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Using machine learning (ML) to recognize different phases of matter and to infer the entire phase diagram
has proven to be an effective tool given a large dataset. In our previous proposals, we have successfully explored
phase transitions for topological phases of matter at low dimensions either in a supervised or an unsupervised
learning protocol with the assistance of quantum-information-related quantities. In this work, we adopt our
previous ML procedures to study quantum phase transitions of magnetism systems such as the XY and XXZ
spin chains by using spin-spin correlation functions as the input data. We find that our proposed approach not
only maps out the phase diagrams with accurate phase boundaries, but also indicates some features that have
not been observed in the field of machine learning before. In particular, we define so-called relevant correlation
functions to some corresponding phases that can always distinguish between those and their neighbors. Based
on the unsupervised learning protocol we proposed [Phys. Rev. B 104, 165108 (2021)], the reduced latent
representations of the inputs combined with the clustering algorithm show the connectedness or disconnectedness
between neighboring clusters (phases) just corresponding to the continuous or disrupt quantum phase transition,
respectively. This property reminds us of the behavior of order parameters. Moreover, in the silhouette analysis
we show that the ferromagnetic states in the X X Z model with various anisotropy parameters correspond to almost
the same silhouette value, while the critical or antiferromagnetic states behave quite differently. The analysis
further indicates that the minima of silhouette values are close to the phase-transition points, showing strong
positive correlation. These results again justify the usefulness of our proposed ML procedures, and they move
us a step further toward understanding the relation between ML and quantum phase transitions from correlation

function aspects.
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I. INTRODUCTION

Quantum phase transitions (QPTs) have intrigued people
for several decades [1]. Different from classical phase transi-
tions accessed by varying temperatures, QPTs are driven by
altering a nonthermal, physical parameter at zero tempera-
ture. While Ginzburg-Landau theory [2] is often employed
to describe phase transitions, predicting QPTs in a one-
dimensional (1D) quantum system with continuous symmetry
and sufficient short-range interactions has some challenges.
This is because the presence of a local order parameter in such
a system would violate the Mermin-Wagner theorem [3], and
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thus effective alternatives are sought. Computing correlation
functions is just one of the alternatives to detect the long-range
orders of the quantum phases and predict QPTs.

Several numerical techniques, such as exact diagonaliza-
tion [4], quantum Monte Carlo simulations [5], and the density
matrix renormalization group (DMRG) [6,7], can be used to
compute correlations and ground-state wave functions. How-
ever, these methods are often computationally heavy and have
limitations. This makes it difficult to map out the entire phase
diagram in the parameter space using these methods. Re-
cently, machine learning (ML) has gained significant attention
not only in computer science, but also in physics for its ability
to reveal hidden structures of correlations, entangled quanti-
ties, and complex wave functions. Moreover, ML is becoming
a powerful tool for scientific researchers, as it is completely
data-driven. For instance, given a set of data, a neural network
(NN) can be trained to identify patterns or relate to condensed
representations (such as class labels) for the data. The trained
model can then predict unseen data points. This advantage has
attracted the interest of the physics community in using ML to
determine the phase boundaries between different phases of
matter, including quantum phase transitions [8—45].
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There are two main approaches to using ML to classify
phases of matter. The first approach is supervised learning,
where the training data are labeled with known regimes
[9-26]. This way is more accurate at identifying phase bound-
aries, but it requires prior knowledge of the system, such as
the number of phases in a particular parameter range. The
second approach is unsupervised learning, which does not
require any prior knowledge or labeling and instead learns
from the training data itself [8,27-45]. While this approach
is more difficult and demanding, it is a natural option when
exploring a parameter space for scientific discovery without
prior knowledge.

In our previous works, we proposed a protocol for lo-
cating phase boundaries using machine learning, with either
supervised [24,25] or unsupervised learning [8]. In particu-
lar, under unsupervised learning, we fed input data into an
autoencoder [46—48] to extract effective features of data, and
then we applied principal component analysis (PCA) [49,50]
to determine the necessary feature dimensions. We next used
the K-means clustering algorithm [51,52] followed by silhou-
ette analysis [53,54] to determine the total number of phases
without prior knowledge. Finally, we used supervised learning
to improve the precision of the phase boundaries by taking the
most confident points in silhouette analysis as labeled training
seeds. Our method was successful in finding topological phase
boundaries using quantum-information-related quantities as
the input data.

As mentioned before, correlation functions are often natu-
ral quantities to detect long-range orders in QPTs. However,
they are usually not computationally “cheap,” with hidden
structures, and they can be inaccurate near critical regimes.
Therefore, in this study, we employ the ML approach for
identifying QPTs, assisted by using correlation functions as
the input data type instead of quantum-information-related
quantities. We benchmark our approach on two classic 1D
magnetism systems, namely the XY and XXZ models. The
correlation functions of the 1D XY model can be calculated
by fermionization of the spin system [55,56], whereas those
of the XX Z model can be calculated by DMRG [6,7,57].

In addition to showing our proposed ML protocol to be
effective for detecting QPTs, a few essential observations are
highlighted as follows. First, there are two types of phase tran-
sitions: first-order (disrupt) and second-order (continuous). It
will be interesting to determine if the proposed protocol of ML
can distinguish these two. In the XY model, there is a second-
order phase transition, while in the XXZ model, both phase
transitions exist. In unsupervised learning, the reduced latent
representations of the input data after silhouette analysis show
huge differences between the two types of phase transitions,
unveiling an important signature to distinguish between them
when using ML.

Second, one would like to know how the precision of the
correlation functions influences the accuracy of the predicted
phase transition points (TPs). As for the XY model, since all
the numerical calculations can be done with great precision,
the predicted phase boundaries are of the order of the statis-
tical error for ML, suggesting that precise phase boundaries
can be achieved. On the other hand, for the XXZ model,
the accuracies of the correlation functions may fluctuate as a
function of the anisotropy of the model in the z-direction with

some fixed truncation basis. Therefore, the accurate positions
of the predicted phase boundaries also depend on whether
they are first-order or second-order phase transitions. For the
former case, the accuracy is not influenced much, while for the
latter case, due to the slow gap opening, the predicted results
could deviate more. It turns out that to achieve better accuracy,
more delicate treatments should be made when training our
machines.

The final observation concerns the relevance of the cor-
relation functions in the corresponding phases. We find that
if a correlation function is relevant in a certain phase, it can
naturally be used to determine the phase boundary between
one with the other. On the other hand, without any relevance
of the correlation function in a phase, it could easily fail to
distinguish between the phases of matter unless the machine
could find other patterns to recognize them.

In this paper, we first introduce the XY and XXZ mod-
els and their spin-spin correlation functions. Then we show
the procedures and the results of ML under supervision for
recognizing different phases. This is used to show the effec-
tiveness of taking correlations as the input data, and it can
be compared with the later unsupervised method. In the next
section, the protocol and the results of unsupervised learning
are discussed. We conclude with several important discussions
about the accuracies of the predicted phase boundaries and the
signatures of the first-order and second-order phase transitions
in the ML approach. Moreover, we also discuss why the
relevance of the correlation functions for the corresponding
phases is essential to make the ML approach effective.

II. XY AND XXZ MODELS
A. XY model
The Hamiltonian of the XY model reads

Hyy = —

N =

N
S la+yyior,
j=1

N

: h
+ (A =y)jol ] =3 0 M
j=1

describing a chain of N spin-1/2’s interacting ferromagneti-
cally with their nearest neighbors. Here o/ with a = x, y, z at
site i are Pauli matrices, obeying the usual commutation rela-
tions, [0, a}’] = 2i8;;¢"cf. The Hamiltonian is symmetric
under the mapping y — —y or h — —h, therefore one can
only consider the cases in which y > 0 and & > 0 without loss
of generality. For y = 1, one obtains the 1D transverse field
Ising model. In our study, we stress the cases with stronger
spin-spin interaction along the x-direction, and we consider
only the cases with 0 < y < 1.

The solution of the XY model in one dimension has been
derived for a long time since Lieb, Schultz, and Mattis found
the exact solution through the Jordan-Wigner transforma-
tion [55]. With the definition (7;’ = %(0}” + ioj).’) and 0, =
%(oj‘ — i07), the Jordan-Wigner transformation in terms of
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spinless Fermion operators ¢; and c; is defined as follows:

j—1
+ _ F ; T,
o; =cjexp mg cjci|. 2)
i=1

The Hamiltonian is then transformed to the form

N

f PR f
Hyy = — Z(cjcjﬂ +vejci +He) +hee; | + 7

3
Under the periodic boundary (c; = cy4;) condition, the
Hamiltonian can be further Fourier transformed into

Hyy = — > 2(cosk + h/2)cfcx
k

j=1

N
— [y sin k(chik + cre_x) + Eh @)

where the lattice constant is set to 1. The system is de-
composed into “noninteracting” (diagonalizable) momentum
subspaces, and thus the correlation functions of interest can
be calculated within the noninteracting subspaces.

The essential spin-spin correlation functions we considered
here are defined as

paa(m) = (Yo | g0y, | Vo), &)

where a = x, y, z, and Wy is the ground state of the XY model
(1). Note that p,, depends only on the relative distance, r,, —
ro, between the sites O and m due to the translational invariant
property. Using Jordan-Wigner transformation, Lieb, Schultz,
and Mattis [55] showed that p,,(m) can be transformed to the
Toeplitz determinant

G, G, - G,
Go G Gomt1

prc(m) =| [ (6)
Gno Gusz -+ G

where G;_, = (Vg | BjA, | Vo) with the definitions A, =
cZ +c,and B; = c;' + ¢;. While py,(m) has the same structure
as Pxe(m),

G Go G 2
Gz Gl G—m+3
pmy=| ™
Gm Gm—l te Gl
p;(m) has a much simpler form,
G, G
Pzz(m) = | =~ G’(’; , 8)

due to the fact that spin-1/2 S = %af is a local operator

unlike S} or S). Through the properties of the ground state
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FIG. 1. (a) Phase diagram of the 1D XY model. For & < 2, the
system is in the ferromagnetic (FM) state, whereas in the case of
h > 2, the system is paramagnetic. (b) Phase diagram of the 1D XXZ
model. In the case of A > 1, the system is in the antiferromagnetic
(AFM) state, while for A < —1,itis FM. Inbetween (—1 < A < 1),
it is in the gapless critical state.

|Wy) and the advantage from the periodic boundary condition,
the correlation function G;_,, can be calculated by

G 1 /” dky sink sin kR — (cosk + h/2)cos kR
l-n = — s
0 V(cosk + h/2)2 + y2sin®k

b4
where R = r; — r,, indicating the distance between sites / and
n. Interested readers are referred to Appendix A for more
details.

According to the Mermin-Wagner theorem [3], continu-
ous symmetry breaking does not occur spontaneously in 1D
quantum systems at zero temperature. In other words, no local
order parameter can gain any finite expectation value for such
systems. However, the phase transitions can still occur and
be observed by using appropriate correlation functions. For
instance, in Fig. 1(a), the phase diagram is shown for the
XY model, and the spin-spin correlation functions for the XY
model are shown in Fig. 2. When & < 2, the system is in an or-
dered phase, whose correlation p,, asymptotically approaches
aconstant as m — oo. This property represents the long-range
order of a ferromagnetic (FM) phase. On the other hand, when
h > 2, a disordered phase is observed due to the asymptotic
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FIG. 2. Spin-spin correlation functions for the XY model with
various h. (a) (—1)"p(m) for h = 1.0. (b) (—1)"p(m) for h = 4.
(©) (=1)"pyy(m) for h = 1.0. (d) (—1)" p,,(m) for h = 4. (e) p,. for
h=1. (f) p,, for h = 4. For all subfigures, y = 0.5. One can see
that p,, is a relevant correlation function in the ferromagnetic phase,
whereas p,, is relevant in the paramagnetic phase.
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behavior p,, — 0 and p,, — 1. Additionally, these properties
indicate that the disordered phase is actually paramagnetic
(PM). Note that all three correlation functions oy, pyy, and
pz; behave quite differently in FM and PM phases. Therefore,
they can serve as good candidates for the input data format
of deep learning machines to distinguish different quantum
phases.

B. XXZ model

The 1D X XZ model with zero magnetic field, which served
as the simplest model for explaining strongly correlated sys-
tems, has been “the” model to investigate the magnetism and
physics of some other related 1D interacting fermion systems
since Heisenberg proposed the XXX model [58] and Bethe
gave the first solution by using the Bethe ansatz [59]. The
Hamiltonian of X XZ model has the following form:

Hyxz =) SISt + S8, +ASSS,.  (10)
J

where S = 0%/2. Its phase diagram is shown in Fig. 1(b). For
A < —1 the system is in the FM state, while for A > 1 it be-
comes AFM. In between, i.e., in the case in which —1 < A <
1, it is in the XY phase (critical regime) due to the fact that
its corresponding correlation length is divergent. Note that for
A =1 the model corresponds to the AFM Heisenberg model
(XXX model), whereas for A = —1 it is the FM Heisenberg
model.

The XXZ model is a quantum integrable model, which
means that they can be solved by using the Bethe ansatz
(BA) [59]. However, it has always been a hard topic to ob-
tain spin-spin correlation functions with BA. For instance, to
calculate (Sa' S,,), it involves several complicated multidimen-
sional integrals with the highest dimension equal to 2m + 1
in the complex plane. In other words, for m > 2 it becomes
numerically difficult to calculate the spin-spin correlations
[60].

The correlation functions for the critical phase, where
—1 < A < 1, can be calculated via the bosonization approach
[61], which only considers the linear energy spectra near two
Fermi points, and it maps the Hamiltonian into an effective
bosonic model (Luttinger liquid) parametrized by the group
velocity and Luttinger parameters [61]. The outcome is that in
the thermodynamic limit, where the correlation length of the
system is infinite, the spatial correlations decay algebraically
with powers determined by the Luttinger parameters and be-
have like a (quasi)-long-range order. However, this method
only works in the massless Luttinger regime. For the other
massive phases, e.g., FM and AFM, Luttinger liquid analysis
fails. For our purpose, we need to calculate correlations in all
regimes, and hence some other alternative methods must be
adopted.

We overcome the issue mentioned above by leveraging
a numerical method called density-matrix renormalization
group (DMRG), which was developed by White [6,57].
The low-energy spectrum, the correlations, and other useful
physics properties of 1D systems can be calculated efficiently
by DMRG due to the low bipartite entanglement of 1D sys-
tems. In particular, the calculations can be quick and precise
with very low truncation errors. Figures 3(a), 3(b) and 3(c)
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FIG. 3. Spin-spin correlation functions for the XXZ model with
various A. Parts (a), (b), and (c) are (S§S%,) for A = =2 (FM), A =
0 (critical), and A =2 (AFM), respectively. Parts (d), (e), and (f)
are (S7S,) for A = =2 (FM), A = 0 (critical), and A = 2 (AFM),
respectively. We can see that (S§S7,) is relevant in the AF and FM

phases, while (SFS,,) is only relevant in the critical phase.

show (S§S7) for A < —1, =1 < A <1, and A > 1, respec-
tively, using a specific algorithm called iDMRG with the
length of the unit cell Lyc =40 and the bond dimension
my, = 100 [62], enforcing U (1) symmetry in the S, = 0 sector.
The iDMRG algorithm produces Matrix Product State wave
functions that are infinite in size, and translationally invariant
under shifts of the 40-site unit cell. The large unit cell allows
the system to partially phase-separate in the ferromagnetic
region, as shown in Fig. 3(a), whereas in the critical phase the
wave function will be translationally invariant under a two-site
shift [which is the minimum possible translational invariance
allowed by the U (1) symmetry for spin-1/2 systems]. One can
see that for Fig. 3(a) the correlations develop some plateaus
at the values 1/4 and —1/4, showing FM property with total
magnetization equal to zero due to the U(1) symmetry. In
the critical regime, —1 < A <1, (S§S%,) quickly decays to
zero as a function of the distance, which indicates that there
is no long-range order at all, as shown in Fig. 3(b). For the
AFM (A > 1), (S5S%) has a zigzag curve, which represents
the AFM long-range order, ie., (—1)"(S{S%) decays to a
constant, as shown in Fig. 3(c). Therefore, S;S?, can be viewed
as a relevant operator for the FM and AFM phases, whereas
for the critical phase it is irrelevant.

On the other hand, the behaviors of (SaL S,,) are shown in
Figs. 3(d), 3(e) and 3(f). From the figures one can see that
(S4°S,,) decays to zero for both FM and AFM phases, while
for the critical phase it shows the XX long-range order similar
to the XY model for y = 1. Therefore, contrary to S35, S¢S,
can be viewed as a relevant operator for the critical phase,
whereas for both FM and AFM it is irrelevant. The relevance
of the correlation operators is very important for the outcomes
of the deep learning process, as we will discuss later in the

paper.

III. SUPERVISED LEARNING

A. Data preparation

In previous studies [8,24,25], we used quantum-
information-related quantities, such as Majorana correlation
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FIG. 4. The schematic illustrations of the convolutional neural
networks for various input data: (a) oy, Pyy, OF P25 (D) Pxr, Oyy, and
2 all together; (¢) (S§S%) or (S7S,,); (d) both (S5S%) and (S S;,).

matrices (MCMs), block correlation matrices (BCMs),
one-particle entanglement spectra (OPES), or one-particle
entanglement eigenvectors (OPEEs) as input data for
deep-learning processes. The whole data construction of
the entanglement-related data is based on the calculations of
the fermion-fermion correlation functions, and thus we take
here the spin-spin correlation functions of the XY and XXZ
models in analogy with those of fermion models.

For the XY model, we prepare each of o (r; —7;),
Py(rj —1;), and p_(r; —r;) as an m; X m, matrix, where
r;,rj =0,1,...,m; — 1, by calculating G;_, and the Toeplitz
determinant for each entry. The subsystem length, m,; =
max |r; — ;| + 1, is set to be less than 40, and the precision
of the integrals is 107!6 by using Romberg integrals.

On the other hand, for the XX Z model, we use the iIDMRG
algorithm with matrix product states (Matrix Product Toolkit
by McColluch [63]) to compute correlation functions, (S} ij/ ),
where o, o’ =z, +, —. We take the length of the unit cell
Lyc = 40 and the bond dimension m;, = 100. For the ground-
state calculation, its energy is compared with the result of
the Bethe ansatz, and the precision is distributed within the
range of 10~'2-107*. For the critical phase, the accuracy
is relatively lower, whereas for the gapped phases (FM and
AFM) the precision is much higher.

B. Deep-learning processes

The usage of different types of neural network architec-
tures to recover phase transitions often depends on data types
and their characteristics. For instance, matrices or tensors can
be naturally viewed as single- or multichannel 2D “images,”
and then a convolutional neural network (CNN) would be an
efficient candidate for the pattern recognition in the “images”
due to its inductive priors, such as translational invariance
and spatial locality. Here, the matrices based on the spin-spin
correlation functions just belong to these kinds of data types.

In the XY model, there are three essential correlation func-
tions: Py, Pyy, and p.;. One can choose one of them as the
input data or put all of them into the machines with model
architectures shown in Figs. 4(a) and 4(b), respectively. In sit-
uation (a), each “image” contains information of an m; x my
matrix, whereas in (b), the input data are “images” of dimen-
sion, 3 x my; x my. “3” indicates the dimension along which
all pyy, pyy, and p., are stacked together. On the other hand,
for the XXZ model, there are two important correlations:
(85S%,) and (SO+ S,.)- They can also be put into the machines

individually or all together, as shown in Figs. 4(c) and 4(d). In
this paper, we choose m; = 20 for the XY model and m,; = 40
for the XX Z model.

The basic neural networks designed for the phase recog-
nition task are shown in Fig. 4. By using Keras in the
TENSORFLOW package [64], all NNs begin with a convolu-
tional layer containing 16 kernels (filters) of the size 3 x 3
and ReL U activation functions, and then they connect to four
fully connected ReLU activated layers with 512, 256, 128,
and 64 neurons, respectively. Finally, they are followed by
an output dense layer with two (XY') or three (XX Z) neurons
plus a softmax function. The output of each neuron can now
be interpreted as the probability for each phase with which
the input may associate. Note that the zero-padding technique
on the input data is used to keep the same input size, and no
pooling layers are needed due to the small size of the input
data.

In the supervised learning, the labeled training data are
needed. In the XY model, we first chose two magnetic fields
h individually for the FM and AFM phases, each of which
is expanded within a window of size 0.1 in units of 4 at a
constant anisotropy y to collect labeled data points. In fact,
the training points can be either chosen arbitrarily deep inside
each phase or via the most confident points with the best
silhouette value in the unsupervised learning approach, which
will be explained in the next section. For the XX Z model, six
training points are first chosen and then expand in the same
manner. Here, we purposely took two points for each phase for
the sake of good precision at the inference stage. Moreover,
we found that there is a more natural way to take these points
by using unsupervised learning, as we will discuss later. By
setting the train-validation split ratio as 0.2, we adopt the
ADAM optimization [65] for training at a learning rate 10~
with categorical cross entropy as the loss function. Once the
loss is converged after training, at the inference stage we fix
whole parameters in the trained model and feed with new data
for prediction. The rapid drop for the “probability” output of
the NN indicates that the trained model recognizes the phase
transition from one phase to the other as a function of the input
spin-spin correlation functions.

C. Supervised results
1. XY model

For the supervised learning of an XY model, we choose
regions around two magnetic fields / as training points. For
each region, 1000 py,, pyy, and p, are calculated according
to Egs. (6), (7), (8), and (9). Those correlation functions are
based on a thermodynamic system, where the system size is
infinite, with a periodic boundary condition.

After training, our trained model can distinguish different
phases for a given dataset and locate the phase boundaries
by inputting a set of unseen data points along the magnetic
field h. In the XY model, 20 000 testing data points are
collected uniformly from 2 = 1 to 10. By feeding p,., pyy, and
Pz, all together, the results are shown in Fig. 5(a). Typically
training after 40 epochs, both training and validation losses
drop to 107°, indicating that the trained model becomes re-
liable, as shown in Fig. 5(b). The probability of the neuron
output for predicting the FM phase drops from 1 to O at
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FIG. 5. (a) Each neuron output of the final softmax layer corre-
sponding to the probability of each phase as a function of 4 with
y = 0.5 by feeding p.., oy, and p,; all together into the machine.
Although the training set from the correlation functions is far beyond
the /4 region shown here, the trained CNN can still recognize a
quantum phase transition near 4 = 2. The dashed line indicates the
theoretical phase-transition point. (b) The validation loss follows the
trend of the training loss well, suggesting no overfitting happened.

h = 2, while the other output for predicting the PM phase
rises from O to 1. These two curves cross each other at 4, =
1.94,1.95, 1.95, 1.95 for m; =5, 10, 15, 20, respectively, as
listed in Table I. The predicted critical points are around 1.95.
The results for different m; are not changing too much due
to the small sizes of the correlation functions. They are all
within the statistical errors.

In Fig. 6 we show the predicted critical points by inputting
the three correlation functions individually. The correspond-
ing CNN architecture is shown in Fig. 4(a). In the case of
my = 20, h. are 1, 95, 1.95, and 1.92 with standard deviations
0.01, 0.01, and 0.02 for the training data of px, pyy, and p_;,
respectively. We can see that the results are almost the same as
those by inputting the three correlation functions all together.
Therefore, we can confirm that py,, p,y, and o all contain the
important information to locate the critical points.

In Table I the critical points found by inputting the correla-
tions with difference size m are shown. Essentially there exists
no significant difference of the precision among them. In other
words, since DL can be viewed as a statistical model building,
within the statistical errors one can use small-sized correlation
functions to find the critical points with good precision.

2. XXZ model

For the supervised learning of the X XZ model, we take two
anisotropies, i.e., A values, for each phase as training point
centers, and thus there are six in total. Around each A, 1000
(S5S%,) and (S(J)r S, are calculated by MPS Toolkit of iDMRG
[63].

TABLE 1. Predicted critical points by training spin-spin correla-
tion functions of different sizes m, = 5, 10, 15, 20 for the XY model.

Pxx> Pyys Pzz Puxx Pyy Pzz
mg =25 1.94 1.96 1.96 1.90
mg = 10 1.95 1.96 1.96 1.91
mg =15 1.95 1.96 1.96 1.91
m; = 20 1.95 1.95 1.95 1.92
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FIG. 6. Results of supervised learning of the XY model by feed-
ing (a) Py, (b) pyy, or (c) p. individually. The predictions are close
to the exact value 7 = 2.

As for the XY model, after training the machine can
serve as a well-trained model to find out the TPs by feed-
ing a set of unseen data points along A. Here, we also
take 2000 testing data points to explore phase transitions.
By inputting both (S§S%) and (SfS,,), we show the pre-
dicted critical points in Fig. 7(a). Typically after 14 epochs
of training, the training and validation losses decrease to
less than 10~% as shown in Fig. 7(b). Namely, the trained
model has found the optima for finding those critical points.
The probability of predicting the FM phase drops from 1
to O around the critical point A, = —1, whereas that of
predicting the critical phase rises from 0 to 1. A simi-
lar situation also happens for the critical point between
the critical and AFM phases. The predicted critical points
(Al, A2), which are taken at the crossing points of the proba-
bilities, are (—1.05, 1.19), (—1.03, 1.19), (—1.05, 1.20), and
(—1.03, 1.21) for m, = 10, 20, 30, and 40, respectively, as
shown in Table II. The predicted A Ll are closer to —1, whereas
the differences between the predicted A2 and the real critical
point 1 are bigger. To understand the situation, we feed (S§S7,)
and (S; S,,) separately into machines.

A
Q
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_
=

1.0 prm—— 1.0
>0.8 0.8 |
= —_—
= M 2 06
0 0.6] ° S 0. o .
8 Critical o tra|”:7|055
e 0.41 e AFM S04/ LT val_loss
= 8

0.2 2.5

0.0 . _

-2 -1 0 1 5 0.0 s 55 %
A epoch

FIG. 7. (a) Neuron output of the final softmax layer correspond-
ing to the probability of each phase as a function of A by feeding
both (S3S3) and (SfS,) into the trained machine. Although the
training set from the correlation functions is far beyond the A region
shown here, the CNN can still recognize quantum phase transitions
near A = —1 and 1. The dashed lines indicate the theoretical phase-
transition points. (b) The validation loss follows the trend of the
training loss well, suggesting no overfitting happened.
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TABLE II. Predicted critical points by training spin-spin corre-
lation functions of different sizes m, = 10, 20, 30, 40 for the XXZ
model.

(5555, (S5 S) (5555, (S3S3)
Al A? Al A2 Al A2
m; = 10 —1.05 1.19 —1.09 1.17 —1.06 1.20
mg = 20 —1.03 1.19 —1.02 1.24 —1.03 1.15
m; = 30 —1.05 1.20 —1.02 1.27 —1.06 1.12
m; = 40 —1.03 1.21 —1.02 1.29 —1.05 1.10

Figure 8 shows the probability of predicting the critical
points by feeding the correlation functions (S;S?%,) and (SS' S,
separately. One can also see the predicted values in Table II
for different subsystem size m, = 10, 20, 30, 40. For the first-
order phase transition from the FM phase to the critical
one, i.e., A = —1, either (S§S7) or (S(J)FS,;) can predict more
precise TPs. However, for the second-order TPs, A, =1,
(S(T S,,) is getting more and more precise through increasing
my, whereas the predicted values by feeding (S{S7,) are not so
precise throughout different subsystem sizes.

The aforementioned phenomena can be understood as fol-
lows. Near any first-order TPs, the gaps are opened faster,
therefore the machine can easily recognize TPs, while near
the second-order TPs, the gaps are opened much more slowly,
and thus the precision for finding such TPs is poorer from
both correlations. However, when going into the AFM phase,
(85S%) shows a smaller growth than the decrease of (Sg' S,
and it results in bigger prediction errors for A2. These results
suggest why the predicted critical points A2 obtained by in-
putting two correlation functions together are in between the
predicted values obtained by feeding each correlation individ-
ually. The more imprecise results obtained by (S;SZ,) weaken
the prediction precision when two correlation functions are
input spontaneously.

The results for the XX Z model are not as precise as those
for the XY model due to the fact that we use numerics
(iDMRGQG) to calculate the correlations for the XXZ model,
instead of using analytical expressions as in the XY model.
However, the results are still encouraging. In particular, the
predicted critical points obtained from (S;S,,) are in sur-
prisingly good agreement with the analytical results when
my < 20. This shows the advantage and the effectiveness of

(a) (b)

1.0 (5isn) 1.0 35 g
208 0 mf & >0.8 osmi
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FIG. 8. Results of supervised learning of the XXZ model by
feeding (a) (Sa' S..) and (b) (S;5S%,) separately, with m, = 40. Please
refer to Sec. III C for more discussions.
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FIG. 9. (a) The proposed working protocol to identify different
phases and to finely determine the phase boundaries without prior
knowledge. (b) The schematic model architecture of the autoencoder
(AE). (Conv denotes convolution module; FCNN denotes fully con-
nected neural network module.)

our approach for searching the patterns in the correlation
functions.

IV. UNSUPERVISED LEARNING
A. ML algorithms

One of the ultimate goals in ML is to discover the hidden
patterns behind given data without any human intervention or
manual labeling. These kinds of ML algorithms are called
unsupervised learning. Since one does not need any label
tagging in the process of unsupervised learning, it is usually
difficult and commonly considered as a kind of holy grail
in the science community. In our previous study [8], we al-
ready demonstrated a working procedure to obtain the TPs by
mainly unsupervised learning, and thus we just introduce our
method here in a simpler version.

The proposed working protocol is schematically shown
in Fig. 9(a). There are four steps: (i) The input correlation
functions are fed into an autoencoder (AE) for unsupervised
training in order to extract effective features via dimension
reduction. (ii) The necessary feature dimension is determined
by principal component analysis (PCA) when 99% of total
variance of input features is kept. (iii) The total number of
phases is then determined by K-means clustering for the ex-
tracted, necessary features, followed by silhouette analysis
(SA). (iv) Sharp phase boundaries can be further obtained with
the help of supervised learning, which we constructed in the
last section. We explain a few key algorithms below.

An AE compresses input data into a more efficient rep-
resentation in an unsupervised way. It consists of two parts,
namely an encoder and a decoder. A typical model architec-
ture of AE is shown in Fig. 9(b). It is made of a convolution
layer followed by a linear module composed of fully con-
nected hidden layers. In the decoder, it is arranged in a
reversed manner to that of the encoder, except that now the
convolution layer is replaced by a transposed convolutional
one.

As opposed to AE, PCA is a linear method to reduce the
dimension and to visualize the data. To do that, PCA uses an
orthogonal and linear transformation of the input features to a
sorted set of new variables by their variance.
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Once the extracted features are obtained from the input
data, the K-means algorithm is taken as a clustering algorithm
without any supervision. Given the number of clusters n, K-
means is used to find out the best cluster formation such that
the variance within each cluster is minimized.

Howeyver, in order to use K-means to find out the best clus-
ter formation, one still has to provide the number of clusters
n. To find out n automatically, we employ SA. For a give set
of clusters, SA assigns a value, called the Silhouette value
s(x), which is bounded between +1 and —1, to each data point
within a cluster. s(x) can be interpreted as a measure of how
alike x is to its own cluster (cohesion) compared to the other
one (separation). One computes s-score, namely the mean of
s(x), as a function of the number of clusters n after K-means
clustering, and then we take the best n as the one giving the
maximum s-score.

Once the best choice for n is given, the data point with the
highest silhouette value within the same cluster can serve as
the most confident point to build a “labeled” training set to
train a supervised neural network. It can improve the preci-
sion of the predicted critical points originally obtained in an
unsupervised learning over the parameter space.

B. Unsupervised results
1. XY model

We first prepare the input image dataset of correlation
functions by generating 10 001 p,y, p,y, and p,, with the same
method described in the supervised learning at evenly divided
magnetic field 4 from O to 10, with subsystem size m; = 20
of an infinite chain with periodic boundary conditions. We
feed the three correlation functions all together or separately.
In Fig. 10 we show the results by feeding three correlation
functions at the same time, while Figs. 11-13 show the results
by inputting p,, pyy, and p.., respectively, into the machine.

Following the ML protocol described in ML algorithms,
we first have to train a neural network to encode our input data
to effective representations in the latent space. To discover the
minimum dimension d, of the latent space, a series of AEs
with the same model architecture is trained except for the
number of hidden neurons in the middlemost layer np;g from 2
to 10. For each ny,jq, the necessary dimension of the converged
latent representation to keep at least 99% variance of them by
PCA is recorded. For doing the statistical analysis, we repeat
the same training procedures 100 times with the same initial
weight distribution. In this way, the minimum dimension 4, is
decided if such a number becomes indispensable (dominant)
in the discrete distribution of d, when n,,;4 increases.

To obtain the best number of clusters n, we utilize SA
through the K-means algorithm. In the following calculations,
we already fixed nyiqg = d; = 2 (fed data: three correlations,
Oxxs> Pyy) OF Nmid = d; = 3 (p;;) hidden neurons in the middle-
most layers as suggested by (a) of Figs. 10—13, respectively.
In (b) of those four figures, the mean silhouette values achieve
the highest one when n = 2, suggesting that there are two
different phases (clusters) for the XY model.

In (c) of Figs. 10—13, we show the projection of latent rep-
resentations into a 2D space spanned by the first two principal
components (features). These plots show us how the system
could be separated into two clusters (phases). The feature
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FIG. 10. AE results for the combined spin-spin correlation func-
tions (0xx, Pyy, Pz;) of the XY model as the input data. (a) The discrete
distribution of the necessary number of neurons d;, for a given ny;g
of neurons in the middlemost layer (2 to 10 along the y axis). Results
from 100 independently trained AEs are statistically calculated: The
length of every color bar is proportional to the number of times that d,
occurred within 100 models. Different colors in the legend represent
different d,. (b) The box plot of the s-scores as a function of n clus-
tering (via K-means method). (c) Latent representations projected to
a subspace spanned by the first two principal components (feature
map). Each color indicates its corresponding cluster (phase). (d) The
neuron output (phase diagram) as a function of 4 with m, = 20,
y = 0.5 for the 1D XY model from a trained CNN by supervised
learning in the last step of the ML protocol. The dashed line indicates
the theoretical phase-transition boundary.

plot is a continuous curve, which characterizes a second-order
phase transition. We will see the differences of such feature
plots between the first- and the second-order phase transition
in the next subsection.

By going through the aforementioned recipe, the TPs are
statistically found at the mean values 2.03, 1.97, 1.98, and
2.09 with the standard deviations 0.03, 0.02, 0.02, and 0.14
for Figs. 10—13, respectively, after collecting clustering results
from 100 sets of latent representations via different trained
AEs.

The silhouette values of the XY model are drawn in Fig. 14.
One can see that the minima of silhouette values almost lie on
the TPs. This suggests that SA can serve as a good indicator
for phase transitions. To find more accurate TPs, we first take
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FIG. 11. Same as Fig. 10, except that here, p,, function is taken

as the input data.
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FIG. 12. Same as Fig. 10, except that here, p,, function is taken
as the input data.

two representative points, which obtain the highest s-score in
each cluster. We call them the most confident points (MCPs).
In our case, they are (0.89, 6.31), (0.85, 6.15), (0.85, 6.13),
and (0.87, 6.34) for the input data as the combined three
correlations, oy, pyy, and p.., respectively. For each phase, we
expand symmetrically around the MCP by a window of 0.1 to
get 1000 points with equal spacing. These 2000 data points
form our training dataset with labels, and the original 10 001
ones become our test dataset (without labels). By further train-
ing CNN models with these labeled datasets, the PTs found
become sharper at mean values, 1.95, 1.95, 1.95, and 1.92
with smaller standard deviation, 0.03, 0.01, 0.01, and 0.02,
as shown in Figs. 10-13, respectively, at the testing stage.

2. XXZ model

For the XXZ model, we prepare the input “images” by
generating 20 001 (S;S,,) and (S;SZ) by iDMRG at evenly
divided A from —10 to 10. In unsupervised learning we
choose the subsystem size m; = 40. Similar to the case of the
XY model, we input both correlation functions (Sar S,,) and
(85S%,) together or separately. In Fig. 15 we show the results
by feeding both correlation functions, whereas in Figs. 16 and
17 the results by inputting (Sar S,,) and (S5S%), respectively,
into machines are shown.

Similar to the XY model, we first train a neural network
to encode our data of correlation functions to the latent rep-
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FIG. 13. Same as Fig. 10, except that here, p,, function is taken
as the input data.
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FIG. 14. Silhouette values as a function of 4 for y = 0.5 and
m = 20 with (a) py., Py, and p,. all together; (b) pi; (¢) pyy; and
(d) p,; as the input data. Notice that the minima of silhouette values
are close to the phase-transition point 1 = 2.

resentation. We determine the minimal dimension d, of the
latent space as follows. First, we train 100 AEs with the
same model architecture for each given number of hidden
neurons in the middlemost layer (g, from 2 to 10). In (a)
of Figs. 15-17, we then compute the discrete distribution of
d,, i.e., the necessary dimensions of the latent representations
to keep at least 99% variance of all encoded representation
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FIG. 15. AE results for both spin-spin correlation functions
({SgS,,) and (S3S%)) of the XXZ model as the input data. (a) The
discrete distribution of the necessary number of neurons d, for a
given npyiq of neurons in the middlemost layer (2 to 10 along y axis).
Results from 100 independently trained AEs with both correlation
functions are statistically calculated: The length of every color bar
is proportional to the number of times that d, occurred within 100
models. Different colors in the legend represent different d;. (b) The
box plot of the s-scores as a function of n clustering (via K-means
method). (c) Latent representations projected to a subspace spanned
by the first two principal components (feature map). Each color
indicates its corresponding cluster (phase). It is obvious that for
the first-order phase transition, the two clusters are disconnected,
whereas for the second-order phase transition, they are continuously
connected. (d) The neuron output (phase diagram) as a function of A
for the 1D XXZ model from a trained CNN by supervised learning
in the last step of the ML protocol. We choose 10 seeds (gray dots)
as our labeled training data. The dashed lines indicate the theoretical
phase-transition boundaries. Please see the main text and discussions
for more details.
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FIG. 16. Same as Fig. 15, except that here, (Sar S,,) is taken as the
input data. Moreover, in (b), since (S;S;,) is not relevant in the FM
and AFM phases, i.e., they cannot distinguish FM from AFM, they
show only two clusters (critical and magnetic phases); in (c), unlike
the input data with (S§S7,), there exists no signature of the first-order
phase transition if we only feed (S;S;,) into the machine, therefore
the two clusters are continuously connected. Please see the main text

and discussions for more details.

vectors for each ny;q by PCA. d, is finally suggested to be 3
for the input data using both correlation functions in Fig. 15, 2
for those using (S(J{S;) in Fig. 16, and 4 for those using (S§S%,)
in Fig. 17 as the input data.

After d, is obtained, the latent representation of all input
data from previously trained AEs is taken with n,q = d, and
then SA is done to estimate the optimal number of clusters
n via K-means. The results are shown in (b) of Figs. 15-17,
which specify that the mean s-score reaches the highest one
when n = 3 in Figs. 15 and 17; however, for the input data as
(SS“S,;), n = 2 in Fig. 16. This difference suggests that using
(S5S%,) as input data is possible to find the correct number of
clusters (phases), whereas using (S;S,,) can only recognize
two clusters (phases) because they confuse FM and AFM
phases.

By projecting the multidimensional latent representations
into a 2D space spanned by the first two principal components
(features), we have (c) of Figs. 15-17. We first investigate
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FIG. 17. Same as Fig. 15, except that here, (S§S7,) is taken as the
input data. Moreover, in (b), it is obvious that for the first-order phase
transition, the two clusters are disconnected, whereas for the second-
order phase transition, they are continuously connected. Please see
the main text and discussions for more details.
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FIG. 18. Silhouette values as a function of A for m; = 40 with
the input data as (a) both (S7S,) and (S3S%), (b) (SyS,,), and (c)
(S5S%,). Some signatures are shown here: silhouette values for the
FM phase are almost the same, which means they all can be the
most confident points. For the first-order phase transition, the minima
of silhouette values mostly lie around the critical point A = —1,
whereas for the second-order phase transition, they have some de-
viations from the critical point A = 1 except in the case in which the
input data are (S;S,,).

Fig. 15(c) for the input data as both correlation functions.
The plot suggests how the system could be divided into three
clusters. Moreover, the points with blue, which represent
the FM phase, are discontinuously separated from the other
clusters. Such discontinuity is a signature of the first-order
phase transition at A, = —1. On the other hand, the green
and orange lines are connected continuously, which represent
a second-order phase transition at A, = 1. The same phenom-
ena can also be seen in Fig. 17, whose data originate from
(85S%,) correlations.

However, for Fig. 16 it looks quite different. In this figure,
(Sar S,,) correlations are used as input data, and they cannot
distinguish between FM and AFM phases. Therefore, the la-
tent representation does not have the signature of a first-order
phase transition. The two curves are continuously connected.

Figures 18(a), 18(b) and 18(c) show silhouette values of
training data from both correlations (SaL S,,) and (S§S%), re-
spectively. There are two minima of silhouette values. On the
left-hand side of the figures, the minima are —1.04, —1.05,
and —1.01 in Figs. 18(a), 18(b) and 18(c), respectively, which
lie almost at the critical points. However, those on the right-
hand side behave quite differently, where the minima lie at
A =141, 1.12, and 1.70 in Figs. 18(a), 18(b) and 18(c),
respectively. For input data as (S;S,,), the minimum is close
to the critical point 1, while for those as (S§S%) the minimum
lies away from the TP. The reason for the latter case is due
to the slow gap opening phenomenon for the second-order
phase transition, which means the correlation length is long
near the critical point. When both correlation functions are
stacked as input data, we obtain the median among the three
minima shown in Figs. 18(a), 18(b) and 18(c). As far as the
maxima of silhouette values are concerned, they are 6.08,
5.25, and 6.30 for the AFM phase in Figs. 15-17, whereas for
the FM phase, silhouette values remain almost constant, and
the point of maximal silhouette value changes for every new
training, which means that almost every point represents the
most confident one. Finally, the maxima of silhouette values
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FIG. 19. Supervised learning results with only four training
seeds (gray dots) without the seeds related to the cutoff precision
of iDMRG when the input data originate from (a) both (S;S,)
and (S5S3), (b) (S7S,), and (c) (S5S%). For the first-order phase
transition, the critical points remain intact, while for the second-
order phase transition the results are worse than those with the extra
training seeds related to the cutoff precision.

for the critical phase always occur at A = 0 no matter what
kind of input data we feed.

The TPs found by the input data as both correlation func-
tions (Sa’Sn;) and (S§S%,) are at the mean values (—1.03, 1.61),
(—1.04, 1.19), and (—1.01, 1.68) with the standard deviations
(0.14, 0.20), (0.01, 0.29), and (0.00, 0.09), respectively, after
collecting clustering results from 100 sets of latent represen-
tations via different trained AEs. For the first-order phase
transitions A, = —1, the predicted values are very precise
with small standard deviations. However, for the second-order
phase transition A, = 1, the predicted results are imprecise
with larger standard deviations. To make the predictions more
precise, we further train a CNN classifier via supervised learn-
ing to predict all the TPs. To prepare the labeled data, we
choose ten seeds in the following way: For the AFM phase,
three seeds (5.25, 6.08, 6.30) are chosen from the most confi-
dent points of SA in Figs. 18(a), 18(b) and 19(c) (see Sec. V
for more details). Instead, we choose the mirror reflecting
points against 0, (—5.25, —6.08, —6.30), as three seeds for
the FM phase since each point in the FM phase has almost
the same silhouette value and thus each can be chosen de-
liberately as the most confident point. For the critical phase,
we also choose three seeds (—0.21, 0.00, 0.38), which are the
most confident points of SA in Figs. 18(a), 18(b) and 18(c).
Finally, an additional seed is chosen at 1.54, which indicates
the iDMRG cutoff point. We will have a detailed explanation
for these choices in Sec. V. For each seed, we expand sym-
metrically around it by a window width A = 0.1 to obtain
1000 points with equal spacing. These 10 000 labeled data
points then form our training dataset, while the original 20 001
ones become our test dataset (no labels). As shown in (d)
of Figs. 1517, the phase boundaries obtained by the CNN
classifier are at mean values (—1.03, 1.19), (—1.05, 1.02),
and (—1.02,1.28) with standard deviations (0.01, 0.03),
(0.01, 0.06), and (0.01, 0.02). For the first-order phase transi-
tion, the predicted values and standard deviations are similar
to the case in which no further supervision is applied. How-
ever, for the second-order phase transition, the predicted
values become more precise with smaller standard deviations.
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FIG. 20. The errors of the ground states of the XX Z model with
various positive A compared with the exact solution of the Bethe
ansatz.

V. DISCUSSION AND CONCLUSION

The proposed ML method of feeding the spin-spin cor-
relation functions to predict the magnetic quantum phase
transition points has shown its advantage with (supervised
learning) or without (unsupervised learning) prior knowledge
on the phases of matter. However, there are still several issues
we would like to mention here.

(i) In the supervised learning, we only used one training
point (seed) in each phase for the XY model to obtain precise
phase-transition points; however, for the X X Z model, we need
two points. To show the necessity of using six training points,
in Figs. 19(b) and 19(c) we show the trained results of the
input data as (Sar S,,) and (S§S?% ), respectively, by using four
training points, i.e., one for the AFM phase, one for the FM
phase, and two for the critical phase for the sake of symmetry.
The predicted phase-transition points are at the mean values of
(—1.06, 1.27) and (—1.03, 1.76) with the standard deviations
(0.01, 0.09) and (0.01, 0.08) for the input data as (Sg’S,;)
and (S§S%), respectively. The predicted TPs are on the same
level as those of six training points for the first-order phase-
transition point at A, = —1, however they are less precise for
the second-order phase transition at A, = 1.

The basic reason behind this difference can be understood
as follows. For the XY model, we can adjust the accuracy
uniformly down to 107'¢ by using Romberg integrations;
however, for the XXZ model, the precision controlling is
much more difficult. Figure 20 shows the errors of the ground-
state energy by using iDMRG with the number of the bond
dimension m, = 100 compared with the exact solutions of
the Bethe ansatz from A =0 to 10. In the critical regime,
the errors are about 1074, and then it drops quickly to 102
from A =1 to 2. In other words, the training data that we
calculate around the most confident point in SA have precision
up to 10~'2; however, around the critical points the errors
increase to 107, It turns out that the information around the
most confident point cannot sufficiently represent that around
the critical point. Therefore, we need an extra training point
(seed) near the second-order phase-transition point. After the
calculation, we found that A = 1.536 is just the point with a
cutoff precision, 10~8, which can then be an appropriate extra
seed around the critical TP. We have to check that the cutoff
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FIG. 21. In the last step of the unsupervised learning working
protocol, we use supervised learning to improve the precision of
the predicted critical points. Here we show the supervised learning
results with only nine training seeds (gray dots), including the most
confident points of the three datasets using different correlation func-
tions as the inputs, respectively. Note that the extra seed related to the
numerical cutoff precision is not included. For the first-order phase
transition, the critical points remain intact, while for the second-order
phase transition the results are worse than those by using nine train-
ing seeds plus the extra seed corresponding to the numerical cutoff
precision (a total of 10 seeds).

point we obtained is on the right-hand side of the minimum
within silhouette values around A, = 1 in Fig. 18(a), because
SA provides a suggestion where the approximated critical
point could be. And this is precisely the case we encountered
here. If it lies on the left-hand side of the minimum, however,
we should decrease our cutoff precision instead.

In unsupervised learning, we establish a way of finding
training points (seeds) for the XX Z model. For the AFM and
the critical phases, we choose the three most confident points
according to silhouette values in the cases when the input data
are both correlations, (SO+ S.,) and (S;S7% ), respectively. In the
FM phase, we choose the mirror reflecting points of those in
the AFM phase. In Fig. 21 we show the training results of
supervised learning using nine training seeds. The TPs we
obtain are at the mean values, (—1.03, 1.54), (—1.05, 1.18),
and (—1.02, 1.72), with the standard derivations (0.01,0.09),
(0.02,0.11), and (0.01,0.08) corresponding to Figs. 21(a),
21(b) and 21(c), respectively. For easy comparison, the results
with both 10 and 9 training seeds are listed in Table III. We can
see that the results for the second-order phase transitions are
worse than those where we add an extra seed representing the
cutoff property, whereas for the first-order phase transition the
results remain mostly unchanged. This suggests that we truly
need the cutoff point to be a reference to fix the precision of
the predicted phase boundary.

TABLE III. Comparison of the predicted critical points obtained
by using 9 and 10 training seeds.

(S5S5), (S0 S,0) (5655 (Sy S,)
Al A2 Al A2 Al A?
9 seeds —1.03 154  —1.02 172 —1.05 1.18
10seeds —1.03 1.19 —1.02 128 —105 1.02

(ii) For the XY model, p,.(m) for m ~ oo is significantly
large in the PM phase, and so is p,;(m) in the FM phase.
They are defined as relevant correlations for the corresponding
phases. Similarly, for the XXZ model, (S;S,,) is relevant in
the critical phase only, whereas (S§S?,) is relevant in both the
FM and AFM phases.

To distinguish whether correlations are relevant or irrel-
evant has its advantages. The relevant correlations can be
used to find the phase boundaries between their corresponding
phases and their neighbored phases. For instance, since p,, (m)
is relevant for the PM phase, it can easily be used to find the
TP between PM and FM. Likewise p,,(m) can also be used to
find the phase boundary.

In contrast to the XY model, for the XX Z model the situ-
ation is more complicated. In unsupervised learning, (S; S,,)
can find two phase boundaries: one is between the AFM and
critical phases, and the other is between the critical and FM
phases. However, by the clustering algorithm, they can only
be grouped to two clusters. This is because the (S, S,,) is only
relevant for the critical phase, but irrelevant in both FM and
AFM phases. Therefore, the machine cannot distinguish the
behaviors between the FM and AFM phases and can only
differentiate the critical phase from the magnetic one.

On the other hand, there exist three clusters when (S§S7,)
correlations are used as input data. The reason is obvious:
though (S§S7,) are relevant for both FM and AFM phases, their
behaviors are totally different. Therefore, the machine is not
confused between them. As a result, three phases are distin-
guished out of the training model, i.e., two relevant phases
and one irrelevant phase.

Before further discussing the XX Z model, one interesting
point is worth mentioning here. Though p,,(m) is irrelevant
for both PM and FM phases, by using this kind of input data
it can still find the phase boundary. The reason is that the
machine finds the different pattern of the correlations: In the
PM phase, p,,(m) has a positive-negative oscillation for small
m, while in the FM phase it remains positive. Therefore, even
though the correlations are irrelevant, they could sometimes
to be used to distinguish the phases if the correlation patterns
are different.

(iii) In the XX Z model there exist both first- and second-
order phase transitions. This fact allows us to investigate the
differences of the training processes and their outcomes.

First of all, the biggest difference lies in the feature maps
(2D latent representation). In Fig. 17(c), where the correla-
tion functions (S§S%) are used as input data, the blue dots
represent the points in the FM phase. It is obvious that those
points are separated from the other orange (critical phase) and
green (AFM phase) lines, which are continuously connected
(in principle). That means that the first-order phase transi-
tion from the FM to the critical phase is characterized by
two discontinuous clusters, whereas the second-order phase
transition features two continuous lines. This is analogous
to the behavior of order parameters in higher dimensions. In
higher dimension (quantum criticality in dimensions higher
than two, or classical criticality in dimensions higher than
three), the local order parameter changes discontinuously
across the first-order critical point while continuously across
the second-order one. However, in one dimension, there ex-
ists no symmetry breaking according to the Mermin-Wagner
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theorem, and thus the local order parameters are all zero in all
phases. One can use the correlation functions instead of the
local order parameters to find the phase-transition points. By
using the unsupervised (deep) learning, it is first found in this
paper that the cluster points of the feature maps (2D latent
representation) represent the same characteristic as the local
order parameters if the relevant correlation functions are used
as input data. This is highly interesting and deserves further
investigations in the near future.

Additionally, we observe that by using supervised learning
or unsupervised learning, the first-order phase transition is
relatively easier to predict, whereas it is difficult to find the
second-order phase transition when correlation functions are
used as input data. This is because the gaps in the FM phase
are all similarly large with various A, and suddenly drop
to zero across the phase boundary to the other phase. For
the machine, it is easily trained to distinguish between their
differences. However, for the second-order phase transition,
the gap opens very slowly. Therefore, the correlation functions
are all similar across the phase boundary. Especially when the
results are not so precise, the machine can be confused very
easily, resulting in a large error of the predicted second-order
phase boundary. In particular, that is also why we need an
extra training seed related to the cutoff point of iDMRG to
improve the precision of the predicted second-order TP.

(iv) The silhouette values also reveal some special features
for the phase transitions. For instance, in the XXZ model,
Fig. 18 shows that the silhouette values of the data in the FM
phase are almost the same, i.e., all of them can be the most
confident points. On the other hand, for the critical and AFM
phases, silhouette values have a wide range of difference.

For the XY model, & = 2 is a second-order phase transition
from the PM to FM phase, whose behavior, as shown in
Fig. 14, is similar to that of the second-order phase transition
at A = 1 in the XXZ model (see Fig. 18). Therefore, we can
infer that for the second-order phase transition, because of the
slow gap opening, the silhouette value climbs from a small
value to a constant one. This would be in sharp contrast to
the case of the first-order phase transition. Since the gap here
closes very abruptly, those gapped states in the FM phase
would have almost the same silhouette value.

Another interesting feature of SA is that the minima of
silhouette values are not far away from the phase-transition
points. For the XXZ model, the minimum of the silhouette
values near the FM to the critical phase lies almost exactly at
the critical point A = 1, whereas for the second-order phase
transition, the minima, which are at A = 1.41, 1.12, and 1.70
in Figs. 18(a), 18(b) and 19(c), respectively, do not lie exactly
at the critical points. This also characterizes the difference
between the first- and second-order phase transitions.

(v) Finally, we aim to present a rule of thumb for optimiz-
ing the utilization of ML in the study of phase transitions.
When considering accuracy and the phase space defined by
model parameters, it is advised that if the system is anticipated
to exhibit only one or two phase transitions influenced by a
single relevant model parameter, direct scanning of the phase
space using experimental probes or the other numerical meth-
ods may yield superior accuracy and efficiency. Conversely, if
the system is expected to possess a complex phase diagram re-
sulting from multiple relevant model parameters, conventional

approaches may encounter challenges in analysis, making ML
techniques the most advantageous choice.

To conclude, we use spin-spin correlation functions as in-
put data to feed into machines in either a supervised or an
unsupervised way of ML to find the phase-transition points
of the XY and XXZ models. The results show sharp bound-
aries and good precision to the exact values. Particularly in
the unsupervised learning, the obtained latent representation
(feature map) after dimension reduction and silhouette val-
ues, which we have proposed in our previous work, provides
insightful signatures of first-order and second-order phase
transitions. We also show the importance of relevant cor-
relation functions, which can be used as input data to find
the phase boundaries between their corresponding phases and
the neighbored ones. This concept is quite useful when the
systems are more complicated and the phase boundaries have
no exact solutions. What we have to do in such systems is
to find out their relevant correlation functions and hence use
them to find the phase boundaries.
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APPENDIX A: CORRELATION MATRICES
OF XY MODELS

To obtain oy, pyy, and p,; we follow Lieb, Schultz, and

Mattis [55]. In fact,
Pl = m) = (Wo|(0," + 0, )0y +0,)Ws). (A

Through the Jordan-Wigner transformation, Eq. (2), we obtain

m—1
Prc(l = my=(Wo|(c] —e)exp | im Y clex | (e Acm)Wo).
k=l+1
(A2)
By using the fact that
exp (incic) = (cf + )] — co), (A3)
we end up with the equation
Pl = m) = (Wo|BiA1+1Bis1 - - An—1B—1An| Vo),  (A4)

where A, = c,t + ¢, and By = cz — ¢x. We hence perform

Wick’s theorem [66] to obtain p,, in Eq. (6).
It is also similar for py,. p,,(I — m) has the following form:
Pyy = (\IIO|(01+ - UZ_)(U,:_ - O',;)|\Ijm>a (AS5)

which can be Jordan-Wigner-transformed to

puy(l = m) = (=1 " (Wo|AiBrs1ALs1 - Buo1An-1Bu| Wo),
(A6)
with the help of the equation

exp (inchk) = —(cf< — ck)(c,i + ci). (A7)
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TABLE IV. Model architecture of AE used for Figs. 10-13. Note
that c = 3 when using all py, p,y, 0., together as the input data, while
¢ =1 when using p,,, p,y, or p., respectively, as the input data.
Moreover, “features” in the parameters column indicates the number
of neurons in the middlemost layer of AE, ny;g.

TABLE V. Model architecture of AE used for Figs. 15-17. Note
that ¢ =2 when using both (S§S%) and (S;S,) as the input data,
while ¢ = 1 when using (S3S%) or (S;S,,), respectively, as the input
data. Moreover, “features” in the parameters column indicates the
number of neurons in the middlemost layer of AE, ny;q.

Layer Parameters Activation Layer Parameters Activation
Input: ¢ x 20 x 20 Input: ¢ x 40 x 40
Conv. 16 x 3 x 3 ReLLU Conv. 16 x 3 x 3 ReLLU
Linear ¢ x 6400 x 512 ReLLU Linear 51200 x 512 ReLLU
Linear 512 x 256 ReLU Linear 512 x 256 ReLU
Linear 256 x 128 RelLU Linear 256 x 128 ReLLU
Linear 128 x 64 ReLLU Linear 128 x 64 ReLLU
Linear 64 x features ReLU Linear 64 x features ReLU
Linear features x64 ReLLU Linear features x64 ReLLU
Linear 64 x 128 ReLLU Linear 64 x 128 ReLLU
Linear 128 x 256 ReLU Linear 128 x 256 ReLU
Linear 256 x 512 RelLU Linear 256 x 512 ReLLU
Transposed conv. cx3x3 Sigmoid Transposed conv. cx3x3 Sigmoid

After we make use of Wick’s theorem, p,, is expressed as
Eq. (7).
Finally p..(I — m) has the form

oz = (Yol (20, 0, — 1)(20,50,, — D|W,,). (A8)
To obtain p,,, we have to use the identity
2000 —1=—(0] +0, )0 —07)
= —(c{ + (e — ), (A9)
and thus we have
Pz(I —m) = (Wyl|A;BjA ;B | V). (A10)

After we make use of Wick’s theorem, the result becomes
Eq. (8).

To calculate G;_,,, we have to transform Hyy into the
momentum space as Hyxy — Nh/2 = Zk c]tH (k)cx with the
notation c;z = (¢, cT_ « )T as the Nambu particle-hole basis and

Hk)=R-o, (A11)
where R = (0, —y sink, cosk + h/2)T and o = (0}, 02, 03)7
as a vector composed of three Pauli matrices. By using this
notation, one can calculate first the correlation function in the
momentum space,

G(k) = (exex'), (A12)

where (---) denotes the expectation values of the ground
state, (Wy|---|Wy). After some straightforward algebra, we
obtain
G = (14 R (A13)
2 R )

with the definition R = |R| = v/(cosk + h/2)? + y2sin® k.
Finally, through the relation

1 —ik(r;—r, Tt
(Brn) = 7 3 e M el
k

— (eke—) — (exep) + (e’ o), (Al14)

and using Eq. (A13), we obtain Eq. (9).

APPENDIX B: MODEL ARCHITECTURES

Here we present explicit neural network architectures for
our numerical results shown in Secs. IV B and V. In the case
of the XY model, for the AE used for Figs. 10-13, the model
architecture is given in Table IV.

As for fine-tuning the phase boundaries via supervised
learning, additional CNN models are employed with the same
architectures shown in Figs. 4(a) and 4(b). On the other hand,
in the case of the XX Z model, the architecture of AE used for
Figs. 15-17 is given in Table V.

Similarly, CNN models are employed to fine-tune the
phase boundaries via supervised learning. They basically have
the same architectures shown in Figs. 4(c) and 4(d), except
that the number of neurons in the output layer, n, now should
be determined by the outcome of K-means clustering analysis.
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