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Gauge-invariant measure of the magnon orbital angular momentum
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Unlike the Berry phase, the orbital angular momentum (OAM) of magnons with two-dimensional wave vector
k in band n is not gauge invariant for arbitrary phase λn(k) and so is not physically observable. However, by
integrating the OAM over the orientation φ of wave vector k, we construct a gauge-invariant function Fn(k). Like
Fn(k), the average OAM for magnon band n in a circle of radius k is also gauge invariant and can be directly
observed. We demonstrate these results for a ferromagnet on a honeycomb lattice with Dzyalloshinskii-Moriya
interactions between next-nearest neighbor spins. With wave vectors k restricted to the first Brillouin zone, the
angular averaged OAM Fn(k) then has opposite signs for lower and upper bands n = 1 and 2 for all k.
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I. INTRODUCTION

Magnons are quanta of spin excitations that can carry en-
ergy and information without incurring Joule heating. In some
magnetic materials, magnons may travel over centimeter dis-
tances [1] before appreciable decay. Consequently, magnons
have attracted a great deal of interest in the field of spintronics
as replacements for electrons. While magnons have already
exhibited a great many phenomenon of both scientific and
technological interest such as the magnon thermal Hall [2–5],
spin Seebeck [6,7], and spin Nernst effects [8–10], the field of
“magnonics” [11–13] has yet to reach full maturity.

Due to spin-orbit (SO) coupling, the spin Hall effect pro-
duces a spin current perpendicular to a charge current [14,15].
Prior to its original observation by Onose et al. [16], the
magnon Hall effect was predicted by Katsura et al. [17] using
a Kubo formula that employed the Berry phase of a magnetic
Hamiltonian. A magnon wave packet with center of mass at
position rc obeys the semiclassical equation of motion [18]

drc

dt
= ∂ωn(k)

∂k
− dk

dt
× �n(k), (1)

where ωn(k) is the magnon frequency, �n(k) is the Berry
phase for magnon band n and wave vector k, and × is the cross
product. This relation predicts the bending of the magnon
wave packet in the presence of Dzyalloshinskii-Moriya (DM)
interactions created by SO coupling, i.e., the magnon Hall
effect. Like DM interactions, dipole interactions can also pro-
duce a nonzero Berry phase in ferromagnets (FMs) [19]. The
effects of the Berry phase induced by geometry on FMs in
wires, ribbons, and spheres can be traced back to anisotropy
and DM interaction energies [13]. For a FM in the absence
of DM or dipole interactions, both the Berry phase and the
magnon Hall effect vanish.

Like Ref. [17], most subsequent work on magnon dy-
namics borrowed heavily from the semiclassical theory of
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electronic band structure, with the Berry phase taking a central
role [18]. Due to its roots in electronic band structure, the
magnetic Berry phase is usually expressed in terms of Bloch
functions |un(k)〉 as

�n(k) = i

2π

{
∂

∂k
× 〈un(k)| ∂

∂k
|un(k)〉

}
. (2)

Earlier work on the Berry phase also specialized to FMs,
so that the kinetic energy of a magnon can be written as
−(h̄k)2/2m∗, in analogy with the electron kinetic energy,
where m∗ is the effective mass of the magnon. Parametrized in
terms of m∗, results for the magnon thermal Hall conductivity
and other transport properties are valid only at low energies
and temperatures, where the dispersion of the FM magnon
frequency ωn(k) is quadratic.

Just as spin angular momentum underlays the magnetic
interactions between moments, orbital angular momentum
(OAM) underlays the Berry phase. From a purely formal
perspective, Matusmoto and Murakami [20,21] described the
OAM as the “self rotation” of the magnon wavepacket. But
from a physical point of view, the OAM of magnons has taken
a decidedly secondary role to the Berry phase in earlier work.

Considering the importance of OAM in other fields such
as optics [22–25] and electronic “orbitronics” [26–28], it
is indeed surprising that more effort has not been made to
understand the effects of OAM in thin film magnets. We
expect that the OAM of magnons will play important roles in
information storage, communications technology, and in the
coupling between magnons and other particles that can carry
OAM, like electrons [29], phonons [30,31], and photons [32].
In particular, the interaction between the spin and OAM of
magnons might be utilized to control the flow and lifetime of
magnetic excitations.

In the course of developing a quantum treatment for the
magnon OAM, recent work [33,34] provided four examples
of collinear magnets where OAM appears when the exchange
interactions create a non-Bravais lattice that violates inver-
sion symmetry and channels the magnon motion in nontrivial
ways. Two FMs and two antiferromagnets (AFs) were studied
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FIG. 1. Four case studies: (a) a zig-zag lattice with FM interac-
tions J1 > 0, J2 > 0 and ratio r = J2/J1, (b) a zig-zag lattice with
AF interaction J1 < 0 and FM interaction J2 > 0, (c) a honeycomb
lattice with FM interaction J > 0 and DM interaction D between
next-nearest neighbors with d = −2D/3J , and (d) a honeycomb
lattice with AF interaction J < 0 and DM interaction D. In all cases,
up spins are solid circles and down spins are empty circles.

on zig-zag square and honeycomb lattices, as sketched in Fig.
1.

Nevertheless, Refs. [33] and [34] sidestepped the impor-
tant issue of gauge invariance [35]. While the Berry phase is
invariant under the gauge transformation

|un(k)〉 → |un(k)〉 e−iλn (k) (3)

for an arbitrary phase λn(k), the OAM is not gauge invariant.
Quantities that depend on gauge are not considered to be
physically observable [18]. The absence of gauge invariance
has stymied previous investigators and stalled earlier studies
of the OAM. In this paper, we show that a gauge-invariant,
physically measurable function Fn(k) can be obtained by in-
tegrating the OAM over the orientation φ of the wave vector
k = (k, φ).

This paper is divided into five sections. In Sec. II, we re-
view some of the formal development originally presented in
Ref. [33], now extended by including further quantum effects
and simplified for collinear magnets. Section III contains a
derivation of the gauge invariant function Fn(k). Section IV
applies that function to the four case studies of Ref. [33]. The
function Fn(k) is nonzero only for a FM honeycomb lattice in
the presence of DM interactions. Section V explains how to
translate expressions between the semiclassical and quantum
languages. A discussion is contained in Sec. VI.

II. QUANTUM FORMALISM

As explained in Ref. [34], the classical equations of motion
[36,37] for the dynamical magnetization μi = 2μB δSi of a
collinear magnet at site i produce the linear momentum pi

[38]:

piα = 1

4μBM0
(μi × ni ) · ∂μi

∂xα

, (4)

where M0 = 2μBS is the static magnetization for a spin Si

pointing along ni = ±z. Using the 1/S quantization condi-
tions μi

+ = μixniz + iμiy = 2μB

√
2Sh̄ ai and μi

− = μixniz −
iμiy = 2μB

√
2Sh̄ a†

i for the dynamical magnetization in
terms of the local Boson operators ai and a†

i satisfying
the momentum-space commutation relations [a(r)

k , a(s)†
k′ ] =

δrsδk,k′ and [a(r)
k , a(s)

k′ ] = 0, the quantized linear and OAM are
given by

p = − h̄

2

M∑
r=1

∑
k

′
k
{
a(r)†

k a(r)
k + a(r)

k a(r)†
k

}
, (5)

Lz =
∑

i

(ri × pi ) · z

= h̄

2

M∑
r=1

∑
k

′{
a(r)

k l̂zk a(r)†
k − a(r)†

k l̂zk a(r)
k

}
, (6)

where r and s refer to the M sites in the magnetic unit cell and

l̂zk = −i

(
kx

∂

∂ky
− ky

∂

∂kx

)
(7)

is the OAM operator. The prime restricts the sum over wave
vectors k to the first Brillouin zone (BZ) of the magnetic unit
cell. The first relation specifies how the linear momentum p,
which can take any value inside or outside the first BZ, is
expressed in terms of wave vectors k defined solely within
the first BZ.

In terms of the a(r)
k and a(r)†

k operators, the second-order
Hamiltonian H2 can be written as

H2 =
∑

k

′
v†

k · L(k) · vk, (8)

where the vector operators

vk = (
a(1)

k , a(2)
k , . . . , a(M )

k , a(1)†
−k , a(2)†

−k , . . . , a(M )†
−k

)
(9)

satisfy [vk, v†
k′ ] = N δk,k′ with

N =
(

I 0
0 −I

)
(10)

and I is the M-dimensional identity matrix.
We then transform to the interacting vector operators

wk = (
b(1)

k , b(2)
k , . . . , b(M )

k , b(1)†
−k , b(2)†

−k , . . . , b(M )†
−k

)
, (11)

which satisfy [wk, w†
k′ ] = N δk,k′ . The relation between vk

and wk is given by vk = X −1(k) · wk, which may be expanded
as

a(r)
k =

∑
n

{
X −1(k)rn b(n)

k + X −1(k)r,n+M b(n)†
−k

}
,

a(r)†
−k =

∑
n

{
X −1(k)r+M,n b(n)

k + X −1(k)r+M,n+M b(n)†
−k

}
. (12)

The matrix X −1(k) obeys the eigenvalue equation [39]

	(k) · X −1(k) = εn(k) X −1(k), (13)

where 	(k) = N · L(k) and εn(k) = h̄ωn(k)/2 (n =
0, . . . , M) or −h̄ωn(−k)/2 (n = M + 1, . . . , 2M). This
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expression is the quantum analog of the semiclassical relation

H2|un(k)〉 = h̄ωn(k)|un(k)〉. (14)

Hence, X −1(k)rn can be considered the nth eigenfunction of
the 2M × 2M magnon energy matrix 	(k).

In terms of the interacting Boson operators, we find

p = − h̄

2

∑
n,k

′
k
{
2b(n)†

k b(n)
k + 1

}
, (15)

Lz =
∑
n,k

′
On(k)

{
2b(n)†

k b(n)
k + 1

} + (rc × pc) · z, (16)

where

On(k) = h̄

2

M∑
r=1

{X −1(k)rn l̂zk X −1(k)∗rn

− X −1(k)r+M,n l̂zk X −1(k)∗r+M,n}. (17)

The last contribution (rc × pc) to Lz is the OAM of the center
of mass of the magnon wave packet, as defined by Chang and
Niu [40].

Because the factor 2b(n)†
k b(n)

k was treated incorrectly,
Ref. [33] undercounted the OAM Lz for mode n by a factor
of 3 [41]. Of course, 2〈b(n)†

k b(n)
k 〉 = 2 for a single magnon with

wave vector k in state n. For collinear spin states on a non-
centrosymmetric lattice without DM or dipole interactions,
time-reversal symmetry requires [26] X −1(−k) = X −1(k)∗ so
that On(k) = −On(−k) is an odd function of k. It follows
that the OAM for a given magnon band n would vanish when
integrated over a ring of radius k within the two-dimensional
BZ.

Using the semiclassical notation, the OAM can be written
as

On(k) = − ih̄

2

{
k × 〈un(k)| ∂

∂k
|un(k)〉

}
· z. (18)

On the other hand, the Berry phase �n(k) can be written in
terms of the quantum eigenfunctions X −1(k) as

�n(k) = i

2π

M∑
r=1

{
∂X −1(k)∗rn

∂k
× ∂X −1(k)rn

∂k

− ∂X −1(k)∗r+M,n

∂k
× ∂X −1(k)r+M,n

∂k

}
. (19)

A guide to translating expressions between the semiclassical
and quantum languages is provided in Sec. V.

III. GAUGE INVARIANCE

In the semiclassical language, each Bloch function |un(k)〉
can be multiplied by an arbitrary phase factor exp[(−iλn(k)]
as in Eq. (3). In the quantum language, each eigenfunction
X −1(k)rn can also be multiplied by an arbitrary phase factor
so that

X −1(k)rn → X −1(k)rn e−iλn (k), (20)

where λn(k) may depend on k and band index n but not on
site r. Under a gauge transformation,

On(k) → On(k) + h̄

2

(
kx

∂

∂ky
− ky

∂

∂kx

)
λn(k), (21)

�n(k) → �n(k), (22)

both of which use the normalization condition X −1(k) · N ·
X −1 †(k) = N [equivalent to 〈un(k)|un(k)〉 = 1], or

M∑
r=1

{|X −1(k)rn|2 − |X −1(k)r+M,n|2} = 1. (23)

Whereas the Berry phase is invariant for any phase factor
λn(k), Eq. (21) indicates that the OAM is not.

After decomposing k = (k, φ) in terms of its magnitude k
and orientation φ, we find that(

kx
∂

∂ky
− ky

∂

∂kx

)
λn(k) = ∂

∂φ
λn(k, φ). (24)

Due to the φ dependence of the phase λn(k) = λn(k, φ),
On(k) is not gauge invariant. In order to obtain an observable
measure of the OAM, we construct the function

Fn(k) =
∫ 2π

0

dφ

2π
On(k). (25)

Under a gauge transformation,

Fn(k) → Fn(k) + h̄

2

∫ 2π

0

dφ

2π

∂

∂φ
λn(k, φ)

= Fn(k) + h̄

2
{λn(k, 2π ) − λn(k, 0)} = Fn(k), (26)

which assumes only that λn(k) is a single-valued function
of the wave vector k [42]. Hence, Fn(k) is a gauge-invariant
function. Of course, Fn(k) is nonzero only for a band n with a
net OAM when integrated over a ring for all angles φ with a
fixed k.

To better understand the results for On(k), we can also
evaluate the OAM averaged over a circle of radius k:

On,av(k) = 2

k2

∫ k

0
dq qFn(q)

= 1

πk2

∫
dq On(q) H (k − q), (27)

where the Heaviside function H (x) is defined so that H (x) =
1 for x > 0 and 0 otherwise. Like Fn(k), On,av(k) is also gauge
invariant.

IV. CASE STUDIES

Now consider the four examples sketched in Fig. 1 and
discussed in Ref. [33]. Since DM and dipole interactions
are absent for the FM and AF zig-zag lattices in Figs. 1(a)
and 1(b), On(k) = −On(−k) is odd in k. This immediately
implies that Fn(k) = 0. For the AF honeycomb lattice in
Fig. 1(d), DM interactions shift the magnon frequencies but
do not affect the magnon energy matrix 	(k) = N · L(k) in
any nontrivial way. So once again On(k) = −On(−k) and
Fn(k) = 0.

The only case that satisfies the condition Fn(k) �= 0 is the
FM honeycomb with d = −2D/3J > 0 shown in Fig. 1(c),
where J > 0 is the nearest neighbor exchange interaction and
D < 0 is the next-nearest neighbor DM interaction, which
breaks time-reversal symmetry. Strong easy-axis anisotropy
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−K
∑

i Siz
2 prevents the spins from tilting away from the z

axis. The 4 × 4 matrix L(k) defined by Eq. (8) can then be
written

L(k) = 3JS

2

⎛
⎜⎜⎜⎜⎝

1 − Gk −�∗
k 0 0

−�k 1 + Gk 0 0

0 0 1 + Gk −�∗
k

0 0 −�k 1 − Gk

⎞
⎟⎟⎟⎟⎠,

(28)

where Gk = d �k,

�k = 4 cos(3kxa/2) sin(
√

3kya/2) − 2 sin(
√

3kya), (29)

�k = 1
3 {eikxa + 2e−ikxa/2 cos(

√
3kya/2)}. (30)

The lower and upper magnon mode energies are given by

h̄ω1(k) = 3JS(1 + κ − ηk ), (31)

h̄ω2(k) = 3JS(1 + κ + ηk ), (32)

with ηk =
√

|�k|2 + G2
k . Because the anisotropy κ = 2K/3|J|

merely shifts the magnon energies h̄ωn(k) but does not affect
the OAM, its contribution to L(k) is omitted.

After some manipulations, we find

X −1(k)11 = − 1

2c1(k)ηk
, (33)

X −1(k)12 = 1

2c2(k)ηk
, (34)

X −1(k)21 = ηk + Gk

2c1(k)�∗
k ηk

, (35)

X −1(k)22 = ηk − Gk

2c2(k)�∗
k ηk

, (36)

while the 31, 32, 41, and 42 matrix elements of X −1(k) vanish.
The normalization condition X −1(k) · N · X −1 †(k) = N gives

c1(k) = eiλ1(k)

√
2ηk(ηk − Gk )

, (37)

c2(k) = eiλ2(k)

√
2ηk(ηk + Gk )

. (38)

Here, λn(k) are arbitrary phases because the normaliza-
tion conditions only determine the amplitudes |cn(k)|. Since
Eq. (13) is a linear eigenvalue equation, the column vectors
X −1

rn (k) for modes n = 1 and 2 are only determined up to
overall arbitrary phase factors exp[−iλn(k)].

Regardless of those phase factors, the Berry phase along z
is given by

�1z(k) = −i
d

4π

�∗
k

|�k|

{
∂�k/ηk

∂k
× ∂�k/|�k|

∂k

}
· z, (39)

which is plotted in Fig. 2 for four different values of d . As the
above expression makes clear, the Berry phase vanishes for
d = 0. Notice that the Berry phase is sixfold symmetric and
always positive for mode 1. The peaks of the Berry phase ro-
tate by 30◦ when d exceeds about 0.06. At that value for d , the

FIG. 2. Berry phase �1z(k)/h̄ for a honeycomb lattice with FM
exchange J > 0 between neighboring up spins and DM interaction
D between next neighbors as shown in Fig. 1(c) for values of
d = −2D/3J between 0.001 and 0.1, for band 1.

maximum amplitude of the Berry phase reaches a minimum.
For mode 2, �2z(k) = −�1z(k) < 0.

Since the DM interactions break time-reversal symmetry,
On(k) contains both even and odd terms with respect to k due
to the Gk = −G−k ∼ d functions in X −1(k). Assuming that
c1(k) and c2(k) are both real or that λn(k) = 0, the OAM for
the lower and upper bands are given by

O1(k) = h̄

4

{
1 + d �k

ηk

}
�k

|�k| l̂zk
�∗

k

|�k| , (40)

O2(k) = h̄

4

{
1 − d �k

ηk

}
�k

|�k| l̂zk
�∗

k

|�k| . (41)

We plot the OAM versus k for the upper and lower magnon
bands in the top and bottom panels, respectively, of Fig. 3. The
OAM for the two bands are identical for the degenerate bands
when d = 0 but they differ for the nondegenerate bands when
d > 0. As seen for the upper or lower bands with d = 0, the
OAM peaks at the boundaries of the repeated first BZ of the
honeycomb lattice. While the OAM of the panels with d =
0 obey odd symmetry On(−k) = −On(k), the OAM of the
panels with d > 0 violate this symmetry. The first BZ of the
magnetic unit cell is the solid hexagon drawn on the bottom
left panel of Fig. 3.

Surprisingly, the results of Fig. 3 are very different than
those presented in Refs. [33] and [34], where the linear terms
kα in the OAM operator l̂zk of Eq. (7) were replaced by
periodic functions k̄α ,

kxa = sin(3kxa/2) cos(
√

3kya/2), (42)

kya = 1√
3
{sin(

√
3kya/2) cos(3kxa/2) + sin(

√
3kya)}, (43)

constructed so that k̄α (k + Gm) = k̄α (k) for any reciprocal
lattice vector Gm of the honeycomb lattice. With the periodic
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FIG. 3. A honeycomb lattice with FM exchange J > 0 between
neighboring up spins and DM interaction D between next-nearest
neighbors as shown in Fig. 1(c). The OAM On(k)/h̄ for the upper,
n = 2 (top) and lower, n = 1 (bottom) bands versus k for different
values of d = −2D/3J . The repeated first BZ boundary of the mag-
netic unit cell (thick solid hexagon) is sketched on the bottom panel
for d = 0.

OAM operator

l̂ zk = −i

(
kx

∂

∂ky
− ky

∂

∂kx

)
, (44)

the OAM On(k) also becomes a periodic function of k. By
contrast, the OAM plotted in Fig. 3 is clearly not a peri-
odic function. In particular, the OAM On(k) increases in
size with the magnitude of k. With the periodic kx and ky

defined above, Eq. (24) no longer holds and a gauge-invariant,
angular-averaged OAM cannot be derived.

For magnon band 1, the gauge-invariant quantity F1(k) is
plotted in Fig. 4(a). For band 2, F2(k) = −F1(k), as seen from
Fig. 3. With increasing k, F1(k) oscillates between positive
and negative values and is marked by sharp kinks at its max-
ima and minima. The positions k for the maxima in |Fn(k)|

FIG. 4. (a) Gauge-invariant function F1(k)/h̄ for magnon band 1
of a FM open honeycomb lattice versus k for four values of the DM
interaction d . (b) The average OAM O1,av(k)/h̄ versus ka/2π of band
1 for the same four values of d . For magnon band 2, F2(k) = −F1(k)
and O2,av(k) = −O1,av(k). The dot-dash vertical line marks kmax for
the first BZ in both (a) and (b).

in Fig. 4(a) correspond to the corners of the hexagons in the
lower left panel of Fig. 3, where red and blue regions meet.
Notice that dF1(k)/dk � 0 while dF2(k)/dk � 0 with peaks
in the derivatives |dFn(k)/dk| at the discontinuities of Fn(k).

We emphasize that the OAM must change for different
choices of the complex phases λn(k) in Eqs. (37) and (38).
Hence, On(k) plotted in Fig. 3 are not themselves observable.
However, by integrating k = (k, φ) over all angles φ for a
fixed k, we have resolved that phase ambiguity and created
gauge-invariant, observable functions Fn(k).

The functions O1,av(k) are plotted in Fig. 4(b) for four
values of d from 0.001 to 0.1. We find that O1,av(k) is an
oscillatory function that contains cusps at positive peaks when
Fn(k) discontinuously drops and negative valleys when Fn(k)
rises through 0. The first such cusp lies at the corners of the
first hexagonal BZ with k = 2

√
3/9(2π/a) ≈ 0.385(2π/a).

For d = 0.1, the average OAM peaks at 0.236h̄ at that cusp.
Other cusps lie at the corners of the hexagons drawn in the
lower left panel of Fig. 3. As k increases, the average OAM
tends to zero. By contrast, the average OAM On,av(k) of each
band of the honeycomb lattice with imposed wave-vector pe-
riodicity [33] is nonzero (and opposite) as k → ∞. Note that
O2,av(k) = −O1,av(k) so that the net average of the two bands
vanishes.
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V. TRANSLATING BETWEEN THE SEMICLASSICAL
AND QUANTUM LANGUAGES

In order to reconcile Eqs. (2) and (19) for the Berry phase,
we must we must define

〈un(k)|Â|un(k)〉cell ≡
M∑

r=1

〈vrn(k)|Â N |vrn(k)〉, (45)

where

|vrn(k)〉 =
(

X −1
rn (k)

X −1
r+M,n(k)

)
, (46)

〈vrn(k)| = (
X −1

rn (k)∗, X −1
r+M,n(k)∗

)
, (47)

and the integral over the magnetic unit cell on the left-hand
side of Eq. (45) is replaced by a sum over sites r within the
magnetic unit cell on the right-hand side of that expression.
As required, this transformation implies that

〈un(k)|Î|un(k)〉 =
M∑

r=1

〈vrn(k)|N |vrn(k)〉

=
M∑

r=1

{|X −1(k)rn|2 − |X −1(k)r+M,n|2}

= 1, (48)

which uses the normalization condition of Eq. (23).

VI. DISCUSSION

The function Fn(k) gives the average OAM over a ring
with wave vector k. Because it is gauge invariant, Fn(k) is
also measurable. It yields the average OAM at k = |k|, but
not the angles φ at which that OAM can be detected. One
of the greatest barriers to studies of the OAM at wave vector
k has been its lack of gauge invariance. By integrating the
OAM over the orientation φ of k, we have constructed gauge-
invariant functions Fn(k) and On,av(k) that are nonzero for
the FM honeycomb lattice but vanish for the AF honeycomb
lattice and in the absence of DM or dipole interactions.

While On(k) is not a periodic function of k, physical quan-
tities like Lz in Eq. (16) impose limits on the wave vector k by
summing over the first BZ of the magnetic unit cell. For the
FM honeycomb lattice, the magnetic unit cell is the hexagon
sketched in the inset to Fig. 3. The maximum amplitude of
the wave vector within the first BZ lies at its corners with
kmax = 2

√
3/9(2π/a) ≈ 0.385(2π )/a.

A periodic OAM can be constructed by first subtracting the
non-physical, odd function On, odd(k) (obtained by neglecting
DM and dipole interactions) from On(k) so that the remainder
O′

n(k) = On(k) − On, odd(k) is an even function of k. For the
FM honeycomb lattice,

O′
1(k) = −O′

2(k) = h̄

4

d�k

ηk

�k

|�k| l̂zk
�∗

k

|�k| , (49)

which is proportional to d . Like the Berry phase �1z(k),
O′

1(k) plotted in Fig. 5 is also a six-fold symmetric function of
k. A periodic OAM can then be constructed by tiling k-space
with the first BZ of O′

n(k).
Nevertheless, it is doubtful that a magnon with wave vector

outside the first BZ has any physical significance. Certainly,

FIG. 5. The even OAM function O′
1(k) in units of h̄ constructed

by subtracting the odd part of the OAM from O1(k) for the FM
honeycomb lattice with d = 0.1. The first BZ is bordered by the solid
hexagon.

any such magnon would rapidly decay via higher-order quan-
tum processes into single magnons within the first BZ while
conserving energy, momentum, spin, and OAM. Considering
only magnons within the first BZ of the open honeycomb
lattice, we can reach several conclusions. From Fig. 4, we
see that both F1(k) and O1,av(k) (band 1) are positive for all
k within the first BZ. For d = 0.1, band 1 will then have
an average OAM of about 0.24h̄ while band 2 will have an
average OAM of about −0.24h̄.

A natural question is whether angular averages over φ

make sense for k near kmax if only wave vectors k within the
first BZ are physical since those averages must also include
wave vectors outside the first BZ. As discussed above, how-
ever k points outside the first BZ can be translated to k points
within the first BZ using the periodic boundary conditions of
the space tiled with O′

n(k).
Experiments can tune the OAM by changing the splitting of

the magnon bands with energies h̄ω1,2(k)/3JS = 1 + κ ∓ ηk
from Eqs. (31) and (32) and

ηk =
√

|�k|2 + d2 �2
k. (50)

Plotted in Fig. 6, ηk has minima of 0 at the sides of
the BZ for d = 0 or of 1/3 at the midpoints of the sides
for d = 0.1; ηk has an absolute maximum of 1 indepen-
dent of d at k = 0 and a relative maximum of 3

√
3 d ≈

0.51 for d = 0.1 at the corners of the BZ, where �k = 0.
Therefore, searches for OAM in FM honeycomb materials
with significant DM interactions should concentrate at wave
vectors with amplitude k = 0.385(2π )/a, where the split-
ting between magnon bands is approximately 18

√
3 dJS =

12
√

3|D|S, independent of the exchange J . Note that the
splitting between the upper and lower magnon bands is due
to the broken time-reversal symmetry produced by the DM
interaction.

If a high-energy electron beam [29] with transverse mo-
mentum ka/2π ≈ 0.38 and OAM Lz = −h̄ strikes a FM
honeycomb sample (like CrI3 [43,44] or CrCl3 [45]) with
d ≈ 0.1, then Fig. 4(a) predicts that it is likely to encounter
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FIG. 6. The splitting ηk between magnon bands n = 1 and n = 2
of the FM open honeycomb lattice with d = 0 (left) or 0.1 (right).
The first BZ is shown by the solid hexagon in both panels.

a magnon with ka/2π ≈ 0.38 and opposite OAM Lz = h̄. But
the wave-vector orientation φ of that magnon is not deter-
mined. Keep in mind, though, that that the function Fn(k) must
be averaged over the radial spread �k of the magnon wave
packet [40].

Several important questions remain unanswered. Precisely
how can Fn(k) be measured? In what other systems would
Fn(k) be nonzero? How do the magnon orbital and spin an-

gular momentum couple to one another? We are hopeful that
future work will provide answers to these questions as the field
of magnonic OAM attracts renewed interest.

The data that support the findings of this study are available
from the author upon reasonable request.
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