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Spin contribution to the inverse Faraday effect of nonmagnetic metals
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We formulate the spin contribution to the inverse Faraday effect of nonmagnetic metals. We deal with the role
of the inversion symmetry, which forces all electronic bands to be at least twice degenerate at every point in the
Brillouin zone. We show both analytically and numerically that our formulation of the inverse Faraday effect is
invariant under unitary rotation within the doubly degenerate set of bands. In addition, we show the importance
of resonance-like features in the band structure for the inverse Faraday effect. Our first-principles computed spin
component of the inverse Faraday effect in a simple metal such as Au is reminiscent of its optical absorption,
with a characteristic d–s resonance in the optical spectrum.
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I. INTRODUCTION

The inverse Faraday effect (IFE) is a phenomenon in which
circularly polarized (CP) light acts as an effective magnetic
field that induces static magnetization in a material. It was
first predicted phenomenologically in the 1960s [1]. It was
observed experimentally by van der Ziel et al. [2] in CaF2

doped with magnetic impurities. The work of Pershan et al.
[3] provided a more detailed analysis, based on a quantum-
mechanical model of a localized magnetic impurity. Interest in
IFE has recently been renewed after the experimental demon-
stration of the control of spin dynamics in magnets by Kimel
et al. [4]. Optical magnetic switching has also been reported
in ferrimagnetic GdFeCo [5], TbCo [6], ferromagnetic Co/Pt
bilayer [7], as well as other materials [8]. More recent reports
assign the control of magnetism in these materials to thermal
effects that do not involve IFE [9–11]. Nevertheless, IFE has
been emerging as one of the potential ways for ultrafast data
processing [12]. Understanding the theoretical mechanism
behind IFE is relevant for further progress in the field of ul-
trafast magnetism. Theoretically, IFE has been formulated for
graphene, as well as Weyl semimetals [13,14], Rashba metals
[15], Mott insulators [16], ferromagnets [17–19], and non-
magnetic nanomaterials such as gold nanoparticles [20–23].
The IFE theory based on first principles is formulated both
considering only spin [18,19] and both spin and local part
of orbital magnetization [17,24]. Some of the IFE theories
are semiclassical and take into account the hydrodynamic
description of the free electron gas [22,25–27]. Earlier work
by Wagniere [28] and Volkov [29] discussed the symmetry
property of IFE.

In this paper, we revisit the first-principles-based IFE the-
ory for nonmagnetic metals. In particular, we focus on the
role of the inversion symmetry (P) present in the bulk crystal
structure of most metals, including simple metals such as Cu
or Au. Nonmagnetic metals with inversion symmetry con-
tain in their magnetic point group the PT operation, which
is a combination of time-reversal (T ) and spatial inversion
(P) operations. Due to the presence of PT symmetry, all
electron bands at all points in the Brillouin zone are at least

twice degenerate [30]. While in many physical situations the
presence of this band degeneracy does not cause difficulties
in computing various physical properties, the case with IFE
computation is somewhat more involved. In this paper, we
show how to deal with the presence of PT symmetry in the
calculation of IFE so that the final result does not depend
on the arbitrary unitary mixture of the states in the doubly
degenerate subspace. Our approach is easily applicable in the
first-principles context, and we demonstrate it in the case of
the calculation in bulk Au. Finally, we also discuss the role of
band resonance in the computed inverse Faraday effect.

The remainder of the paper is organized as follows. In
Sec. II, we derive our theory and demonstrate its invariance
under unitary band transformation, both analytically and nu-
merically using first-principles calculations on bulk gold. We
discuss our results in Sec. III and summarize in Sec. IV.
Additional details are provided in the Appendices.

II. RESULTS

When light is incident on a metal, the electron is excited to
a higher energy state. If the electron moves to a higher energy
state within the same energy band, the transition is known as
intraband. When the electron is excited to a different energy
band, it is known as an interband transition. In the case of the
IFE, we are interested in the magnetic moment induced via
the interaction of electrons with the CP light. Therefore, IFE
will, in general, have contributions from either interband or
intraband transitions. Furthermore, the magnetic moment that
is induced by the CP light can originate either from spin or
orbital degrees of freedom.

Therefore, in total, the complete theory of IFE in metal
would have to consist of four components: interband spin,
intraband spin, interband orbital, and intraband orbital, as
sketched in Fig. 1.

A. Working assumptions

In this paper, we focus on the spin component of the IFE.
The reason for focusing on the spin component is twofold.
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FIG. 1. Inverse Faraday effect contributions in a metal.

First, the formulation of the spin part of the IFE is signifi-
cantly more straightforward than the formulation of the orbital
moment. In fact, the modern theory of orbital magnetization
in an infinite bulk periodic solid has been developed only
relatively recently [31–34], while the theory of induced orbital
magnetization in an electric field (so far, static field, in an
insulator) is even more recent [35]. Therefore, thus far the
orbital part of the inverse Faraday effect has been included
only on the local level [17,24], or within the semiclassical
approach [22].

The intraband orbital contribution seems especially prob-
lematic within the modern theory of orbital moment, as such
theories have so far been formulated only for electronic states
in a periodic solid with a well-defined crystal momentum k.
On the other hand, within the Lindhard-like approach, one
needs to work with states that are linear combination of k and
k + q where q is the wavevector of light [36]. Therefore, we
leave the discussion of the orbital contribution to the IFE for
future work.

The second reason for focusing on the spin part of IFE
is that in this paper we are mainly interested in the role of
the electron band degeneracy in the formulation of IFE for
PT -symmetric metals, as well as the role of resonance. These
two issues, degeneracy and resonance, are already present in
the spin part of the IFE, so they can be addressed without
considering the orbital part.

Although the spin part of IFE has, in principle, both inter-
band and intraband contributions, we will show that, in the
case of nonmagnetic material, the intraband-spin part of IFE
is negligible at optical frequencies. Therefore, in the end, it
will suffice to focus here on only one of the four components
of IFE, namely, the interband-spin component.

We formulate the theory of spin IFE using standard adia-
batic time-dependent perturbation theory. The perturbation is
turned on infinitely slowly, which ensures that there are no
discontinuities in theory. We refer the reader to Ref. [37] for
a detailed review of the adiabatic time-dependent perturbation
theory. Since the perturbation of the incoming light is turned
on infinitesimally slowly, our theory does not have a transient
behavior that originates from a suddenly turned-on perturba-
tion. Instead, when light with frequency ω has been impinging
on the solid for a long time, we find that there are only two
contributions to the induced magnetization. One is constant in
time, while the other oscillates with a frequency of 2ω. We
show later in Sec. II F that the 2ω term is typically smaller in
magnitude than the constant term, which is why we focus on
the term that is constant in time.

In this paper, we treat the role of disorder by simply assum-
ing a constant lifetime of carriers that is independent of both
the band index and the k point.

B. Derivation

Now, we are ready to compute the spin component of
the inverse Faraday effect. We start with the time-dependent
Schrödinger-like equation within the independent particle ap-
proximation,

H (λ, t )�i(λ, t ) = ih̄
∂�i(λ, t )

∂t
. (1)

For now, we use a generic index i to distinguish the states
�i. These states are single Slater determinants corresponding
to fully occupied single-electron states below the Fermi level
EF. Hamiltonian H appearing in Eq. (1) is also a 2×2 matrix in
spin indices, as it includes relativistic effects such as spin-orbit
interaction. However, for brevity, here we suppress the spinor
indices in H and �.

The Hamiltonian H (λ, t ) consists of the unperturbed part
H0 and the perturbation V applied with frequency ω > 0,

H = H0 + λeδt (Veiωt + V †e−iωt ). (2)

For a moment, we keep the perturbation V generic and later
replace it with the interaction of the electron with the external
electric field (see Appendix A for more details). We will
assume that the electric field of light is polarized in the x–y
plane with a definite helicity (as specified in Appendix A). The
induced magnetic moment in a cubic material must then be
along the z axis. The strength of the interaction is parameter-
ized with the dimensionless parameter λ. In the limit δ → 0+,
the switching function eδt is responsible for turning on the
perturbation V infinitesimally slowly.

We will solve the time-dependent equation in terms of the
solutions �i to the unperturbed time-independent Hamilto-
nian,

H0�i = Ei�i. (3)

Following Ref. [37] and using a specific formulation from
Ref. [38], the solution of the time-dependent problem as a
series expansion in λ is given by

�i = Nie
−iαit

(
�i +

j �=i∑
j

B j� je
iαi j t

)
. (4)

The coefficients Bj are expanded to powers of λ,

Bj = B(0)
j + λB(1)

j + λ2B(2)
j + · · · (5)

as detailed in Appendix B. We choose B(0)
j = 0 for all j.

In the lowest order in perturbation theory, h̄αi j = Ei − Ej .
For completeness, we provide the Taylor expansion of αi j to
second order in λ in Appendix B. The sum in Eq. (4) is over
all states j that do not equal the unperturbed state i.

We computed |Ni|2 by imposing the normalization condi-
tion, 〈�i|�i〉 = 1. From the orthonormality of the unperturbed
states 〈�i|� j〉 = δi j , it trivially follows that

|Ni|2 = 1 + O(λ2). (6)
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Now we compute the spin magnetic moment per unit cell in
the perturbed state �i. This is simply given as the expectation
value of the spin moment operator,

MIFE
i (t ) = 〈�i|Mspin|�i〉. (7)

The total spin-magnetic moment MIFE
i must vanish at order

λ0, as we assume that the ground state is nonmagnetic. The
linear term MIFE

i ∼ λ1 must vanish by symmetry. Therefore,
in the lowest order MIFE

i scales as λ2. Using Eqs. (4) and (5)
in Eq. (7) gives us the following for the magnetic moment:

MIFE
i (t ) = 2Re

⎡⎣ j �=i∑
j

B(2)
j eiαi j t 〈�i|Mspin|� j〉

⎤⎦
+

j �=i∑
j

[
B(1)

j

]∗
e−iαi j t

l �=i∑
l

B(1)
l eiαil t 〈� j |Mspin|�l〉.

(8)

Here, we collected all terms in the expansion that scale as λ2

and neglected all higher orders of λ. From now on, we set
λ = 1 for simplicity.

In deriving Eq. (8) we had to take into account that the
λ2 contribution of |Ni|2 from Eq. (6) is now weighted by the
expectation of the spin magnetic moment in the unperturbed
ground state, 〈�i|Mspin|�i〉. Since the expectation value of
total spin moment is zero in a nonmagnetic system, we con-
clude that the normalization term |Ni|2 does not contribute to
MIFE

i (t ) in the λ2 order.
Inserting directly B(1)

j and B(2)
j from Eqs. (B2) and (B3) into

our expression for MIFE
i (t ) [Eq. (8)] would give us both con-

stant in time contributions to MIFE
i , as well as those that oscil-

late with a frequency of 2ω. As shown in Sec. II F, the 2ω con-
tribution is smaller in magnitude than the constant contribu-
tion. Therefore, from now on, we focus on the constant time-
independent contribution and we will denote the correspond-
ing spin expectation value simply as MIFE

i without explicit
time dependence. Inserting Eqs. (B2) and (B3) into Eq. (8)
and rearranging the terms, we find the following expression
for the constant time-independent contribution to IFE,

MIFE
i =

j �=i∑
j

l �=i∑
l

[
〈�i|V |� j〉〈� j |Mspin|�l〉〈�l |V †|�i〉

(Ej − Ei − h̄ω − iη)(El − Ei − h̄ω + iη)

+ 〈�i|V †|� j〉〈� j |Mspin|�l〉〈�l |V |�i〉
(Ej − Ei + h̄ω − iη)(El − Ei + h̄ω + iη)

+ 2Re
〈�i|Mspin|� j〉〈� j |V |�l〉〈�l |V †|�i〉
(Ej − Ei + 2iη)(El − Ei − h̄ω + iη)

+ 2Re
〈�i|Mspin|� j〉〈� j |V †|�l〉〈�l |V |�i〉
(Ej − Ei + 2iη)(El − Ei + h̄ω + iη)

]
. (9)

Although the perturbation theory formulation from Refs.
[37,38] is in principle without divergences when using the
recursive formulation of α ji from Eq. (B1), such a formulation
is numerically intensive and excludes sources of electron level
broadening that are not included in V , such as phonons or
defects. Therefore, as discussed in the Appendix B, we
assumed here that electronic states have a constant lifetime

proportional to η−1. In addition, we replaced here h̄αi j with
its lowest order expansion, Ei − Ej .

As we can see from Eq. (9), there are four groups of
contributions to MIFE

i that are constant over time. However,
we expect that only some of these will dominate. In particular,
we expect that the first term in the expression will dominate
whenever the denominator is close to zero. For example, such
a resonant condition can occur whenever there is a state j for
which Ej − Ei is close to h̄ω. If in addition, we consider a
state l such that Ej = El , then we expect a doubly-resonant
condition, as both denominators in the first term could then
simultaneously be close to zero. (Here Ej and El are strictly
larger than Ei as i is the ground state.) Later, in Sec. II F, we
show with an explicit numerical calculation that, in fact, these
doubly resonant terms dominate the IFE response in bulk Au.

From now on we will explicitly separate out the doubly-
resonant part from the first term in Eq. (9). We are then left
with the doubly-resonant contribution, and four groups of
nondoubly resonant terms,

MIFE
i =

j �=i∑
j

El =Ej

l �=i∑
l

〈�i|V |� j〉〈� j |Mspin|�l〉〈�l |V †|�i〉
(Ej − Ei − h̄ω)2 + η2

+ (nondoubly-resonant terms). (10)

Here the second sum over l is done only over states l that have
the same energy as the state j appearing in the first sum.

Up until now, the indices i, j, and l were simply
labeling many-electron states in the system within the
independent-electron approximation. From now on, we will
introduce changes to this notation. First, we will do the
following replacements,

|�i〉 −→ |GS〉, (11)

|� j〉 −→ c†
mMKcnNk|GS〉, (12)

|�l〉 −→ c†
m′M ′Kcn′N ′k|GS〉. (13)

Here |GS〉 is the ground state in which every single-particle
orbital with energy below the Fermi level EF is occupied. The
electron destruction operator cnNk corresponds to the single-
particle Bloch orbitals |φnNk〉. Here, k is the electron crystal
momentum. In what follows, we will usually not write crystal
momenta explicitly, and we are going to assume that for the
interband-transitions k = K. In the case of the intraband tran-
sitions, we assume that the k and K differ by the wavevector of
the incoming light, and then we work in the k → K limit. In
addition to crystal momentum, we also label different electron
bands with a pair of indices (n, N ), since each electronic band
is at least twice degenerate due to the PT symmetry. In
particular, we will label band doublets with index n and
distinguish individual states in the doublet with an additional
index N . For each n, we will label one state with N = 1 and
another with N = 2. As discussed in Sec. II C, there is some
freedom in choosing single-particle orbitals that correspond to
N = 1 or N = 2. (We note that without spin-orbit interaction,
N = 1 and N = 2 could simply correspond to two different
eigenstates of the electron spin operator Sz. Therefore, one
could choose N = 1 to correspond to the state with spin
pointing along the +ẑ direction and N = 2 with spin along
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−ẑ. However, when the spin-orbit interaction is included
in our calculation, the states no longer have a well-defined
projection of the spin Sz.)

The earlier requirement in Eq. (10) that i �= j is now in
the context of Eqs. (11) and (12) converted to the requirement
that the labels in the subscript of cnNk correspond to the state
with energy below EF, while the labels in c†

mMk correspond to

the state with energy above EF. A similar requirement follows
from i �= l . With this replacement, and using our notation for
a doublet, converting the sum over states integral over the
Brillouin zone, and using the second quantized form of the
V and Mspin operators, we get the following for the induced
magnetic moment M per unit cell,

MIFE = MIFE
elec − MIFE

hole + MIFE
ndr , (14)

MIFE
elec =

∫
BZ

d3k

(2π )3

occ∑
n

2∑
N=1

emp∑
m

2∑
M=1

2∑
M ′=1

〈φnN |V |φmM〉〈φmM |Mspin|φmM ′ 〉〈φmM ′ |V †|φnN 〉
(Em − En − h̄ω)2 + η2

, (15)

MIFE
hole =

∫
BZ

d3k

(2π )3

occ∑
n

2∑
N=1

2∑
N ′=1

emp∑
m

2∑
M=1

〈φnN |V |φmM〉〈φmM |V †|φnN ′ 〉〈φnN ′ |Mspin|φnN 〉
(Em − En − h̄ω)2 + η2

. (16)

The terms MIFE
elec and MIFE

hole can be doubly-resonant and they originate from the first term in Eq. (10). The remaining, nondoubly
resonant, term MIFE

ndr is given in the Appendix C. We compute the needed matrix elements as

〈φmM |Mspin|φmM ′ 〉 = 2
e

2me
〈φmM |Sz|φmM ′ 〉, (17)

〈φnN |V |φmM〉 = e

2

√
I

ε0c

En − Em

h̄ω

(
Ax

nNmM + iAy
nNmM

)
(interband, n �= m), (18)

and we define the Berry connection Aα
nNmM as

Aα
nNmM = 〈unN |i∂kα

|umM〉. (19)

The expression for the intraband optical transition is given in
Eq. (A5).

In the above expressions, we do not include doublet indices
N , N ′, M, and M ′ in the eigenenergy En as, by definition,
states in the doublet have the same energy, so En = EnN . The
charge of the electron is e and its mass is me. The spin angular
momentum operator is Sz with the expectation value of ±h̄/2
for a fully spin-polarized electron. The electron orbitals are
normalized to unity in a single unit cell. As discussed earlier,
here we assumed that the electric field of light is polarized in
the x–y plane and that the induced magnetic moment is along
the z axis. In Eq. (18), we denoted with I the intensity of the
incoming light, c is the speed of light, and ε0 is the permittivity
of the free space. The cell-periodic part of the Bloch state
|φnN 〉 we denoted as |unN 〉. The derivative with respect to the
α, Cartesian component of the electron momentum kα , we
denote as ∂kα

.
The sums over N , N ′, M, and M ′ in Eqs. (15), (16), and

(C2)–(C9) are done over the degenerate subspace. In these
expressions, we assumed that there are two degenerate bands
at each k point, but the generalization to a different number of
degenerate bands, including bands that are nondegenerate, is
trivial.

C. Degenerate band gauge invariance

Our expressions Eqs. (15) and (16), for the induced mag-
netic moment, are written in terms of the single-particle
orbitals φnN . These are eigenstates used to construct Slater
determinants of the unperturbed Hamiltonian given in Eq. (3).
As discussed earlier, the choice of orbitals φnN is not unique.
In the presence of PT symmetry, all bands are doubly degen-
erate. Therefore, for each doublet n, we could have chosen, as
our perturbation basis, any linear combination of states φnN=1

and φnN=2 within the doublet. Formally, we could have rotated
each doublet n at each k point using an arbitrary 2×2 unitary
matrix Unk as follows:

φnN −→
2∑

P=1

U PN
nk φnP. (20)

Now we will confirm that our Eq. (15) is indeed invariant
under the transformation in Eq. (20). The transformation in
Eq. (20) does not mix states of different energy, as such a
transformation would result in states that are not eigenstates
of the unperturbed Hamiltonian given in Eq. (3). Therefore,
instead of focusing on the entire Eq. (15), it is enough to show
the degenerate band gauge invariance of the numerator for
fixed doublets n and m,

gelec
nm =

2∑
N=1

2∑
M=1

2∑
M ′=1

〈φnN |V |φmM〉〈φmM |Mspin|φmM ′ 〉〈φmM ′ |V †|φnN 〉 with (n �= m). (21)
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Furthermore, for simplicity, we will focus here on the de-
generate band gauge invariance of only MIFE

elec from Eq. (15).
The demonstration of degenerate band gauge invariance of
MIFE

hole and MIFE
ndr proceeds in a similar fashion. Here, we are

allowed to consider only the case n �= m, since MIFE
elec is written

as the sum of n in the occupied band and m in the empty
band. Clearly, with the definition of gelec

nm , the Eq. (15) can be
rewritten as

MIFE
elec =

∫
BZ

d3k

(2π )3

occ∑
n

emp∑
m

gelec
nm

(Em − En − h̄ω)2 + η2
. (22)

Since states transform according to Eq. (20), the spin magnetic
moment matrix elements 〈φmM |Mspin|φmM ′ 〉 transform as

〈φmM |Mspin|φmM ′ 〉 −→ U †MP
m 〈φmP|Mspin|φmP′ 〉U P′M ′

m . (23)

Here we implicitly assume the sum over repeated indices P
and P′.

The transformation of the matrix element of V at first
seems somewhat more involved than that of Mspin, as it con-
tains the derivative with respect to k. Therefore, this derivative
must also act on our unitary rotation matrix, Unk as it is
generally k dependent. Therefore, following the definition of
Berry connection in Eq. (19), it transforms as

Aα
nNmM −→ U †NP

nk 〈φnP|i∂kα

(|φmR〉U RM
mk

)
. (24)

It is easy to see that in our case it is enough to consider only
the term where the derivative ∂kα

acts on the ket,

Aα
nNmM −→ U †NP

nk Aα
nPmRU RM

mk , if n �= m. (25)

The remaining term, where derivative acts on the matrix U RM
mk

vanishes, as it is proportional to 〈φnP|φmR〉, which is identi-
cally zero due to our assumption that n �= m [39]. (We note
that the second term is generally nonzero for a multiband
gauge transformation that can mix one-particle states of differ-
ent energy. We refer to Refs. [40,41] for more details on such
transformations.) It follows trivially that the matrix element of
V then also transforms as a simple matrix,

〈φnN |V |φmM〉 −→ U †NP
n 〈φnP|V |φmR〉U RM

m , if n �= m. (26)

Since both Eqs. (23) and (26) are simple unitary matrix
transformations, it follows that gelec

nm transforms as a trace of
the product of three matrices. The trace of a matrix is invariant
under unitary transformation, so gelec

nm is also invariant,

gelec
nm −→ gelec

nm . (27)

From Eq. (22), it now follows that MIFE
elec itself is also degener-

ate band gauge invariant under transformation in Eq. (20)

MIFE
elec −→ MIFE

elec. (28)

This concludes the proof of the degenerate band gauge invari-
ance of MIFE

elec. Since the numerators of the expression for MIFE
hole

and MIFE
ndr are very similar to those of MIFE

elec, their degenerate
band gauge invariance can be demonstrated analogously fol-
lowing the same approach.

D. Comparison to degenerate band gauge invariance
in previous works

Now we compare the IFE given by our Eqs. (15) and
(16) with that of Refs. [17,18,24]. The expressions in these

previous works can be rewritten in a form similar to that of
Eq. (22) but with a different choice of the numerator gelec

nm (the
energy denominator in the case of Refs. [24] and [17] is dif-
ferent from our Eqs. (15) and (16), as discussed in Sec. III D,
but this difference does not affect the degenerate band gauge
invariance).

We start by discussing first Ref. [18]. This paper reports on
the calculation of the IFE-like response in materials without
PT symmetry, such as ferromagnetic iron. The numerator
appearing in Ref. [18] is of the following form:

〈φn|V |φm〉〈φm|Mspin|φm〉〈φm|V †|φn〉. (29)

Clearly, the difference between our Eq. (21) and Eq. (29) is
the lack of sum over the indices that distinguish the states in
the doublet (N , M, and M ′). However, this is to be expected, as
materials considered in Ref. [18] do not have PT symmetry
(and thus do not have doubly degenerate band structure at all
k points) so the indices n and m now run over all electronic
states at a given k point. Equation (29) is trivially degenerate
band gauge-invariant under the following transformation:

φnk −→ Unkφnk (30)

as Unk is no longer a matrix, but simply a complex number
with norm 1. Inserting Eq. (30) into Eq. (29) trivially demon-
strates its degenerate band gauge invariance.

Next, we compare our Eq. (14) with the expression for
IFE from Refs. [24] and [17]. The analogous doubly resonant
time-independent contribution to the IFE from Refs. [24] and
[17] can be rewritten in the form of our Eq. (22) with the
following choice of the numerator gelec

nm ,

2∑
N=1

2∑
M=1

〈φnN |V |φmM〉〈φmM |Mspin|φmM〉〈φmM |V †|φnN 〉. (31)

Equation (31) contains only two sums over the degenerate
indices (N and M), while our Eq. (21) has a sum over three
degenerate indices (N , M, and M ′). However, since matrix
elements of V and Mspin still transform as matrices under
degenerate band gauge transformation given in Eq. (20), the
Eq. (31) is therefore not in the form of a trace of a product
of matrices, and therefore Eq. (31) is not degenerate band
gauge invariant. This is why in Ref. [17], authors had to work
in a special gauge to obtain a gauge-invariant IFE [42]. In
this special gauge, the operator Mspin must be chosen to be
diagonal in the space of each doubly degenerate band. Such an
approach, in a somewhat different context, of using a gauge in
which Mspin is diagonal, has also been proposed in Ref. [43].

Clearly, the numerators given in Eqs. (21) and (31) are
identical if 〈φmM |Mspin|φmM ′ 〉 is diagonal in the doublet in-
dices M and M ′. However, first-principles codes do not
necessarily provide an output electron wavefunction in a
gauge where Mspin is diagonal. Therefore, the use of a de-
generate band gauge-invariant expression such as Eq. (21) is
preferred, as it gives the same result regardless of the gauge
choice.

Furthermore, the eight contributions to the nondoubly-
resonant MIFE

ndr , given in Appendix C, contain matrix elements
of Mspin between electronic states with different energies.
However, the gauge freedom of the form given in Eq. (20)
does not allow a mixture of states with different energies.
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Therefore, it is generally not possible to find a special de-
generate band gauge to evaluate MIFE

ndr , as in the case of
MIFE

elec and MIFE
hole. Instead, one must evaluate MIFE

ndr using the
manifestly degenerate band gauge-invariant form, as given in
Appendix C.

E. Numerical test of degenerate band gauge invariance

We now numerically test the degenerate band gauge invari-
ance of various formulations of IFE. For this test, we consider
the bulk fcc gold, as it is an inversion-symmetric nonmag-
netic material, so it has PT symmetry. We perform density
functional theory calculations using Quantum ESPRESSO
[44]. We use the generalized gradient approximation [45] to
density functional theory. Atomic potentials are replaced with
the fully-relativistic ONCV pseudopotentials [46] from the
pseudo-dojo library [47]. We set the kinetic energy cutoff for
the planewave-basis expansion to 120 Ry. We perform self-
consistent calculations using a k-mesh grid of 28×28×28 and
non-self-consistent calculations on a 8×8×8 grid. We used an
experimental lattice constant of 4.08 Å [48].

We employ the maximally localized Wannier functions
approach [49] as implemented in Wannier90 [50] to compute
the IFE by Wannier interpolation [51]. We use atom-centered
orbitals sp3d2, dxy, dyz, and dzx to construct Wannier func-
tions. For the Wannier interpolation, we used a very flexible
interface of the Wannier Berri [52] package that enabled us to
implement the calculation of the IFE. We find that a k-point
interpolation grid of 100×100×100 is sufficient to give the
converged result. To avoid singular points in the Brillouin
zone with high symmetry, we shifted the uniform interpolation
grid by a small random displacement along all three Cartesian
directions. In most of our calculations, we use a constant
inverse lifetime of η = 0.1 eV.

To check the degenerate band gauge invariance of Eqs. (15)
and (31), we first discuss different strategies we used to obtain
distinct gauge choices for the electron orbitals. Within the
Kohn-Sham formalism [53], electron orbitals are eigenvectors
of the differential equation that has the form of a Schrodinger-
like Eq. (3). By the periodicity of the solid, we need to solve
one Schrodinger-like equation for each k point in the Brillouin
zone. To obtain different degenerate band gauge choices for
the solutions of this equation, we will use to our advantage
the fact that our numerical solutions to Eq. (3) are based on an
iterative diagonalization procedure. These iterative diagonal-
ization procedures start from a user-provided initial guess for
the electron wavefunction. The initial guess is then iteratively
optimized by the diagonalization algorithm. Clearly, different
choices of the initial guess for the wavefunction will then be
iterated by the diagonalization procedure to a different choice
of the final wavefunctions. When solutions to Eq. (3) at a
single k point are nondegenerate, the only potential difference
in the final resulting wavefunctions is the overall phase fac-
tors. These phase factors have the form of the trivial gauge
transformation as in Eq. (30) and do not pose any difficulties
in calculating the IFE.

On the other hand, if Eq. (3) at a single k point has degener-
ate solutions, then the just described iterative diagonalization
procedure will yield an arbitrary linear combination of degen-
erate electron orbitals. In the case of PT -symmetric material,

FIG. 2. M IFE
elec of Au as a function of incoming light frequency ω

computed using Eqs. (21) and (22) [or, equivalently, Eq. (15)] in four
different degenerate band gauges. All four degenerate band gauge
choices give the same numerical value of M IFE

elec.

where the bands are at least twofold degenerate at each k,
these linear combinations of degenerate electron orbitals re-
sult in gauge freedom described by a 2×2 unitary matrix. This
is precisely the gauge transformation Eq. (20) we discussed in
the previous subsection. We note that the electron density is
clearly unchanged by the gauge choice described above, so
any physical property, such as total energy, that depends on
the electron density is gauge invariant.

In the following, we discuss four strategies that we use to
obtain four different gauge choices. We label these gauges as
I, II, III, and IV.

We obtain gauge I by initializing the electron orbital to
a linear combination of atomic-like orbitals centered on Au
atoms. On the other hand, we obtain gauge II by initializing
the electron orbital to a completely random linear combination

FIG. 3. Same as Fig. 2 but using gelec
nm from Eq. (31) instead of

Eq. (21). Now four different degenerate band gauge choices give four
different values of M IFE

elec. The green curve in this figure, correspond-
ing to gauge choice IV, is numerically identical to the green curve in
Fig. 2.
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of plane-wave basis functions. In particular, both spinor com-
ponents of the electron orbital are randomized, which results
in the random initial orientation of spinors.

For constructing gauges III and IV, we use a somewhat dif-
ferent approach. Instead of specifying different initial guesses
for the electron orbital, we apply a weak external perturbation
to the system, which then effectively nudges the iterative
procedure towards a specific choice of the gauge. For con-
structing gauge III, we chose as our external perturbation a
Zeeman field pointing along the x axis. Such a Zeeman field
will induce a small splitting of the PT -degenerate electronic
bands on the order of 10−6 eV. Therefore, regardless of the
initial choice of the electron orbital, the final electron orbital
will always correspond (up to an overall phase factor) to the
orbitals with spinors aligned along the x axis. However, for
the purposes of our test of the gauge invariance of IFE, we
still must treat the bands split by 10−6 eV as if they were
degenerate doublets. We confirmed that these small energy
splittings do not affect the computed value of the IFE by
varying the strength of the applied Zeeman field. In particular,
we find that the IFE is nearly unchanged even if we use a
stronger Zeeman field that induces 10 or 100 times larger
splitting of the degenerate doublets (so that the splittings are
on the order of 10−5 eV or 10−4 eV). Finally, we construct
gauge IV similar to gauge III, but we apply the small Zeeman
field along the z axis instead of the x axis.

Figure 2 shows the IFE that we calculated using our
Eq. (15). The horizontal axis denotes the frequency of the
incoming light ω. The different colored lines in the figure cor-
respond to the IFE calculated using gauges I, II, III, and IV.
As can be seen from the figure, all four gauges result in a
nearly identical value of IFE. The relative numerical differ-
ences between the IFE calculated in these four cases are at
most 10−4. This numerical test further confirms the gauge
invariance of Eq. (15) that we demonstrated analytically in the
previous section. We also numerically verified the degenerate
band gauge invariance of MIFE

hole and each of the eight terms
that contribute to MIFE

ndr .
We remind the reader that Eq. (15) can be written equiv-

alently in the form of Eq. (22) with the numerator gelec
nm

taken from Eq. (21). This form is useful in comparing our
equation with that from previous work. In particular, a doubly-
resonant time-independent contribution to IFE from Refs. [24]
and [17] can be written as Eq. (22) but with numerator gelec

nm
from Eq. (31) instead of Eq. (21). (At the moment, we neglect
a different functional form of the denominator, as it does not
affect the gauge invariance. We discuss the role of different
denominators in Sec. III D.) Figure 3 shows the IFE that we
calculated using the numerator from Eq. (31) and the denom-
inator from our Eq. (21). As can be seen from the figure,
four different degenerate band gauge choices result in four
different values of IFE, which is nonphysical. This numerical
test clearly demonstrates the dependence of Eq. (31) on the
choice of degenerate band gauge. However, as discussed in
Sec. II D, numerators from Eqs. (21) and (31) are equivalent
if one chooses a degenerate band gauge in which the matrix
elements of Mspin are diagonal in the doublet indices. To nu-
merically test this equivalence, we consider our results in the
case of gauge IV, as in this gauge Mspin is forced to be diagonal
by an application of a small Zeeman field along the z axis.

FIG. 4. Decomposition of the interband spin IFE of Au M IFE

(brown color) into doubly-resonant contributions M IFE
elec [dark blue,

Eq. (15)] and |M IFE
hole| [light blue, Eq. (16)], as well as the nondoubly

resonant contribution M IFE
ndr [pink color, Eq. (C1)]. Near resonance,

the nondoubly resonant terms are negligible compared to the doubly-
resonant terms. We use η = 0.1 eV.

Indeed, as can be seen by comparing the green line in Figs. 2
and 3, the gauge IV indeed leads to the same doubly-resonant
MIFE

elec using Eq. (21) or Eq. (31). Unfortunately, as discussed
at the end of Sec. II D, it is not possible to use a special gauge
(such as gauge IV) to calculate the nondoubly resonant MIFE

ndr .

F. Non-doubly resonant contributions to IFE

In Eq. (14) we decomposed total IFE into MIFE
elec − MIFE

hole,
which can be doubly resonant, as well as MIFE

ndr , which cannot.
Therefore, in a material, such as bulk gold, in which there is
a clear resonance feature in the band structure in the optical
regime, we expect that the nondoubly-resonant term MIFE

ndr will
be small in magnitude compared to MIFE

elec − MIFE
hole. In fact,

FIG. 5. All doubly-resonant [Eqs. (15) and (16)] and nondoubly-
resonant [Eq. (C1)] interband spin components of IFE in bulk gold.
Vertical scale is logarithmic. We use η = 0.1 eV.
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this is what we find numerically for the interband nondoubly-
resonant terms, as shown in Fig. 4.

Now we discuss various nondoubly-resonant contributions
to IFE. The first group of nondoubly-resonant contributions
to IFE are eight interband contributions to MIFE

ndr . These are
listed in the Appendix C. Figure 5 shows that, as expected,
in the resonance region (around 2 eV) these contributions
to the IFE are about 100 times smaller than the doubly-
resonant contributions. At lower frequencies, around 1 eV the
nondoubly-resonant terms are only about five times smaller.

The second group of contributions are those that involve
intraband transitions. However, in a nonmagnetic inversion-
symmetric material these intraband transitions are never
doubly resonant. To show this, let us consider for a mo-
ment the doubly resonant interband contribution MIFE

elec − MIFE
hole

given in Eqs. (15) and (16). To obtain the intraband contribu-
tion, we need to consider n and m corresponding to the same
band, and we should compute the matrix element of V using
Eq. (A5). However, since Eq. (A5) is diagonal in the doublet
indices, it is easy to show that the resulting doubly resonant
intraband contribution to the IFE is proportional to the trace of
Mspin over the doublet. In a nonmagnetic inversion-symmetric
material, such as bulk Au, this trace is zero. On the other hand,
if one considers the remaining eight nondoubly-resonant
interband contributions to the IFE, given in Appendix C, one
can easily see that these do not vanish. However, since these
are nondoubly resonant, we expect them to have a negligible
contribution to the total IFE in the optical range of ω.

The third group of nondoubly resonant contributions to
the IFE are those that result in a time-dependent magneti-
zation that oscillates with twice the frequency (2ω) of the
incoming light. However, as can be seen from Eq. (B3),
none of these contributions can be made doubly reso-
nant, since the energy denominators can generically never
be both zero for any set of bands. Therefore, the mag-
nitude of the magnetization oscillating with frequency 2ω

is going to be negligible to the time-independent contri-
bution to IFE. The same conclusion was also made in
Refs. [24,54].

III. DISCUSSION

Now we discuss in more detail our results for the spin-
contribution of IFE in Au.

A. Intuitive picture of the doubly resonant IFE

In Eq. (14) we decomposed IFE into a doubly resonant
part (MIFE

elec − MIFE
hole) and the nondoubly resonant part (MIFE

ndr ).
Now we are going to rewrite the dominant, doubly-resonant,
contribution in a way that more clearly demonstrates the
meaning of MIFE

elec and −MIFE
hole. First, we adopt a degenerate

band gauge in which the matrix element 〈φmM |Mspin|φmM ′ 〉 is
diagonal in M and M ′ for each m. We will denote states in
such a basis as |φ̃mM〉. It is then easy to show that MIFE can be
written as

MIFE
elec − MIFE

hole =
∫

BZ

d3k

(2π )3

occ∑
n

2∑
N=1

emp∑
m

2∑
M=1

〈φ̃nN |V |φ̃mM〉[〈φ̃mM |Mspin|φ̃mM〉 − 〈φ̃nN |Mspin|φ̃nN 〉]〈φ̃mM |V †|φ̃nN 〉
(Em − En − h̄ω)2 + η2

. (32)

Therefore, the doubly resonant contribution to MIFE can be
interpreted as a process of optical excitation and de-excitation
of a solid with circularly polarized light. These optical pro-
cesses are weighted by the effective magnetic moment of
excitations. According to Eq. (32), the effective magnetic
moment of excitation consists of the magnetic moment of
the excited electron 〈φ̃mM |Mspin|φ̃mM〉 and the excited hole
−〈φ̃nN |Mspin|φ̃nN 〉. Clearly, to have a large IFE one needs to
find a material in which, in addition to the resonance, there
is as large an asymmetry as possible between the effective
magnetic moment of the electron and the hole.

B. Comparison of IFE to the optical spectrum

As shown in Fig. 4, we find that the total spin IFE has a
resonance-like peak when ω is around 2.5 eV. We assign this
peak to the interband transitions from d to sp-like states. This
dependence of IFE on frequency is reminiscent of the well-
known similar frequency dependence of the optical dielectric
function [55,56]. Clearly, at some fixed ω, both our Eqs. (15)
and (16), as well as the dielectric function increase if there is
a pair of states separated by h̄ω. In fact, the dielectric function
shows a similar dependence on ω as the joint density of the
states (JDOS) divided by ω2, as discussed, for example, in
Refs. [55–57]. Therefore, it is tempting to compare our cal-

culated IFE value with JDOS/ω2. Nevertheless, as discussed
in the previous subsection, the dominant spin contribution to
IFE in gold is a result of compensating magnetic moments of
excited electrons and holes. Therefore, we first focus on the
comparison of JDOS with MIFE

elec and then with MIFE
hole.

We define JDOS as

JDOS(h̄ω) =4
∫

BZ

d3k

(2π )3

occ∑
n

emp∑
m

δ(Emk − Enk − h̄ω). (33)

In the numerical calculation, we replaced the Dirac delta
function with a Lorentzian with a width of 0.1 eV. Figure 6
compares the MIFE

elec part of IFE (solid red line) with JDOS/ω2

(dotted gray line). We rescaled JDOS/ω2 with an arbitrary
constant prefactor to make it visually easier to compare the
curves. The JDOS/ω2 shows a resonance-like structure near
2.5 eV, just like our calculated MIFE

elec. Clearly, the spin com-
ponent of IFE in a simple metal like bulk gold mostly comes
from the band-structure effects. Furthermore, it seems likely
that the matrix element of Mspin appearing in Eq. (15), but
not in JDOS, weakly depends on the k point in bulk Au.
To test this hypothesis, we performed a somewhat simplified
IFE calculation in which we assume that the Mspin matrix is
proportional to a 2×2 identity matrix in the doublet indices,

〈φmMk|Mspin|φmM ′k〉 −→ MelecδMM ′ , (34)
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FIG. 6. Comparison of M IFE
elec for Au calculated using Eq. (15)

(solid red line) with two approximants: scaled JDOS/ω2 (dotted gray
line) and M IFE

elec computed with assuming constant diagonal matrix
elements of Mspin from Eq. (34) (dashed yellow line). Here we use
Melec equal to 0.22μB per one Au atom per TW/cm2.

Here, a single numerical constant Melec is the same for all
empty states labeled by m, M, M ′, and k. We note that
in this somewhat simplified calculation, we are replacing a
traceless matrix 〈φmMk|Mspin|φmM ′k〉 with the identity matrix
with a nonzero trace. Therefore, effectively, in this simplified
approach, we treat gold as if it had spin-polarized electronic
states and the spin magnetic moment of each empty electronic
state is Melec. However, we find this replacement to be con-
venient as it is gauge invariant and can be parameterized with
a single number, Melec. With replacement from Eq. (34), we
find that

Melec = 0.22 (μB/atom)/(TW/cm2)

gives the final result that is numerically as similar as possible
to the MIFE

elec computed using actual matrix elements of Mspin

(compare yellow dashed line and solid red line in Fig. 6).
Given this good agreement, we can now consider Melec as an
intrinsic measure of the average effective magnetic moment
of the electron in Au.

However, as just discussed, the total spin IFE in Au con-
sists not only of MIFE

elec but also of −MIFE
hole and MIFE

ndr . The
magnitude of MIFE

ndr is negligible compared to MIFE
elec so we can

ignore it. However, MIFE
hole is similar in magnitude to MIFE

elec. In
fact, we can once again reproduce most spectral features of
−MIFE

hole if we replace the matrix element of Mspin with another
constant,

〈φnNk|Mspin|φnN ′k〉 −→ MholeδNN ′ . (35)

If we determine Mhole analogously to Melec we find that
the magnetic moment of the hole is somewhat smaller in
magnitude,

Mhole = 0.18 (μB/atom)/(TW/cm2).

Therefore, as discussed in Sec. III A, the nonzero IFE is
a result of incomplete cancellation between the effective
magnetic moment of the electron and the hole [0.22 versus
0.18 (μB/atom)/(TW/cm2)].

FIG. 7. Comparison of total spin IFE for Au with different choice
of η.

C. Role of electron lifetime

We now briefly comment on the importance of the electron
lifetime (η) magnitude used in our calculation. Our results
shown so far were obtained with η = 0.1 eV. In Fig. 7, we
show the calculated value of the total spin IFE using η set to
0.2, 0.3, and 0.4 eV. Comparing the IFE at these lifetimes, we
observe that the basic features of the IFE remain the same, but
the overall magnitude is reduced near the resonance. This is
consistent with the expectation that a larger η would lead to a
less pronounced resonance structure of the IFE.

D. Comparison with numerical values from the previous work

Now we compare the numerical values of the spin com-
ponent of IFE in bulk gold calculated in this paper with those
reported in Ref. [17]. In our paper, we find that the spin part of
IFE in gold closely resembles the optical properties of gold.
That is, IFE in this case is large when ω is close to the d–s
optical resonance. On the other hand, the spin component
of IFE reported in Ref. [17] does not show this resonant
feature. Instead, the IFE in that work can be reasonably well
approximated as ω−1 in the range of energies from 1.0 to
4.0 eV. We now discuss the likely origin of the difference in
the computed value of IFE. The most significant difference
comes from the subtle difference in the relative signs of iη−1

in the energy denominators. As can be seen in Eqs. (15) and
(16), the parameter η introduces a Lorentzian-like broadening
of the optical transitions in our work, so that

MIFE
elec − MIFE

hole ∼
∑
...

. . .

(Em − En − h̄ω)2 + η2
. (36)

The same line shape is used in Ref. [18] where it was de-
rived from the application of the Fermi golden rule. More
specifically, the application of the Fermi golden rule from Ref.
[18] results in an IFE that is proportional to the Dirac delta
function,

∼ lim
η→0

∑
...

. . .

(Em − En − h̄ω)2 + η2
. (37)

In our paper, the Lorentzian-like line shape follows from
the opposite sign of iη in the denominators of B(1)

j and its
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complex conjugate [B(1)
j ]∗. This is consistent with Refs. [58],

[59], and [60] as discussed in Appendix B.
In Refs. [24] and [17], the functional form of the energy

denominator results in a non-Lorentzian line shape, which re-
moves resonant features of IFE near the d–s optical resonance.
In particular, the spectral form in the quantum-mechanical
derivation in Refs. [24] and [17] is of the following form:

∼Re
∑
...

[
. . .

(Em − En − h̄ω + iη)2

]
. (38)

This function has a minimum at h̄ω = Em − En and two
maximums at h̄ω = Em − En ± √

3η. However, the integral of
this function over ω is zero. Therefore, the convolution of this
spectral form with the resonance in the gold band structure
will generically wash out the resonance in IFE. In fact, for
a sufficiently small η, smaller than any feature in the band
structure, the total computed IFE will tend to zero. We note
that, on the other hand, the semiclassical derivation from the
same work (Eq. 10 in Ref. [24]) finds a Lorentz-like behavior
of the IFE, in agreement with our work, as well as with
Ref. [18].

IV. SUMMARY

In this paper, we revisit the IFE theory for nonmagnetic
metals having inversion symmetry. In such material, the elec-
tronic bands are at least twofold degenerate everywhere in
the Brillouin zone. We show that our expression for IFE is
degenerate band gauge invariant in the subspace formed by
twofold degenerate bands. We demonstrated the degenerate
band gauge invariance of our approach both analytically and
numerically. More generally, a similar concern with the de-
generacy of electronic bands is going to be relevant for other
spin-orbit driven properties of the material that require one
to go beyond the first order in perturbation theory. As we
discussed in Sec. II B, the leading term for IFE is of the
order λ2. Therefore, the final expression for IFE includes
a sum over the triplet of electronic states. The difficulty
with degeneracy then occurs whenever a pair of these states
are both occupied or both empty, as they might then cor-
respond to the same doubly degenerate manifold. We note
that physical properties, such as the spin-Hall effect, which
also occurs in materials with twofold degenerate bands, are
of the order λ1. Therefore, in computing the spin-Hall effect,
for example, one does not need to be as careful in dealing
with the degenerate band gauge invariance within the space
of doubly degenerate bands. In other words, the expression
for the spin-Hall effect has only two sums over the electronic
states, one of which is empty and another is occupied, so
these states must correspond to distinct doubly degenerate
manifolds.

When analyzing the dependence of the IFE on the
frequency ω of the incoming light, we find that the
spin component of our calculated IFE in gold shows a
resonance-like structure around 2.5 eV in contrast to the
findings of Ref. [17]. We assign the resonance structure to
the d–s electronic transitions, which are also present in the
dielectric function of gold. The situation in other transition

metals is somewhat more involved than in the case of gold,
and this will be a topic of future work.

Finally, while the current paper focuses on the spin compo-
nent of the IFE, we suspect that for a more direct quantitative
comparison with the experiment, it is important to include the
orbital component of the IFE as well. In particular, we expect
that the intraband contribution to the orbital part of IFE might
be large in simple metals such as bulk gold, as suggested
by the semiclassical theories of IFE [22,25], as well as by a
quantum-mechanical calculation of the local part of the orbital
moment [17,24]. However, as discussed earlier, unfortunately,
the intraband optical part of IFE is the one that is hardest
to formulate on a sound quantum-mechanical footing for an
infinite bulk periodic solid.
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APPENDIX A: ELECTRON-LIGHT INTERACTION TERM

The electric field E of circularly polarized light propagat-
ing along the ẑ axis, with wavevector q, frequency ω, and
intensity I is given as

E(x, y, z, t ) =
√

I

ε0c
[x̂ cos(qz − ωt ) + ŷ sin(qz − ωt )].

(A1)

The interaction of this electric field with the electron in the
solid can be introduced following various strategies, as dis-
cussed, for example, in Refs. [61–66]. However, all of these
approaches lead to almost the same numerical result, as long
as h̄ω is larger than our effective broadening η [67].

The interaction of electrons with the electric field E is
described with the following form of the perturbation V ap-
pearing in Eq. (2),

V = −i
e

2ω

√
I

ε0c
(vx + ivy). (A2)

Here vx and vy are velocity operators. For the interband matrix
elements of vx (and similarly vy) Ref. [61] gives

〈φnN |vx|φmM〉 −→ i

h̄
(En − Em)Ax

nNmM (interband). (A3)

The matrix elements of V are then easily computed, as shown
in Eq. (18) in the main text. The equivalent contribution for
the intraband transition is

〈φnN |vx|φnN ′ 〉 −→ 1

h̄

∂En

∂kx
δNN ′, (A4)

which results in the following intraband matrix element of V :

〈φnN |V |φnN ′ 〉 = −i
e

2

√
I

ε0c

1

h̄ω

(
∂En

∂kx
+ i

∂En

∂ky

)
δNN ′ . (A5)
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APPENDIX B: PERTURBATIVE EXPANSION

Following Refs. [37,38], the lowest-order perturbative expansion for α ji is given as

h̄α ji = (Ej − Ei ) + λ2

⎡⎣ l �=i∑
l

( 〈�l |V |�i〉〈�i|V †|�l〉
h̄αli + h̄ω

+ 〈�i|V |�l〉〈�l |V †|�i〉
h̄αli − h̄ω

)
− 〈�i|V |�i〉〈�i|V †|�i〉

h̄α ji

⎤⎦, (B1)

while the expansion of Bj is

B(1)
j = −

( 〈� j |V |�i〉
h̄α ji + h̄ω + iη

eiωt + 〈� j |V †|�i〉
h̄α ji − h̄ω + iη

e−iωt

)
eiα jit , (B2)

B(2)
j =

⎧⎨⎩
⎡⎣ l �=i∑

l

〈� j |V |�l〉〈�l |V |�i〉
h̄αli + h̄ω + iη

− 〈�i|V |�i〉〈� j |V |�i〉
h̄α ji + h̄ω + iη

⎤⎦ e2iωt

h̄α ji + 2h̄ω + 2iη

+
⎡⎣ l �=i∑

l

( 〈� j |V |�l〉〈�l |V †|�i〉
h̄αli − h̄ω + iη

+ 〈� j |V †|�l〉〈�l |V |�i〉
h̄αli + h̄ω + iη

)
− 〈�i|V |�i〉〈� j |V †|�i〉

h̄α ji − h̄ω + iη
− 〈�i|V †|�i〉〈� j |V |�i〉

h̄α ji + h̄ω + iη

⎤⎦
× 1

h̄α ji + 2iη
+

⎡⎣ l �=i∑
l

〈� j |V †|�l〉〈�l |V †|�i〉
h̄αli − h̄ω + iη

− 〈�i|V †|�i〉〈� j |V †|�i〉
h̄α ji − h̄ω + iη

⎤⎦ e−2iωt

h̄α ji − 2h̄ω + 2iη

⎫⎬⎭eiα jit . (B3)

Here we introduced the phenomenological parameter η to approximately incorporate the effect of scattering. For a derivation,
we refer the reader to Ref. [58], where a perturbative expression for optical rectification is derived following the perturbation
theory with a damped excited-state wavefunction of Weisskopf and Wigner [68,69]. The relative signs of iη here are equivalent
to that in Eq. (8) in Ref. [59] and with Eqs. (38) and (52) in Ref. [60]. We note that there is physical significance only in the
relative signs of η between various terms in B(1)

j , B(2)
j , and their conjugates, and that globally swapping η → −η in all terms

does not change the resulting MIFE.

APPENDIX C: NON DOUBLY-RESONANT CONTRIBUTIONS

The interband nondoubly resonant contribution to the IFE can be computed as

MIFE
ndr = MIFE

ndr,a + MIFE
ndr,b + MIFE

ndr,c + MIFE
ndr,d − MIFE

ndr,e − MIFE
ndr,f − MIFE

ndr,g − MIFE
ndr,h. (C1)

The eight contributions to MIFE
ndr are

MIFE
ndr,a =

∫
BZ

d3k

(2π )3

occ∑
n

2∑
N=1

emp∑
m

2∑
M=1

emp∑
m′

2∑
M ′=1

(1 − δmm′ )
〈φnN |V |φmM〉〈φmM |Mspin|φm′M ′ 〉〈φm′M ′ |V †|φnN 〉

(Em − En − h̄ω − iη)(Em′ − En − h̄ω + iη)
, (C2)

MIFE
ndr,b =

∫
BZ

d3k

(2π )3

occ∑
n

2∑
N=1

emp∑
m

2∑
M=1

emp∑
m′

2∑
M ′=1

〈φnN |V †|φmM〉〈φmM |Mspin|φm′M ′ 〉〈φm′M ′ |V |φnN 〉
(Em − En + h̄ω − iη)(Em′ − En + h̄ω + iη)

, (C3)

MIFE
ndr,c =

∫
BZ

d3k

(2π )3

occ∑
n

2∑
N=1

emp∑
m

2∑
M=1

emp∑
m′

2∑
M ′=1

2Re
〈φnN |Mspin|φmM〉〈φmM |V |φm′M ′ 〉〈φm′M ′ |V †|φnN 〉

(Em − En + 2iη)(Em′ − En − h̄ω + iη)
, (C4)

MIFE
ndr,d =

∫
BZ

d3k

(2π )3

occ∑
n

2∑
N=1

emp∑
m

2∑
M=1

emp∑
m′

2∑
M ′=1

2Re
〈φnN |Mspin|φmM〉〈φmM |V †|φm′M ′ 〉〈φm′M ′ |V |φnN 〉

(Em − En + 2iη)(Em′ − En + h̄ω + iη)
, (C5)

MIFE
ndr,e =

∫
BZ

d3k

(2π )3

occ∑
n

2∑
N=1

occ∑
n′

2∑
N ′=1

emp∑
m

2∑
M=1

(1 − δnn′ )
〈φnN |V |φmM〉〈φmM |V †|φn′N ′ 〉〈φn′N ′ |Mspin|φnN 〉
(Em − En − h̄ω − iη)(Em − En′ − h̄ω + iη)

, (C6)

MIFE
ndr,f =

∫
BZ

d3k

(2π )3

occ∑
n

2∑
N=1

occ∑
n′

2∑
N ′=1

emp∑
m

2∑
M=1

〈φnN |V †|φmM〉〈φmM |V |φn′N ′ 〉〈φn′N ′ |Mspin|φnN 〉
(Em − En + h̄ω − iη)(Em − En′ + h̄ω + iη)

, (C7)
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MIFE
ndr,g =

∫
BZ

d3k

(2π )3

occ∑
n

2∑
N=1

occ∑
n′

2∑
N ′=1

emp∑
m

2∑
M=1

2Re
〈φnN |Mspin|φmM〉〈φmM |V †|φn′N ′ 〉〈φn′N ′ |V |φnN 〉

(Em − En + 2iη)(Em − En′ − h̄ω + iη)
, (C8)

MIFE
ndr,h =

∫
BZ

d3k

(2π )3

occ∑
n

2∑
N=1

occ∑
n′

2∑
N ′=1

emp∑
m

2∑
M=1

2Re
〈φnN |Mspin|φmM〉〈φmM |V |φn′N ′ 〉〈φn′N ′ |V †|φnN 〉

(Em − En + 2iη)(Em − En′ + h̄ω + iη)
. (C9)
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