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Electronic structure of Co 3d states in the Kitaev material candidate honeycomb cobaltate
Na3Co2SbO6 probed with x-ray dichroism
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The recent prediction that honeycomb lattices of Co2+ (3d7) ions could host dominant Kitaev interactions
provides an exciting direction for exploration of new routes to stabilizing Kitaev’s quantum spin liquid in
real materials. Na3Co2SbO6 has been singled out as a potential material candidate provided that spin and
orbital moments couple into a Jeff = 1

2 ground state, and that the relative strength of trigonal crystal field
and spin-orbit coupling acting on Co ions can be tailored. Using x-ray linear dichroism (XLD) and x-ray
magnetic circular dichroism (XMCD) experiments, alongside configuration interaction calculations, we confirm
the counterintuitive positive sign of the trigonal crystal field acting on Co2+ ions and test the validity of the
Jeff = 1

2 description of the electronic ground state. The results lend experimental support to recent theoretical
predictions that a compression (elongation) of CoO6 octahedra along (perpendicular to) the trigonal axis would
drive this cobaltate toward the Kitaev limit, assuming the Jeff = 1

2 character of the electronic ground state is
preserved.

DOI: 10.1103/PhysRevB.107.214443

I. INTRODUCTION

Since the prediction by Kitaev that 2D honeycomb spin
lattices with bond-dependent, Ising-like ferromagnetic inter-
actions can host a quantum spin liquid (QSL) ground state
with topologically protected fractionalized excitations [1],
a flurry of activity has ensued aimed at realizing the
Kitaev model in real materials [2,3]. Much of the search so
far has focused on honeycomb lattices of ruthenates [4–9],
rhodates [10–12], and iridates [13–17], where Ru3+, Rh4+,
and Ir4+ ions in octahedral coordination adopt a t2g d5 low-
spin configuration. The strong spin-orbit interaction in heavy
4d/5d ions leads to emergence of jeff = 1

2 “pseudospin” mag-
netic moments within the t2g manifold with entangled spin
and orbital moments [18,19]. A perfect honeycomb lattice
of pseudospins in regular, edge-shared octahedra is predicted
to result in vanishing first neighbor isotropic Heisenberg su-
perexchange interactions and, in the absence of sizable longer
range or direct exchange interactions, a dominant Kitaev ex-
change interaction between pseudospins [20]. Experimentally,
however, lattice distortions prevent realization of regular oc-
tahedra or perfect honeycomb lattices, and isotropic exchange
interactions are found to coexist alongside the frustrated,
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bond-dependent Kitaev exchange interactions, resulting in
magnetically ordered ground states [21–26]. Attempts to drive
ruthenate, rhodate, and iridate honeycombs toward Kitaev’s
QSL state with chemical doping [27–31] or application of
external pressure [32–38] have faced challenges, including
phase separation and formation of glassy phases with dop-
ing, and a tendency of closely spaced Ru/Rh 4d or Ir 5d
orbitals across edge-shared octahedra to dimerize, especially
under pressure, a result of spatially extended 4d/5d or-
bitals. This dimerization leads to a collapse of the jeff = 1

2
pseudospins [39,40], which are otherwise required to map
the exchange interactions into Kitaev’s model, and to the
emergence of molecular orbitals with spin pairs locked into
nonmagnetic singlets [40–42] preventing realization of the
dynamic QSL state.

A new paradigm has recently emerged with the proposal
that honeycomb lattices of Co2+ 3d7 ions can serve as a new
platform to search for Kitaev’s QSL [43–45]. The high-spin
Co2+ ions can also have a pseudospin Jeff = 1

2 ground state
in the presence of spin-orbit interactions (S = 3

2 , Leff = 1)
(note: we use Jeff notation for many-body states and jeff for
single-particle states). Unlike exchange interactions in low-
spin d5 ruthenates, rhodates, and iridates, which only involve
t2g-t2g exchange pathways, the high-spin 3d7 configuration
of Co2+ ions results in additional t2g-eg and eg-eg exchange
channels [43,45]. It was demonstrated that these additional ex-
change pathways contribute with nearly equal magnitude but
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opposite sign to the isotropic Heisenberg exchange, which
nearly cancels, resulting in dominant Kitaev exchange inter-
actions arising from within the t2g-eg exchange channel [43].
Since the spatial extent of 3d orbitals is much reduced relative
to that of 4d and 5d counterparts, the honeycomb cobaltates
are more robust against dimerization of 3d orbitals across
edge-shared octahedra. In addition, the reduced radial extent
of 3d orbitals aids in confining magnetic interactions to near-
est neighbours and in suppressing direct exchange between Co
ions across edge-shared octahedra. Stabilization of Kitaev’s
QSL in a honeycomb cobaltate would open the door to a
whole new class of materials that could host such states, cir-
cumventing the limitations present in 4d and 5d honeycombs.

Na3Co2SbO6 is one such candidate material to host a
Kitaev QSL [43]. While it orders magnetically with a zigzag
structure below TN ∼ 5–8 K [46–49], theoretical predictions
suggest that a Kitaev QSL can be stabilized in this material
if the positive trigonal crystal field acting on Co2+ ions can
be reduced by about 20 meV [43]. A positive sign of trigonal
crystal field seems counterintuitive since the CoO6 octahedra
are compressed along their trigonal axis, which corresponds
to a negative trigonal crystal field when only accounting for
the electric field generated by oxygen charges in octahedral
cages [43,50–52]. The positive sign of trigonal crystal field
was derived from analysis of magnetic susceptibility data, and
a point charge model used to attribute the inverted sign to the
contribution of charges in Sb5+ ions located in the honeycomb
layers [43]. A positive sign of trigonal crystal field was also
deduced from modeling of crystal field excitations probed
with inelastic neutron scattering [53].

Considering the convoluted contributions to the trigonal
field, it is important to provide additional experimental vali-
dation for the sign of the trigonal crystal field acting on Co2+

ions in order to guide experimental work aimed at driving
this system toward the QSL state by manipulating the ratio of
trigonal crystal field, �, to spin-orbit interaction, ζ , along the
line of theoretical predictions [43]. If the net trigonal crystal
field is positive, further compression of CoO6 octahedra along
their trigonal axis (a more negative contribution to the trigonal
field) will reduce |�/ζ |. If the net trigonal crystal field is
negative, an expansion of the CoO6 octahedra along their
trigonal axis (a positive contribution to the trigonal field) will
reduce |�/ζ |. Corroboration of the sign of the trigonal crystal
field will hence aid in the design of experiments aimed at
using hydrostatic pressure or uniaxial strain to properly tune
|�| toward stabilization of Kitaev’s QSL state.

The exact nature of the spin-orbit entangled pseudospin
Jeff = 1

2 wave function of Co2+ ions depends on �/ζ , as
nonzero values of � tend to quench orbital angular mo-
mentum [43]. The related modification to the spin-orbital
exchange interactions dictates the relative contributions of
Kitaev (K), Heisenberg (J), and off-diagonal anisotropic
(�,�′) exchange to the microscopic Hamiltonian. Not sur-
prisingly, the anisotropic K, �, �′ interactions are shown to
have the strongest dependence on � [43]. Since the magnitude
of non-Kitaev spin-orbital exchange interactions is intimately
tied to the nature of the Jeff pseudospin wave function (via
�/ζ ), it is important to provide experimental validation of
the Jeff = 1

2 description of the 3d electronic ground state.
The observation of spin-orbit excitations between Jeff = 1

2

and Jeff = 3
2 states in recent inelastic neutron scattering stud-

ies [53,54] appears to validate the presence of a spin-orbit
entangled Jeff = 1

2 ground state in Na3Co2SbO6 despite the
much reduced spin-orbit interaction in 3d orbitals relative to
their 4d, 5d counterparts.

Here we present x-ray absorption spectroscopy (XAS),
x-ray magnetic circular dichroism (XMCD), and x-ray lin-
ear dichroism (XLD) measurements at the Co L2,3 edges
in Na3Co2SbO6, alongside their theoretical modeling and
interpretation, to shed light onto the sign of the trigonal
distortion and the validity of the Jeff = 1

2 description of the
ground state. XAS and XMCD provide a nexus to test the
validity of the Jeff = 1

2 description of the electronic ground
state. XAS at spin-orbit split core levels such as the Co
L2,3 absorption edges is sensitive to the expectation value of
the angular part of the spin-orbit interaction in the Co 3d
states, via the isotropic branching ratio [55,56]. Additionally,
XMCD is sensitive to both orbital and spin moments in Co
3d orbitals [57,58]. XLD measures the anisotropic 3d orbital
occupation [59], namely, the quadrupole moment in the multi-
pole expansion of the 3d charge distribution [60] arising from
the combined effects of trigonal crystal field and spin-orbit
coupling. In the limit ζ → 0 a sign inversion of the trigonal
crystal field reverses the order of singlet a1g and doublet e′

g
states [50–52] affecting the orbital character of the hole in the
t2g-derived states.

The paper is organized as follows: Section II includes
details on sample preparation together with details on ex-
perimental setup and data collection. Section III describes
theoretical modeling and numerical computation of XAS,
XLD, and XMCD spectra, providing insight into the con-
nection between XLD spectra and quadrupole moments, the
nature of the ground state, and derivation of sign and mag-
nitude of trigonal crystal field acting on Co 3d orbitals.
Section IV summarizes the main findings of the paper. The
Appendix contains additional details on data treatments and
modeling.

II. EXPERIMENTAL

A. Sample preparation

Polycrystalline powder was used for XMCD measurements
while single crystals were used for the XLD measurements.
Polycrystalline samples of Na3Co2SbO6 were prepared by
a solid-state reaction method. Stoichiometric quantities of
Co3O4 and Sb2O3 were combined and thoroughly ground
together with a 10% molar excess of Na2CO3. The powder
mixture was heated to 900 ◦C at 2 ◦C/min in a loosely covered
platinum crucible, soaked for 24 hours, and then cooled at
3 ◦C/min. The pink powder was reground and pressed into
pellets and heated again at 900 ◦C for 48 hours on sacrifi-
cial powder. The pellets were reground, mixed with a 30 wt
% excess Na2CO3, again pressed into pellets, and fired at
1100 ◦C for 48 hours. For this firing, the pellets were placed
on an aluminum oxide plate covered with sacrificial powder
to avoid the partially melted pellets sticking to the platinum
crucible. The pink powders prepared this way were single
phase as judged by laboratory powder diffraction. Magnetic
susceptibility measurements confirmed antiferromagnetic or-
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dering below TN = 8 K. Note that Na3Co2SbO6 is moisture
sensitive over the long term and should be stored in an inert at-
mosphere. Single-crystal samples were prepared as described
in Ref. [48]. All single-crystal measurements presented here
were done on crystals from the same batch.

B. XMCD measurements

The XMCD measurements at the Co L2,3 edges were car-
ried out at beamline I10 of the Diamond Light Source (DLS),
UK, using total electron yield (TEY) detection. The powder
sample was spread onto carbon tape and data collected at
T = 2 K in a 14 T magnetic field applied along the inci-
dent wave vector. Polarization control was provided by the
beamline’s Apple II undulators. Polarization was fixed during
energy scans, and x-ray helicity switched between consecutive
scans. Sum rules alongside numerical calculations were used
to derive ground-state expectation values of spin and orbital
angular momentum, as described in Sec. III F.

C. XLD measurements

XLD measurements at the Co L2,3 edges were conducted
both at beamline I10 of the DLS and beamline 29-ID-D of the
Advanced Photon Source (APS) of Argonne National Labo-
ratory. The XLD measurements at the DLS were conducted
in zero applied magnetic field, at T = 2–3 K, using total
fluorescence yield (TFY) detection. Data were collected on
as-grown single crystals mounted on carbon tape. Crystals are
platelet-like, hexagonal shaped, with the c axis oriented along
the surface normal. No care was taken to align the in-plane
crystal orientation (a total of four crystals were measured with
random in-plane orientation). Typical single-crystal size was
≈500 µm × 500 µm. The experimental geometry is shown in
the inset of Fig. 1. The XLD measurements were done at
normal incidence (θ = 90◦) and grazing incidence (θ = 20◦),
where θ is the angle between the incident x-ray wave vector
and the surface. The XLD spectrum is defined as the differ-
ence between linear vertical (in-plane) and linear horizontal
polarizations (horizontal polarization is along crystal c axis
for θ = 0◦). The grazing incidence geometry probes XLD
between in-plane and (nearly) out-of-plane directions; the nor-
mal incidence geometry probes in-plane XLD. Polarization
was kept fixed to either linear-H or linear-V during energy
scans. To compare with numerical calculations, TFY data un-
derwent an ad hoc correction for self-absorption based on the
observation, from modeling, that the sum of XAS spectra for
the two linear polarizations is close to the isotropic XAS spec-
trum, which is measured undistorted in XMCD-TEY powder
measurements. The polarization-averaged XAS spectrum was
matched to the undistorted isotropic XAS spectrum, and the
XLD data corrected with the same functional form (see Fig. 6
of the Appendix for more details). The dominant effect of the
correction is the removal of the suppression of the intensity at
the L3 edge with respect to the L2 edge.

The XLD measurements at APS were conducted on a
single crystal that was cleaved in situ in order to expose a
fresh surface for TEY detection. Measurements were done
in zero applied field, at T = 150 K. Polarization control was
provided by the beamline’s electromagnetic variable polariza-

FIG. 1. Polarization-dependent x-ray absorption spectra detected
in TEY mode at grazing incidence and near normal incidence angles
(T = 150 K). The linear dichroism is obtained as the difference in
XAS spectra between linear vertical and linear horizontal polariza-
tion. The inset in the top panel shows the experimental geometry.

tion undulator. Polarization was kept fixed to either linear-H
or linear-V during energy scans. Experimental geometry was
the same used at the DLS, with measurements carried out at
various incidence angles between θ = 0◦ and θ = 95◦. The
beamline’s in-vacuum diffractometer, together with its access
to tender x-ray energies (2500 eV), allowed accessing the
(001) Bragg reflection to confirm that the crystalline c axis
was oriented along the crystal surface normal.

XLD measurements were also carried out at the Co K edge
at beamline 4-ID-D of the APS. Switching between linear
horizontal and linear vertical polarization was achieved with
the use of two in-line C(111) diamond phase plates, each
180 µm in thickness. The first phase plate is set to achieve
circular polarization (π/2 phase shift between orthogonal
polarization components) while the second phase plate is al-
ternated between ±π/2 conditions to switch between linear
polarization states at each energy point during energy scans.
A 4-element silicon drift diode energy discriminating detector
was used to detect Co Kα emission in partial fluorescence
yield mode. Measurements were done in zero magnetic field
at 2 K, using the same experimental geometry as in the other
XLD measurements.

Sizable XLD is detected between in-plane and out-of-plane
directions, as expected for this layered honeycomb structure
(Fig. 1). On the other hand, the angular-dependent XLD
measurements at both Co L2,3 and K edges clearly show
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FIG. 2. Comparison between experimental (black) and calcu-
lated (red) spectra. (a) The isotropic spectrum, and (b) the XMCD
spectrum obtained as the difference of the spectra for negative
(orange) and positive (blue) helicity of circularly polarized light.
Data are from powder sample at T = 2 K, H = 14 T. (c) XLD spec-
trum collected in TFY mode. XLD at incidence angle θ = 0 is the
difference of the spectra with polarization in the plane perpendicular
to the (111) axis of the CoO6 octahedra and along the (111) direction.
TFY data were collected on single-crystal samples at T = 2–3 K in
zero applied field, at θ = 20◦ incidence angle, and were corrected for
self-absorption.

that XLD signal gradually diminishes when moving toward
normal incidence, vanishing when both vertical and horizon-
tal polarizations lie in the honeycomb planes (Fig. 1 and
Appendix Figs. 9 and 10). This indicates that the in-plane
component of the Co 3d charge distribution is isotropic, and
also confirms that the random alignment of in-plane crystal
orientation during crystal mounting has no bearing on the
results.

We note that the self-absorption corrected XLD data col-
lected in TFY mode at the DLS using as-grown crystals, and
the XLD data collected in TEY mode at APS on an in situ
cleaved crystal, have similar line shapes but display differ-
ences in relative amplitudes between peaks (see Fig. 1 and
Fig. 3; a more direct comparison is shown in Fig. 6 of the
Appendix). Unlike TEY, the TFY signal is a bulk probe, hence
less sensitive to surface effects. On the other hand the self-
absorption correction of TFY data may introduce distortions
in the data. An additional possible source of discrepancy is
the different temperatures used in the TFY and TEY measure-
ments (2–3 K versus 150 K). It is worth noting that although
the TFY measurements were done at 2–3 K, within the mag-
netically ordered phase (TN = 8 K), the XLD signal is not of
magnetic origin; i.e., it is not x-ray magnetic linear dichro-
ism (XMLD). The data were obtained in zero applied field
(zero field cooling) so no field-biasing of AFM domains took
place. The horizontal x-ray beam size of ∼300 µm (∼1 mm at
grazing incidence) is expected to be much larger than, and av-
erage over, AFM and twin domains present in this honeycomb
monoclinic structure. Most importantly, the zigzag magnetic

FIG. 3. Modeling of XLD-TFY spectrum for different values
of the trigonal crystal field: −35 (blue), 35 (red), and 50 (gray)
meV. Note that the XLD signal is, to lowest order, proportional to
the strength of the trigonal field and therefore changes sign for an
opposite trigonal field. Inset shows structure of CoO6 honeycomb
planes with global (a, b, and c) and local (100, 010, and 001) systems
of coordinates highlighted. Octahedra are distorted along the trigonal
axis, i.e., local (111) axis, represented by the black arrow.

ordering is a collinear antiferromagnetic arrangement of Co
moments lying in the honeycomb planes [48]. If the XLD
signal were to be of magnetic origin, its dependence on
θ will be dramatically different than observation (i.e., negli-
gible angular dependence for AFM domains with in-plane Co
moments pointing in the vertical direction, and a much larger
XLD signal at normal incidence relative to grazing incidence
for AFM domains with in-plane Co moments pointing in
the horizontal direction) [61]. Additional evidence that the
TFY-XLD signal is not of magnetic origin is a lack of signal
dependence on in-plane crystal mounting orientation, and the
similar line shape of TEY-XLD measured at 150 K.

We show modeling results for the self-absorption corrected
TFY data here in the main paper as these data are bulk
sensitive and not influenced by potential surface modifica-
tions. The numerical calculations show better agreement with
the TFY than the TEY data. However, we also modeled the
surface-sensitive TEY data and included those results in the
Appendix (Fig. 7). The differences between TFY and TEY
data modeling mainly translate into an uncertainty in the size
of the derived trigonal crystal field, but do not have bearing on
the conclusions regarding the sign of the trigonal crystal field.

III. THEORY AND MODELING

A. Hamiltonian

The spectra are calculated using a Hamiltonian [62–64]
including the Coulomb interaction between the 3d electrons,
the Coulomb interaction between the 2p and 3d electrons,
spin-orbit interactions for the 2p and 3d electrons, and octa-
hedral and trigonal crystal fields. Parameters for the Coulomb
interaction are calculated within the Hartree-Fock limit and
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scaled down to 70% to account for covalency and inter-
atomic screening. The strength of the one-particle spin-orbit
interaction

∑
i ζ li · si, where the summation i goes over the

electrons, is calculated in the same limit giving a value of
ζ = 66 meV. The parameter for the 2p spin-orbit interaction
is ζ2p = 9.75 eV. The parameters for the crystal fields are
adjustable and chosen to obtain the best agreement with the
x-ray spectra. The octahedral crystal field is 10Dq = 1.1 eV.
The calculation also includes a trigonal crystal field

Htrig =
∑

α,α′=xy,yz,zx
α �=α′

∑
σ=± 1

2

�

3
c†
α′σ cασ , (1)

where the orbitals are defined with respect to the CoO6

octahedra. The summation goes over the t2g orbitals with
α = xy, yz, zx. The eigenenergies of the trigonal field are
2
3�,− 1

3�,− 1
3�. For a positive �, the holes preferentially

go into the state with energy 2
3� which has an eigenfunc-

tion |a1〉 = (|xy〉 + |yz〉 + |zx〉)/
√

3. However, as we shall see
below, in the presence of the Coulomb interaction, octahe-
dral crystal fields, and spin-orbit interactions, the many-body
ground state is significantly more complex.

The spectra are fitted within an atomic framework. Due to
the absence of clear, core-hole screening satellite features on
the high-energy side of the multiplet structure, which other-
wise arise from covalent mixing in the final state [64,65], the
x-ray absorption spectra of this compound are not well suited
for accurate determination of the charge-transfer energy and
the on-site repulsion. However, the spectra can be fitted rather
well using an atomic model where the effects of the ligands
are included by an effective crystal field. This approach fol-
lows closely that of Liu et al. [43] in their determination of
the ground state of divalent cobalt.

B. Spectral line shapes

A comparison between the different polarized spectra is
shown in Fig. 2. The calculated isotropic spectrum in Fig. 2(a)
agrees well with experiment (powder sample) for the used
crystal field [62]. The trigonal field has little effect on the
isotropic spectrum. The spectrum shows two clear edges
related to the splitting by the 2p spin-orbit interaction. Ad-
ditional fine structure is due to the Coulomb interactions and
the octahedral crystal field. Figure 2(b) shows XMCD data
for the powder sample. The calculated spectrum is again in
satisfactory agreement with experiment.

Figure 2(c) shows the XLD data, which are displayed in
greater detail in Fig. 3. The XLD is measured as the difference
between spectra with the polarization in the crystallographic
ab plane and near the c axis. Due to experimental limitations,
the latter spectrum is taken 20◦ away from the c axis, which
also has been taken into account in the calculations. The cobalt
ions form a hexagonal lattice in the crystallographic ab plane.
The CoO6 octahedra are oriented such that the (111) direction
of the octahedra is approximately along the crystallographic
c axis; see the inset in Fig. 3. The presence of XLD indicates
a trigonal distortion since no XLD is expected for octahedral
symmetry. The best agreement is obtained for a trigonal crys-
tal field of � = 35 meV, leading to an increased hole density
in the |a1〉 orbital. Figure 3 shows the effect of a change in

trigonal field on the XLD. Apart from small details, the XLD
for small � simply scales with the trigonal field. Most notably,
the sign of the XLD reverses when changing the sign of �. In
the following, we look in more detail at how the magnitude
and trends of the linear dichroism can be directly related to
ground-state properties and the size of the trigonal field.

C. Quadrupole moments

There are different ways that a change in parameters can
affect the spectral line shape. Obviously, for a large parameter
the spectral features can change, altering both the isotropic
and dichroic spectra. Alternatively, of more importance for
small parameters, a parameter can change the nature of the
ground state which can affect the final states that can be
reached. Such an effect is already visible in the isotropic
spectrum of divalent cobalt. From the degeneracies of the
2p3/2 and 2p1/2 core levels, one expects the intensity ratio of
the L3 and L2 edges to be 2 in the absence of 3d spin-orbit in-
teraction, assuming the core-valence electrostatic interaction
is small compared to the (final state) core level 2p spin-orbit
interaction. However, a finite spin-orbit coupling in the ground
state drastically changes the spectral line shape and increases
the L3-L2 branching ratio even when the final states are iden-
tical [55,56,66]. This phenomenon also underlies the changes
in the x-ray linear dichroism due to a trigonal distortion. Since
the trigonal distortion is expected to be of the order of a
few tens of meV, its effect on the final states is expected to
be small. However, the distortion more strongly affects the
ground state, which changes how the final states are accessed
via the dipole selection rules. For a trigonal distortion, this
predominantly affects the XLD.

Since the changes in the XLD are a result of the ground-
state properties, they are also reflected in the sum rules that
relate the integrated intensity of the spectra to ground-state
expectation values of particular operators. By performing an
integration over the spectral line shapes, all details of the
final states are removed. However, since the spectral line
shapes hardly change for small trigonal fields, see Fig. 3,
the integrated intensity directly reflects the size of the XLD
signal. The sum rules for normalized intensities are given
by [57,60,64]

Ik

I0
=

〈
wk

0

〉
〈nh〉 , (2)

where Ik refers to the integrated intensity of the isotropic,
circular dichroic, and linear dichroic spectra for k = 0, 1, 2,
respectively. The hole operators are spherical tensors of rank
k [60,67]. They are given by

wk
q=

∑
mm′σ

wk
q,m′mcm′σ c†

mσ ,

where c†
mσ creates an electron in a d orbital with projected

angular momentum m and spin σ = ± 1
2 . The coefficients can

be written in terms of 3 j symbols,

wk
q,m′m = (−1)l−m′

(
l k l

−m′ q m

)
/

(
l k l

−l 0 l

)
. (3)

The angular momentum for d electrons is l = 2 with the
projected angular momentum m = 2, 1, 0,−1,−2. For k = 0
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(isotropic spectra), the coefficients w0
0,m′m = δmm′ and the op-

erator is w0 = nh, where nh is the number of holes in the
valence shell (the 3d orbitals for Co2+). The integrated inten-
sity of the isotropic spectra is therefore simply proportional to
the number of holes in the 3d orbitals. For circular dichro-
ism, with k = 1 and q = 0, the coefficients are w1

0,m′m =
(m/l )δmm′ . Therefore, w1

0 = Lz/l is the orbital angular mo-
mentum of the empty states with l = 2 for transition metals.
Generally, w1

q = Lq/l , where Lq is the angular momentum
written in spherical coordinates. The integrated intensity of
the XMCD is therefore proportional to the orbital angular
momentum, which is a well-known sum rule [57].

Our interest lies in w2 which is related to quadrupole
moment of the holes in the d orbital. For atomic orbitals,
w2 is diagonal with matrix elements (w2

0)mm = 1
2 m2 − 1 giv-

ing −1,− 1
2 , 1 for |m| = 0, 1, 2. Therefore, the quadrupole

moment increases when the orbital lies more in the xy
plane. The same holds when writing the quadrupole mo-
ment in a real or tesseral basis with (w2

0)μμ = 1
2μ2 − 1

with μ = 2, 1, 0,−1,−2 = x2−y2, zx, 3z2−r2, yz, xy. Note
that the tesseral index μ reflects the atomic orbitals m = ±|μ|
that the real orbitals are composed of.

Although the preceding works well for a tetragonal dis-
tortion where the z axis of the octahedron is elongated, the
situation for a trigonal distortion is more complex. The dis-
tortion occurs in the (111) direction and the real orbitals are
no longer eigenstates of the crystal field. Additionally, the
measurements are performed near the (111) direction of the
octahedron. To take the direction into account, we have to
orient the quadrupole operator,

wk
0(θ, ϕ) = Ck (θ, ϕ) · wk =

k∑
q=−k

(−1)qCk
−q(θ, ϕ)wk

q, (4)

where Ck
q (θ, ϕ) = √

4π/(2k + 1)Ykq(θ, ϕ) is a renormalized
spherical harmonic. For many experiments, the z direction
(θ = 0) is the reference axis and wk

0(0, ϕ) = Ck (0, ϕ) · wk =
Ck

0 (0, ϕ)wk
0 = wk

0 using Ck
q (0, ϕ) = δq,0. (Note that here θ is

conventional spherical coordinate notation in the local octa-
hedral frame, not to be confused with the incidence angle
in experimental geometry shown in Fig. 1). This reduces
to the results above, since the wk

q were defined with re-
spect to the z axis. For the (111) direction, we have for
the quadrupole wk

(111) ≡ wk
0( arccos(1/

√
3), π

4 ), where (111)
indicates the new reference axis, i.e., the new z axis of the
system. Additionally, it is more convenient to use a trigonal
basis for the t2g orbitals [43],

|0eff〉 = 1√
3

(|yz〉 + |zx〉 + |xy〉), (5)

| ± 1eff〉 = ± 1√
3

(e±i 2π
3 |yz〉 + e∓i 2π

3 |zx〉 + |xy〉). (6)

Within this basis, the quadrupole moment can be written in
matrix form as

w2
(111) = 1

2

⎛
⎜⎜⎜⎜⎝

0 0 i 0 i
0 0 1 0 −1
−i 1 1 0 0
0 0 0 −2 0
−i 1 0 0 1

⎞
⎟⎟⎟⎟⎠

x2−y2 (eg)
3z2−r2 (eg)

1eff (eg)
0eff (a1g)
−1eff (eg)

, (7)

where the basis of the matrix is indicated on the right; eg and
a1g denote the symmetry in Mulliken notation. It is intuitive
to split the action of the quadrupole operator for the eg and
t2g orbitals. The diagonal components for the eg orbital are
zero. They are finite for the t2g orbitals and the diagonal terms
are equivalent to half times the quadrupole operator w2

0 of a
p orbital (leff = 1) with 1

2w2
0 = 3

2 (m2
eff − 2

3 ). Additionally,
they are, apart from a scaling, equivalent to the trigonal dis-
tortion in the trigonal basis,

Htrig =
∑

σ=± 1
2

1∑
meff =−1

�

(
m2

eff − 2

3

)
cmeff σ c†

meff σ
, (8)

where for � > 0, the holes preferentially go into the meff = 0
(a1) state.

Therefore, since the XLD is related to the quadrupole
moment, it is also a direct measure of the trigonal distortion.
Although this describes well the trends of the XLD, the off-
diagonal matrix elements in Eq. (7) and many-body effects
complicate the interpretation, as we shall see below.

D. Ground state

The lowest energy states of divalent cobalt are relatively
complex. The starting point is a high-spin state stabilized by
the dd Coulomb interaction and the octahedral crystal field;
see Fig. 4(top). This 12-fold degenerate state is then split by
the spin-orbit interaction. These states are then further mixed
and split by the trigonal field. The lowest twelve eigenenergies
are plotted as a function of the trigonal crystal field, see
Eq. (8), in Fig. 4(bottom). When including all interactions,
all eigenstates are twofold degenerate. The other eigenstates
are separated by close to an eV or more in energy due to the
octahedral crystal field and the dd Coulomb interaction.

The high-spin ground state for Co2+ including only the
Coulomb interaction and the octahedral crystal field is 4T1

with a predominantly t2ge2
g(3A2) configuration in hole nota-

tion. For the eg holes and Sz = S = 1, e2
g with 3A2 symmetry

implies a x2−y2↑, 3z2−r2↑ configuration. This is then cou-
pled to a hole in a t2g orbital giving a irreducible representation
A2 ⊗ T2 = T1. For the high-spin ground state favored by the
Coulomb interaction the total spin is S = 3

2 leading to a quar-
tet state (2S + 1 = 4). The orbital part of the coupled ground
state, T1, can again be interpreted in terms of an effective
orbital angular momentum Leff = 1 with projection Meff =
1, 0,−1. Since the e2

g(3A2) configuration has no effective or-
bital angular momentum, Meff is entirely determined by the
meff of the t2g or leff = 1 orbital for this configuration.

The 12-fold degenerate 4T1 is split by the spin-orbit inter-
actions. The splitting is seen for � = 0 in Fig. 4(bottom). The
trends can be rather well understood using an Leff model [43].
The spin-orbit interaction ζ ′Leff · S couples the angular mo-
mentum and the spin to a total angular momentum Jeff .
Although the agreement is good for Jeff = 1

2 , 3
2 , discrepancies

occur for Jeff = 5
2 , which is split in the many-body calcu-

lation due to interactions with higher-lying multiplets. This
is to be expected from symmetry arguments. The smaller
Jeff values do not split 1

2 → E ′ and 3
2 → U ′ when going

from effective spherical symmetry to octahedral irreducible
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FIG. 4. (Top) Schematic diagram representing evolution of 3d
states under the consecutive actions of octahedral and trigonal (� >

0) crystal fields (left side) and spin-orbit interaction with effective
spin-orbit coupling ζ ′ (right side). (Bottom) The lowest 12 eigenen-
ergies for Co2+ under the combined action of spin-orbit and trigonal
field � (all energies are twofold degenerate). The solid lines give
the result from the many-body calculation for the divalent cobalt
ion. The dotted curves are obtained using an Leff model for the
many-body states. The labels in the center are only valid for � = 0.
The Jeff = 1

2 , 3
2 correspond to the irreducible representations E ′ and

U ′, which are twofold and fourfold degenerate, respectively. Addi-
tional octahedral crystal-field effects split the Jeff = 5

2 into E ′ and
U ′. The trigonal crystal field further splits the states, which can be,
approximately, indicated by the |Meff | value.

representations [68]. However, the highest values Jeff = 5
2 →

U ′ ⊕ E ′ are expected to split when lowering the symmetry
from spherical to octahedral.

Note that the coupling strength for the many-body
states is not the same as for the single-particle interac-
tion. The effective spin-orbit interaction strength is ζ ′ ∼=
αζ = 29 meV with α ∼= 0.44. The eigenenergies for Jeff =
1
2 , 3

2 , 5
2 are − 5

2ζ ′,−ζ ′, 3
2ζ ′ = −72,−29, 43 meV, respec-

tively. The first excited state is 3
2ζ ′ = 43 meV higher in

energy. The underlying reason is that the coupled Leff and
S produce the correct relative splitting, but the absolute
energy separation requires the correct reduced matrix el-
ement. This is comparable to the Wigner-Eckart theorem.
The relative splitting is given by 〈Jeff Meff |Leff · S|Jeff Meff〉 =
1
2 [Jeff (Jeff + 1) − Leff (Leff + 1) − S(S + 1)] = − 5

2 ,−1, 3
2 for

Jeff = 1
2 , 3

2 , 5
2 with Leff = 1 and S = 3

2 . However, the expec-
tation value of the one-particle spin-orbit interaction is given

by 〈Jeff Meff |ζ
∑

i li · si|Jeff Meff〉 = − 5
2ζ ′,−ζ ′, 3

2ζ ′, where the
summation goes over the electrons in the 3d shell and ζ ′ = αζ

is effective spin-orbit coupling strength.
Let us try to get a better understanding of the reduced

matrix element. To lowest order the expected Hund’s rule
ground state in octahedral symmetry is 4T1(t2ge2

g(3A2)). Note
that there is a single hole in the t2g states. In analogy to
the iridates, one might expect the t2g states to split into an
effective jeff = 1

2 , 3
2 under the spin-orbit interaction. The hole

would then preferentially go into the jeff = 1
2 state. Although

this tendency is there, the Coulomb interaction and the crystal
field impose the 4T1 state and the spin of the t2g hole has to
be coupled parallel to the S = 1 spin of the e2

g holes. The
result is that, for Jeff = 1

2 , the ratio of jeff = 1
2 to jeff = 3

2
character of the t2g hole is 8 : 1. This demonstrates that the
many-body Jeff = 1

2 state does not simply have a high-spin
hole configuration of t2g↑e2

g↑ with the t2g hole in the jeff = 1
2

state. For the Jeff = 3
2 , the ratio is 5 : 4, whereas the Jeff = 5

2
is composed solely of jeff = 3

2 holes.
From the ratios of jeff character, the expectation value

of the spin-orbit interaction can be calculated giving, for
Jeff = 1

2 , 〈l · s〉 = 8
9 (−1) + 1

9
1
2 = − 5

6 using that l · s = −1, 1
2

for jeff = 1
2 , 3

2 , respectively. For Jeff = 3
2 , one finds 〈l · s〉 =

5
9 (−1) + 4

9
1
2 = − 1

3 . Since the Jeff = 5
2 only contains jeff = 3

2 ,
its spin-orbit coupling is 〈l · s〉 = 1

2 . Therefore, the reduced
matrix element is α = 1

3
∼= 0.33. Note that the spin-orbit cou-

pling is entirely determined by the hole in the t2g states and
therefore does not exceed the range [−1, 1

2 ].
However, this is not the entire story since numerically it

was found that α ∼= 0.44. The reason for the larger value is
that 4T1(t2ge2

g(3A2)) is not the only 4T1 state. The Coulomb
interaction couples this state to 4T1(t2

2g(3T1)eg). Neglecting the
spin-orbit interaction, this coupling can be calculated from

H =
(

−12B 6B

6B 10Dq − 3B

)
4T1(t2ge2

g(3A2))
4T1(t2

2g(3T1)eg)
, (9)

where the configurations are given on the right. The Coulomb
coupling is given by the Racah parameter B = 0.109 eV. With
10Dq = 1.1 eV, this gives about 8% 4T1(t2

2g(3T1)eg) charac-
ter in the ground state. The increased hole density in the
t2g orbitals plus the additional spin-orbit coupling between
the t2g and eg holes gives α ∼= 0.47. The expectation values
of the spin-orbit coupling are then 〈4T1Jeff |

∑
i li · si|4T1Jeff 〉 =

− 5
2α,−α, 3

2α = −1.19,−0.47, 0.71 for Jeff = 1
2 , 3

2 , 5
2 for the

lowest quartet states. A full many-body calculation using all
the configurations gives, in the absence of a trigonal crystal
field, 〈4T1Jeff |

∑
i li · si|4T1Jeff 〉 = −1.34,−0.74 for Jeff = 1

2 , 3
2 .

The Jeff = 5
2 is split under the octahedral crystal field giving

expectation values of 0.17 and 0.61 for E ′ and U ′, respec-
tively.

The ground-state expectation value can be used to estimate
the isotropic branching ratio, i.e., the ratio BR = IL3/IL2 of the
integrated intensities of the L3 and L2 edges [55,56,64,66]. As
can be seen from Fig. 2, the branching ratio deviates strongly
from the expected 2 : 1 ratio based on the degeneracy of the
2p j core levels. The branching ratio is BR = (2 + r)/(1 − r)
where r = −〈4T1 1

2
| ∑i li · si|4T1 1

2
〉/nh, where nh = 3 is the
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number of holes. Inserting the values gives BR = 4.42. The
branching ratio of the calculated spectrum is BR = 4.86. The
difference occurs because the sum rule assumes that the j
value of the core level is a good quantum number. In reality,
the two edges are mixed, predominantly due to Coulomb inter-
actions. Calculating the spectra from excited Jeff values gives
strongly different branching ratios even though the final states
are equivalent. The change in branching ratio is therefore
not a result of the change in the final states, but what final
states can be accessed starting from a particular ground state.
This is also important for the trigonal crystal field, which
changes what final states are accessed even though the trigonal
field is so small that it barely affects the x-ray absorption final
states.

E. Trends in quadrupole moment

Up to this point, we have seen that the introduction of a
trigonal field gives rise to an XLD signal. Good agreement
with the experimental TFY data (T = 2 K) can be found for
� ∼= 35 meV (Fig. 3). It should be noted that the size of the
signal can be rather sensitive to the experimental conditions
and measurement technique. Data obtained in TEY mode
(T = 150 K), see Appendix, gives a signal with the same sign
but larger intensity, yielding � ∼= 60 meV. The integrated in-
tensity of the XLD is proportional to the quadrupole moment,
which can be related to the trigonal field. Since the shape of
the XLD spectrum is hardly affected by the small trigonal
field, the quadrupole moment effectively gives the size of the
XLD signal. We now would like to understand the trend of the
quadrupole moment (or, equivalently, the size of the trigonal
field) and hence the size of the XLD as a function of the
trigonal field parameter �. The coupled Jeff Meff values are
used to describe the trends. From the discussion of the spin-
orbit coupling, we know that the coupled angular momenta
can provide a good idea of the splitting, but a reduced matrix
element is needed to relate it to the microscopic value. We
focus on the trend and obtain the reduced matrix element
numerically. The trigonal field in the coupled LeffMeff basis
is Htrig = 2

3�W 2 = �(M2
eff − 2

3 ), see Eq. (8), where W 2 is the
quadrupole moment due to the t2g orbitals from Eq. (7) in the
coupled basis. Within the lowest configuration 4T1, ζ ′Leff · S
is the dominant interaction. It is therefore advantageous to
write the Hamiltonian in the coupled |JeffMeff〉 basis. In this
basis, the spin-orbit interaction becomes diagonal,

HSOI = ζ ′

⎛
⎜⎝

− 5
2 0 0

0 −1 0

0 0 3
2

⎞
⎟⎠

Jeff , |Meff | = 1
2 , 1

2
3
2 , 1

2
5
2 , 1

2

. (10)

Note that Meff is also a good quantum number, and we can
focus on |Meff | = 1

2 . The trigonal field, which was diagonal in
the uncoupled basis, |LeffMeff , SMS〉 with Leff = 1 and S = 3

2 ,
now becomes off-diagonal,

Htrig = �

⎛
⎜⎜⎝

0 − 1
3
√

5
1√
5

− 1
3
√

5
4
15

1
5

1√
5

1
5 − 4

15

⎞
⎟⎟⎠

Jeff , |Meff | = 1
2 , 1

2
3
2 , 1

2
5
2 , 1

2

.

FIG. 5. Comparison between the expectation value of the micro-
scopic quadrupole moment 〈w2〉 (blue) and the scaled quadrupole
moment α′〈W 2〉 for the coupled basis (red dotted).

The eigenvalues En and eigenstates |En〉 with n = 0, 1, 2 of
Meff = 1

2 can be found by diagonalizing the total Hamiltonian
for |Meff | = 1

2 , H = HSOI + Htrig. In the limit � � ζ ′, the
energy of the ground state |E0〉 can be approximated by

E0 = −5

2
ζ ′ − �2

45
(

3
2ζ ′ + 4

15�
) − �2

5
(
4ζ ′ − 4

15�
) . (11)

This approximates the parabolic behavior for small � of the
lowest curve in Fig. 4. Note that the change in energy is
proportional to −∑

i=2,3 H2
1,i/(Hi,i − H1,1), where Hi, j with

i, j = 1, 2, 3 is a matrix element in the total Hamiltonian.
Note that the mixing of the Jeff = 1

2 state with the other
Jeff = 3

2 , 5
2 is relatively small, of the order of 3%–8% for

� = 35–60 meV. This is because the mixing is proportional
to [H1,i/(Hi,i − H1,1)]2 which is small. Since the spin-orbit
interaction is diagonal, this barely affects the ground-state
expectation value of the spin-orbit interaction, giving a rela-
tively pure Jeff = 1

2 state. However, it affects more strongly
the expectation value of the trigonal field (and the related
quadrupole moment) which is proportional to H1,i/(Hi,i −
H1,1) due to the off-diagonal terms between the Jeff = 1

2 and
the Jeff = 3

2 , 5
2 .

The trends in the quadrupole moment are given by
〈W 2〉 = 3

2 〈E0|Htrig|E0〉/�, which is directly proportional to
the ground-state expectation value of the trigonal field. As
for the spin-orbit coupling, the value of W 2 overestimates the
magnitude of the expectation value 〈w2

(111)〉 from Eq. (7) in
the many-body ground state. The expectation value of 〈W 2〉
is therefore scaled down by its reduced matrix element α′ =
0.38.

Figure 5 shows a comparison between the microscopic
quadrupole moment 〈w2

(111)〉 and the scaled quadrupole mo-
ment α′〈W 2〉 for the coupled basis. As is clear, there is a good
agreement for the trends from the coupled basis. From the sum
rules we know that the expectation values directly reflect the
XLD signal. Therefore, the XLD is directly proportional to the
size of the change in ground-state energy due to the trigonal
field. A change in the sign of the trigonal field therefore
causes a change in sign of the XLD signal. These trends are
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in agreement with the calculation in Fig. 3. Although the size
of the XLD increases with �, the magnitude is not entirely
symmetric for positive and negative �.

Whereas 〈w2
(111)〉 = α′〈W 2〉 is relevant for the integrated

intensity of the XLD spectrum, the expectation values can also
be related to the hole densities in the ground state. The hole
density in the a1g orbital is given by na1g

= −〈W 2〉 + 1
3 . This

gives na1g
= 0.59–0.77 for � = 35–60 meV. The trigonal field

does not directly lead to a hole in the a1g orbital as one might
expect from a simple independent-particle level scheme.

F. XMCD

The XMCD data, see Fig. 2(g), are sensitive to the mag-
netic moment. Sum rules [57,58] allow us to relate the
integrated intensities of the XMCD to the expectation values
of the orbital (Lz) and spin (Sz) angular momentum. Alter-
natively, since the experimental spectra can be satisfactorily
reproduced theoretically, the expectation values can also be
calculated. Numerically, the expectation values are found to
be 〈Lz〉 = −0.57 and 〈Sz〉 = −0.83 in units of h̄ for a trigo-
nal field of 35 meV. The values are rather insensitive to the
trigonal field, yielding 〈Lz〉 = −0.57 and 〈Sz〉 = −0.84 when
increasing the field to 60 meV.

Experimentally, the expectation values can be deduced
from the spectral line shape using the sum rules [57,58]; see
Fig. 8. Having the numerical calculations of the spectral line
shape and the expectation values allows us to check the valid-
ity of the sum rules. Numerically, the sum rule reproduces the
value for Lz, since this sum rule is exact. Discrepancies can be
found when using the Sz sum rule. There are two assumptions
in the use of the Sz sum rule. First, the sum rule also con-
tains a magnetic dipole operator, which is generally assumed
to be small. Numerically, it is found that |〈Tz〉| < 0.003, so
this assumption is justified. Second, the derivation of the Sz

sum rule [58] assumes that each spin-orbit split edge can be
described by the j value of the 2p core hole. This is generally
a good assumption for late transition metal ions where there
is less mixing of the spin-orbit split edges by the Coulomb
interaction. The value of projected spin from the calculated
spectra is 〈Sz〉 = −0.82. The value differs by only 1.2% from
the calculated expectation values. Therefore, the sum rules
work well for divalent cobalt.

Applying the sum rules to the experimental spectra gives
〈Lz〉 = −0.61 and 〈Sz〉 = −0.59. The value for 〈Lz〉 agrees
well with the theoretical value, whereas a smaller value is
found for Sz. The major source of the discrepancy is the
size of the XMCD signal at the L2 edge, which is smaller
in the experimental spectra. This increases the value of Lz,
but decreases Sz. Both experimental and theoretical Sz values
are significantly smaller than the value of 〈Sz〉 = − 3

2 that one
might naively expect from a spin-only, high-spin 4T1 state.

The experimental (theoretical) value of the projection
of magnetic moment along applied field, Mz = −(〈Lz〉 +
2〈Sz〉)μB/h̄, is 1.79 (2.23) μB. These values are in reasonable
agreement with results from magnetometry of 2.25 μB/Co at
6 T [48], 2.1 μB/Co at 9 T [47], and 2.0 μB/Co at 5 T [46].
Using the relation Mz = gMJeff with MJeff = 1

2 one derives
effective g factors of 3.58 and 4.46 from experiment and
theory, respectively. Although these effective g values are for a

powder average, it is interesting to compare these values with
anisotropic gab, gc factors derived from analysis of magnetic
susceptibility data [43], gab ∼ 4.6 and gc ∼ 3. Interestingly,
a powder average of these anisotropic g factors yields g ∼ 4,
which is close to the effective g value obtained from our data
and theoretical analysis.

While the ground-state magnetic structure of Na3Co2SbO6

is well known to be zigzag with propagation vector
(0.5,0.5,0) [47,48], less is known about the magnetic struc-
ture in applied field. Recent neutron diffraction work [69]
shows that in-plane fields as low as 0.5–0.8 T drive a new
magnetic structure with a (1/3, 1/3, 1/3) propagation vector,
presumably a ferrimagnetic state, and that no AFM order is
seen above 2.2 T. In a separate study, a H-T phase diagram
derived from 23Na NMR, specific heat, and magnetometry
reveals a saturated magnetization region at low T and high
fields above about 3 T [70], consistent with previous magne-
tometry measurements [46–48]. The 14 T applied field used
in the XMCD measurements (T = 2 K) places the system
in the field-induced “saturation” region of the phase diagram
in Ref. [70]. Whether the field-induced state at 14 T is fully
polarized with Co moments aligned along the applied field
remains to be determined. However, the fact that the magnetic
moment per Co ion obtained from magnetometry is very close
to the local-moment values derived from single-ion numerical
calculations that reproduce the XMCD data indicates that the
in-field 14 T state is close to a fully polarized state as the net
moment per Co ion approaches the local moment.

IV. CONCLUSIONS

In this paper, x-ray dichroic experiments have been pre-
sented for a potential Kitaev QSL material. The divalent
cobalt ion is in a high-spin (4T1) state. Under the spin-orbit
interaction, these states are split into an effective total an-
gular momentum Jeff = 1

2 , 3
2 , 5

2 . X-ray spectroscopy clearly
confirms that the ground state has predominantly Jeff = 1

2
character (or the E ′ irreducible representation). This manifests
itself by a large branching ratio in the isotropic and circular
dichroic absorption spectra.

Although the calculations are done with an atomic
3d spin-orbit interaction strength of ζ = 66 meV, the ef-
fective coupling strength for the Jeff many-body states is
ζ ′ = 29 meV. This agrees with the value of 30 meV taken
by Liu et al. [43] and the 27–28 meV values derived from
inelastic neutron scattering data [53,54]. Since the spin-orbit
split manifolds are close in energy, they can be relatively
easily mixed even by a weak perturbation such as the trigonal
field. The changes in the ground state due to the trigonal
field are studied using XLD. Analysis of the spectral line
shapes allows us to confirm a positive trigonal field in the
range 35–60 meV leading to an enhanced hole density in
the a1g orbital. Although the derived magnitude of the crystal
field has significant errors due to differences in bulk-sensitive
(TFY) and surface-sensitive (TEY) data, the positive sign of
the trigonal field is a robust result. A positive sign is also found
from modeling of crystal field excitations in inelastic neutron
scattering data [53]. Therefore, despite the compression of
the octahedra along their trigonal axis, a positive value of
the trigonal field is found. The range of values agrees with
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� = 38 meV found by Liu et al. [43] from susceptibility
measurements, although a smaller value of � = 12 meV was
derived from modeling of crystal field excitations in inelastic
neutron scattering data [53].

The rather small and comparable energy scales of spin-
orbit interaction and trigonal crystal field leads to a rather
complex ground state. The ground state of Co2+ in the absence
of spin-orbit coupling and trigonal crystal field has a hole
configuration t2ge2

g. When switching on the spin-orbit interac-
tion, one might expect that, in analogy to the iridates, the hole
goes into the jeff = 1

2 formed by coupling the spin and the
orbital angular momentum of the t2g hole. However, although
the trend is there, the situation is more complex since 4T1 is a
many-body state stabilized by the Coulomb interaction. One
therefore finds an admixture of jeff = 3

2 hole density even
for a zero trigonal field. Likewise, switching on the trigonal
field does not directly lead to a hole in the a1g state, but to
an increased density in the a1g state of 0.59–0.77 holes for
a trigonal field of 35–60 meV. Even though the trigonal field
increases the mixing of the Jeff = 1

2 with the Jeff = 3
2 , 5

2 states,
the ground state still has predominately Jeff = 1

2 character,
amounting to over 90% of the Jeff = 1

2 character of the ground
state for the case of zero trigonal field.

In summary, the results provide experimental validation of
the (counterintuitive) positive sign of the trigonal crystal field
acting on Co2+ ions, bracket the magnitude of the trigonal
crystal field, and validate the Jeff = 1

2 description of the elec-
tronic ground state of Na3Co2SbO6. In addition to providing
independent confirmation of derivations based on magnetic
susceptibility data [43,44] and inelastic neutron scattering
data [53,54], the results provide a good foundation for ex-
periments aimed at manipulating crystal field and exchange
interactions with uniaxial strain or applied pressure toward
stabilizing Kitaev’s QSL state in this and other honeycomb
cobaltate lattices with spin-orbit entangled 3d states.
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APPENDIX

Although the experimental and theoretical spectral XLD
line shapes can be reasonably reconciled, details and the
absolute magnitude of the dichroic signal can be sensitive

FIG. 6. The top black curve shows the scaling needed to make
the isotropic TFY and TEY yields equal. The uncorrected spectra are
shown in orange and blue for vertical (V) and horizontal (H) polar-
izations, respectively. The red and blue spectra show the XLD-TFY
data before and after the self-absorption correction. The XLD-TFY is
scaled by a factor 5. The bottom curve is the XLD-TEY data, scaled
by a factor of 5.

to the experimental conditions and measurement techniques.
The main text shows modeling of XLD data obtained
using total fluorescence yield (TFY; T = 2–3 K). This de-
tection technique is known to be affected by self-absorption
effects, which reduce high intensities relative to low inten-
sities. To correct for that, it was noted, based on modeling,
that the sum of the TFY spectra measured in the horizon-
tal and vertical polarization conditions is comparable to the
isotropic spectrum measured in total electron yield (TEY) on

FIG. 7. Modeling of XLD data collected in TEY mode (T =
150 K). The figure shows the comparison between experimental
(black) and calculated (red) spectra. (a) The isotropic spectra ob-
tained by averaging both polarizations. (b) The x-ray linear dichroic
spectrum, the difference of the spectra polarized in the ab plane and
along the c axis. The c axis is approximately along the (111) direction
of the CoO6 octahedra.
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FIG. 8. Isotropic XAS (top) and XMCD (bottom) data collected
on powder samples at 2 K in 14 T magnetic field, using TEY detec-
tion. Integrals used in sum rules analysis for derivation of expectation
values of orbital, Lz, and spin, Sz, angular momentum are also shown.
The isotropic spectra was used to obtain an ad hoc self-absorption
correction to TFY data.

the powder sample (used for XMCD measurements). This is
reasonable since the XLD signal is relatively small, and the
TEY is not affected by self absorption. A small broadening
is included to reduce the effects of experimental noise. After
the correction, the TFY is again properly normalized. The
results are shown in Fig. 6. The correction changes the relative
intensities, but does not affect the overall XLD line shape. As
expected, the XLD intensity at the L3 edge is enhanced with
respect to the L2 edge.

Alternatively, TEY can be used to obtain the XLD spectra.
TEY has the advantage that no self-absorption correction is
needed. However, the data are more surface sensitive com-
pared to TFY. There are two noticeable differences between
the TEY (T = 150 K) and TFY (T = 2–3 K) data. First, the
magnitude of the XLD is larger, requiring a trigonal field of
60 meV to explain the data. Second, although the main edge is
satisfactorily explained, there is additional linear dichroism at
the high-energy sides of both the L3 and L2 edges (Fig. 7). This
intensity is not present in the TFY data and is not reproduced
theoretically. We note that the TEY and TFY data were col-
lected at different temperatures. Although the relatively low
energy separation between ground and excited Jeff states may
introduce temperature dependence in the XLD spectra, we
did not carry out a systematic study of XLD as a function of
temperature in this work.

FIG. 9. Angular dependence of polarization-dependent XAS and
computed XLD data at the Co K edge. Data were collected at T =
2 K in partial fluorescence yield mode. XLD vanishes when vertical
and horizontal polarization lie in the honeycomb planes.

Figure 8 shows XAS and XMCD data collected on powder
samples in TEY mode at T = 2 K, H = 14 T. Two arctan
functions are used to mimic the absorption edge jumps at
the Co L2,3 edges. The widths of the arctan functions are set
to the core-hole lifetimes of the respective edges, and their
amplitude ratio set to 2:1, corresponding to the degeneracy of
2p3/2 and 2p1/2 core levels at L3 and L2 edges, respectively.
After normalizing the XAS (and XMCD) data to edge jumps
of 1:0.5 at these spin-orbit split edges, the integrals of the
isotropic XAS fine structure (shaded area) and XMCD signals
(red lines) were computed to derive the expectation values of
Lz and Sz using sum rules analysis [57].

Figure 9 shows the angular dependence of Co K-edge XLD
data collected in partial fluorescence yield mode (T = 2 K). In
agreement with the angular evolution seen in the XLD of the

FIG. 10. Angle dependence of XLD data collected in TEY mode
(T = 150 K). The XLD vanishes when both linear vertical and linear
horizontal polarizations are in the honeycomb plane.
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Co L2,3 edges (Fig. 10), XLD is largest at grazing incidence
and vanishes at normal incidence. Figure 10 shows the angular

dependence of Co L2,3 XLD data collected in TEY mode
(T = 150 K).
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