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Magnon-phonon interactions enhance the gap at the Dirac point in the spin-wave spectra of CrI3
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Recent neutron-diffraction experiments in honeycomb CrI3 quasi-2D ferromagnets have evinced the existence
of a gap at the Dirac point in their spin-wave spectra. The existence of this gap has been attributed to strong
in-plane Dzyaloshinskii-Moriya or Kitaev (DM/K) interactions and suggested to set the stage for topologically
protected edge states to sustain non-dissipative spin transport. We perform state-of-the-art simulations of the
spin-wave spectra in monolayer CrI3, based on time-dependent density-functional perturbation theory (TDDFpT)
and fully accounting for spin-orbit couplings (SOC) from which DM/K interactions ultimately stem. While
our results are in qualitative agreement with experiments, the computed TDDFpT magnon gap at the Dirac
point is found to be 0.47 meV, roughly six times smaller than the most recent experimental estimates, so
questioning that intralayer anisotropies alone can explain the observed gap. Lattice-dynamical calculations,
performed within density-functional perturbation theory (DFpT), indicate that a substantial degeneracy and
a strong coupling between vibrational and magnetic excitations exist in this system, providing a possible
additional gap-opening mechanism in the spin-wave spectra. To pursue this path, we introduce an interacting
magnon-phonon Hamiltonian featuring a linear coupling between lattice and spin fluctuations, enabled by the
magnetic anisotropy induced by SOC. Upon determination of the relevant interaction constants by DFpT and
supercell calculations, this model allows us to propose magnon-phonon interactions as an important microscopic
mechanism responsible for the enhancement of the gap in the range of ≈4 meV around the Dirac point of the
CrI3 monolayer.

DOI: 10.1103/PhysRevB.107.214452

I. INTRODUCTION

The van der Waals crystal CrI3 was the first compound
reported to display long-range magnetic order down to the
monolayer limit, where it behaves as a ferromagnetic (FM)
semiconductor with a Curie temperature of 45 K and a siz-
able out-of-plane anisotropy [1]. The impressive variety of its
magnetic response to the most diverse probes has stimulated
an intense research effort aiming to better understand and
exploit its low-dimensional magnetism. Indeed, spintronics
applications are envisaged for bilayer-CrI3, a layered anti-
ferromagnet which can be gradually turned FM by applied
pressure [2,3], electrical field [4,5], or electrostatic doping [6],
thus realizing an intrinsic spin filter tunnel junction with a
reported high figure of merit [3,7–9]. Moreover, the optical
properties of ultrathin CrI3 have been shown to be excep-
tionally sensitive to its magnetic state [10–12], stimulating
unique ideas for optoelectronic [13] and photovoltaic [14]
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devices. Furthermore, the insulating character of this material
strongly reduces Landau damping, thus ensuring a magnon
lifetime longer than that of any known 2D metal by one order
of magnitude [15], with tremendous implications in the field
of magnonics [16]. Even more interestingly, the honeycomb
structure of the 2D Cr lattice is such that a system of Heisen-
berg magnets localized at the atomic sites would feature two
spin-wave dispersion crossing at the K/K ′ corners of the Bril-
louin zone (BZ). Anisotropic exchange interactions—such as
those caused by spin orbit coupling (SOC)—may open a gap
at the Dirac points by breaking the inversion symmetry and
developing topologically protected edge spin waves able to
sustain dissipationless spin transport [17–20], in full analogy
with fermionic topological states originally proposed to occur
in graphene [21].

Indeed, inelastic neutron scattering (INS) has provided
evidence of a gap of a few meV at the Dirac points in
the spin-wave spectrum of quasi-2D CrI3 samples [22,23].
While the existence of multiple magnon states at the center
of the BZ has been confirmed by (magneto-) Raman spec-
troscopy [15,24,25], the nature and very existence of a gap
at the zone border is still controversial. Early suggestions
explained the occurrence of this gap in terms of SOC-enabled

2469-9950/2023/107(21)/214452(11) 214452-1 ©2023 American Physical Society

https://orcid.org/0000-0003-0892-7655
https://orcid.org/0000-0002-5733-2001
https://orcid.org/0000-0002-6531-9966
https://orcid.org/0000-0002-3508-6663
https://orcid.org/0000-0002-7139-8429
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.214452&domain=pdf&date_stamp=2023-06-30
https://doi.org/10.1103/PhysRevB.107.214452


PIETRO DELUGAS et al. PHYSICAL REVIEW B 107, 214452 (2023)

inversion-symmetry-breaking exchange interactions, such
as second-nearest-neighbor Dzyaloshinskii-Moriya (DM)
[22,23] or first-nearest-neighbor Kitaev (K) [26]. While this
scenario has received support from itinerant-electron models
based on tight-binding Hamiltonians [27], the robustness of
these conclusions is as strong as the reliability of the semiem-
pirical SOC and screened Coulomb repulsion parameters on
which they are based. Moreover, the direct estimation from
first principles of the anisotropic exchange couplings has
yielded quite diverse results according to the details of the
downfolding methodology [28], with the most recent calcula-
tions pointing towards very weak [29], if not negligible [30],
DM/K interactions, thus further questioning their role in the
opening of the observed gap. Recently, ab initio calculations
of magnetic excitations in CrI3 have confirmed the weak na-
ture of SOC-induced anisotropies in monolayer CrI3 [31] and
underlined the relevance of interlayer interactions in bulk CrI3

[32]. The authors of the present paper have recently shown
by means of relativistic calculations based on time-dependent
density-functional perturbation theory (TDDFpT) that, while
SOC is the primary cause of the gap, its combination with
interlayer interactions may more than double its actual width,
so accounting for more than 50% of its experimental estimate
[33]. To fathom the nature of this discrepancy, it is crucial
to assess whether other microscopic mechanisms might be at
play in the gap opening.

In this paper, we provide evidence that strong spin-lattice
interactions are present in monolayer CrI3 and may mani-
fest in a polaritonlike hybridization between magnetic and
vibrational modes near, but not quite at, the Dirac points,
which may enhance the opening of the gap. Our first step
is the evaluation of the INS magnetic cross section of
monolayer CrI3, performed at clamped nuclei by means of
full-fledged TDDFpT and wholly accounting for relativistic
effects [34,35]. Our approach, not relying on any adiabatic
spin decoupling [36], avoids the intricacies of downfolding
to an effective spin model and so includes the complexity of
SOC-induced exchange couplings directly into the excitation
spectra without the need of introducing any semiempirical pa-
rameters. Our results reveal two dispersive magnon branches
with quite different cross-section intensities, in fair agreement
with INS data [22,23], except for too large a predicted band-
width, which is a consequence of a common shortcoming
of the local spin-density approximation (LSDA) and related
approximations, which are known to predict too large a spin
stiffness [37,38].

We clearly resolve a sizable Goldstone gap at the zone
center (≈1.3 meV), the hallmark of magnetic anisotropy, and
a smaller gap at the Dirac points of about ≈0.47 meV, corrob-
orating previous estimates of very weak DM/K interactions
in monolayer CrI3 [30,32]. Next, following recent indica-
tions that a strong spin-lattice coupling may exist in ultrathin
CrI3 [25,39,40], we determine the phonon dispersions in this
system, using (static) density-functional perturbation theory
(DFpT) [41], and reveal that a bundle of flat phonon bands
intersects the acoustic magnon band just below the exper-
imentally observed energy of the Dirac magnon. Building
on this finding we identify, out of the phonon bundle, a flat
branch with frequency h̄ω ≈ 14 meV displaying the strongest
spin-lattice coupling, in fair agreement with the position of the

observed gap at h̄ω ≈ 12 meV in CrI3 thin crystals [22,23].
This coupling, which is enabled by SOC, can be captured by
a generalized Heisenberg Hamiltonian whose eigenstates are
spin-lattice polaritons featuring a gap where the free magnon
and phonon bands cross. We show that magnon-phonon in-
teractions open a gap of about � ≈ 1.5 meV at q ≈ 0.6qK

along the �K line. The magnitude of the gap depends on
the strength of the spin-lattice coupling, whereas the shape
and location of the locus of points in the BZ where it occurs
depends on the details of the phonon and magnon dispersions.
While thirty years of successful practice of DFpT give us
confidence in the accuracy of our predictions for the phonon
bands, density-functional theory, particularly when based on
LSDA or spin-polarized generalized-gradient approximation
(GGA), is known to overestimate the magnitude of mag-
netic moments and exchange interactions, as also recently
reported for bulk CrI3 [32,33]. In this very case, it has been
shown that this shortcoming can be significantly redressed by
on-site Hubbard corrections for Cr 3d states [32,42], which
result in a quite rigid renormalization of the magnon band-
width. Because of this, the exchange interactions that define
our Heisenberg spin-lattice Hamiltonian have been renor-
malized to the experimental spin stiffness, as discussed in
Appendix A 1.

This paper is organized as follows. Section II summa-
rizes our theoretical framework and presents the results of
our TDDFpT calculations; in Sec. III, our DFpT calculations
of the phonon dispersion and supercell calculations of the
magnon-phonon coupling are reported; and Sec. IV discusses
the implications of the predicted spin-lattice polaritons on
the magnon dispersion based on a generalized Heisenberg
Hamiltonian. Finally, Sec. V presents our conclusive remarks.

II. INELASTIC NEUTRON-SCATTERING CROSS
SECTIONS FROM TDDFpT

In INS experiments, a neutron beam with wave vector ki

and energy Ei is inelastically scattered by the target sample to
a final state characterized by the wave vector k f = ki − q and
energy E f = Ei − h̄ω, where h̄q and h̄ω are the momentum
and energy transferred to the sample, respectively. In the first
Born approximation [43,44], the double-differential cross sec-
tion corresponding to magnetic excitations of electrons can be
written in the compact form as [45,46]

d2σ

d�dω
= h̄

π

(
gne

2h̄

)2 k f

ki
S(q, ω), (1)

where

S(q, ω) = −Im Tr[P⊥(q) χ(q, q; ω)]. (2)

Here, −e and gn ≈ 3.826 are the electron charge and the
neutron g-factor, respectively, P⊥(q) is the 3 × 3 matrix,
P⊥

αβ (q) = δαβ − qαqβ/q2 (with α, β = x, y, z), which is a pro-
jector onto the plane perpendicular to the direction of q,
and χ(q, q; ω) is the 3 × 3 spin susceptibility matrix. The
poles of S(q, ω) are fingerprints of the spin excitations of the
system, both of the magnon and Stoner type, thus allowing
one to characterize various magnetic spectroscopies, either
in the bulk, as probed by INS, or at surfaces, as probed by
spin-polarized electron energy loss spectroscopy [47]. A fully
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FIG. 1. Magnon dispersions along high-symmetry directions in
the BZs computed using TDDFpT including SOC in a ferromagnetic
CrI3 monolayer. The color code describes the intensities of peaks in
the magnetic spectrum. The inset shows adjacent BZs and the high-
symmetry directions in the (h, k) plane and labels of high-symmetry
points.

ab initio determination of S(q, ω) requires the computation
of the dynamical spin susceptibility by using, e.g., TDDFpT
[35,48–55].

We have computed the INS magnetic spectrum of mono-
layer CrI3 using the Liouville-Lanczos approach to TDDFpT
of Ref. [35], as implemented in the turboMagnon code [56]
within the LSDA in the plane-wave pseudopotential frame-
work of the QUANTUM ESPRESSO suite of codes [57]. We
stress that our implementation applies to a general non-
collinear spin-polarized framework, essential in materials
containing heavy elements, such as CrI3, where SOC is ex-
pected to play an important role [28]. Further technical details
of our computations are presented in Appendix A.

The spin-wave spectrum of monolayer CrI3 thus obtained
is reported in Fig. 1: two magnon branches, which can be
interpreted as arising from two Heisenberg moments arranged
in a honeycomb lattice, can be clearly identified. In particular,
an intense acoustic band is present in the first BZ along the
�M direction, whereas the optical branch takes over when
entering the second BZ. Our results can be summarized as
follows: (i) we overestimated the spin stiffness of the system,
resulting in too broad a bandwidth of ≈28 meV (consistent
with the linear-response DFT-based calculations of Ref. [32],
reporting a value of ≈31 meV in bulk CrI3 without SOC), to
be compared with an experimental value for a thin CrI3 crystal
of ≈20 meV [22,23,58]; (ii) a Goldstone gap of 1.3 meV is
clearly detected at the BZ center; (iii) a small gap (≈0.5 meV)
is also detected at the Dirac point (K). While too large a
spin stiffness is a common feature of LSDA- and GGA-based
models [32,37,38], we stress that our theoretical framework
naturally accounts for the SOC resulting in the observed gaps

at the � and K points. We conclude that SOC-induced DM/K
interactions at clamped nuclei, which are implicitly accounted
for in our ab initio approach, are likely too small to account
for the origin of the observed gap at the Dirac (K) point alone,
as it was already suggested in previous theoretical studies
[29,30,33]. In a recent work of ours [33], it was pointed out
that interlayer interactions may account for much of the gap
observed in multilayer samples. In the following, we give
evidence that strong spin-lattice couplings may provide an
additional mechanism to enhance the magnitude of the gap
at the Dirac point in CrI3.

III. PHONON DISPERSIONS AND SPIN-LATTICE
COUPLING

It was recently pointed out that CrI3 features both a strong
vibrational density of states (vDOS) at ≈14 meV—in close
proximity to the position of the magnon gap observed at
≈12.5 meV in the CrI3 thin crystals—and a strong spin-lattice
coupling [39]. The occurrence of these two facts has led to
the speculation that hybrid magneto-vibrational excitations
[59,60] may occur in this system [29], resulting in a sort of
polaritonic mixing between magnon and phonon bands [61].

To elaborate on this surmise, we have started by computing
the phonon spectrum of CrI3. For further reference, and to fix
the notation, let us first state the lattice Hamiltonian in the
harmonic approximation:

Hph =
∑

ns

p2
ns

2Ms
+ 1

2

∑
ns �=mt

uns · Kst (Rnm) · umt, (3)

where n and m enumerate the elementary cells of the crys-
tal lattice, Rnm = Rn − Rm is the distance between two such
cells, uns is the displacement of the sth atom in the nth unit
cell, pns and Ms are its momentum and mass, respectively,
and Kst (Rnm) is the matrix of the interatomic force constants
(IFCs), which we compute using DFpT [41]. Bold symbols
indicate three-vectors (Cartesian indices are suppressed and a
dot · stands for a scalar product), whereas bold calligraphic
symbols are 3 × 3 tensors. The vibrational normal modes are
obtained from the eigenvalue equation (a tilde, ˜ , on top of
various quantities indicates their Fourier transforms, when
needed), ∑

t

K̃st (q) · eμ
t (q) = Ms�

2
μ(q)eμ

s (q), (4)

where q is the phonon wave vector, �μ(q) and eμ
s (q) are the

eigenvalues (frequencies) and eigenvectors of the μth vibra-
tional mode. The atomic displacements in the μth normal
mode are defined in terms of the normalized eigenvectors of
Eq. (4) (

∑
s Mseμ∗

s (q) · eν
s (q) = δμν ) as

uns = 1

N

∑
qμ

eiq·Rnξμ(q)eμ
s (q), (5)

where ξμ(q) = ∑
ns Mse−iq·Rn uns · eμ∗

s (q) is the amplitude of
the μth normal mode, and N the number of unit cells in the
crystal. For future reference, we remark that the mode length
ξμ(q) incorporates the reduced mass of the specific mode, and
its dimensions are a length times the square root of a mass
(say, Å × √

AMU). We solved the eigenproblem of Eq. (4)
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FIG. 2. (a) Phonon dispersions computed using DFpT; the
shaded area highlights the experimental interband magnon gap [23];
we show in Fig. 4 the spin-lattice couplings for the modes that build
up the strong peak of the vibrational density of states in this region;
(b) vDOS corresponding to the phonon dispersion reported in (a).

within DFpT using LSDA, including SOC self-consistently.
All the relevant technical details of the computations reported
in this section are presented in Appendix A.

In Fig. 2, we display our computed phonon dispersions
and vDOS for monolayer CrI3. Our results confirm that a
high vDOS exists in the energy range where a magnetic gap
is observed, thus pointing at magnon-phonon interactions as
a candidate mechanism that could affect the magnon gap
around the Dirac point. To ascertain whether this can indeed
be the case, we have computed the dependence of the crystal
magnetization on the lattice distortion along the normal modes
in the relevant energy range. We find that the vDOS peak
is populated with vibrational modes strongly coupled with
the magnetization, as reported in Fig. 8 of Appendix A 2.
The most intense spin-lattice coupling is found with the 16th

normal mode, whose energy is h̄�16(qK ) ≈ 14 meV. Displac-
ing the atoms along its eigenvectors uns at q = qK , shown
in green in Figs. 3(a) and 3(b), induces a tilt of the crystal
magnetization with respect to the easy-magnetization (z) axis
according to the pattern presented in Fig. 3(c). In Fig. 3(d), we
report the magnitude of such a tilt angle as a function of the
amplitude of the lattice distortion. Not unexpectedly, no such
dependence is detected when neglecting SOC, which is the
origin of the magnetic anisotropy. When fully accounting for
SOC, instead, a strong linear spin-lattice coupling is observed,
further confirming that SOC-mediated spin-lattice couplings
may play a relevant role in the magnon dispersion around the
K point.

IV. MIXED SPIN-LATTICE EXCITATIONS

A. Spin-lattice Hamiltonian

To derive the minimal Hamiltonian accounting for a spin-
lattice coupling, we consider the most general quadratic spin
Hamiltonian, whose interaction parameters depend on the
spin-spin distance:

Hsp = −1

2

′∑
ns �=mt

Sns · J st (Rnm) · Smt −
′∑

ns

Sns · Ds · Sns,

(6)
where Sns is a classical spin residing at the sn lattice site,
J st (Rnm) the exchange couplings and Ds the on-site magnetic
anisotropy. The primed summations run on the magnetic sites
only, in contrast to the summations in Eq. (3), which run
over all the atomic positions. Both the exchange couplings
and the on-site magnetic anisotropy depend implicitly on
the atomic displacements and can be expanded in powers of
uns. In the undistorted geometry (uns = 0), magnetic inter-
actions are modeled only via isotropic exchange Jst (Rnm) =
Tr[J st (Rnm)]/3 and the on-site anisotropy Dzz

s couplings
whose values are derived by means of supercell calculations,
as reported in Appendix A 1. In view of the weakness of the
intersite anisotropies responsible for the 0.47 meV gap found

FIG. 3. Side (a) and top (b), (c) views of the CrI3 monolayer. Cr atoms belonging to different sublattices are depicted with different colors
(blue and red). In (a), (b) the green arrows indicate the displacement pattern of the 16th vibrational mode at the K point of the BZ, which is the
one with the strongest coupling with the atomic magnetic moments. As a consequence of this coupling, the atomic moments acquire an in-plane
component whose magnitude is proportional to the lattice distortion, as depicted by the yellow arrows in (c). (d) displays the dependence of
the resulting tilt angle on the phonon amplitude, ξ 16(qK ) [see Eq. (5), in units Å × √

AMU], accounting for or neglecting SOC. The light-purple
and light-green shaded areas indicate the unit cells of the undistorted and distorted lattices, respectively.
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FIG. 4. Absolute value of the magnon-phonon coupling con-
stants, λμ1(q), for different phonon modes of frequency �μ (μ =
9, ..., 16) and for the acoustic magnon (ν = 1), computed at the Dirac
point, q = qK , in monolayer CrI3. The 11th and 12th phonon modes
do not display any linear coupling with magnons, as reported in Fig. 8
and discussed in Appendix A 2.

in our TDDFpT calculations, we chose not to include them in
our lattice model and focus on the effect of magnon-phonon
couplings only. Considering the smallness of these two ef-
fects, we expect that, if considered together, they would add
linearly.

At zeroth order in the spin-lattice interactions, the vibra-
tional and magnetic normal modes are decoupled, the latter
being solutions of the secular equation:

S
′∑
t

[δst Is − J̃st (q)] f ν
t (q) = ων (q) f ν

s (q), (7)

where Is = 2Dzz
s + ∑′

mt Jst (R0m) and S = |Sns|. The eigenvec-
tors are normalized according to

∑
s f μ∗

s (q) f ν
s (q) = Sδμν and

are directly related to the spin components in the xy plane via

S+
ns = 1

N

∑
qν

eiq·Rn ην (q) f ν
s (q), (8)

with S±
ns = Sx

ns ± iSy
ns, and ην (q) is the amplitude of the νth

normal mode.
To lowest order in uns, the corrections to the Hamiltonian in

Eq. (6) result in a linear coupling between the spin and lattice
degrees of freedom (see Appendix B for a derivation), reading

Hsl = −
∑
qμν

λμν (q)
√

ων (q)ξμ(q)ην∗(q) + c.c., (9)

where the factor
√

ων (q) has been introduced so that λμν (q)
has the dimension of a frequency.

The exchange interactions in Eq. (7), J̃st (q), as well as
the λμν (q) coupling constants in Eq. (9) corresponding to
different phonon-magnon pairs, (μ, ν), can be estimated us-
ing standard clamped-ion DFT calculations along a distortion
pattern, as explained in Appendix A 2. In Fig. 4, we report
the magnitude of the couplings between the acoustic magnon
and the phonons in the energy range from 8 to 15 meV, thus
estimated at the K point in the BZ, showing that a particu-
larly strong coupling exists with the 16th phonon mode at
≈14 meV, very close to the position of the observed gap.
In the next section, we show that such a magnon-phonon

coupling may significantly affect the magnon dispersion
around the K point.

B. Spin-lattice polaritons

The normal modes of Eq. (7) yield the frequencies and
polarization patterns of the free spin waves, i.e., of the mag-
netic excitations resulting from the neglect of the spin-lattice
interactions embodied in Eq. (9). To quantify the impact of
these interactions on the spin-wave dispersion, we quantize
the spin-lattice Hamiltonian and obtain

Ĥ =
∑
μq

h̄�μ(q)

(
â†

μqâμq+1

2

)
+

∑
νq

h̄ων (q)

(
b̂†

νqb̂νq + 1

2

)

−
∑
μνq

[h̄λ̄μν (q)(âμqb̂†
νq + â†

μ−qb̂†
νq) + H.c.], (10)

where âμq and b̂νq are the annihilation operators of
phonons and magnons, respectively, and λ̄μν (q) =
λμν (q)

√
2ων (q)/�μ(q). The phonon frequencies �μ(q)

are interpolated from our DFpT calculations, whereas the
magnon frequencies ων (q) are derived from two different
spin models, as specified in the following. The λμν (q)
couplings are estimated at the Dirac point as detailed in
the previous section and considered constant throughout
the BZ. In the following, we neglect the terms â†

μ−qb̂†
νq that

do not conserve the number of quasiparticles and are thus
expected to yield higher-order corrections with respect to the
number-conserving terms.

The eigenmodes of the Hamiltonian in Eq. (10) are
mixed magnon-phonon quasiparticles. As their nature is rem-
nant of the mixed phonon-photon or exciton-photon modes
commonly known as polaritons, we dub them spin-lattice
polaritons. In Fig. 5, we report the energy dispersions of
spin-lattice polaritons obtained by diagonalizing the Hamilto-
nian in Eq. (10) in the number-conserving approximation. We
consider two different sets of free-magnon frequencies, ων (q):
in Figs. 5(a) and 5(b) the one obtained by using the exchange
parameters fitted to our TDDFpT results, in Figs. 5(c) and 5(d)
the one obtained by using the exchange parameters fitted to
the INS data of Ref. [22]. We remark that these magnon fre-
quencies were obtained by neglecting the DM/Kitaev terms
in the undistorted case, hence no magnon gap at K is present
in the bare magnon dispersions shown in Figs. 5(a) and 5(c),
in contrast to TDDFpT magnon dispersions that show a gap
of 0.47 meV (see Fig. 1). While the inclusion of these SOC
effects in the model Hamiltonian of the undistorted lattice
is of great interest and possibly the topic of future studies,
our main goal here is to investigate the sheer effect of the
spin-lattice coupling on the gap opening around K . As can
be seen in Figs. 5(b) and 5(d), the main polaritonic effect is
due to the 13th to 16th phonon modes, which open a gap of
roughly ≈1.5 meV, but less intense hybridization features ex-
ist at lower energy as well. The net outcome is the suppression
of the magnon character in an energy region of about 4 meV,
which implies a concomitant suppression of the intensity in
INS experiments. We remark that the exact location of this
region in the BZ depends on the spin stiffness, which density
functionals presently available are not able to predict with
sufficient accuracy [32]. However, a renormalization of such
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FIG. 5. Theoretical magnon (red) and phonon (blue) dispersions
in monolayer CrI3, as obtained by diagonalizing the lattice Hamil-
tonian, Eq. (10). In (a) and (c), the spin-lattice coupling has been
disregarded, while it is accounted for in (b) and (d). The magnetic
exchange parameters in Eq. (10) have been fitted to our TDDFpT
calculations in (a), (b) and to experiments [22] in (c), (d).

stiffness to experimental data brings our theoretical prediction
of both the energy and the location in the BZ at the K point
of the gap in closer agreement with experiments for CrI3

thin crystals, as illustrated in Figs. 5(c) and 5(d), and in the
three-dimensional plot of Fig. 6.

V. CONCLUSIONS

The work reported in this paper was originally motivated
by our effort to explain the gap observed in the spin-wave
spectra of CrI3 multilayer samples [22,23], which was over-
looked in our first attempt to predict it from TDDFpT
calculations performed for a monolayer at clamped nuclei, as
reported in the first version of this paper [61]. This failure
was later found to be due to slight numerical inaccuracies in
the computer code used to perform the computations, which
were fixed since. The fix resulted in the opening of a gap
at the K point of the monolayer BZ, which was, however,
way too small with respect to experimental findings. A proper
consideration of intralayer interactions, implicitly accounted

FIG. 6. The 3D view of the magnon dispersion of the CrI3 mono-
layer computed using the model Hamiltonian, Eq. (10), including
magnon-phonon interactions. The color code goes from red (100%
magnon) to transparent (100% phonon). The 2D BZ is shown at the
bottom plane of the figure. The magnon momentum wavector is in
units of 2π/a, where a is the lattice parameter.

for in our subsequent computations performed for the bulk
[33], considerably enhances the value of the gap, still failing
to match the experimental value. While the remaining inac-
curacy may call for different explanations, starting from the
inadequacy of the LSDA energy functional being employed,
the results reported in the present paper for the monolayer
show that spin-lattice interactions may be at play in the bulk as
well and decisively contribute to the opening of the observed
gap. Whether or not this is the case certainly deserves further
theoretical and experimental investigations. On the theoretical
side, it will be interesting to quantify as well the impact of
higher-order spin-lattice couplings, which may significantly
affect the magnon dispersions and lifetimes [62]. On the ex-
perimental side, it would be important to have direct access to
magnon dispersions in the monolayer regime. Also, it would
be nice to tune the gap in the bulk by varying the strength
of interlayer couplings, by either intercalation of some inert
atomic species or by application of a uniaxial pressure, which
would all represent precious experimental input for the under-
standing of magnetic interactions in 2D magnets.

The data used to produce the results of this work are avail-
able in the Materials Cloud Archive [63].
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APPENDIX A: COMPUTATIONAL DETAILS

All the calculations were performed using the QUANTUM

ESPRESSO distribution [57], a plane-wave+pseudopotential
suite of computer codes, using the LSDA exchange-
correlation functional and including SOC self-consistently
by means of fully relativistic pseudopotentials (FRPPs). We
have used the norm-conserving FRPPs from the PseudoDojo
library [64] and by generating FRPPs with the atomic code
using the configurations from v0.3.1 of the PSlibrary [65].

For the ground-state calculations, the Kohn-Sham wave
functions and potentials were expanded in plane waves up
to a kinetic-energy cutoff of 80 Ry and 320 Ry, respectively.
BZ was sampled using a uniform �-centered 8×8×1 k points
mesh for the hexagonal unit cell; uniform meshes of the same
density have been adopted for calculations with supercells.
The CrI3 2D crystal structure was obtained by extracting
one layer from the trigonal bulk structure and by optimiz-
ing atomic positions and the in-plane lattice constant. The
optimized in-plane lattice constant is 12.98 Bohr. The DFT
calculations correctly yield a FM ordering and a magnetic
anisotropy with the out-of-plane directions as the easy axis.

Phonon dispersions were obtained using DFpT by com-
puting the dynamical matrices on a �-centered 4 × 4 × 1 q
points mesh; these results were then used to compute the
matrix of IFCs in real space from which phonon energies
and displacements at arbitrary wave vectors were derived.
The electrostatic long-range part of the IFC was computed by
taking into account the artifacts produced by the nonphysical
periodicity in the out-of-plane direction [66].

All the calculations of the magnon dispersions have been
performed using the turboMagnon component [56] of the
QUANTUM ESPRESSO suite of codes [57], implementing
the Liouville-Lanczos approach to TDDFpT in the adiabatic
LSDA and including SOC self-consistently. This approach
does not require the computation of unoccupied KS states and
allows to evaluate the spin susceptibility matrix in Eq. (2),
χ(q, q; ω), using three Lanczos chains per wave number. With
respect to what is detailed in Ref. [35], the algorithm has been
upgraded by implementing the pseudo-Hermitian symmetry
along the lines of Ref. [67], yielding converged spectra with
≈20 000 Lanczos steps, each step having roughly the cost of
two Hamiltonian builds in a conventional static DFpT cal-
culation. A Lorentzian smearing function with a broadening
parameter of 0.03 meV has been used in the postprocessing
calculation. For the TDDFpT calculations, the kinetic en-
ergy cutoff is set to 60 and 240 Ry for the wave functions
and potentials, respectively. The same k points mesh as for
ground-state calculations has been used.

1. Exchange interactions

The estimate of the exchange interaction parameters be-
tween the Cr magnetic moments has been done by computing
total energy differences between the FM ground state and
three antiferromagnetic patterns contained in the supercell
shown Fig. 7. The details of these four configurations are
reported in Table I.

To estimate the exchange parameters from total energy
differences, one needs to express the total energy of each
magnetic configuration as a function of the local moments.

FIG. 7. Supercell used for the estimate of exchange coupling
parameters. The four inequivalent Cr sites (in blue) are numbered
from 1 to 4 for further reference. The arrows indicate the couplings
between nearest neighbors (J1), next-nearest neighbors (J2), and
third-nearest neighbors (J3).

We start from the Heisenberg Hamiltonian, Eq. (6), and write
the total energy per cell as

Etot = E0 − 1

2

cell∑
i

all∑
j �=i

Ji jSiS j, (A1)

where E0 is an adjustable energy term, independent from
the spin interaction, Ji j are the isotropic exchange interaction
parameters between spins Si and S j of sites i and j, respec-
tively,

∑cell indicates a sum over the spins contained in one
unit cell, and

∑all may, in principle, range infinitely over the
lattice. Assuming that the exchange interactions vanish over
the third neighbors, we replace the coupling constants Ji j with
J1, J2, and J3 for the couplings between first-, second-, and
third-nearest neighbors, respectively.

The free parameters in Eq. (A1) now reduce to four:
E0, J1, J2, J3 to be fitted with the energy differences. Using
the neighbors’ list in Table II and the spin and energy values

TABLE I. The four magnetic arrangements used to estimate the
exchange couplings. {Si} are the values of the local spins for each
arrangement. The SOC suffix indicates the energies per cell obtained
taking into account SOC, and the S.R. suffix indicates instead the
energies per cell obtained with the scalar relativistic approxima-
tion discarding SOC. All energies are reported relatively to the FM
ground state. AFM, AFX, and AF2Y indicate three different AFM
arrangements.

Pattern S1 S2 S3 S4 ESOC
cell (meV) ES.R.

cell (meV)

FM 3/2 3/2 3/2 3/2 0.00 0.00
AFM 3/2 -3/2 3/2 -3/2 67.08 70.89
AFX 3/2 -3/2 -3/2 3/2 78.94 82.80
AF2Y 3/2 3/2 -3/2 -3/2 46.82 49.17
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TABLE II. List of the nearest neighbors up to the third shell of
each Cr site. Each site is indicated by the corresponding numeric
label (see Fig. 7).

Site J1 (N.N.) J2 (N.N.N) J3 (3rd N.N)

1 2,2,4 3,3,3,3,1,1 4,4,4
2 1,1,3 4,4,4,4,2,2 3,3,3
3 4,4,2 1,1,1,1,3,3 2,2,2
4 3,3,1 2,2,2,2,4,4 1,1,1

from Table I, one can write the following linear system:

2E0 − 27J1 − 54J2 − 27J3 = 2EFM,

2E0 + 27J1 − 54J2 + 27J3 = 2EAFY,

2E0 + 9J1 + 18J2 − 27J3 = 2EAFX,

2E0 − 9J1 + 18J2 + 27J3 = 2EAF2Y. (A2)

The resulting parameters, reported in Table III, are in close
agreement with those obtained by Besbes et al. [68], who used
the magnetic force theorem. Together with the value obtained
for the on-site magnetic anisotropy Dzz

s of 0.30 meV, the
exchange parameters derived without SOC reproduce rather
closely the fully relativistic TDDFpT magnon dispersion of
Fig. 1, with the exception of the gap at the Dirac point due to
the lack of DM or Kitaev terms in our model. Anisotropic
exchange interactions have indeed been found to be nearly
vanishing in the undistorted CrI3 monolayer [29–31], in agree-
ment with our TDDFpT simulations, and their irrelevance in
the centrosymmetric system is also confirmed by the very
small energy differences that we obtain inverting nonsymmet-
ric magnetization patterns in the centrosymmetric structure.
Moreover, at variance with the distorted structures, the cen-
trosymmetric system always converges to FM configurations
with all spin parallels. To obtain magnetization patterns that
are not trivially equivalent to their inverted pattern, we have
to use constrained DFT, forcing the magnetization to the se-
lected patterns. Using this technique, we have verified that for
magnetic patterns as the one depicted in Fig. 3(c)—made of
an equal weight superposition of a mode with wave vector
qK on one sublattice and one with wave vector −qK on the
other—the constrained energies remain unchanged when the
magnetic configuration is inverted either by switching sublat-
tices or by inverting the sign of the amplitude θ .

TABLE III. Isotropic exchange couplings between the Cr mag-
netic moments (in meV), according to the notation used in Eq. (6).
The absolute value of the Cr moments assumed in the model corre-
sponds to a S = 3/2 spin state.

Functional J1 J2 J3

LSDA (no SOC) 2.76 0.81 −0.27
LSDA (with SOC) 2.90 0.85 −0.28
GGA [68] 2.37 0.84 −0.26

2. Spin-lattice coupling constants

The magnon-phonon coupling coefficient λμν (q) has been
computed with a sequence of ground-state supercell calcula-
tions by distorting the lattice along a given phonon mode μq,

uns = ξμ(q)
[
eμ

s (q)eiq·Rn + eμ
s (−q)e−iq·Rn

]
, (A3)

and then by projecting the magnetization pattern on the spin-
wave normal modes at the lattice equilibrium to find the
spin-wave amplitudes ην (q). Considering a coupling in the
form of Eq. (9), the value of λμν (q) can be found from the
stationarity condition for the spin-wave amplitudes η̇ν (q) = 0
at a fixed phonon amplitude ξμ(q) (which can be considered
to be a real number due to the presence of inversion symmetry
in the undistorted system), yielding

λμν (q) =
√

ωνq

2

ην (q)

2ξμ(q)
. (A4)

To identify a linear magnon-phonon coupling from these
ground-state calculations, the value in Eq. (A4) must not de-
pend on the phonon amplitude ξμ(q). When distorting along
the 16th phonon mode at the Dirac point, we find the mag-
netization to be a linear superposition of the two degenerate
magnon modes with wave vector ±qK , consistently with the
fact that the lattice distortion includes Fourier components of
±qK , as shown in Eq. (A3). The two magnon branches are
found to have equal weight, and to be in phase at qK and in
counterphase at −qK , leading the +qK -component to couple
with the Cr1 sublattice, and the −qK component to couple
with the Cr2 sublattice, as shown in Fig. 3(c). Formally, one
can write

S+
ns = η

[(
f acu
s (qK ) + f opt

s (qK )
)
eiqK ·Rn

+ eiφ
(

f acu
s (−qK ) − f opt

s (−qK )
)
e−iqK ·Rn

]
, (A5)

where the phase difference between the modes at ±qK is
found to be φ ≈ −80◦ and the absolute value of η is related to
the polar angle of the sublattice magnetization via sin(θns) =
|S+

ns|/S = |η|/√2S. For a given distorsion amplitude, all the
magnetic moments inside the supercell are found to show the
same deviation θns within a 0.5◦ precision, consistently with
our assumption of a linear coupling. In the following, only
θ , the supercell average of θns, will therefore be reported.
We show the computed dependence of the spin polar angle
with respect to the 16th phonon amplitude in Fig. 3(d). The
linear dependence for small angles, together with the lack
of magnetization response without SOC, confirms the linear
character between the spin and lattice degrees of freedom,
the slope yielding the coupling magnitude |η| according to
Eq. (A4).

We performed similar calculations for all the phonon
branches between 6 and 25 meV, whose θns = θns(ξμ(qK ))
dependencies are reported in Fig. 8. All the phonon modes
that couple linearly with the magnetization are found to
induce a magnetization response in the form of Eq. (A5).
The resulting magnitudes of the magnon-phonon coefficients
|h̄λμν (q=qK )| are reported in Fig. 4, showing a stark increase
in the coupling intensity roughly in correspondence of the
increase in the phonon vDOS, pointing towards a relevant
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FIG. 8. Average changes in the angle θ (in degrees) between the z axis and the spin momentum on Cr atoms, which are induced due to the
displacement of Cr atoms along the μth normal phonon mode (μ = 7, ..., 18) with the amplitude ξμ(qK ) [see Eq. (5)], with and without SOC.
In each panel, the phonon frequency of the corresponding μth phonon mode at the Dirac point [�μ(qK ) in meV] is indicated. The abscissa of
all panels is the normalized phonon coordinate, ξμ(qK ) [see Eq. (5)], in units Å × √

AMU.

effect of the magnon-phonon coupling in proximity of the
Dirac point.

APPENDIX B: DERIVATION OF THE SPIN-LATTICE
HAMILTONIAN

In this Appendix, we present a derivation of the coupling
term of Eq. (9) in our spin-lattice Hamiltonian. Starting from
Eq. (6),

Hsp = −1

2

′∑
i �= j

Si · J i j · S j −
′∑
i

Si · Di · Si, (B1)

where i ≡ ns and j ≡ mt , we perform an expansion around
the FM state with the magnetization polarized along z:

Sz
i ≈ S − 1

2S
S+

i S−
i . (B2)

Recalling that S±
i = Sx

i ± iSy
i , one obtains

Hsp = EFM − S
′∑
i

(aiS
+
i + c.c.) −

′∑
i

(biS
+
i S+

i + c.c.)

−
′∑
i

ciS
+
i S−

i − 1

2

′∑
i j

(di jS
+
i S+

j + c.c.)

− 1

2

′∑
i j

(ei jS
+
i S−

j + c.c.) + O[(S+
i S−

j )2], (B3)

with EFM = −S2 ∑′
i (Dzz

i + 1
2

∑′
j J zz

i j ) being the energy of
the FM state and

ai = Dxz
i − iDyz

i + 1

2

′∑
j

(
J xz

i j − iJ yz
i j

)
, (B4)

bi = 1

4

(
Dxx

i − Dyy
i

) − i
Dxy

i

2
, (B5)

ci = 1

2

(
Dxx

i + Dyy
i

) − Dzz
i − 1

2

′∑
j

J zz
i j , (B6)

di j = 1

4

(
J xx

i j − J yy
i j

) − i

4

(
J xy

i j + J xy
ji

)
, (B7)

ei j = 1

4

(
J xx

i j + J yy
i j

) + i

4

(
J xy

i j − J xy
ji

)
. (B8)

From Eq. (B3), one can see that an anisotropy-induced linear
coupling between the spin and lattice degrees of freedom
emerges from variations of the ai coefficient with respect to
the lattice displacements. Coming back to an explicit lattice
notation

ans ≈ ans

∣∣∣
eq.

+
∑
mt

∂ans

∂ (Rm + τt )

∣∣∣∣
eq.

· umt

=
∑
mt

a′
st (Rmn) · umt, (B9)

with τt denoting the position of the t th spin inside a unit cell.
In the second line, we imposed translational invariance and

assumed that ans|eq. = 0. Substituting this last term back into
Eq. (B3), one can write the linear spin-lattice coupling in the
form of

Hsp = −S
′∑

ns

∑
mt

(a′
st (Rmn) · umt S

+
ns + c.c.). (B10)

Finally, by expanding umt and S+
ns in Eq. (B10) on their

normal modes according to Eqs. (5) and (8), we obtain the
expression for the spin-lattice coupling strength of Eq. (9),
with

λμν (q)
√

ων (q) ≡ S
′∑
s

∑
t

f μ∗
s (q)a′

st (q) · eν
t (q). (B11)
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