
PHYSICAL REVIEW B 107, 214507 (2023)

Josephson dynamics at high transmissions: Perturbation theory
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We theoretically analyze Josephson dynamics of superconducting weak links with transmissions T not much
smaller than unity at subgap bias voltages V . Employing the effective action approach combined with the Keldysh
technique, we develop a regular perturbation theory in R = 1 − T and derive the first-order correction to the
current across the weak link, which consists of two different contributions. One of them is negative, effectively
corresponding to a decrease of the excess current at small V due to breaking of the multiple Andreev reflection
cycle by normal reflection for some subgap quasiparticles. These quasiparticles, in turn, generate the second
(Josephson-like) contribution to the current, which increases with decreasing V down to very small voltages,
where the perturbation theory in R ceases to be valid. Some of the above features are not reproduced within the
physical picture involving Landau-Zener tunneling between subgap Andreev states.
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I. INTRODUCTION

Josephson dynamics beyond the tunneling limit involves a
nontrivial interplay between superconductivity and nonequi-
librium effects which can, in general, be described only
with the aid of complicated many-body techniques possibly
combined with numerical methods. In some special cases
one can also proceed analytically. An example of such a
situation has to do with the ac Josephson effect in short bal-
listic superconductor–normal metal–superconductor (SNS)
junctions or superconducting quantum point contacts at full
transmissions [1,2]. In this case for bias voltages V well
below the superconducting gap of the electrodes, eV � �,
one recovers the following expressions for the time-dependent
current across the system:

I (t ) ≡ I0(t ) = Ic|sin eV t | sgn V, (1)

and for the I-V curve

I0 = 2Ic

π
sgn V, (2)

where

Ic = e� tanh

(
�

2T

)
(3)

is the dc Josephson critical current [3] of the structure at
temperature T . Note that for simplicity in Eqs. (1) and (2) we
neglect the term growing with V that is small in the parameter
eV/�. Equations (1)–(3) hold for a superconducting point
contact with a single transport channel at full transmission
T = 1 and are trivially generalized to the case of an arbitrary
number of channels. Note that here and below −e is the elec-
tron charge, and we set the Planck and Boltzmann constants
equal to unity (h̄ = kB = 1).

The charge transfer in such superconducting contacts is
essentially governed by the mechanism of multiple Andreev
reflection (MAR) [4], which yields, e.g., the large excess
current on the I-V curve (2) already at small voltages as
well as a nontrivial current-phase relation (1). Remarkably,
it was demonstrated [2,5] that the same results can also be
recovered without involving the physical picture of MAR
and operating only with occupation probabilities of subgap
Andreev bound states ±εA (see Fig. 1). The corresponding ki-
netic equation that controls the dynamics of these occupation
probabilities is supplemented with the boundary conditions
[2,5] for the superconducting phase difference χ across the
junction resulting from discrete Andreev levels merging with
the continuum at χ = 0,±2π, . . ..

The description of Josephson dynamics at subgap voltages
employing the effective basis of Andreev levels was also
extended [2,5] to the case of nonzero reflection coefficients
R ≡ 1 − T > 0, which otherwise was treated with the aid of
numerics [6,7]. For nonzero R a gap between two Andreev
levels develops (see Fig. 1), and Refs. [2,5] suggested includ-
ing the effect of Landau-Zener tunneling between these levels
with probability p = exp(−πR�/e|V |) as an extra bound-
ary condition at χ = π mod (2π ). Following this scenario,
one concludes that, since for e|V | � πR� the probability
of Landau-Zener tunneling is exponentially small, p � 1, the
system should remain in the lowest Andreev state, and hence,
the current I (t ) is essentially described by a time-dependent
version of the Kulik-Omelyanchuk current-phase relation [3].
On the other hand, in the opposite limit, e|V | � πR� (al-
though e|V | � 2�, also implying R � 1), the probability p
becomes close to unity, both Andreev levels get occupied, and
the current I (t ) can be evaluated perturbatively in 1 − p. In
this limit Eq. (11) of Ref. [2] yields

I (t ) = I0(t ) − δI (t ), δI (t ) = πδIF (eV t ), (4)
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FIG. 1. A pair of Andreev levels ±εA(χ ) in a superconducting
quantum point contact with T = 1, 0.97, and 0.9 shown, respec-
tively, by green, orange, and blue lines.

where

δI � 2R�

eV
Ic (5)

denotes the correction to the average current (i.e., I = I0 −
δI),

F (x) = FLZ(x) = �

(
x − π

2

)
sin x, 0 � x � π, (6)

is the π -periodic function that accounts for Landau-Zener tun-
neling, and �(x) is the Heaviside step function. Note that the
current correction δI (t ) defined in Eqs. (4) and (6) becomes
discontinuous at 2eV t = π mod (2π ).

The above reduced description of adiabatic Josephson dy-
namics operating only with subgap Andreev states was later
employed by many authors in different physical contexts (see,
e.g., Refs. [8–11], as well as many other publications). While
this description is quite simple and intuitively appealing, the
question remains whether it is fully equivalent to the standard
physical picture of the charge transfer in terms of MAR. This
question will be addressed in our present work.

Note that the applicability condition of the perturbation
theory in R � 1 can easily be reconstructed also within the
framework of the physical picture of MAR. Indeed, in order
for the current I (t ) to be only weakly disturbed compared to
I0(t ) (1) the total normal reflection probability Rn within the
full MAR cycle of n traverses across the weak link (see Fig. 2)
should remain much smaller than unity. Since n ∼ 2�/e|V |,
we immediately recover the condition e|V | � 2R�, which is
essentially equivalent to that derived within the Landau-Zener
tunneling scenario.

Under this condition below we will develop a regular per-
turbation theory in R and evaluate the first-order correction
to the current δI (t ) both analytically and numerically. We
demonstrate that the function δI (t ) is continuous at any t .
Expressing it in terms of the Fourier series, we have

δI (t ) = πδI
∞∑

l=−∞
Fle

−2ileV t , F−l = F ∗
l . (7)

FIG. 2. A typical MAR trajectory in a highly transparent super-
conducting weak link biased by a small constant voltage V � �/e.
A quasiparticle (hole) suffers successive Andreev reflections at both
NS interfaces (solid line) until it gets normally scattered at the point
marked by a star. After this scattering event the quasiparticle either
(a) passes the barrier with the probability T = 1 − R and completes
the MAR cycle (solid line) or (b) gets out of the MAR cycle with the
probability R and further propagates along the time-reversed trajec-
tory indicated by the dashed line. Since normal scattering occurs for
each of n traverses across the weak link, the total probability for the
quasiparticle to leave the full MAR cycle is 1 − T n, which equals
Rn as long as Rn � 1.

Within the framework of our analysis we arrive at the result
for an average current δI consistent with Eq. (5). At the same
time, all Fourier coefficients Fl with |l| > 1 exhibit qualita-
tively different behavior from that found for the analogous
Fourier coefficients of the function FLZ(x) (6).

Our paper is organized as follows. In Sec. II we develop
a regular perturbation theory that allows us to evaluate the
first order in R correction δI (t ) to the current flowing across
a superconducting weak link. Section III is devoted to the
calculation of δI (t ) in the limit of small constant voltage bias
|V | � 2�/e. The results are further discussed in Sec. IV.
Additional information employed in our numerical calculation
is presented in the Appendix.

II. PERTURBATION THEORY

In our subsequent analysis, we will closely follow the pro-
cedure outlined in detail in Ref. [12]; that is, we will employ
the combination of the Keldysh technique and the effective
action approach. In order to describe charge transfer across
our superconducting weak link with arbitrary distribution of
transmission probabilities Tk ≡ 1 − Rk over its conducting
channels k we routinely use the general expression for the
effective action [13,14], which can be written in the form

iSt [ϕ] = 1

2

∑
k

Tr ln

{
1 + Tk

4
[{Q̌L(ϕ), Q̌R} − 2]

}

= 1

2

∑
k

Tr ln

[
1 − Rk

4
(Q̌L + Q̌R)2 + Rk

]
. (8)

The summation over all conducting channels k is implied in
Eq. (8), and {· · · , · · · } stands for the anticommutator. The
product of (defined in Keldysh and Nambu spaces) 4 × 4
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matrices Q̌L and Q̌R, describing, respectively, the left and right
superconducting reservoirs, implies the time convolution:

(Q̌L ◦ Q̌R)(t ′, t ′′) =
∫ ∞

−∞
dtQ̌L(t ′, t )Q̌R(t, t ′′), (9)

and the matrices Q̌L,R obey the standard normalization con-
dition (Q̌L ◦ Q̌L )(t ′, t ′′) = δ(t ′ − t ′′), where δ(t ) is the Dirac
delta function. This normalization condition was directly em-
ployed in order to cast the action to the form presented in the
second line in Eq. (8), which serves as a convenient starting
point of our perturbation theory.

Assuming that all reflection coefficients Rk are much
smaller than unity, we may formally limit our analysis to the
first order in Rk and further rewrite Eq. (8) as

iSt [ϕ] = 1

2

∑
k

Tr ln

{
1

4

[(
1 − Rk

2

)
(Q̌L + Q̌R)

+ 2Rk
(
Q̌L + Q̌R )−1

]2
}

. (10)

Introducing the matrix

Q̌ = 1

2
Ǐ (Q̌L + Q̌R), Ǐ =

(
τ̂3 0
0 −τ̂3

)
, (11)

where τ̂3 stands for the Pauli matrix, we can convert the action
to the form

iSt [ϕ] =
∑

k

Tr ln

[(
1 − Rk

2

)
Q̌ + Rk

2
Ǐ Q̌−1 Ǐ

]
. (12)

It is straightforward to check that at t → t ′ one has Q̌(t, t ′) ≈
δ(t − t ′); that is, the expansion of the logarithm is properly
organized.

Following [12], let us decompose the matrix Q̌ as

Q̌ = Q̌0 + Q̌1. (13)

The matrix Q̌0 reads

Q̌0 =
(

âR âK

0 −âA

)
, (14)

where

âR,A,K(t, t ′) =

⎛
⎜⎝gR,A,K(t, t ′) cos

[
ϕ+(t )−ϕ+(t ′ )

2

]
f R,A,K(t, t ′) cos

[
ϕ+(t )+ϕ+(t ′ )

2

]
f R,A,K(t, t ′) cos

[
ϕ+(t )+ϕ+(t ′ )

2

]
gR,A,K(t, t ′) cos

[
ϕ+(t )−ϕ+(t ′ )

2

]
⎞
⎟⎠, (15)

gR,A,K and f R,A,K denote, respectively, normal and anomalous retarded (R), advanced (A), and Keldysh (K) quasiclassical
Green’s functions of a superconductor [15], and in the absence of electron-electron interactions ϕ+(t ) = ϕ0 + e

∫ t
0 V (t ′)dt ′ is

half of the time-dependent superconducting phase difference across our weak link.
The matrix Q̌1 has the form

Q̌1(t, t ′) = ϕ−(t )

4
B̌(t, t ′) +

(
0 τ̂3

τ̂3 0

)
B̌(t, t ′)

(
0 τ̂3

τ̂3 0

)
ϕ−(t ′)

4
, (16)

where

B̌(t, t ′) =
(

0 −b̂A(t, t ′)
b̂R(t, t ′) b̂K (t, t ′)

)
, (17)

ϕ− is the “quantum” part of the phase difference, and

b̂R,A,K(t, t ′) =

⎛
⎜⎝gR,A,K(t, t ′) sin

[
ϕ+(t )−ϕ+(t ′ )

2

]
f R,A,K(t, t ′) sin

[
ϕ+(t )+ϕ+(t ′ )

2

]
f R,A,K(t, t ′) sin

[
ϕ+(t )+ϕ+(t ′ )

2

]
gR,A,K(t, t ′) sin

[
ϕ+(t )−ϕ+(t ′ )

2

]
⎞
⎟⎠. (18)

Neglecting electron-electron interactions, we can define
the current across our weak link by means of the formula

I (t ) = −e
δSt

δϕ−(t )
|ϕ−(t )=0. (19)

Combining this formula with the above expressions for the
action St , in the first order in Rk we get

I (t ) = ie

4

∑
k

Tr
{
B̌Q̌−1

0

[
1 − Rk

(
Ǐ Q̌−1

0

)2]

+ [
1 − Rk

(
Q̌−1

0 Ǐ
)2]

Q̌−1
0 B̌′}(t, t ), (20)

where we also defined

B̌′(t, t ′) =
(

0 τ̂3

τ̂3 0

)
B̌(t, t ′)

(
0 τ̂3

τ̂3 0

)
. (21)

III. CONSTANT VOLTAGE LIMIT

While the above perturbative expression for the current
(20) generally holds for an arbitrary dependence of the applied
voltage V (t ) on time, below we will specifically restrict our
analysis to the time-independent voltage bias limit V (t ) ≡ V .
In this special case the solution for the inverse matrix Q̌−1

0 was
already constructed previously [12]. It is convenient to write
the components of this matrix using the following expansion
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in terms of the voltage harmonics:

x(t, t ′) =
∞∑

n=−∞

∫
dε

2π
x(ε, n)e−iε(t−t ′ )e−ineV (t+t ′ )/2. (22)

The retarded component of the inverse matrix Q̌−1
0 has been

demonstrated to acquire the structure [12](
ζ R(ε, 2n) ζ R(ε, 2n + 1)

ζ R(ε, 2n + 1) ζ R(ε, 2n)

)
, (23)

that is, the components with an even index are diagonal, and
those with an odd index are off diagonal. We also intro-
duce components with shifted energy arguments. Here and
below, for brevity, we denote these components by a tilde, i.e.,
ζ̃ R(ε, n) = ζ R(ε + (neV/2), n). We have

ζ̃ R

(
ε + eV

2
, l

)
=

⎧⎪⎨
⎪⎩

(−1)l
∏

1�k�l aR(ε + eV k), if l > 0,

1, if l = 0,

(−1)l
∏

l+1�k�0 aR(ε + eV k), if l < 0,

(24)
where

aR(ε) = f R(ε)

1 + gR(ε)
(25)

defines the Andreev reflection amplitude. This combination is
also involved in the standard Riccati parametrization for the
Green’s functions [15],

f R = 2aR

1 − (aR)2
, gR = 1 + (aR)2

1 − (aR)2
. (26)

Having in mind that

gR,A(ε) = ε ± iθ

ξR,A(ε)
, f R,A(ε) = �

ξR,A(ε)
, (27)

where ξR,A(ε) = ±
√

(ε ± iθ )2 − �2 and θ phenomenologi-
cally controls the strength of the inelastic relaxation, from
Eq. (25), in the limit θ → 0 we obtain

aR(ε) = ε

�
− i

√
�2 − ε2

�
= exp

(
−i arccos

ε

�

)
(28)

for |ε| < � and

aR(ε) = sgn ε

�
(|ε| −

√
ε2 − �2) (29)

for |ε| > �.
Note that the multiplicative structure (24) is associated

with the process of MAR. Formally, it results from the multi-
plicative structure of the inverse symmetric tridiagonal matrix,
as discussed in Ref. [16]. The advanced and Keldysh compo-
nents of the inverse matrix were also established and analyzed
in Ref. [12]. Here, however, it is sufficient for our purposes to
restrict our attention to the retarded matrix component.

Making use of Eq.(20), we obtain

δI (t ) = ie

2
R
(
bR

gY K
g + bR

f Y
K
f + bK

g Y A
g + bK

f Y A
f

+Y R
g bK

g − Y R
f bK

f − Y K
g bA

g + Y K
f bA

f

)
t,t

. (30)

Note that from here on, for simplicity we consider only the
case of a weak link with a single conducting channel charac-
terized by the reflection coefficient R � 1. Generalization to

an arbitrary number of channels simply amounts to substitut-
ing R → ∑

k Rk in any of our final results.
The symmetric 2 × 2 matrices in Eq. (18) can be expressed

in the form

b̂R = bR
g 1̂ + bR

f τ̂2, (31)

with

bR
g (t, t ′) = gR(t, t ′) sin

[
ϕ+(t ) − ϕ+(t ′)

2

]
, (32)

bR
f = f R(t, t ′) sin

[
ϕ+(t ) + ϕ+(t ′)

2

]
,

while the matrix Y̌ involved in Eq. (30) is defined as

Y̌ = Q̌−1
0 Ǐ Q̌−1

0 Ǐ Q̌−1
0 . (33)

Let us introduce the notations

Q̌−1
0 =

(
X̂ R X̂ K

0 X̂ A

)
, X̂ R = (âR)−1,

X̂ A = −(âA)−1, X̂ K = −X̂ R ◦ âK ◦ X̂ A. (34)

The components of the matrix X R are already specified in
Eqs. (23) and (24), whereas for the components of the matrix
Y̌ we have

Y R
g = X R

g X R
g X R

g + X R
f X R

g X R
f − X R

f X R
f X R

g − X R
g X R

f X R
f , (35)

Y R
f = X R

g X R
g X R

f + X R
f X R

g X R
g − X R

f X R
f X R

f − X R
g X R

f X R
g , (36)

Y A
g = X A

g X A
g X A

g + X A
f X A

g X A
f − X A

f X A
f X A

g − X A
g X A

f X A
f , (37)

Y A
f = X A

g X A
g X A

f + X A
f X A

g X A
g − X A

f X A
f X A

f − X A
g X A

f X A
g . (38)

The expressions for Y K components turn out to be somewhat
lengthier. They are

Y K
g = X R

g X R
g X K

g + X R
f X R

g X K
f − X R

f X R
f X K

g

− X R
g X R

f X K
f + X K

g X A
g X A

g + X K
f X A

g X A
f

− X K
f X A

f X A
g − X K

g X A
f X A

f + X R
g X K

f X A
f

+ X R
f X K

f X A
g − X R

g X K
g X A

g − X R
f X K

g X A
f (39)

and

Y K
f = X R

g X R
g X K

f + X R
f X R

g X K
g − X R

f X R
f X K

f

− X R
g X R

f X K
g + X K

g X A
g X A

f + X K
f X A

g X A
g

− X K
f X A

f X A
f − X K

g X A
f X A

g + X R
g X K

f X A
g

+ X R
f X K

f X A
f − X R

g X K
g X A

f − X R
f X K

g X A
g . (40)

Consider the energies −� − eV/2 < ε < −� + eV/2,
which merely contribute to the current harmonics. One can
use the following property of the convolution z = f g with
energy-shifted components:

z̃(ε, n) =
∑

k+l=n

f̃ (ε + leV, k)g̃(ε, l ). (41)

Introducing the combinations T R
1 = X R

g X R
g − X R

f X R
f and T R

2 =
X R

g X R
f − X R

f X R
g and limiting the summation in Eq. (41) to
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k � 0, l � 0, one can demonstrate that the following identi-
ties hold for n > 0:

T̃1(ε, n) = X̃ R
g (ε, n), T̃2(ε, n) = 0. (42)

While deriving Eq. (42), we chose to neglect Andreev reflec-
tion at overgap energies, which effectively amounts to setting
aR(ε) = 0 at |ε| > �. This approximation was used, e.g., in
Refs. [1,2] based on the fact that deep in the subgap voltage
regime that is interesting to us, eV � �, higher-order MAR
processes [and hence higher powers of aR(ε)] determine the
current across the contact. This approximation just simplifies
the calculation and, as will be demonstrated below, is by no
means crucial for our results and conclusions.

Employing the relations (42), we obtain

Ỹ R
g (ε, 2n) = (1 + |n|)ζ̃ R(ε, 2n) (43)

and

Ỹ R
f (ε, 2n + 1) = (1 + n)ζ̃ R(ε, 2n + 1),

Ỹ R
f (ε,−2n − 1) = (1 + n)ζ̃ R(ε,−2n − 1) (44)

for n � 0. Let us emphasize the presence of an additional
factor n in Eqs. (43) and (44), which becomes particularly
important in the limit of small voltages eV � �.

More generally, at sufficiently large n one may write
Ỹ R

g, f (ε, n) ≈ α(|n|/2)ζ̃ R(ε, n), where the dimensionless pref-
actor α can be determined explicitly only if one abandons the
approximation aR(ε) = 0 at |ε| > � employed above. We will
not proceed with this (much more complicated) analysis here
and simply determine the prefactor α numerically (see below).

The Keldysh component of the matrix Y̌ can be written as

Ŷ K = −X̂ Rτ̂3X̂ Rτ̂3X̂ RâK X̂ A

− X̂ RâK X̂ Aτ̂3X̂ Aτ̂3X̂ A + X̂ Rτ̂3X̂ RâK X̂ Aτ̂3X̂ A. (45)

The first two summands can be expressed in terms of Ŷ R

and Ŷ A, while the third summand can be neglected in the
low-voltage limit as it does not contain an additional n factor
corresponding to higher-order MAR processes.

Combining all the above expressions, after some algebra
we obtain the linear in R correction to the current in the form
of (7), where

δI = 2αR�2

πV
tanh

(
�

2T

)
(46)

and

Fl = 1

2π

∫ 1

−1
dx(1 − x) exp(2il arccos x). (47)

Equations (46) and (47) combined with Eq. (7) represent
the central result of our present work. They determine the
correction to the current I (t ) across weakly reflecting super-
conducting point contacts in the voltage range interesting to
us, R� � eV � 2�.

Evaluating the integral in Eq. (47), we obtain

Re Fl = 1

π (1 − 4l2)
, Im Fl =

{∓ 1
8 , if l = ±1,

0, if l �= ±1,
(48)

and recover the π -periodic function F (eV t ) in the form

F (x) = 1
2 | sin x| − 1

4 sin(2x), 0 � x � π. (49)

FIG. 3. The linear in R current correction δI (V ) = I0(V ) − I (V )
evaluated at T = 0.1�, θ = 0.01�, and different transmission val-
ues T = 0.97, 0.95, 0.93, and 0.9 (bottom to top).

In addition to the above analysis we also performed a
numerical calculation of δI (t ) employing the algorithm de-
scribed in the Appendix. Our numerics clearly supports the
above perturbative results and, furthermore, allows us to suf-
ficiently accurately determine the value of the prefactor α

in Eq. (46). We obtain α � 3, which is numerically close to
α = π . With this in mind, we may conclude that our result
for δI is consistent with Eq. (5), which follows from the
Landau-Zener-tunneling type of analysis [2].

Our numerical results for δI as a function of V are
displayed in Fig. 3 for several different values of R and
eV < 2�. We observe that in accordance with Eq. (46) the
current correction decays as δI ∝ 1/V roughly between eV ≈
0.2� and eV ∼ �. Also the subharmonic gap structure at
eV = 2�/k, with k = 2, 3, . . . , is clearly observed, in partic-
ular for curves corresponding to lower transmissions T . At
larger voltages eV � 2� (not shown in Fig. 3) the current
correction δI starts to grow with V and demonstrates the
expected behavior δI � e2RV/π at sufficiently large V .

The result of our numerical calculation for the function
F (x) is presented in Fig. 4 along with the analytic formula
(49) and the function FLZ(x) (6). For R � 1 the numerical
curve F (x) does not depend on R and essentially follows the
dependence (49). In fact, the blue curve is also described by
the function of the form of (49), provided one multiplies the
last term in Eq. (49) by an extra numerical factor � 1.19. Such
a minor difference between the two curves is, of course, of no
significance and could be attributed, e.g., to neglecting An-
dreev reflection at overgap energies while deriving Eq. (49).
On the other hand, both these curves differ substantially from
the result of the Landau-Zener-tunneling type of analysis (6).

IV. DISCUSSION

Combining our perturbative results with those of our nu-
merical calculation, we may conclude that the perturbation
theory in R developed here should work sufficiently well
at least up to values R � 0.1. This perturbation theory al-
lows us to microscopically derive the leading first order in
R correction to the current. Including this correction, for
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FIG. 4. The function F (x) evaluated numerically for R � 1 and
θ = 0.01� (blue curve) and analytically [Eq. (49), orange curve].
For comparison we also present the function FLZ(x) [(6), green
curve].

R� � e|V | � 2� we have

I (t ) � Ĩc|sin eV t | sgn V + αR�Ic

2e|V | sin 2eV t, (50)

where

Ĩc = Ic(1 − αR�/e|V |). (51)

We observe two effects. First, the current Ĩc (51) becomes
smaller than Ic since some subgap quasiparticles are elimi-
nated from the full MAR cycle due to the presence of weak
normal reflection. Second, these quasiparticles produce an ex-
tra Josephson-like contribution to I (t ) defined by the last term
in Eq. (50). Decreasing the bias voltage down to e|V | ∼ R�,
one reaches the limit beyond which normal reflection, no
matter how weak it is, prevents the vast majority of subgap
quasiparticles from completing the MAR cycle and the per-
turbation theory in R ceases to be valid.

Interestingly, Eq. (50) turns out to be useful also in the
latter limit of smaller V . Indeed, for any bias voltage V
the probability for quasiparticles to follow the trajectories in
Fig. 2(a) and complete the full MAR cycle is T n, with n ∼
α�/e|V |. Accordingly, the contribution of such quasiparticles
to I (t ) can be described by the first term on the right-hand side
of Eq. (50) also at e|V | < R�, provided one replaces Eq. (51)
by

Ĩc = Ic(1 − R)
α�
e|V | . (52)

Clearly, this contribution to I (t ) will die out in the limit V →
0 for any R > 0.

Quasiparticles following the trajectories in Fig. 2(b) may
contribute to the current only if the condition T m ∼ 1 remains
fulfilled, where m is the total number of traverses of these
quasiparticles across the weak link. It follows immediately
that for e|V | < R� the maximum number of such traverses
is m ∼ 1/R. Hence, in order to estimate the contribution of
these quasiparticles to I (t ) it suffices to replace the number
n by m (i.e., α�/e|V | → 1/R) in the last term in Eq. (50).
This simple estimate already yields the right order of magni-
tude for the current ∼Ic in the limit e|V | � R�. The correct

current-phase dependence [3] in this regime should be recov-
ered by additionally taking into account all higher order in R
processes disregarded here.

Although the analysis [2] yields the average value of the
perturbative in R correction δI (5) which essentially matches
our Eq. (46), some other features differ substantially from
those found here. Within the approach [2] the correction to
the current δI (t ) emerges due to incomplete Landau-Zener
tunneling of the system to the higher Andreev level rather than
due to breaking of the MAR cycle by normal reflection. As a
result, the correction δI (t ) derived from this physical picture
becomes discontinuous [see Eq. (6)] and differs from zero
only within half of the Josephson period.

Let us evaluate the ratio between the current correction
harmonics δIFl and the current harmonics Il corresponding
to fully open quantum point contact, Eq. (1). With the aid of
Eq. (47) we get

δIFl

Il
∼ R�

e|V |
(

1 + 3π

8
iδl,1 − 3π

8
iδl,−1

)
. (53)

The same calculation with the function FLZ(eV t ) (6) yields

δI (FLZ)l

Il
∼ R�

e|V | [1 − 2il (−1)l ]. (54)

Some quantitative difference between the two above expres-
sions is observed already for the first current harmonics.
For all higher harmonics with |l| > 1 the difference between
Eqs. (53) and (54) becomes even more pronounced since
the imaginary contribution vanishes for such l in the first of
these equations, while it remains nonzero and grows with l in
the second one. Thus, Eq. (53) ensures that for R � 1 and
e|V | � R� the perturbative correction remains small for all
current harmonics. In contrast, under the same conditions the
perturbation theory is obviously violated for harmonics with
sufficiently large l in Eq. (54).

Finally, we would also like to point out that in many cases
even equilibrium charge transport in superconducting weak
links cannot be described solely in terms of Andreev bound
states and their filling factors. This is the case, for instance, in
ballistic SNS junctions with thicknesses of the N layer com-
parable to or larger than the superconducting coherence length
or in junctions formed by two different superconductors with
�1 � �2, where no Andreev bound states exist in the range
−π/2 < χ < π/2 at all. Accordingly, the current cannot be
derived by simply taking a derivative of the Andreev states
energy with respect to χ . At the same time, a description
of Josephson dynamics in terms of MAR is, of course, very
possible in those cases.

To conclude, it appears that one should be cautious while
describing Josephson dynamics of superconducting weak
links at high transmissions operating only with a pair of
subgap Andreev levels and including the process of Landau-
Zener tunneling between them. While this reduced physical
picture is intuitively appealing and might capture some of the
features, it is insufficient for some other features, as demon-
strated by our analysis.
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APPENDIX: NUMERICAL PROCEDURE

It is convenient to rewrite a single-channel version of the effective action in Eq. (8) in the form (see also [17])

iSt = 1

2
Tr

[
ln

(
1 +

√
T

2
(Q̌L − Q̌R)

)
+ ln

(
1 −

√
T

2
(Q̌L − Q̌R)

)]
. (A1)

Evaluation of the current requires inverting the matrices in Eq. (A1). This matrix inversion procedure follows closely that of
Ref. [12], and we shall just write out the resulting expressions. The current is defined as

I (t ) =
∞∑

l=−∞
Il e

−2ileV t , Il = e2

π
T V δl,0 +

∫ ∞

−∞

dε

2π
[I (ε, l ) + I∗(ε,−l )], (A2)

where

I (ε, l ) = e
√
T

4

{[
ζ̃ R

(
ε − eV

2
, 2l

)
+ ζ̃ R

(
ε + eV

2
, 2l

)]
gK (ε) (A3)

−
[
ζ̃ R

(
ε − eV

2
, 2l + 1

)
+ ζ̃ R

(
ε + eV

2
, 2l − 1

)]
f K (ε)

+ gK (ε)
∑

m+n=2l

[
Y

(
ε − eV

2
, n

)
ζ̃ R

(
ε − eV

2
, n

)
ζ̃ R

(
−ε + eV

2
, m

)

−Y

(
ε + eV

2
, n

)
ζ̃ R

(
ε + eV

2
, n

)
ζ̃ R

(
−ε − eV

2
, m

)]

+ f K (ε)
∑

m+n−1=2l

Y

(
ε − eV

2
, n

)
ζ̃ R

(
ε − eV

2
, n

)
ζ̃ R

(
−ε − eV

2
, m

)

− f K (ε)
∑

m+n+1=2l

Y

(
ε + eV

2
, n

)
ζ̃ R

(
ε + eV

2
, n

)
ζ̃ R

(
−ε + eV

2
, m

)⎫⎬
⎭.

Both normal and anomalous Keldysh functions in Eq. (A3) are defined by the standard relations

gK (ε) = 2 Re[gR(ε)] tanh
ε

2T
, f K (ε) = 2 Re[ f R(ε)] tanh

ε

2T
, (A4)

and the function ζ̃ R(ε, n) takes the form

ζ̃ R(ε, n) =
(

−
√
T

2

)−n

ζ R
0 (ε, eV )

−1∏
k=n

f R
(
ε + (

k + 1
2

)
eV

)
δk (ε, eV )

, n < 0, (A5)

ζ̃ R(ε, n) =
(√

T
2

)n

ζ R
0 (ε, eV )

n∏
k=1

f R
(
ε + (

k − 1
2

)
eV

)
dk (ε, eV )

, n > 0, (A6)

and

ζ̃ R(ε, n) = ζ R
0 (ε, eV ), n = 0. (A7)

The functions dk and δk (see Ref. [16]) are defined by the following recurrence relations:

δ−N (ε, eV ) = 1 +
√
T

2

{
gR

[
ε +

(
−N + 1

2

)
eV

]
− 1

}
, (A8)

δn(ε, eV ) = 1 +
√
T

2

{
gR

[
ε +

(
n + 1

2

)
eV

]
− gR

[
ε +

(
n − 1

2

)
eV

]}
+ T

4

[
f R
(
ε + (

n − 1
2

)
eV

)]2

δn−1(ε, eV )
,

δN (ε, eV ) = 1 +
√
T

2

{
1 − gR

[
ε +

(
N − 1

2

)
eV

]}
+ T

4

{
f R
[
ε + (N − 1

2

]
eV )

}2

δN−1(ε, eV )
.

dN (ε, eV ) = 1 +
√
T

2

{
1 − gR

[
ε +

(
N − 1

2

)
eV

]}
, (A9)

dn(ε, eV ) = 1 +
√
T

2

{
gR

[
ε +

(
n + 1

2

)
eV

]
− gR

[
ε +

(
n − 1

2

)
eV

]}
+ T

4

[
f R
(
ε + (

n + 1
2

)
eV

)]2

dn+1(ε, eV )
,

d−N (ε, eV ) = 1 +
√
T

2

{
gR

[
ε +

(
−N + 1

2

)
eV

]
− 1

}
+ T

4

{
f R
[
ε + (−N + 1

2

)
eV

]}2

d−N+1(ε, eV )
.
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We also have

ζ R
0 (ε, eV ) =

∏N
k=1 dk (ε, eV )∏N
k=0 δk (ε, eV )

, (A10)

which can be rewritten as ζ R
0 (ε, eV ) = 1/X , where

X (ε, eV ) = d0(ε, eV ) + δ0(ε, eV ) − 1 −
√
T

2

[
gR

(
ε + eV

2

)
− gR

(
ε − eV

2

)]
. (A11)

Finally, the function Y (ε, n) in Eq. (A3) is defined as

Y (ε, n) =

⎧⎪⎪⎨
⎪⎪⎩

2dn(ε) − 1 + √
T gR

[
ε + (

n − 1
2

)
eV

]
, if n � 1,

d0(ε) − δ0(ε) +
√
T
2

[
gR
(
ε + eV

2

) + gR
(
ε − eV

2

)]
, if n = 0,

−2δn(ε) + 1 + √
T gR

[
ε + (

n + 1
2

)
eV

]
, if n � −1.

(A12)

The functions dn(ε) and δn(ε) are also used in the definition
of ζ̃ R(ε, n) and are given by the recurrence relations (A8) and
(A9).

Our numerical procedure amounts to first choosing a suffi-
ciently large number of Andreev reflection cycles N relevant
in the limit of small bias voltages eV � 2�. This information
is included in the boundary conditions given by the first lines
of Eqs. (A8) and (A9). As a next step, it is necessary to resolve

the recurrence relations (A8) and (A9) and to construct the
functions ζ̃ R(ε, n) and Y (ε, n). Then, integrating over energy
in Eq. (A2), one recovers all current harmonics Il . It is also
worth pointing out that in the course of our calculation we es-
sentially employed the standard relations between the retarded
and advanced Green’s functions gA(ε) = −[gR(ε)]∗, f A(ε) =
−[ f R(ε)]∗ as well as the conditions gR(−ε) = [gR(ε)]∗ and
f R(−ε) = −[ f R(ε)]∗.
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