values of α, the high
energy bands splitting is almost k independent and the former
FBs are quasiflat in the whole BZ. Notice, that the splitting
of the quasi-FB at k = 0 is smaller than for α = 0.1, i.e.,
0.29 |U |.

B. Pairings and quasi particles gap

Figure 2(a) depicts the pairings and �QP as a function of
|U | for α = 1. Note that the pairings are taken real, since
they all have the same phase which can be removed by global
gauge transformation. For small |U |, both �B and �C scale
linearly with |U | and �A ∝ |U |2. Such a behavior is consistent
with what has been reported in recent studies [22,30], and
as it has been pointed out in former studies [35–37]. It will
be discussed in more details in what follows. This scaling
contrasts with the conventional BCS theory which predicts
�BCS ∝ t e−1/|U |ρ(EF ) for the half-filled one-dimensional chain
[38]. As anticipated, in the strong coupling regime (|U | 	 t),
the pairing increases linearly with |U |. In addition, �λ is
found orbitalindependent and �λ 
 |U |

2 , as expected for the
half-filled system when the charge density is uniform. In
Fig. 2(b) �λ/|U | is plotted as a function of α for |U | � t . The
numerical data are obtained for both |U | = 0.1 t and |U | = t .
For small values of α, we find �B ∝ |U |α and �C ≈ |U |

2
which can be understood by considering the expression of the
FB compact localized eigenstate (CLS) that reads |CLSi〉 =

1√
2+α2 (|Ci〉 + |Ci+1〉 − α |Bi〉). In this regime, the weight is

roughly constant on C sites and varies linearly with α on B
sites. Thus, as α increases, �C decays, and simultaneously,

214508-2



FLAT-BAND SUPERCONDUCTIVITY IN A SYSTEM WITH … PHYSICAL REVIEW B 107, 214508 (2023)

(a)

(b)

FIG. 2. (a) Pairings (λ = A, B,C) and quasiparticle gap (λ =
QP) as a function of |U | for α = 1. The weak interaction region is
magnified in the inset. (b) �λ

|U | as a function of α where the sym-
bols represent the numerical data. The filled (respectively, empty)
symbols correspond to |U | = 0.1 t (respectively, |U | = t) and the
continuous lines are the analytical calculations.

�B rises until they finally cross at αc ≈ 1.2 ± 0.1, where the
CLS weight is comparable on both B and C sites. In addi-
tion, Fig. 2(b) reveals two distinct regimes for the QP gap.
More specifically, for α � αc, the gap is located at k = π

and �QP = �B. On the other hand, for α � αc, it moves to
k = 0, it is weakly α dependent and lies between �B and �C .
Within a first order perturbation calculation with respect to
|U | (see Appendix A), one gets the following set of analytical
expressions:

�B = |U |α
2
√

4 + α2
, �C + �B = |U |

2
. (3)

Thus, the sum �C + �B is α independent. We find as well for
the QP gap,

�QP =
{

�B for α � αc

α2�B+4�C
α2+4 for α � αc,

(4)

where αc = 2√
3

= 1.155. As it can be seen, Fig. 2(b)
nicely illustrates the excellent (respectively, good) quantita-
tive agreement between the numerical calculations for |U | =
0.1 t (respectively, |U | = t) and the analytical calculations.

C. Superfluid weight and quantum metric

The SC phase is characterized by the superfluid weight
[39–41] defined as

Ds = 1

Nc

∂2�(q)

∂q2

∣∣∣
q=0

, (5)

(a)

(b)

FIG. 3. (a) Superfluid weight Ds at T = 0 as a function of |U |
for α = 0.1, 0.5, 1, and 2. The inset represents Ds for a large value
of α. The black dashed line is the analytical expression in the limit
|U | 	 t (see text). (b) ∂Ds

∂U |U=0 as a function of 〈g〉, the mean value
of the quantum metric (square symbols). The corresponding values
of α are depicted on the upper x axis. The dashed lines are data fits
discussed in the main text.

where Nc is the number of unit cells of the lattice, �(q) is
the grandpotential, and q mimics the effect of a vector po-
tential, introduced by a standard Peierls substitution tλη

i j −→
tλη
i j eiq(xiλ−x jη ).

Figure 3(a) depicts Ds as a function of |U | for different
values of α. We first consider the low U region where one
observes that Ds ∝ |U |, as it has been established for iso-
lated FB [30]. Starting from α = 1, and as we reduce it, the
slope increases very rapidly. We find ∂Ds

∂|U | = 0.23, 0.61, and
3.4 for α = 1, 0.5 and 0.1, respectively. Simultaneously, the
region where Ds ∝ |U | shrinks significantly as α decreases.
Additionally, as α increases beyond α = 1, the slope is now
drastically suppressed, e.g., for α = 2 it drops to 0.06. Fig-
ure 3(b) illustrates the connection between Ds and the mean
value of the quantum metric (QM) of the FB eigenstates
defined as 〈g〉 = 1

2π

∫ π

−π
dkg(k), where we recall the definition

of the QM [29],

g(k) = 〈
∂kψ

FB
k

∣∣∂kψ
FB
k

〉 − ∣∣〈ψFB
k

∣∣∂kψ
FB
k

〉∣∣2
, (6)
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where |ψFB
k 〉 is the FB eigenstate of the noninteracting Hamil-

tonian. For the stub lattice, one finds g(k) = sin ( k
2 )

α2+4 cos2( k
2 )

which

leads to 〈g〉 = 1
2|α|√2+α2 .

For isolated half-filled FBs, within the BdG approach, it
has been shown analytically that Ds = 2|U |nφ〈g〉, n−1

φ being
the number of orbitals on which the FB wave function is
finite [25]. The validity and accuracy of this result has been,
for instance, confirmed numerically by DMRG for the Creutz
ladder [22,42].

In the limit of vanishing U, we find two distinct types of
behavior. For α � αc, the SF weight scales linearly with the
QM and a fit of the plotted data gives a ratio R = Ds

〈g〉 ≈ 1.38.

Notice that according to Ref. [30] and with n−1
φ = 2, one

would find R = 1. From our analytical calculations, available
in Appendix C, in the regime α  αc, a ratio R = 3/2 has
been found. On closer inspection, this is intriguing. Recall that
to obtain Ds

U ∝ 〈g〉 it requires (i) a uniform pairing on the sites
where the CLS weight is finite and (ii) a large gap (δ0 	 |U |)
between the dispersive bands and the FB. While condition (ii)
is fulfilled, the first one is not. Indeed, in the limit α  1,
the ratio �B/�C is of the order of α [see Fig. 2(b)] which also
means that the pairing occurs essentially on C sites. Hence, for
a finite |U |, one would expect instead a vanishing superfluid
weight as α goes to zero.

It raises the crucial question of how to resolve these con-
tradictions. For this, notice that the square root of the mean
value of the QM provides a measure of the mean spread of
the FB eigenstates [43–45]. More precisely, the QM can be
reexpressed,

g(k) = 〈
ψFB

k

∣∣ (x̂2 − 〈x̂〉2
k

) ∣∣ψFB
k

〉
, (7)

where x̂ is the position operator and 〈x̂〉k = 〈ψFB
k | x̂ |ψFB

k 〉.
This leads, for α  1, to a mean spread of the FB eigenstates
L̄ = √〈g〉 = 1

2
√

α
. From a dimensional point of view, the SF

weight is the ratio of a typical energy scale δE of the quasi-FB
(QFB) divided by the the square of a typical momentum qtyp.
For small U, the bandwidth δW of the QFB is the relevant
energy scale. As shown in Appendix A, in the limit of vanish-
ing α, this bandwidth is α independent and δW = |U |

2 . On the
other hand, the natural choice for qtyp is 1

L̄ , since there is no
Fermi wave vector for flat bands. Thus, the SF weight should
scale as

Ds ∼ δW × L̄2, (8)

which can also be rewritten Ds ∼ |U |〈g〉.
On the other hand, for α � αc, the data show that Ds

|U | is
inconsistent with a linear dependence of the QM. A fit of the
numerical data suggest an unusual scaling, Ds = 3.1|U |〈g〉ν ,
where ν ≈ 1.7. However, it is found that the power law is
sensitive to the region chosen for the fit. Moreover, the conver-
gence becomes more difficult as α becomes too large. Based
on our numerical data, for α 	 1, ν seems to converge to two.
Using arguments similar to those discussed above, one can
also explain this change of behavior. For large α, the band-
width of the QFB is now α dependent and falls out rapidly
as α increases. More precisely, it is found that δW = 2|U |

α2

as shown in Appendix A, and from the QM expression one
has L̄2 = 1

2α2 , yielding Ds ∼ |U |
α4 ∝ |U |〈g〉2. This scaling is

0 0.05 0.1 0.15 0.2

kBT / t

0
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/
D

s(
0)

|U |/t=1 α
2

1

0.5

0.25

0.1

FIG. 4. Superfluid weight (rescaled by its value at T = 0) as
a function of temperature for |U |/t = 1 and α = 0.1, 0.25, 0.5, 1,
and 2.

confirmed by the detailed analytical calculations available in
Appendix C.

We now propose to discuss the intermediate and strong
coupling regime. For any α, the shape of Ds as a function
of |U | is similar, namely after a linear increase with re-
spect to |U |, the SF weight reaches a maximum Dmax

s and
then decays monotonously as |U | gets larger. The location
of the maximum Umax strongly depends on α and Dmax

s de-
creases monotonously with α. More precisely, it is found that
Dmax

s /t ≈ 0.21, 0.40, 0.52, and 0.63 for α = 2, 1, 0.5, and 0.1,
respectively, where Umax/t ≈ 5.5, 3.1, 2.2, and 1.4, respec-
tively. In the limit of large U , Ds is found to scale as 1/|U |.
This is expected since the physics is that of repulsive hardcore
bosons whose effective mass is proportional to |U | [46]. Here,
for |U | 	 t , it can be shown analytically that Ds = 2t2

|U | (see
Appendix B for the details), it corresponds to the dashed line
in Fig. 3(a). Let us finally discuss the specific case of large
values of α, e.g., α = 5 as plotted in the inset of Fig. 3(a).
The shape of Ds(U ) has notably changed with respect to the
cases discussed previously. The SF weight increases slowly as
|U | increases up to |U |/t ≈ 10 after which it now exhibits a
sudden jump before reaching its maximum at |U |/t 
 14, and
beyond |U |/t ≈ 25 it finally scales as Ds = 2t2/|U |.

D. Thermal fluctuation effects

In this section, the temperature is introduced. Our main
purpose is to understand how thermal fluctuations affects the
superfluid weight and by extension characterize the cross-over
temperature T ∗ between the metallic (or insulating) and super-
conducting phases.

In Fig. 4, Ds is shown (rescaled with respect to its value at
T = 0) as a function of T for |U |/t = 1 and different values
of α. Since Ds(0) has already been discussed in Fig. 3(a),
the discussion here focuses on the evolution of the shape
and concavity of Ds(T ). Two different regimes are observed.
First, for the largest values of α (α = 1, 2), Ds(T ) is concave
and similar to a conventional BCS curve. As α decreases,
an inflection point appears for α � 0.5, and Ds(T ) is now
convex at higher temperature. Furthermore, the region where
Ds(T ) ≈ Ds(0) is found to shrink drastically as α reduces.
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FIG. 5. Crossover temperature as a function of |U |/t for α =
0.1, 0.5, 1, and 2. The inset pictures the ratio r = T ∗/Ds(0) as a
function of |U |/t .

For instance, it decays by a factor six when α varies from
2 to 0.1. More importantly, after the inflection point, Ds(T )
exhibits a long tail before it finally vanishes. This means that
the characteristic temperature for estimating the magnitude
of thermal fluctuations is much lower than the BCS critical
temperature.

According to the Mermin-Wagner theorem, a continuous
symmetry cannot be spontaneously broken at finite tempera-
ture in both one and two-dimensional systems. However, in
2D systems, a transition of topological nature can occur at
finite temperature; it is known as the Berezinsky-Kosterlitz-
Thouless transition [19–21]. In this case, no continuous
symmetry is broken and a quasilong range order below TBKT

is established. Above TBKT the pair-pair correlation functions
decay exponentially, and below TBKT they exhibit a power law
decay where the exponent is T dependent. In two-dimensional
superconducting systems, TBKT is defined as follows [30,47]:

Ds(TBKT ) = 8

π
kBTBKT . (9)

In order to define for our one-dimensional chain, a charac-
teristic temperature T ∗ above which the SF weight strongly
reduces, we propose to use Eq. (9) as criterion. Instead, we
could have chosen a different criterion such as Ds(T ∗) =
0.3Ds(0) but that would only have minor effects on the fol-
lowing discussion.

In Fig. 5, T ∗ is depicted as a function of the interaction
strength for different values of α. First, at weak coupling,
T ∗ scales linearly with |U | [48–50] for any value of α.
However, as α increases, the slopes decrease drastically from
0.2 for α = 0.1 down to 0.02 for α = 2. In the mean time,
the region where T ∗ ∝ |U | has tripled between α = 0.1 and
α = 1 before it finally drops as α increases further. In the
intermediate regime, when α � 1, one observes an α inde-
pendent maximum for T ∗ located at |U |/t ≈ 3. On the other
hand, for α � 1, it varies strongly with α, e.g., for α = 2, the
maximum location is |U |/t ≈ 5.8. In contrast, Fig. 3(a) has
shown that the value of |U | for which Ds(0) is maximum
varies with α even when α � 1. Note that T ∗ reaches its
maximum after the linear region discussed above, except for
the peculiar case of α = 0.1 where a clear quasiplateau is
observed for |U |/t ∈ [0.2, 1]. After the plateau, T ∗ inflates
up to its maximum. Beyond the maximum, T ∗ decays and

converges toward an α-independent behavior. To find out how
T ∗ scales with the interaction strength, we have plotted in the
inset the ratio r = T ∗/Ds(0) as a function of |U |/t . We clearly
find a constant ratio r = r∞ = 0.39 independent of α when
|U |/t � 4. However, the more α increases the faster r = r∞.
Indeed, for α = 2, the limit is already reached for |U |/t = 1
while for α = 0.1, |U |/t must be larger than four. In addition,
the smaller α is, the stronger r depends on U before r = r∞.
From the asymptotic scaling Ds(0) = 2t2

|U | [Fig. 3(a)], in the

large |U | limit, one finds T ∗ = 0.39 Ds(0) 
 0.8t2/|U | which
corresponds, in Fig. 5, to the black dashed line.

IV. CONCLUSION

To conclude, we have addressed the FB superconductivity
in the one-dimensional stub chain which allows the indepen-
dent tuning of the QM and of the electron-electron interaction
strength |U |. For that purpose, within the Bogoliubov-de-
Gennes approach, we have studied in detail the competition
between |U | and the QM 〈g〉 on the pairings and on the
superfluid weight. In addition to the numerical calculations,
we have provided several analytical results in both the weak
and strong coupling regime. In the weak coupling regime, it
is shown that the SF weight Ds scales linearly with |U | and
exhibits two different types of behavior with respect to 〈g〉.
First, when δ0, the single particle gap, is smaller than the
in-chain hopping (t), then Ds ∝ 〈g〉. On the other hand, for
δ0 � t , it has been revealed that Ds ∝ 〈g〉η, where η → 2 in
the limit of large gap. We have also considered the thermal
fluctuations effects on Ds. In particular, it is found that the
shape of the SF weight depends strongly on the QM. Finally,
the crossover temperature T ∗ has been studied as a function
of the interaction strength and the out-of-chain coupling. It is
found that |U | dependence of T ∗ exhibits different behaviors
which strongly depend on the mean value of the QM. Al-
though our study focuses on the specific case of the 1D stub
lattice, our conclusions are general and should be valid for
a broad family of systems which includes bipartite systems
(BS) with a different number of orbitals on both sublattices.
BS offer the flexibility to maintain exact FBs and tune the
QM by modifying or including additional hoppings in the tight
binding part while the bipartite character is preserved.

APPENDIX A: PARINGS IN THE WEAK
COUPLING REGIME

Within a first order perturbation theory, the purpose of
this Appendix is to derive analytically the expression of the
pairings as a function of U and α for the half-filled stub chain.
For q = 0, the BdG Hamiltonian reads,

ĤBdG =
∑

k

[ĉ†
k↑ ĉ−k↓]

[
h0(k) �̂

�̂† −h0(−k)

][
ĉk↑

ĉ†
−k↓

]
, (A1)

where �̂ = diag(�A,�B,�C ) is the pertubation and ĥ0 is the
single particle Hamiltonian. At half-filling, we recall that μ =
−|U |/2 and nλ = 1 (uniform occupation of A, B, and C sites).

At U = 0, the eigenstates of ĤBdG are

∣∣� p
n

〉 =
[|φn〉

0

] ∣∣�h
n

〉 =
[

0
|φn〉

]
, (A2)
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where |φn〉 (n = 1, 2, and 3) are the eigenvectors of ĥ0(k),
with energy εn(k): ε1(k) = −ε3(k) = td (k) and ε2(k) = 0.
In addition, the corresponding eigenvectors are 〈φ1,3| =

1√
2
(±1,− fx/d,−α/d ) and 〈φ2| = (0, α/d,− fx/d ), where

fx = −2 cos(k/2) and d (k) = √
f 2
x + α2.

Thus, the respective eigenvalues of |� p
n 〉 and |�h

n 〉 are
E p

n = +εn(k) and Eh
n = −εn(k). The particle-hole symmetry

of ĥ0 implies that E p
n = Eh

4−n (n = 1, 2, and 3). For each pair
of degenerate eigenstates (|� p

n 〉 , |�h
4−n〉), one can perform a

first order perturbation calculation with respect to �̂. With the
definition δn = 〈�h

4−n| �̂ |� p
n 〉, one easily finds

δ1 = δ3 = 1

2d2

(
d2�A − f 2

x �B − α2�C
)
,

δ2 = − 1

d2

(
α2�B + f 2

x �C
)
. (A3)

At the lowest order in �λ, the eigenstates of ĤBdG are

|�±
n 〉 = 1√

2

( ± ∣∣� p
n

〉 + ∣∣�h
4−n

〉 )
, (A4)

with energy E±
n = εn(k) ± |δn| (n = 1, 2, and 3).

The quasiflat band eigenstates correspond to n = 2. At the
lowest order in �λ their dispersion is

E±
2 = ±

(
�B

α2

d2(k)
+ �C

f 2
x (k)

d2(k)

)
. (A5)

This allows the determination of the quasiparticle gap �QP.
Indeed, one immediately finds E±

2 (k = 0) = ± 1
4+α2 (α2�B +

4�C ) and E±
2 (k = π ) = ±�B. As a consequence, the quasi-

particle gap is located at k = π when �B � �C and

�QP = �B. (A6)

On the other hand, when �B � �C , the gap is located at k = 0
and

�QP = 1

4 + α2
(α2�B + 4�C ). (A7)

In order to derive the expression of the pairings one has to
recall their definition:

�λ = |U | 1

Nc

∑
k,n,s=±

〈
�s

n

∣∣ Ôλ

∣∣�s
n

〉
fFD

(
Es

n

)
, (A8)

with Ôλ = ĉkλ,↑ĉ−kλ,↓ (λ = A, B, and C) and fFD(E ) = (1 +
e−βE )−1 is the Fermi-Dirac function. Using the expressions of
|�±

n 〉 as given in Eq. (A4), one gets for the matrix elements
the following results: 〈�±

1 | ÔA |�±
1 〉 = 〈�±

3 | ÔA |�±
3 〉 = ± 1

4
and 〈�±

2 | ÔA |�±
2 〉 = 0 because of the vanishing weight on A

sites for the FB eigenstates. At T = 0, the only eigenstates
which contribute to �λ are |�±

3 〉 and |�−
2 〉. Hence, at the

lowest order in |U | one finds

�A = 0 + O(|U |2). (A9)

Similarly, one obtains 〈�±
1 | ÔB |�±

1 〉 = 〈�±
3 | ÔB |�±

3 〉 =
∓ 1

4
f 2
x

f 2
x +α2 and 〈�±

2 | ÔB |�±
2 〉 = ± 1

2
α2

f 2
x +α2 . The contribution

from |�+
3 〉 and |�−

3 〉 cancel out, and as expected the only

nonvanishing remaining contribution comes from the quasi-
FB eigenstate |�−

2 〉. From Eq. (A8) we end up with

�B = |U |
2

1

Nc

∑
k

α2

f 2
x + α2

. (A10)

Additionally, with the same arguments it follows

�C = |U |
2

1

Nc

∑
k

f 2
x

f 2
x + α2

. (A11)

For any value of α, it implies that

�B + �C = |U |
2

. (A12)

Finally, the sum in Eq. (A10) can be calculated analytically
leading to

�B = |U |
2

|α|√
α2 + 4

. (A13)

These expressions of �A and �B obtained in the limit of
vanishing |U | are plotted in Fig. 2(b).

APPENDIX B: SUPERFLUID WEIGHT IN THE STRONG
COUPLING REGIME.

In this Appendix, our goal is to calculate analytically the
expression of the superfluid weight Ds as a function of U in
the strong coupling regime. We recall that the SF weight is
defined as

Ds = 1

Nc

∂2�(q)

∂q2

∣∣∣
q=0

, (B1)

where at T = 0, the grand potential �(q) reads

�(q) =
∑
k,n

E−
n (k, q). (B2)

In Eq. (B2), E±
n (k, q) refers to the energies of the eigenstates

|�±
n 〉 of HBdG after the Peierls substitution. From this expres-

sion of �(q), following Refs. [18,30], one finds the following
exact expression for the SF weight:

Ds = 2

Nc

∑
k,mn

|〈�−
n | ∂ĤBdG

∂q |�+
m 〉|2

E−
n − E+

m

− |〈�−
n | ∂ĤBdG

∂k |�+
m 〉|2

E−
n − E+

m

∣∣∣
q=0

. (B3)

Let us now focus on the half-filled case. According to Lieb’s
theorem [34], the occupations are uniform nλ = 1 (λ = A, B,
and C), yielding ĥσ (k) = ĥ0(k). The only dependence on U
being in �λ, one can express Ds as a function of the one
particle velocity operator v̂0(k) = ∂ ĥ0(k)

∂k as follows:

Ds = 2

Nc

∑
k,mn

|〈�−
n |V̂ |�+

m 〉|2 − |〈�−
n |�̂V̂ |�+

m 〉|2
E−

n − E+
m

, (B4)

where the 6 × 6 matrices �̂ = diag(Î3×3,−Î3×3) and V̂ =
diag(v̂0, v̂0) are introduced.
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In the strong coupling regime, all pairings are uniform, i.e.,
�λ = � = |U |

2 , and the diagonalization of ĤBdG gives

E±
n = ±

√
ε2

n + |�|2,
|�+

n 〉 = un

∣∣� p
n

〉 + vn

∣∣�h
n

〉
,

|�−
n 〉 = −v∗

n

∣∣� p
n

〉 + u∗
n

∣∣�h
n

〉
, (B5)

with |un|2 = 1
2 (1 + εn

E+
n

) and |un|2 + |vn|2 = 1. |� p
n 〉 and |�h

n 〉
are defined in Eq. (A2). In the limit |U | 	 t one finds |un|2 =
|vn|2 = 1

2 and E±
n = ±|�|. From this, we can express the

matrix elements of Eq. (B4) in terms of the one-particle eigen-
states |φn〉,

〈�−
n | �̂V̂ |�+

m 〉 = − 〈φn| v̂0 |φm〉
〈�−

n | V̂ |�+
m 〉 = 0. (B6)

Thus, the SF weight becomes

Ds = 1

|U |Nc

∑
k,nm

|〈φn|v̂0|φm〉|2. (B7)

The sum coincides with Tr[v̂2
0] whose value is

1

Nc
Tr

[
v̂2

0

] = 2t2. (B8)

This finally leads to the analytical expression of the SF
weight:

Ds = 2t2

|U | . (B9)

This expression of Ds is plotted in Fig. 3(a).

APPENDIX C: SUPERFLUID WEIGHT IN THE WEAK
COUPLING REGIME

In this Appendix our purpose is to derive analytically the
expression of the superfluid weight Ds as a function of α in the
limit of small |U |. The calculations are done for the half-filled
stub lattice and at T = 0. Starting with the definition as given
in Eq. (B1) one can write

Ds = 1

Nc

∑
k,n

∂2E−
n (k, q)

∂q2

∣∣∣
q=0

, (C1)

where E−
n (k, q) (n = 1, 2, and 3) are the negative eigenvalues

of the filled QP. With the same notation as those used in
Appendix A, the eigenstates of ĤBdG for q �= 0 and U = 0
are ∣∣� p

n

〉 =
[∣∣φq

n
〉

0

] ∣∣�h
n

〉 =
[

0∣∣φ−q
n

〉], (C2)

with respective eigenvalues E p
n = εn(k + q) and Eh

n =
−εn(k − q), where |φ±q

n 〉 = |φn(k ± q)〉 (n = 1, 2, and 3). We
recall that |φn〉 is the eigenvector of ĥ0, with energy εn. For a
nonvanishing q, the dispersive bands (DB) are nondegener-
ate and E p

3 �= Eh
1 , whilst the FB energy is doubly degenerate

E p
2 = Eh

2 . When the perturbation �̂ is introduced, at first order

the DB energy remains unchanged and the degeneracy of the
FBs is lifted, leading to

|�±
2 〉 = 1√

2

[ ∣∣φq
n
〉

±∣∣φ−q
n

〉], (C3)

where the energy of these quasi-FB eigenstates is

E±
2 (k, q) = ± 1

dk+q.dk−q

(
α2�B + �C f k+q

x f k−q
x

)
, (C4)

with the notations of Appendix A, f k±q
x = −2 cos( 1

2 (k ± q))

and dk±q =
√

( f k±q
x )2 + α2.

Thus, the ground-state energy per unit cell is given by

EGS (q)/Nc = 1

Nc

∑
k

(
E p

3 + Eh
1 + E−

2

)
. (C5)

To get the expression of the SF weight, we now left with
the calculation of the second derivative of EGS with respect

to q. First, notice that it can be easily shown that
∑

k
∂2E p

3
∂q2 =∑

k
∂2Eh

1
∂q2 = 0. Thus, as expected for the half-filled chain, Ds

depends only on the second derivative of the energy of the
occupied quasi-FB. A direct double derivation with respect to
q of Eq. (C4) gives

∂2E−
2

∂q2

∣∣∣∣
q=0

= −2α2�B

(
ck

d4
k

+ 2
s2

k

d6
k

)

× 2�C

(
1

d2
k

− 2
ck (ck + 1)

d4
k

− 4
s2

k (ck + 1)

d6
k

)
,

(C6)

where ck = cos(k), sk = sin(k), and dk = d (k). To obtain the
final expression of the SF weight, one has to calculate several
integrals of the form

Cnm
p =

∫ +π

−π

cn
ksm

k

d p
k

dk

2π
. (C7)

The first term in Eq. (C6) depends on C10
4 and C02

6 , and the
second one on C00

2 , C10
4 , C20

4 , C12
6 , and C02

6 . To facilitate the
calculation of this set of integrals, it is convenient to define the
following function: F (u) = 1

2π

∫ +π

−π
dk

u+cos(k) . It can be shown

(standard residue calculation) that for u > 1, F (u) = 1√
u2−1

.
Using F and its derivative F’, and after some lengthy but
straightforward steps, one finds

C00
2 = 1

2 F (η), (C8)

C10
4 = 1

4 (F (η) + ηF ′(η)), (C9)

C20
4 = 1

4 (−ηF (η) − F ′(η) + 1), (C10)

C02
6 = − 1

16 (F (η) + ηF ′(η)), (C11)

C12
6 = 1

8

(
1
2 F ′(η) + ηF (η) − 1

)
, (C12)

where for practical reasons the variable η = 1 + α2

2 is intro-
duced.

After inserting in Eq. (C6) the Cnm
p ’s given above, we

finally end up with the analytical expression of the SF
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10−1

100

∂
D

s

∂
U
| U=

0

Analytical

Numerical

3 2 1.5 1 0.5 0.2 0.1

FIG. 6. ∂Ds
∂U |U=0 as a function of 〈g〉, the mean value of the quan-

tum metric (square symbols). The corresponding values of α are
depicted on the upper x axis. The symbols are the numerical data
and the continuous line is the analytical result as given in Eq. (C13).

weight:
Ds = − 1

4α2�B(F (η) + ηF ′(η))

+ 1
2�C (F (η) + F ′(η) − ηF ′(η)). (C13)

Using the expressions of �B and �C as given in Appendix A,
we have been able to compare this analytical expression of Ds

with the numerical data. The result depicted in Fig. 6 reveals
an excellent agreement between the numerical and analytical
data for the whole range of values of α.

From Eq. (C13) one can now extract the asymptotic be-
havior of the SF weight for both limits: (i) α  1 which
correspond to large values of the QM and small one-particle
gap and (ii) α 	 1 for which the QM is small and the gap is
large.

In the first case, one gets

Ds = 3

8α
|U | = 3

2
|U |〈g〉. (C14)

On the other hand, in the second one (α 	 1), one finds

Ds = 3

α4
|U | = 12|U |〈g〉2. (C15)

The SF weight scales linearly with 〈g〉 when α  1 and as
〈g〉2 when α 	 1.
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