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Reduction of energy cost of magnetization switching in a biaxial
nanoparticle by use of internal dynamics
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A solution to energy-efficient magnetization switching in a nanoparticle with biaxial anisotropy is presented.
Optimal control paths minimizing the energy cost of magnetization reversal are calculated numerically as
functions of the switching time and materials properties, and used to derive energy-efficient switching pulses of
external magnetic field. Hard-axis anisotropy reduces the minimum energy cost of magnetization switching due
to the internal torque in the desired switching direction. Analytical estimates quantifying this effect are obtained
based on the perturbation theory. The optimal switching time providing a tradeoff between fast switching and
energy efficiency is obtained. The energy cost of switching and the energy barrier between the stable states
can be controlled independently in a biaxial nanomagnet. This provides a solution to the dilemma between
energy-efficient writability and good thermal stability of magnetic memory elements.
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I. INTRODUCTION

Identification of energy limits for the control of magne-
tization is an important fundamental problem of condensed
matter physics. It is also a prerequisite for the development
of energy-efficient technologies based on magnetic materials.
An important application is magnetic memory where writ-
ing of data is realized via selective magnetization reversals
in nanoelements. Magnetization reversal can be achieved by
various means, including optical pulses [1–3], spin-polarized
electric current [4,5], external magnetic [6–9], and electric
field [10], microwave-assisted reversal switching [11–13],
stress [14], temperature gradient [15,16], etc. The challenge is
to minimize the energy cost of the control stimulus generation.

In conventional bit recording, magnetization reversal in a
memory element is achieved by applying a static external
magnetic field in an opposite direction to the initial mag-
netization. This results in a relatively slow reversal process
governed by damping as long as the magnitude of the external
field exceeds the coercive field [17,18]. The coercive field
and, thereby, the energy cost of switching can be reduced
by decreasing the magnetic anisotropy, but this may lead to
unwanted reversals induced by thermal fluctuations due to
decrease in the energy barrier separating the stable states.
One solution to this dilemma between good thermal stabil-
ity and energy-efficient writability of magnetic elements for
memory applications is use of exchange spring magnets [19],
where the energy barrier and the coercive field can be tuned
independently.

Decrease in the switching time and/or the switching field
can also be achieved via realization of special reversal pro-
tocols such as precessional magnetization switching [20].

*Corresponding author: mha5@hi.is

Precessional switching is typically induced by applying a
magnetic field pulse transverse to the initial magnetiza-
tion, but the pulse duration must be chosen accurately so
as to avoid back switching [21]. Additionally, precessional
switching is prone to instabilities due to the magnetization
ringing effect [22] unless the switching pulse is properly
shaped [22–24]. In microwave-assisted reversals, the switch-
ing field can also be reduced thanks to resonant energy
pumping [11–13,25].

Clearly, the possibility to achieve the reversal by several
different methods implies the existence of an optimal proto-
col, but its definite identification is a challenging problem.
Barros et al. employed the optimal control theory (OCT) [26]
to establish a formal approach to the magnetization switch-
ing optimization [27,28]. Within the approach, the optimal
switching pulse is found as a result of a direct minimization
of the switching cost functional under the constraint defined
by a system-specific magnetization dynamics. In our previ-
ous article, we revisited the OCT due to Barros et al. using
unconstrained minimization, which helped us find a complete
analytical solution to the energy-efficient reversal of a nano-
magnet with uniaxial anisotropy [29].

We also reported decrease in the switching cost for systems
with biaxial anisotropy, the result of the internal torque pro-
duced by the hard axis [29]. That the internal torque can assist
magnetization reversal was recognized earlier for several sys-
tems, for example for Co films [30] and Co nanoclusters [31].
The aim of the present study is to explore this effect quan-
titatively. We focus on nanomagnets with biaxial anisotropy,
which can arise due to the demagnetizing field [32]. This
scenario is realized in flat elongated nanoelements; see Fig. 1.
Such systems are used, e.g., as single bits in in-plane mem-
ory [33], or as elements of artificial spin ice arrays [34,35].

We investigate by means of the OCT to what extent the
energy cost of magnetization switching can be minimized by
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FIG. 1. Optimal switching of a flat elongated nanomagnet repre-
senting a biaxial anisotropy system. The direction of the normalized
magnetic moment �s is shown with the blue arrow. Orientations of �s
that correspond to the minima and the saddle points on the energy
surface are marked with the green and magenta crosses, respectively.
The calculated optimal control paths between the energy minima are
shown with the solid and the dashed green lines. The damping factor
α is 0.1, the switching time T is 8τ0, and the hard-axis anisotropy
constant is twice as large as the easy-axis anisotropy constant. The
green arrows along the reversal paths show the velocity of the system
at t = T/6, t = T/3, t = T/2, t = 2T/3, and t = 5T/6, with the
size of the arrowheads being proportional to the magnitude of the
velocity. The contours of constant azimuthal angle ϕ (meridians) and
polar angle θ (parallels) are shown with thin black lines.

pulse shaping and how this depends on the parameters of the
biaxial system and the switching time. Thanks to the internal
torque generated by the hard-axis anisotropy, the energy cost
can be reduced below the free-macrospin level. Based on the
perturbation theory, we show some analytical estimates of
the energy cost reduction. We show that in a biaxial system
the energy barrier separating the stable states and energy cost
of switching between them can be tuned independently, which
provides a solution to the magnetic recording dilemma.

The article is organized as follows. Section II provides a
theoretical framework for energy-efficient control of magne-
tization by means of external magnetic field: In Sec. II A, the
OCT for magnetic systems is presented and the corresponding
Euler-Lagrange equation for the optimal control path (OCP),
a dynamical trajectory minimizing the energy cost of mag-
netization switching, is derived. In Sec. II B, the numerical
method for finding OCPs and corresponding energy-efficient
control pulses via direct minimization of the cost functional is
presented. In Sec. II C, a method for finding an approximate
solution for the minimum energy cost is worked out based on
the perturbation theory. The application of the methodology

to a biaxial anisotropy system is presented in Sec. III. Conclu-
sions and discussion are presented in Sec. IV.

II. METHODOLOGY

A. Optimal control theory

We define the cost of the magnetization switching as the
amount of energy used to generate the control pulse that
produces the desired change in the magnetic structure of the
system. Assuming the control to be an external magnetic field
generated by an electric circuit, the energy cost is mostly
defined by Joule heating due to the resistance of the circuit.
This is proportional to the square of the electric current inte-
grated over the switching time. Taking into account the linear
relationship between the current magnitude and the strength
of the generated field, the cost functional can be written
as [27,29,36]

� =
∫ T

0
| �B(t )|2dt, (1)

where T is the switching time and �B(t ) is the generated exter-
nal magnetic field at time t . The aim of the OCT is to identify
the optimal pulse �Bm(t ) that brings the system to the desired
final state such that � is minimized. Whenever thermal fluc-
tuations are negligible, the system dynamics can be described
by the Landau-Lifshitz-Gilbert (LLG) equation [37],

(1 + α2)�̇s = −γ �s × (�b + �B) − αγ �s × [�s × (�b + �B)], (2)

where �s is the normalized magnetic moment vector, γ is the
gyromagnetic ratio, α is the damping factor, and �b is the
internal magnetic field defined by the magnetic configuration
through the following equation:

�b = �b(�s) = − 1

μ

∂E

∂�s (3)

with μ being the magnetic moment length and E the internal
energy of the system.

Both �B(t ) and �s(t ) can be treated as independent vari-
ables, and � minimized subject to the constraint defined by
Eq. (2) [27,28]. Alternatively, the optimal pulse �Bm(t ) can
be calculated via unconstrained minimization of �. For this,
Eq. (2) is used to express the external magnetic field in
terms of the dynamical trajectory and the internal magnetic
field [29],

�B(�s, �̇s) = α

γ
�̇s + 1

γ
[�s × �̇s] − �b⊥, (4)

with �b⊥ = �b − �s(�b · �s) being the transverse component of the
internal field, and the result substituted into Eq. (1). Sub-
sequently, the energy cost � becomes a functional of the
switching trajectory �s(t ),

� = �[�s(t )] =
∫ T

0
A(�s, �̇s)dt, (5)

where A(�s, �̇s) is given by

A(�s, �̇s) = α2 + 1

γ 2
|�̇s|2 − 2α

γ
�̇s · �b⊥ − 2

γ
(�s × �̇s) · �b⊥ + |�b⊥|2.

(6)
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The optimal reversal mechanism can be found by minimizing
� with respect to path connecting the initial and the final state
in the configuration space. Corresponding OCP �sm(t ) can be
identified by solving the Euler-Lagrange equation,

[
(�s · �b)Î − 1

μ
Ĥ

][
1

γ
�s × �̇s − �b⊥

]

+ 1

μ

[
�s · Ĥ

(
1

γ
�s × �̇s − �b⊥

)]
�s

− 1 + α2

γ 2
[�̈s − (�s · �̈s)�s] + 1

μγ
�s × Ĥ �̇s = 0 (7)

supplemented by the boundary conditions defined by the ini-
tial and the final orientation of the magnetic moment. Here,
Î is a 3 × 3 identity matrix and Ĥ is the matrix of second
derivatives of the energy E with respect to components of the
magnetic moment sx, sy, sz. Note that Eq. (7) is derived under
the constraint |�s| = 1. The optimal switching pulse is found
upon substituting the OCP into Eq. (4).

It is not possible to find a general analytical solution to
the Euler-Lagrange equation except for special cases where
the symmetries of the system make it possible to simplify the
problem. For example, for a free magnetic moment (E = 0)
Eq. (7) simplifies to

�̈s − (�s · �̈s)�s = 0, (8)

and the solution is a constant-speed rotation over the shortest
distance between the initial and final states. The correspond-
ing energy cost � f for reversing of a free macrospin reads

� f = π2(1 + α2)/(γ 2T ). (9)

Another case with a fully analytical solution is the reversal
of a macrospin with uniaxial anisotropy [29]. Because of the
rotational symmetry of the problem, the separation of vari-
ables in the spherical coordinate system is possible if the z
direction is chosen to be along the anisotropy axis. This leads
to a well-known sine-Gordon equation for the polar angle θ

of the magnetic moment and makes the azimuthal angle ϕ

completely defined by θ (see Fig. 1 for the definition of θ and
ϕ),

τ 2
0 θ̈ = α2

4(1 + α2)2
sin 4θ, τ0ϕ̇ = cos θ

1 + α2
, (10)

where τ0 = μ/(2γ K ) defines the timescale, and K is the
anisotropy constant. Solution of Eq. (10) is explicitly ex-
pressed in terms of the Jacobi amplitude [29]; it describes a
superposition of the steady rotation of the moment between
the energy minima and its precession around the anisotropy
axis, where the precession direction reverses when the system
reaches the top of the energy barrier. The corresponding op-
timal switching field rotates synchronously with the magnetic
moment in such a way that it generates the torque only in the
direction of increasing θ [29]. The amplitude of the optimal
switching field remains constant over time when α = 0, but
it exhibits a maximum (minimum) before (after) crossing the
energy barrier for α > 0 [29]. The optimal switching field is
always perpendicular to the magnetic moment, see Eq. (4).

FIG. 2. Illustration of the midpoint scheme used in the numerical
method for finding OCPs. Two images �sp and �sp+1 are connected by
a geodesic path in the configuration space. The position �sp+ 1

2
and the

velocity �̇sp+ 1
2

at the midpoint of the path are defined by �sp and �sp+1,
and the angle δp between them.

Nevertheless, most cases are impossible to solve analyti-
cally, and numerical methods for finding OCPs are required.
One such method is presented in the following.

B. Numerical calculation of optimal control paths

We find OCPs numerically via the direct minimization
of the cost functional. For this, we discretize � using the
midpoint rule [36],

�[�s(t )] ≈ �[s] =
Q∑

p=0

∣∣ �Bp+ 1
2

∣∣2
(tp+1 − tp), (11)

where {tp} is a partition of the time interval [0, T ] such that
0 = t0 < t1 < · · · < tQ+1 = T . Here, the partition has a regu-
lar spacing, i.e., tp+1 − tp = �t = T/(Q + 1), p = 0, . . . , Q.
A switching trajectory �s(t ) is represented by a polygeodesic
line connecting Q + 2 points, referred to as “images”: �s(t ) →
{�s0, �s1, c, . . . , �sQ+1}, with �sp = �s(tp). The first image �s0 and
the last image �sQ+1 correspond to the initial and the final
orientation of the magnetic moment, respectively; They are
fixed, but Q intermediate images can be moved. The external
field �Bp+ 1

2
≡ �B(�sp+ 1

2
, �̇sp+ 1

2
) is defined by the position and the

velocity of the magnetic moment at the midpoint of discretiza-
tion intervals, see Fig. 2, via Eq. (4). On the other hand, both
�sp+ 1

2
and �̇sp+ 1

2
can be expressed in terms of the position of the

images,

�sp+ 1
2

= �sp+1 + �sp

|�sp+1 + �sp| , (12)

�̇sp+ 1
2

= δp

�t
�sp+1 − �sp

|�sp+1 − �sp| , (13)

where δp is the angle between �sp and �sp+1 (see Fig. 2). Note
that the magnitude of �̇sp+ 1

2
is defined by the finite-difference

approximation for the angular velocity, and its direction is
along the unit vector (�sp+1 − �sp)/|�sp+1 − �sp| ensuring orthog-
onality to �sp+ 1

2
. Upon substituting Eqs. (12), (13), and (4)

into Eq. (11), the functional � becomes a function of a
3Q − dimensional vector s defining the position of the mov-
able images, s = (�s1, . . . , �sQ).
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Possible OCPs of the magnetization switching can
be identified by locating minima of �(s). This is
done using the velocity projection optimization (VPO)
method [38] and/or the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) algorithm [39,40] equipped with
the force acting on the movable images,

F = −∇⊥�, (14)

where ∇⊥ denotes the gradient projected on the tangent space
of the configuration space, which is a curved manifold due to
the constraint |�sp| = 1, p = 1, . . . , Q. Explicitly,

∇⊥ = ( �∇1 − �s1(�s1 · �∇1), . . . , �∇Q − �sQ(�sQ · �∇Q)), (15)

where �∇p ≡ ∂/∂�sp. For a given number of images involved in
the local minimization of �(s), the calculation is considered
converged when the magnitude of the force |F| has dropped
below the set tolerance. However, even convergence with a
tight force tolerance may be insufficient for a satisfactory res-
olution of the OCP if Q is not large enough. On the other hand,
including too many images in the calculation would result
in an unnecessarily high computational effort. Therefore, the
following strategy is applied: The OCP search is started with
a moderate number of images and the switching path is first
converged only to a rather high tolerance so as to bring the
images relatively close to the OCP with a reduced computa-
tional effort; after that, images are progressively added to the
path and minimization of the energy cost is reiterated with a
low force tolerance until �(s) stops changing. In this paper,
up to Q = 1500 movable images was used depending on the
parameters of the system and the switching time, with the
lowest force tolerance corresponding to the drop of the force
by ten orders of magnitude.

Some initial arrangement of the images is needed to start
an OCP calculation. This can be generated, for example, by
placing the images uniformly along the shortest-distance path
between the initial and the final state of the transition, or by
using some previously found OCP. It is also recommended
to add small random noise to the initial path so as to avoid
convergence on maxima or saddle points of �(s) due to pos-
sible symmetries in the system. A local minimization of �(s)
will most likely converge to the OCP closest to the initially
generated path. If multiple OCPs are present between the
initial and the final state, several initial estimates need to be
produced so as to enable convergence on the various solutions.

C. Perturbation theory

Although it is not possible to obtain a general analyti-
cal solution to the Euler-Lagrange equation [see Eq. (7)],
some analytical estimates for the energy-efficient switching
can still be derived using perturbation theory. For this, we
expand Eq. (7) around the free-macrospin solution and obtain
the OCP in terms of perturbation series with respect to the
parameters defined by the Hamiltonian of the system (see Ap-
pendix A for details). The minimum energy cost of switching
can be estimated based on the approximate solution for the

OCP. The second-order expansion for �m is used in particular,

�m ≈ � f +
N∑

i=1

εi�i +
N∑

i, j=1

εi�i jε j, (16)

where N is the number of independent perturbations, εi is the
ith dimensionless perturbation parameter, and �i, �i j are the
expansion coefficients describing the first- and the second-
order corrections, respectively. The explicit expressions for
εi, �i, and �i j for the biaxial system are presented in the
following.

III. RESULTS

Here, we apply the methodology presented earlier to the
magnetization reversal in a biaxial anisotropy system, e.g.,
to a flat elongated nanomagnet shown in Fig. 1. The internal
energy of the system is given by the following equation:

E = ξKs2
x − Ks2

z , (17)

where the easy axis and the hard axis are along the z and x
directions, respectively, K > 0 is the anisotropy constant, and
ξ is a dimensionless parameter defining the relative strength
of the hard-axis anisotropy. The energy surface of the system
has two minima at �s = (0, 0, 1) and �s = (0, 0,−1), and two
saddle points at �s = (0, 1, 0) and �s = (0,−1, 0) (see Fig. 1).
This model is commonly used to describe in-plane memory
bits [33] and elements of artificial spin ice systems [34,35].
Energy-efficient switching between the energy minima in time
T is analysed in the following.

A. Optimal protocols for magnetization reversal

Figures 3(a)–3(c) show the calculated OCPs of the mag-
netization reversal for α = 0.1 and various switching times
and strengths of the hard-axis anisotropy, superimposed on the
energy surface of the system. For short switching time, i.e.,
when T ∼ τ0, the OCPs deviate weakly from geodesic paths
between the energy minima. With increasing T , the OCPs
acquire precessional motion around the easy axis, where the
sense of precession changes upon reaching the top of the
energy barrier at sz = 0.

The ξ = 0 case describes a uniaxial-anisotropy system, for
which OCPs can be found analytically [29]. Due to the axial
symmetry, the OCPs for a fixed switching time are degenerate
with respect to overall rotation around the easy axis. For ex-
ample, the two OCPs shown by the solid and dashed pink lines
in Fig. 3(a) are equivalent. In contrast, the axial symmetry
is broken when ξ 	= 0, which results in the well-separated
OCPs between the energy minima. In most cases, there are
two equivalent, mirror-symmetric (with respect to the XY
plane) OCPs in the biaxial system [28] for a given switching
time, and the OCPs differ by a π -angle rotation around the
easy axis, see Figs. 3(b) and 3(c) and also Fig. 1. However,
more coexisting OCPs can be present for ξ � 4, where the
paths are different by the amount of precession around the
initial and the final states (see Fig. 4). Note that the OCPs can
break the XY -plane mirror symmetry. For certain parameter
values, such asymmetric OCPs deliver the global minimum to
the functional �, which is the case shown in Fig. 4, or even
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FIG. 3. Transverse Mercator projection [41] of the energy surface of a macrospin with (a) uniaxial anisotropy and biaxial anisotropy with
(b) ξ = 1 and (c) ξ = 2. The meridians and the parallels (see Fig. 1) are shown with thin white lines. The blue arrows show the distribution
of the internal torque, with the size of the arrows being proportional to the magnitude of the torque. The calculated OCPs between the energy
minima at +Z and −Z are shown with the green, pink, and orange lines for T = 2τ0, T = 4τ0, and T = 14τ0, respectively. The arrows along
each OCP show the velocity at t = T/6, t = T/3, t = T/2, t = 2T/3, and t = 5T/6, where the arrow size codes the magnitude of the velocity.
The damping factor α is 0.1. The solid and the dashed lines of the same color show equivalent OCPs. They differ by an arbitrary rotation around
the easy axis for the uniaxial case; For finite ξ , the degeneracy is lifted and there are two OCPs, symmetrical with respect to a π -angle rotation
around the easy axis, for a given T . Note that the OCPs do not pass through saddle points (SP) on the energy surface. The θ projection of the
internal torque along the OCPs from (a)–(c) are shown in (d)–(f), respectively.

represent the only type of solution. Nevertheless, the OCPs
never pass through saddle points (SPs) on the energy surface,
therefore the system does not cross the lowest possible energy
barrier within the energy efficient switching protocol.

The distribution of the internal torque �� [see the blue
arrows in Figs. 3(a)–3(c)] provides an insight into the mech-
anism of energy-efficient magnetization switching in biaxial
systems and explains the position and shape of calculated
OCPs. When ξ = 0, the torque only generates precession
around the easy axis and, in case of nonzero damping, relax-
ation to the energy minima. In this case, the internal torque
does not assist switching since it does not point in the di-
rection of the final state anywhere in the region of the initial
state (sz > 0). This behavior is described quantitatively by the
component of �� in the direction of increasing θ , relevant for
the reversal process,

�θ = �0 sin θ [ξ sin(2ϕ) − 2α cos θ (1 + ξ cos2 ϕ)], (18)

where �0 ≡ [2τ0(1 + α2)]−1. �θ along the calculated OCPs
is shown in Figs. 3(d)–3(f). Positive (negative) �θ signi-
fies positive (negative) contribution of the internal torque
to the reversal. For ξ = 0, Eq. (18) reduces to �θ |ξ=0 =

−α�0 sin 2θ . Clearly, �θ |ξ=0 < 0 for θ < π/2 and nonzero
α [see Fig. 3(d)].

Adding a hard-axis anisotropy to the system for (ξ > 0)
gives the contribution to the internal torque in the switching
direction in a certain sector of the configuration space, see
Figs. 3(b) and 3(c). The location of the calculated OCPs in this
sector demonstrates the principle of energy-efficient control,
which lies in the effective use of the system’s internal dynam-
ics. It is now clear why the OCPs do not pass through the SP,
where the internal torque vanishes: It is beneficial to climb
up the energy surface where the internal torque picks up and
assists the switching process. In particular, �θ is maximized
at the equator (θ = π/2) when ϕ = π/4 and ϕ = 5π/4 [see
Eq. (18)]. In an optimal protocol, a balance is reached between
the effort in climbing up the energy surface and the strength
of the internal torque. As a result, the OCPs cross the equator
at an optimal point π/4 < ϕm < π/2 or 5π/4 < ϕm < 3π/2,
see Figs. 3(b) and 3(c).

The favorable effect of the torque produced by the hard
axis is also evident from the �θ (t ) dependencies calculated
along the OCPs, see Figs. 3(e) and 3(f). Although there are
regions where �θ < 0, the θ component of the torque is
mostly positive, especially for shorter switching times, and
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FIG. 4. Calculated OCPs for ξ = 4, α = 0.2, and T = 5.314τ0.
The notations are the same as in Figs. 3(a)–3(c). The OCP shown
with the green line exhibits a mirror symmetry with respect to the
XY plane, but the symmetry is broken for the OCPs shown with
pink and orange lines. The asymmetric OCPs correspond to the
global minimum of � for the given parameter values. Note that the
asymmetric OCPs can be obtained from one another via reflection
in the XY plane. More OCPs can be obtained by a π -angle rotation
of the shown OCPs around the easy axis. There are in total six OCPs
in the present case.

the magnitude of the torque increases with ξ . It is noteworthy
that the asymmetric shape of �θ about T/2—the result of the
damping contribution to the torque—does not contradict to the
mirror symmetry of the OCPs. For symmetric OCPs, the total
torque stays symmetric.

Figure 5 shows the calculated OCPs for ξ = 1 and α = 0.4.
The OCPs look similar to those calculated for weaker damp-
ing, but demonstrate less precession, which is particularly
seen for longer switching time. Overall, increased damping
makes the internal torque deviate stronger from the energy
contours toward the energy minima, cf. Fig. 3(b), leading to
an increase in the energy cost of switching. This effect is
analysed quantitatively in the following section.

The optimal switching pulses of external magnetic field for
T = 14τ0, α = 0.1, and ξ = 0, 1, 2 are presented in Fig. 6.
Note that the pulses are derived from the OCPs presented
in Fig. 3 using Eq. (4). As expected, increasing strength of
the hard-axis anisotropy leads to overall decrease in the field
amplitude, although its peak values can exceed the maximum
field value in the ξ = 0 case.

The experimental realization of optimal control pulses
is a challenging task but still feasible within current pulse
shaping technology [23,42–46]. It is worth noting that the
optimal switching protocols remain quite stable with respect
to thermal fluctuations and material parameter perturbations,
as confirmed by our spin dynamics simulations (see Ap-
pendix B).

FIG. 5. Calculated OCPs for ξ = 1, α = 0.4, and several values
of the switching time, as indicated in the legend. The notations are
the same as in Figs. 3(a)–3(c).

Similarly to the uniaxial case, the pulse is stronger in
the first half of the reversal where relaxation works against
the switching process, and weaker in the second half where
relaxation pushes the system to the desired energy minimum.
However, there is a distinct oscillation in the field amplitude
associated with the broken axial symmetry of the system. This
amplitude oscillation is present even at zero damping, which
is in contrast to the uniaxial case where the field amplitude
is time independent for α = 0 [29]. The amplitude peaks
when the magnetic moment deviates most from the easy plane
where the energy gradient and, thereby, the internal torque
are the largest. Furthermore, the external pulse amplitude is
the lowest close to t = T/2, where the internal torque brings
the system over the barrier. Irrespective of the ξ value, the
switching field is always perpendicular to the magnetic mo-
ment [see Eq. (4)] and its amplitude Bm demonstrates the
symmetry: Bm(0) = Bm(T ). Note that Bm(0) = Bm(T/2) =
Bm(T ) in the ξ = 0 case [29].

B. Minimum energy cost of switching

The revealed optimal reversal protocols can now be used
to calculate the minimum energy cost of switching �m using
Eq. (11) (see also Ref. [29] for the analytical solution for the
ξ = 0 case). In the following, we always pick the lowest value
of the energy cost whenever multiple OCPs are present for a
given set of parameters. Figure 7(a) shows �m as a function
of the inverse of the switching time for α = 0.2 and various
strengths of the hard-axis anisotropy. For any ξ value, �m

decreases monotonically with T and approaches the universal
lower limit

�∞ ≡ 4αK/(γμ) (19)
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FIG. 6. Calculated optimal switching pulse of external magnetic field for a macrospin with (a) uniaxial anisotropy and biaxial anisotropy
with (b) ξ = 1 and (c) ξ = 2. The switching time T is 14τ0 and the damping parameter α is 0.1. The pulses are derived from the OCPs shown
in Figs. 3(a)–3(c).

at infinitely long switching time [28]. Note that �m reaches
the limit faster for larger values of ξ . Overall, there is a
decrease in �m with ξ , as expected from the distribution of
the torque in biaxial systems.

The switching cost for a free macrospin � f (T ) [see the
green dashed line in Fig. 7(a)] provides a useful bench-
mark for evaluating the favorable effect of the torque
produced by the hard axis. Notably, the switching cost
can be significantly lower than � f (T ) in a certain range
of T for finite strengths of the hard-axis anisotropy. For
example, �m(T ) becomes almost an order of magnitude
smaller than � f (T ) for ξ = 10 and T ≈ 2τ0. This is
in contrast to the uniaxial-anisotropy case (ξ = 0), where
�m(T ) � � f (T ) (the equality is reached for α = 0) for any
given T .

The α dependencies of the minimum switching cost for
T = 20τ0 and several values of ξ are shown in Fig. 7(b).
Irrespective of the strength of the hard-axis anisotropy, �m is a
monotonically increasing function of the damping parameter,
approaching the �∞ asymptote when α → ∞. It is notewor-
thy that the reduction in the switching cost with ξ becomes
more pronounced as α decreases.

C. Perturbation theory analysis

Both anisotropies in the biaxial system can be treated as
independent perturbations to the free macrospin. This results
in two dimensionless perturbation parameters ε1 ≡ ξT/τ0 and
ε2 ≡ T/τ0 defined by the hard- and the easy-axis anisotropy,
respectively. The approximation to the minimum energy cost
is obtained by substituting the perturbation series for the OCP
(see Appendix A) into Eq. (5). The result, up to the second-
order terms, reads

�m ≈ � f − 4K

γμ
ξ + K2T

2(1 + α2)μ2

×
[
α2 + α2ξ + 1

4
(4 + 5α2)ξ 2

]
, (20)

where the contributions from the hard-axis anisotropy are
recognized by the ξ factor. The smallness of the perturbation
parameters, ε1, ε2 � 1, can be translated into the condition on
T : T � τ0. Therefore, Eq. (20) can be interpreted as a short
switching time approximation for �m.

In Eq. (20), the first and the second terms represent the free
macrospin solution and the first-order correction, respectively;

FIG. 7. Minimum energy cost of magnetization reversal as a function of (a) inverse of the switching time for α = 0.2, (b) damping
parameter for T = 20τ0, for various ξ values. Green dashed line corresponds to the solution of the reversal of a free macrospin, while the black
dashed line shows the infinite switching time asymptotic.
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FIG. 8. Approximation for the minimum energy cost of magnetization reversal for a macrospin within the zero- (� f ), first- (�(1)), and
second-order (�(2)) perturbation theory [see Eq. (20)], as indicated in the legend, vs the inverse of the switching time. The strength of the
hard-axis anisotropy ξ is (a) 0 and (b) 1. Red solid line shows the numerically exact solution. Black dashed line shows the infinite switching
time asymptotic. The intersection of the short and the long switching time asymptotes provides the optimal switching time T ∗ [see Eq. (21)].
The magnitude of α is 0.2.

the rest of the equation describes the second-order correction
that includes the terms due to the easy- and the hard-axis
anisotropies, as well as the cross term.

Equation (20) clearly shows that the switching cost reduc-
tion in biaxial magnets is captured within the linear response
to the hard-axis anisotropy. Note that the easy axis does not
contribute to the first-order correction; It can be shown in fact
that all odd-order corrections vanish in the uniaxial case. The
approximation for �m within zero-, first-, and second-order
perturbation theory is shown in Fig. 8 for α = 0.2. The numer-
ically exact solution for �m is also shown for comparison. The
short switching time approximation eventually breaks down as
T increases, and �m converges on �∞.

The minimum energy cost for switching has two clear
asymptotics: �m = � f − 4Kξ/(γμ) when T → 0, and
�m = �∞ when T → ∞. Their intersection point

T ∗ = (1 + α2)π2

2(α + ξ )
τ0, (21)

can be interpreted as an optimal switching time in a sense
that increase in T beyond T ∗ does not lead to a significant
reduction in the energy cost. Therefore, T ∗ provides a tradeoff
between the switching speed and energy efficiency [29,47].
Note that T ∗ decreases with increasing strength of the hard-
axis anisotropy.

IV. CONCLUSIONS AND DISCUSSION

In conclusion, we explored by means of the optimal control
theory energy-efficient protocols for magnetization reversal
in biaxial nanomagnets. We calculated OCPs of the reversal
and used them to derive optimal switching pulses of external

magnetic field. We studied the energy cost of switching as
a function of the system parameters and the switching time.
The internal torque produced by the hard-axis anisotropy can
significantly reduce the switching cost: For a given switching
time, it can drop below what is needed to reverse a free
macrospin, which is impossible in uniaxial-anisotropy sys-
tems. However, the energy cost can never be smaller than a
universal lower limit defined by the energy barrier and damp-
ing [28].

We obtained some analytical estimates regarding the reduc-
tion of the energy cost using perturbation theory. In particular,
we identified the optimal switching time providing a trade-
off between the switching speed and energy efficiency. The
optimal switching time decreases with the strength of the
hard-axis anisotropy.

It is important to realize that the decrease in the switching
cost can be achieved in biaxial magnets without sacrificing
their thermal stability. Indeed, the thermal stability is char-
acterized by the energy barrier separating the stable states.
Within harmonic rate theories, this is defined by the energy
difference between the saddle point and the initial state mini-
mum [48,49]. In a biaxial system, the energy barrier amounts
to K irrespective of the ξ value, see Eq. (17) and the text
around it. In contrast, �m depends strongly on ξ , especially for
short switching times, which is particularly clear from Fig. 9
(note that �m converges to �∞ for ξ → ∞ irrespective of
the switching time). The possibility to independently maxi-
mize both writability and thermal stability of biaxial magnets
makes these systems efficient memory elements that provide
a solution to the magnetic recording dilemma.

A macrospin approximation is used in the present study,
but this is expected to break down with increasing system

214448-8



REDUCTION OF ENERGY COST OF MAGNETIZATION … PHYSICAL REVIEW B 107, 214448 (2023)

FIG. 9. Minimum energy cost of magnetization reversal as a
function of ξ for various T values (solid lines). The dashed color
lines show the switching cost for a free macrospin. The magnitude
of the damping factor α is 0.2. Black dashed line shows the infinite
switching time asymptotic.

size. Even if the initial and the final states are collinear, the
transition between them may involve nonuniform rotation of

magnetization such as nucleation and propagation of domain
walls [50–54] or excitation of spin waves [36,55–57]. It re-
mains to be seen under what conditions these and possibly
other, yet unknown switching mechanisms become optimal in
terms of energy efficiency. This is a subject of future study.
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APPENDIX A: APPROXIMATE SOLUTION FOR OPTIMAL
CONTROL PATH

The Euler-Lagrange equation [see Eq. (7)] in spherical
coordinates θ and ϕ reads

θ̈ = A0ϕ̇
2 + A1ϕ̇ + A2,

ϕ̈ = C0θ̇ ϕ̇ + C1θ̇ + C2. (A1)

For a biaxial system whose energy is defined by Eq. (17), the
coefficients become

A0 = sin 2θ

2
, A1 = (2 + ξ )(sin θ − 3 sin 3θ )

8(1 + α2)τ0
+ 3ξ cos 2ϕ sin3 θ

2(1 + α2)τ0
, A2 = sin 4θ (2 + ξ cos 2ϕ + ξ )2

16(1 + α2)τ 2
0

+ ξ 2 sin2 2ϕ sin 2θ

8(1 + α2)τ 2
0

,

C0 = −2 cot θ, C1 = (2 + ξ )(3 cos 2θ + 1) csc θ

4(1 + α2)τ0
− 3ξ cos 2ϕ sin θ

2(1 + α2)τ0
, C2 = −ξ (2 + ξ ) sin 2ϕ cos2 θ

2(1 + α2)τ 2
0

+ ξ 2 sin 4ϕ sin2 θ

4(1 + α2)τ 2
0

.

(A2)

We seek for θm(t ) and ϕm(t )—the solution of Eq. (A1)—in a form of a series in the two perturbation parameters ε1 and ε2 defined
by the biaxial anisotropy (see Sec. III C). In particular, the second-order expansion for θm(t ) and ϕm(t ) reads

θm(t ) ≈ θ f (t ) +
2∑

i=1

εiθi(t ) +
2∑

i, j=1

εiθi j (t )ε j,

ϕm(t ) ≈ ϕ f (t ) +
2∑

i=1

εiϕi(t ) +
2∑

i, j=1

εiϕi j (t )ε j . (A3)

Here, θ f (t ) ≡ πt/T and ϕ f (t ) ≡ π/4, 5π/4 describe the reversal of a free macrospin, and the coefficients θi(t ), ϕi(t ), θi j (t ),
ϕi j (t ) are obtained upon substituting Eqs. (A3) into Eq. (A1) and collecting terms with equal powers of ε1 and ε2, which gives
the following result:

θ1 = 0, θ2 = 0, ϕ22 = 0, θ11 = sin(2πt/T )[4 + 4α2 + α2 cos(2πt/T )]

128π2(1 + α2)2
,

θ12 = θ21 = − α2 sin(4πt/T )

128π2(1 + α2)2
, θ22 = 2θ12, ϕ1 = − (8 − α2)

64(1 + α2)
+ sin(πt/T )

2π (1 + α2)
,

ϕ2 = 2ϕ1, ϕ11 = ϕ12 = ϕ21 = (4 + α2) cos(2πt/T )

32π2(1 + α2)2
− 3(8 − α2)

2048(1 + α2)
+ 100 + 73α2

480π2(1 + α2)2
. (A4)

214448-9



BADARNEH, KWIATKOWSKI, AND BESSARAB PHYSICAL REVIEW B 107, 214448 (2023)

TABLE I. Magnetization reversal success rate f for several val-
ues of the damping factor α, and the ratio �E/�, with �E being the
energy barrier between the stable states and � being thermal energy.

�E/� α f (%)

80 0.01 99.9
80 0.1 99.8
70 0.01 99.6
70 0.1 99.6
50 0.01 98.4
50 0.1 98.9
30 0.01 95.3
30 0.1 96.8

The approximation for the minimum energy cost of switch-
ing, Eq. (20), is obtained upon substituting Eq. (A3) into
Eq. (5).

APPENDIX B: SPIN DYNAMICS SIMULATIONS

The robustness of the optimal switching protocol for the
biaxial monodomain particle [see Eq. (17)] against thermal
fluctuations and perturbations in the material parameters was
tested by carrying out additional spin dynamics simulations.
The simulations involved time integration of the Landau-
Lifshitz-Gilbert (LLG) equation equipped with the optimal
switching pulse as an external field. The LLG equation was
integrated numerically using the semi-implicit scheme B as
described in Ref. [58]. Particular settings for studying effects
of temperature and material parameter perturbations are de-
scribed in what follows.

Effect of thermal fluctuations. Interaction of the magnetic
systems with the heat bath was simulated by including a
stochastic term in the LLG equation. Each simulation had
three stages: (1) Initial equilibration at zero applied mag-

netic field to establish Boltzmann distribution; (2) switching
where the optimal magnetic field is applied (note that thermal
fluctuations were also included during the switching stage);
(3) final equilibration at zero applied magnetic field. The
duration of the switching stage, i.e., the switching time, was
chosen to be T = 2τ0, while the dimensionless parameter
defining the relative strength of the hard-axis anisotropy was
ξ = 5. At the end of the third stage, we inspected the value of
sz; we have taken the value sz = −0.5 as the threshold for the
successful switching.

For each value of temperature and damping constant, we
repeated simulations L = 1000 times in order to accumulate
the proper statistics. The switching success rate is defined
as f = Ls/L where Ls is the number of successful reversals.
We find that when the ratio �E/� > 30, with �E = K [see
Eq. (17)] being the energy barrier between the stable states
and � being thermal energy, the success rate is over 90%, see
Table I. For �E/� � 60, which is a standard requirement to
ensure sufficient stability of the magnetic element with respect
to thermal fluctuations so as to prevent data loss in magnetic
memories [59,60], the success rate is close to unity. This result
demonstrates that the optimal switching protocol is robust
with respect to thermal fluctuations in the technologically
relevant regime.

Effect of perturbations in the material parameter val-
ues. Parameters determining the magnetization dynamics of
the monodomain particle include the damping factor α,
anisotropy parameter K , the relative strength of the hard-axis
anisotropy ξ , and magnetic moment μ. Since K and ξ enter
the equation of motion through the parameter τ0, we only
consider perturbations in α, ξ , and τ0. In particular, we applied
an optimal field pulse derived for a certain value of τ0, ξ ,
and α to a particle characterized by perturbed parameter val-
ues τ0 + �τ0, α + �α, and ξ + �ξ . The switching time and
unperturbed material parameters were chosen to be T = 2τ0,
α = 0.1, ξ = 5. Figure 10 shows the results of these calcula-
tions. The switching pulse brings the system over the energy
barrier if the strength of the parameter perturbations is not too
large.

FIG. 10. Effect of perturbations in the material parameters α (a), τ0 (b), and ξ (c) on the magnetization reversal induced by the optimal
switching pulse. Magnitude of the perturbations �τ0, �α, and �ξ is shown in the legend. Blue (red) lines show evolution of the z component
of the normalized magnetic moment during successful (unsuccessful) reversal. Black line corresponds to the reversal in a particle characterized
by unperturbed material parameters: α = 0.1, ξ = 5.
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