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The subtle interplay between low-dimensionality and spin correlations can lead to exotic ground states with
unconventional excitations in two-dimensional honeycomb-lattice-based quantum magnets. Herein, we present
the structural, magnetic, and heat capacity measurements; density functional theory + Hubbard U (DFT + U )
based electronic structure calculations; and quantum Monte Carlo simulations for NaCuIn(PO4)2. The structure
of NaCuIn(PO4)2 consists of a well-separated, S = 1

2 distorted J1-J2 honeycomb layer which is a combination
of the magnetic couplings J1 (forming spin dimers) and J2 (constituting spin chains). At high temperatures, the
magnetic susceptibility χ (T ) follows paramagnetic behavior with a Curie-Weiss temperature θCW ≈ −16 K,
implying the presence of antiferromagnetic interactions. A broad maximum is observed at about 13 K in χ (T ),
indicating the presence of short-range spin correlations. The quantum Monte Carlo simulations using the
S = 1

2 J1-J2 Heisenberg model on a distorted honeycomb lattice are in good agreement with the measured
magnetic susceptibility data. The obtained ratio of the exchange couplings ( J2

J1
) is 2.63, which is consistent with

the value obtained from our DFT + U calculations. The title material undergoes a magnetic long-range order
at 0.4 K in the heat capacity, which is suppressed with an applied magnetic field of 10 kOe. The magnetic heat
capacity data follow a linear temperature-dependent behavior well above the transition temperature, suggesting
the presence of gapless excitations. The observed behavior can be attributed to the presence of low connectivity
and weak magnetic frustration in this two-dimensional distorted honeycomb lattice.

DOI: 10.1103/PhysRevB.107.214430

I. INTRODUCTION

The interplay between low-dimensionality and spin corre-
lations can stabilize exotic states in quantum magnets. The
discovery of high-temperature superconductivity in layered
two-dimensional (2D) cuprates has been a breakthrough in the
field of condensed matter physics [1]. The investigation of 2D
quantum magnetism in S = 1

2 Heisenberg antiferromagnetic
(HAFM) spin systems has gained significant attention due to
the presence of inherent quantum fluctuations. Understanding
the nature of the ground state and associated excitations in
low-dimensional quantum magnets continues to be a topic of
much recent interest [2,3]. The S = 1

2 HAFM square lattice
is one of the most studied models both theoretically and ex-
perimentally, and it exhibits a long-range order (LRO) in the
ground state at T = 0 K [4–6]. The scenario becomes further
interesting in the case of the S = 1

2 HAFM honeycomb lattice.
Although the ground state stabilizes Néel order, the quantum
fluctuations are more robust in the S = 1

2 2D HAFM hon-
eycomb lattice due to the low coordination number (z = 3)
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†koteswararao@iittp.ac.in

associated with the 2D honeycomb lattice compared to the 2D
square lattice (z = 4) [7]. These enhanced quantum fluctua-
tions suppress the magnetic moment per site in the honeycomb
lattice. As a result, the ordered state can be destabilized,
and an exotic disordered phase can be induced by minor
lattice distortions and anisotropies [8–12]. Interestingly, the
2D honeycomb geometry, in which various perturbations
such as bond-dependent Kitaev-type interactions, spin-orbit
coupling, the involvement of second-nearest-neighbor interac-
tions, and the randomness of the magnetic exchange couplings
play a role, can host quantum spin liquids with exotic ex-
citations [13–18]. However, only a handful of prototype
compounds are available in the S = 1

2 HAFM honeycomb
lattice category. Several materials with the distorted S =
1
2 HAFM honeycomb lattice exhibiting nontrivial ground
states were reported recently. A few such candidates are
Yb2Si2O7 [19,20], CuAl(AsO4)O [21], Zn(hfac)2AxB1−x (the
hfac represents 1,1,1,5,5,5-hexafuoroacetylacetonate) [22],
and Cu2(pymca)3(ClO4) (the pymca represents pyrimidine-
2-carboxylate) [23–25]. It is fascinating to see that the ground
state for most of these distorted honeycomb lattice materi-
als shows gapped and gapless states. The rare-earth material
Yb2Si2O7 is an example of a spin-gapped system, having a
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spatially distorted honeycomb lattice with the magnetic cou-
plings J1 and J2. Here, the ratio of the exchange couplings
in the distorted honeycomb layer ( J2

J1
) is about 0.4, which

locates the system in the quantum spin-gapped ground state
[19]. In addition, the magnetic field-induced successive Bose-
Einstein condensation phase transitions are also observed
in this 4 f ion-based honeycomb material. The compound
CuAl(AsO4)O appears to be in the valence-bond solid ground
state with a large spin gap of 350 K, where the quantum
state may be elucidated as a collection of dimer units with
a very small inter- to the intradimer ratio of 0.01 on a dis-
torted honeycomb lattice background [21]. On the other hand,
there is a gapless liquidlike behavior reported in the organic
compound Zn(hfac)2AxB1−x [22], which hosts complex and
distorted couplings on a 2D honeycomb lattice. The com-
pound Cu2(pymca)3(ClO4) has been reported to be another
type of distorted honeycomb lattice copper compound that
shows no long-range magnetic order down to 2 K and shows
the spin-gapped ground state in the spin excitation spectrum.
The presence of magnetic plateaus has also been observed in
external applied magnetic fields up to 70 T [24,25].

In this context, exploring novel low-dimensional quantum
magnetism in distorted honeycomb lattice structures seems
an appealing setting. Herein, we report a detailed investi-
gation of the S = 1

2 magnetic system NaCuIn(PO4)2, where
the spins Cu2+ are arranged on a distorted 2D honeycomb
lattice. The nearest-neighbor (NN) coupling J1 forms spin
dimers, and the second-NN coupling J2 constitutes spin
chains. The magnetic data analysis based on quantum Monte
Carlo (QMC) simulations on a distorted J1-J2 honeycomb
lattice followed by density functional theory (DFT) elec-
tronic structure calculations confirms the presence of both
couplings. The estimated ratio of magnetic couplings between
Cu2+ ions has been found to be J2

J1
≈ 2.63. The weak inter-

layer couplings imply that NaCuIn(PO4)2 has well-separated
S = 1

2 distorted J1-J2 honeycomb layers. The interaction be-
tween Cu2+ (S = 1

2 ) ions is predominantly antiferromagnetic
(AFM) in nature, as evidenced by the Curie-Weiss tem-
perature θCW ≈ −16 K. The heat capacity Cp(T ) shows an
anomaly at 0.4 K, which indicates the presence of an AFM
phase transition in NaCuIn(PO4)2. Interestingly, linear be-
havior in the temperature-dependent magnetic heat capacity
Cm(T ) above the AFM phase transition implies the presence
of gapless excitations in NaCuIn(PO4)2. The magnetic cou-
pling ratio ( J2

J1
≈ 2.63) places the compound NaCuIn(PO4)2

on the Néel side of the quantum phase diagram (QPD), a bit
far away from the quantum critical point (QCP) [10,26].

II. METHODS

A polycrystalline sample of NaCuIn(PO4)2 was synthe-
sized using the conventional solid-state synthesis technique.
High-purity CuO (Aldrich, 99.99%), Na2CO3 (Aldrich,
99.99%), (NH4)2H(PO4) (Aldrich, 99.5%), and In2O3

(Aldrich, 99.9%) were mixed in a stoichiometric proportion
and ground thoroughly using an agate mortar and pestle. The
mixture was then pelletized and heated at 300 ◦C, 400◦C,
500 ◦C, respectively, firing at each step for 6 h. The final firing
was done at 870 ◦C for 48 h with two intermediate grind-

ings. To get the single phase, 5% more Na2CO3 is added to
compensate for the evaporation of Na from the composition.
The phase purity of the sample was confirmed by powder
x-ray diffraction (XRD) measurements performed at room
temperature. For the powder XRD experiment, a PANalytical
powder diffractometer with Cu Kα radiation (λavg ≈ 1.54 Å)
was used. Rietveld refinement analysis was done using the
FULLPROF SUITE software package [27]. The temperature (2–
300 K) and field (up to 140 kOe) dependence of magnetization
measurements was determined using the vibrating-sample
magnetometer option of a physical property measurement sys-
tem (PPMS) from Quantum Design. High-temperature heat
capacity measurements (2–300K) were also performed using
the same PPMS. The low-temperature Cp(T ) measurements
down to 90 mK were performed using a dilution refrigerator
attached to the Dynacool PPMS from Quantum Design. QMC
simulations were performed using the worm stochastic series
expansion (SSE) algorithm [28,29] as implemented in the
ALPS package [30].

III. RESULTS AND ANALYSIS

A. Structural characterization

We characterized our sample using powder XRD. The
measured XRD is well matched with the calculated pattern
generated from the crystallographic information file [31] and
is confirmed to be the single phase of NaCuIn(PO4)2. The
values for refinement are as follows: χ2 ≈ 2.87, Rp ≈ 12.4%,
Rwp ≈ 12.6%, Rexp ≈ 7.44%. The obtained lattice parameters
from the refinement at room temperature are a = 8.256 Å,
b = 10.139 Å, c = 8.806 Å, and β = 114.4◦, which are in
close agreement with a previous report [31].

B. Structural analysis

NaCuIn(PO4)2 crystallizes in the monoclinic space group
P21/n [31]. The crystal structure is displayed in Fig. 1(a).
The principal building units of this phosphate are PO4 tetrahe-
dra, a CuO5 triangular bipyramid, an InO6 octahedron, and a
distorted NaO4 polyhedron. Two adjacent CuO5 units meet
at their edges to form a spin dimer via the NN coupling
[indicated by J1 in Fig. 1(d)]. The bond angle of Cu-O-Cu for
the J1 path is 97.6◦, which is close to 90◦. This superexchange
interaction favors weak antiferromagnetic coupling as per the
Goodenough-Kanamori rules [32]. The second-NN coupling
between Cu atoms is through PO4 units forming the spin
chains [indicated by J2 in Fig. 1(d)]. In this bonding, there
is a possibility of the magnetic path Cu-O1-O3-Cu. As this
path is involved with a shorter bond length for O1-O3 of about
2.53 Å, the J2 magnetic coupling is expected to be stronger in
this compound.

The combination of intrachain (J2) and interchain (J1) con-
nections creates the 2D distorted honeycomb structure [see
Fig. 1(c)]. The interlayer separation between two honeycomb
layers is about 6.91 Å [see Fig. 1(b)]. In each layer, the
first-NN Cu2+ atoms are connected to each other with a path
length of 3.09 Å, and the Cu2+ dimers are coupled to each
other with a path length of 5.32 Å [see Fig. 1(d)]. The details
of the possible magnetic couplings are summarized in Table I.
When the third-NN coupling J3 is considered, we can view
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TABLE I. The details of the bond path, bond length, and bond angle of the magnetic couplings for NaCuIn(PO4)2.

Coupling Bond path Bond length (Å) Bond angle (deg)

J1 Cu-O8-Cu 3.09 Cu-O8-Cu = 97.6
J2 Cu-O1-O3-Cu 5.32 Cu-O1-O3 = 153.6, O1-O3-Cu= 104.9
J3 Cu-O2-In-O3-Cu 6.09 Cu-O2-In = 121.2, In-O3-Cu = 129.1

it as a 2D distorted Shastry-Sutherland lattice. However, the
J3 coupling seems to be weak because it has a longer bond
distance compared to J1 and J2 and because of the heavier
element (InO6 unit) involved. These possible magnetic ex-
change interactions will be further verified by the analysis of
the magnetic susceptibility results.

C. Magnetization measurements

The temperature-dependent magnetic susceptibility χ (T )
of the polycrystalline sample NaCuIn(PO4)2 is measured as
shown in Fig. 2(b). The occurrence of a broad maximum at
13 K in χ (T ) is the characteristic feature of low-dimensional
quantum magnetic systems. The χ (T ) data are fitted to the
Curie-Weiss law in the temperature range of 20–300 K:

χ = χo + C

T − θCW
, (1)

where C is the Curie constant, χo is the temperature-
independent susceptibility, and θCW is the typical Curie-Weiss
temperature. The parameters obtained from the fit in Fig. 2(a)
for T � 20 K are the temperature-independent magnetic sus-
ceptibility χo � −1.23 × 10−4 cm3/mol, which is the sum
of the core diamagnetic susceptibility χdia and Van Vleck
susceptibility χVV; C � 0.5 cm3K/mol; and θCW ≈ −16 K. A
negative value of θCW indicates that the dominant interactions
between the Cu2+ ions are AFM in nature. Adding the core
diamagnetic susceptibilities of the individual ions Na+, Cu2+,

FIG. 1. (a) The crystal structure of NaCuIn(PO4)2. (b) The in-
terlayer separation between two honeycomb layers is about 6.91 Å.
(c) The spin network shows the distorted honeycomb lattice with J1,
J2, and J3 couplings. (d) The intrachain interaction paths for first-NN
(J1) and second-NN (J2) couplings.

P5+, and O2− [33], we get χdia � −1.33 × 10−4 cm3/mol for
the compound NaCuIn(PO4)2. Deducting χdia from χo gives
us the χVV, which is determined to be � 0.1 × 10−4 cm3/mol,
resulting from the second-order contribution to the free energy
in the presence of the magnetic field. Assuming the Landé
g factor g = 2, the spin-only effective moment for an S = 1

2
system is predicted to be μeff = g

√
S(S + 1) μB ≈ 1.73μB,

where μB is the Bohr magneton. However, the experimental
value of the spin-only effective moment was found to be
μeff ≈ 2.05μB, which is calculated with the help of the Curie
constant value by using the relation μeff = √

3kBC/NA ≈√
8CμB, where NA is Avogadro’s number and kB is the Boltz-

mann constant. This value of μeff is slightly larger than the
value that is expected for free S = 1

2 due to the unquenched

FIG. 2. (a) The inverse magnetic susceptibility 1/χ vs temper-
ature T . The solid red line indicates the fit to the Curie-Weiss law.
(b) The measured magnetic susceptibility χ data are shown by black
open circles as a function of T in an applied field of 10 kOe. The
red solid line is the best fit using Eq. (2). The yellow dashed line
represents the impurity contribution χimp(T ). The spin susceptibility
χspin(T ) is obtained by subtracting χimp(T ) from the measured χ (T ).
The black dashed line illustrates the rescaled magnetic susceptibility
as simulated by QMC.
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spin-orbit coupling and has been noticed in several Cu2+-
based compounds [34]. Furthermore, we typically divide
χ (T ) into three components,

χ (T ) = χo + Cimp

T + θimp
+ χspin(T ). (2)

Here, the second term indicates the concentrations of param-
agnetic impurities, where the interaction strength between the
impurity spins is given by θimp.

χspin(T ) denotes the intrinsic spin susceptibility of the
spin network [see Eq. (3)]. The fitting expression used for
χ (J2, T ) is explained in the Appendix. From the structural
point of view, we noted that the title compound might have
a combination of J1 and J2 couplings. Since the experimental
magnetic susceptibility does not fall exponentially to zero,
there is less possibility of having dominant J1 coupling. We
then considered J2 to be the dominant coupling based on the
structural predictions. In order to understand the exchange
coupling strengths in the compound, we naively assumed and
fitted the magnetic susceptibility data with the S = 1

2 coupled
uniform chain model using the mean-field approach [Eq. (2)]
down to 2 K:

χspin(T ) = χ (J2, T )

1 + zJ ′
Ng2μ2

B
χ (J2, T )

. (3)

The best fit yields values of Cimp ≈ 0.0091 cm3 K/mol and
θimp ≈ 0.65 K. The value of Cimp corresponds to an impurity
concentration of nearly 2.5% of S = 1

2 impurity spins. One
of the sources for the impurity could be due to the presence
of orphan spins. The values of uniform intrachain coupling
J2 and the total strength of interchain coupling zJ ′ are found
to be 18 ± 0.3 and 7.5 ± 0.2 K, respectively [35]. Here, z
represents the number of nearest-neighbor spin chains. In
general, the z value is 2 for a square-type lattice and 1 for
a honeycomb-type lattice. In the view of the NaCuIn(PO4)2

structure, the interchain coupling strength is zJ ′ = z1J1 +
z3J3, where the coupling strength J3 is quite weak and is
considered to be zero. From the above analysis, J1 is extracted
as 7.5 ± 0.2 K, which confirms that the interchain interac-
tions in the structure are significant. The intrinsic χspin(T ) of
NaCuIn(PO4)2 is obtained after subtracting the temperature-
independent and paramagnetic impurity contributions from
the measured χ (T ), as also shown in Fig. 2(b). The magnetic
susceptibility χ (T ) was calculated using QMC simulations
on an S = 1

2 distorted honeycomb spin lattice model taking
into account the exchange couplings J1 and J2 as indicated
in Fig. 1(c). The calculations using a four-Cu-spin unit cell
were run on L × L lattices of L = 20, i.e., containing 1600
spins. As depicted in Fig. 2(b), the simulated data quite nicely
reproduce χspin(T ) in the temperature range of T = 2–100 K
with values of J1 ≈ 7.6 K and J2 ≈ 20 K.

The ratio of the exchange couplings obtained with the
QMC simulations ( J2

J1
≈ 2.63) is nearly consistent with the

experimental analysis. Our result indicates that the chains are
coupled within the 2D plane, forming the 2D distorted J1-J2

honeycomb lattice. The linear behavior of M(H ) at 2 K, as
presented in Fig. 3, indicates the absence of ferromagnetic
impurities in the samples. M(H ) data do not saturate up to
an applied magnetic field of 140 kOe. At 140 kOe, the M/Msat

FIG. 3. Magnetic isotherms measured at 2 and 10 K in magnetic
fields up to 140 kOe.

value reaches only 0.3, which means that a large magnetic
field of about 40 T is required for the full saturation of a
magnetic moment of 1μB for S = 1

2 and g = 2.

D. Heat capacity

The temperature-dependent heat capacity Cp(T ) is mea-
sured in zero field, as depicted in Fig. 4(a). Cp in magnetic
insulators typically has a major contribution from phonon

FIG. 4. (a) Variation of heat capacity Cp with respect to the
temperature T in zero field. The solid red line reflects the phononic
contribution Cph. (b) The T variation of magnetic heat capacity Cm

and normalized entropy Sm/R ln(2) on the left and right y axes,
respectively.
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excitations Cph at higher temperatures. In contrast, the mag-
netic part of the heat capacity Cm dominates over Cph at low
temperatures.

As a result, in magnetic materials with a low-energy scale
of exchange coupling, the magnetic part of the heat capac-
ity can be separated from the phononic part by examining
Cp in the high-temperature region. To extract Cm from Cp,
the phonon contribution was initially estimated by fitting the
high-T data with one Debye and two Einstein terms [36]:

Cph(T ) = fDCD(θD, T ) +
2∑

i=1

giCEi (θEi , T ). (4)

The first term in Eq. (4) represents the Debye model,

CD(θD, T ) = 9nR

(
T

θD

)3 ∫ θD
T

0

x4ex

(ex − 1)2
dx, (5)

where x = h̄ω
kBT , ω is the Debye frequency, R is the universal

gas constant, and θD represents the Debye temperature. The
second part in Eq. (4) is known as the Einstein term, which
accounts for the flat optical modes of the lattice vibrations:

CE (θE , T ) = 3nR

(
θE

T

)2 e
θE
T[

e
θE
T − 1

]2 . (6)

The characteristic Einstein temperature is represented by θE .
The coefficients fD, g1, and g2 are the multiplication factors
that take into account the number of atoms per formula unit
n. The zero-field Cp(T ) data are fitted using Eq. (4) [see the
solid red curve in Fig. 4(a)], and the obtained parameters are
fD ≈ 0.22, g1 ≈ 0.27, g2 ≈ 0.45, θD ≈ 189 K, θE1 ≈ 299 K,
and θE2 ≈ 758 K. Finally, Cm(T ) was estimated by extrapo-
lating the high-T fit down to 90 mK and subtracting it from
the Cp(T ) data. In many low-dimensional magnetic materi-
als, it has been noticed that the broad maximum in the heat
capacity is often found at lower temperatures than the broad
maximum in χ (T ) [37,38]. The presence of a broad maximum
in the heat capacity data can be attributed to short-range spin
correlations. A small peak is noticed at TN = 0.4 K, indicat-
ing the presence of magnetic LRO. The large value (�40)
of the ratio of |θCW| and TN suggests that the system has
very weak interlayer coupling. We evaluated the change in
magnetic entropy �Sm from the integration of Cm/T versus
T . The obtained value of �Sm saturates at 32 K. It approaches
a value of 5.68 J/mol K, which agrees well with the theoret-
ically predicted value �Sm = R ln(2S + 1) = 5.75 J/mol K
for an S = 1

2 system. It is found that the entropy value at the
transition temperature TN is only 1.5% of the R ln 2 value,
which suggests that the transition is very weak AFM in nature.
Below TN, Cm(T ) follows a T 3 behavior, suggesting that the
ground state is AFM LRO with magnon excitations.

To understand the nature of the excitations in the ground
state, the magnetic heat capacity Cm(T ) data in zero field are
fitted with the power law in the temperature range 0.5 � T
� 6 [see Fig. 5(a)]. The data fit well with the power-law
behavior, resulting in an exponent of ∼1. The linear behavior
of Cm(T ) suggests that the excitations in the ground state are
gapless. The small deviation from the T 3 behavior at very
low temperatures appears to be likely due to paramagnetic
impurities, which are common in low-dimensional magnetic

FIG. 5. (a) Magnetic contribution to the heat capacity Cm as a
function of temperature T with power-law fits. Inset: The suppression
of magnetic LRO in an applied field of 10 kOe. (b) The plot of Cm/T
vs T 2 with the Cm = γ T fit is shown by the solid red line. The fit is
extrapolated by a dashed red line to obtain the γ value.

materials, for instance, due to edge spins of the lattice. The
inset of Fig. 5(a) depicts Cp(T ) measured in 0 and 10 kOe; it
can be seen that the transition at TN = 0.4 K gets completely
suppressed with an external applied magnetic field of 10 kOe,
which also follows a linear behavior similar to that of the
0 kOe data.

To understand further, we extracted the linear coefficient
γ from the fit to the expression Cm = γ T , where γ =
2
3 ( Nk2

B
Javg

) [35]. The experimental γ value is found to be about

0.32 J/mol K2 [see Fig. 5(b)]. The γ value represents the
density of the quasiparticles due to the thermal excitations.
The results suggest that the ground state of the S = 1

2 distorted
honeycomb lattice model with J2

J1
≈ 2.63 in the absence of

the interlayer interactions might have a quasi-LRO ground
state or a disordered ground state in the absence of magnetic
frustration. Similar linear behavior and gapless excitations are
seen for the S = 1

2 uniform spin chain model. Interestingly,
Javg ≈ 16.5 K found from Cm(T ) is very consistent with the
estimated value of Javg = (2J2+J1 )

3 ≈ 15.8 from the magnetic
data analysis. We note that the expression for γ is taken in our
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analysis based on the fact that our compound has a coupled
uniform chain network forming the 2D distorted honeycomb
lattice. However, based on the bulk measurements, we cannot
fully explain the physical state of these excitations. Future
microscopic experiments such as inelastic neutron scattering,
nuclear magnetic resonance, and muon spin rotation could
reveal the true nature of the spin excitation spectrum of the
title compound.

E. Electronic structure calculations

To account for the electronic structure of NaCuIn(PO4)2,
DFT calculations were performed using the Vienna Ab initio
Simulation Package (VASP) [39,40]. Plane-wave calculations
were performed within the generalized gradient correction
of Perdew, Burke, and Ernzerhof [41] for the exchange-
correlation function to figure out the ground state of the
title compound. The kinetic energy cutoff was set at 500 eV.
The Brillouin zone integration for a 4 × 3 × 4 k mesh was
performed using the tetrahedron method of Blöchl [42]. We
employed two different methods to calculate the strength of
exchange interactions between the neighboring spins. The
first method is the total energy calculation method based on
calculating the total energy difference between the different
configurations where spins are flipped relative to a refer-
ence configuration. In our case, the reference configuration
is ferromagnetic. The second method is based on hopping
parameters, for which we obtain the hopping energies up
to third-NN using maximally localized Wannier functions
(WFs). These WFs are constructed from the random initial
projections for four bands dispersed near the Fermi energy
using the WIEN2WANNIER and WANNIER90 codes [43,44] in a
nonmagnetic setup. We investigated the relative stability of
various magnetic states and discovered that an AFM state with
oppositely aligned nearest-neighbor Cu2+ spins is the most
stable configuration. The generalized gradient approximation
(GGA) and the inclusion of Hubbard U within the GGA+U
framework were used to obtain the electronic structure of this
lowest-energy state and to address the exchange and corre-
lation effects. GGA+U computations were done for three
different values of on-site Coulomb interaction of Cu d states,
namely, U = 6, 8, and 10 eV, in conjunction with the on-site
specific exchange parameter. These values of U are within
the range suggested in previous studies on Cu-based oxides
[45–47]. The computed total and partial densities of states
(DOSs) for Cu d and O p states are displayed in Fig. 6.

The total DOS [see Fig. 6(a)] clearly shows that the ground
state is insulating with a gap of 2.3 eV; to understand the true
nature of the insulating ground state further, we analyze the
projected DOS around the Fermi level [see Figs. 6(b) and
6(c)]. Here, we observe that the up channel for Cu d states is
completely occupied, while only one down channel is empty,
which is observed above the Fermi level. This distribution of
Cu d states is already expected because Cu has a 2+ charge
state with the nominal 3d9 occupation. Hence, according to
Hund’s rule, the majority d states get completely filled, leav-
ing one minority spin state empty. The gap primarily arises
between the majority and minority d states, which are further
exchange split due to the formation of local moments on the
Cu sites. Thus, the generation of the insulating gap can be

FIG. 6. Density of states (DOS) for the AFM ground state from
GGA + U calculations (U = 6 eV). (a) Total DOS. (b) Cu d partial
DOS. (c) O p partial DOS.

attributed to local magnetic moment formation and the corre-
lation effect of the 3d subshell of the Cu ion. The magnetic
moment on the Cu2+ site is estimated to be 0.72μB, which
is smaller than the moment expected from the nominal 3d9

configuration. The quenching of the magnetic moment at the
Cu2+ site is due to the hybridization with the O p orbitals
near the Fermi level. Further, we calculated the magnitudes
of exchange couplings between the Cu atoms, J1, J2, and J3,
using the total energy method.

The total energies corresponding to various possible mag-
netic orderings are mapped onto a Heisenberg Hamiltonian
[see Eq. (7), where the indices i and j represent the locations
of magnetic ions in the unit cell], which gives the relation
between various Ji j values. Similarly, we consider the total en-
ergy for the other configurations and perform our calculation
by taking the energy difference with the reference ferromag-
netic configuration:

H =
∑
i �= j

Ji jSi · S j . (7)

The exchange coupling values for different U (on-site inter-
action) values for Cu d orbitals are shown in Table II, where
we give the calculated ratios of various magnetic couplings
between Cu atoms for different sets of energies.

TABLE II. The magnetic exchange interactions between the
Cu2+ ions in NaCuIn(PO4)2 at different U values extracted from the
total energy calculations.

U (eV) J1 (meV) J2 (meV) J3 (meV) J2
J1

J3
J1

6 −1.6 −4.5 −0.2 2.81 0.12
8 −0.9 −2.9 −0.1 3.22 0.11
10 −0.4 −1.8 −0.05 4.50 0.12
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FIG. 7. (a) Non-spin-polarized band dispersion along high-
symmetry k points in the first Brillouin zone. (b) The ml projected
partial DOS of the five Cu d orbitals. (c) Wannier-interpolated bands
superimposed on the DFT bands.

From the result, it is clear that both NN and second-NN
interactions are significant, which essentially forms a distorted
honeycomb lattice of J1

J2
≈ 0.38.

Next, we analyze the non-spin-polarized electronic struc-
ture to construct a low-energy tight-binding model. Our model
is based on maximally localized Wannier functions for the
bands around the Fermi level. As we will see below, this pro-
cedure helps us to identify the relevant orbitals for magnetic
exchange and validates the trend of the interaction strengths,
as reported in Table II. Figure 7(a) represents the non-spin-
polarized band dispersion along the high-symmetry k path in
the first Brillouin zone of the orthorhombic lattice. We can
see that four bands are isolated near the Fermi level arising
from the four Cu atoms in the unit cell. These four bands have
a predominant dx2−y2 character; see the ml projected partial
density of states in Fig. 7(b). Since Cu is in a nominal d9

configuration, these isolated bands are half filled and sepa-
rated from the other Cu d bands. Therefore, by adding a local
interaction term U to the Cu dx2−y2 Wannier functions, one
obtains the single-band Hubbard model [48] at half filling,
which allows for capturing the insulating ground state of
NaCuIn(PO4)2. Figure 7(c) represents the superposition of
interpolated Wannier bands on DFT bands. From this, we
obtain hopping interactions tn, as shown in Table III.

In the strong-coupling limit of the half-filled Hubbard
model, the Heisenberg spin exchange is expressed as J =
4t2/U . In Table III, we list the ratio of interatomic magnetic

TABLE III. The magnetic exchange interactions between Cu2+

ions extracted from the hopping integrals.

Hopping Cu-Cu (Å) Hopping parameters (meV) Ji
J1

= ( ti
t1

)2

t1 3.09 −43.86 1.00
t2 5.32 67.22 2.35
t3 6.09 20.90 0.22

exchange interactions based on the effective hopping strengths
ti. Note that in the past, this method was widely used to
estimate interatomic magnetic interaction [37,49–51]. We can
see that the exchange coupling values obtained from the total
energy method and from the hopping integrals follow the same
trend, i.e., J1 and J2 are dominant. J3 is about 3% of J2 and
15% of J1. Our calculation suggests that the relative value of
J3 is weak when compared to the relative value of J2. Hence,
the spin network of NaCuIn(PO4)2 can be considered a dis-
torted honeycomb lattice, agreeing with the crystal structure.

In order to understand the exchange path and reason for
the dominant second-NN coupling (J2 being larger than J1),
we computed the WFs corresponding to the four bands around
the Fermi energy, as displayed in Fig. 8(a). The central parts of
the WFs are shaped according to dx2−y2 , as expected, and the
tails of the Wannier functions sitting at neighboring sites are
shaped according to O px and py symmetry. We did not find
any significant weight on the P site. Thus, the tails reflect the
fact that the hybridization between the Cu dx2−y2 and P orbitals
is weak. Accordingly, the bonding path between the NN and
second-NN Cu ions is schematically explained in Fig. 8(b).
The second-NN Cu atom is connected via the Cu-O-O-Cu
superexchange path, while the NN is connected by Cu-O-Cu
with a bond angle of 97◦ (close to 90◦). Strong hybridization
is visible between dx2−y2 , O px, and py orbitals via sigma

FIG. 8. (a) The Wannier function plot of effective Cu dx2−y2

orbitals in NaCuIn(PO4)2. (b) A schematic diagram explaining the
superexchange path between the nearest- and next-nearest-neighbor
Cu dx2−y2 orbitals via O p orbitals.
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bonding in the same plane. The O-O bonding in the plane
mediates the strong second-NN Cu-Cu effective hoppings.
Similar O-O bonding plays a key role in another copper ox-
ide material, SrCuTe2O6, which results in stronger magnetic
coupling in the compound [37]. On the other hand, the NN
is located in the perpendicular direction, the hybridization
strength is much weaker due to π bonding, and hence, the
Cu-Cu effective hopping t1 is also weaker than the second-NN
hopping, which is clearly visible from the WF diagram. Thus,
the reason for the stronger second-NN magnetic coupling is
attributed to the interesting crystal geometry of this system
and the symmetry of the orbital (dx2−y2 ) responsible for the
low-energy physics of this system. Although our Wannier-
ization is based on the effective Cu d WFs and does not
include separate WFs for the ligand states such as the O p
orbitals, this analysis shows that the spin exchange between
the next-NN Cu sites is actually mediated via a superexchange
mechanism.

IV. DISCUSSION

The structure of NaCuIn(PO4)2 at first glance gives the
impression that the NN forms isolated spin dimers, whereas
by adding the second-NN and third-NN couplings, the spin
network becomes the 2D distorted honeycomb (nonfrustrated)
and 2D distorted Shastry-Sutherland (2D frustrated) lattices,
respectively. However, through our experimental magnetic
data analysis, the possibility of a spin dimer model is ruled
out. The failure of the model suggests that J1 cannot individ-
ually describe the spin network of this system completely. So
the obvious choice would be the combination of J1 and J2,
which makes the system a distorted honeycomb lattice. To
support this claim, we have analyzed the magnetic suscepti-
bility data with the coupled uniform spin chain model [see
Fig. 2(b)]. From the fitting, we obtained J1 ≈ 7.5 ± 0.2 K and
J2 ≈ 18 ± 0.3 K. To verify further, we use a more reliable
method such as QMC simulations to model the magnetic
susceptibility data with an S = 1

2 distorted honeycomb spin
lattice with J1 ≈ 7.6 K and J2 ≈ 20 K. As depicted in
Fig. 2(b), the simulated data quite nicely reproduce χspin(T ).
The ratio of the exchange couplings obtained through the
QMC simulations ( J2

J1
≈ 2.63) nearly matches the results of

DFT electronic structure calculations. The obtained values of
exchange interactions validate the S = 1

2 distorted honeycomb
spin lattice. The theoretical studies suggest a QPD for a 2D
distorted honeycomb lattice as a function of the magnetic
coupling ratio J2

J1
(see Fig. 9). This QPD depicts how the

distortions in the 2D honeycomb lattice model influence the
magnetic behavior, which leads to a quantum phase transition
(QPT) from a disordered dimer phase to an AFM ordered
Néel phase. QPT from the spin dimer phase to the Néel
phase takes place in the proximity of a QCP with αc = 0.54
[10,26].

The position of NaCuIn(PO4)2 in the QPD along with other
compounds is presented in Fig. 9. The compounds Yb2Si2O7

(α ≈ 0.4) [19,20] and CuAl(AsO4)O (α ≈ 0.01) [21] are
placed in the spin-gapped region. In contrast, the compound
β-Cu2V2O7 (α ≈ 1.15) [52] shows the AFM ordering at TN =
26 K and lies on the Néel side of the QPD, as predicted by the
2D HAFM distorted honeycomb lattice model. The value of

FIG. 9. The quantum phase diagram of the S = 1
2 HAFM dis-

torted honeycomb lattice separating the spin gap phase and Néel
phase as a function of α = J2/J1.

α for NaCuIn(PO4)2 is ≈2.63, indicating that this material
lies on the Néel side of the QPD but in a fairly distant region
from the QCP. The material undergoes a magnetic LRO at
0.4 K. The LRO is suppressed by a weak magnetic field
of 10 kOe. Above TN, the magnetic heat capacity follows a
linear behavior over a large temperature region, indicating the
presence of gapless excitations in the spin excitation spectra.
This may be ascribed to the following scenarios: (i) The
frustrated magnetic coupling through J3 ( J3

J2
≈ 0.03) could

push the LRO to lower temperatures. (ii) The compound has a
slightly lower connectivity (z ≈ 2.3) compared to that of the
2D isotropic honeycomb lattice (z = 3), which might induce
short-range correlations in the ground state. These factors
could contribute to the system being in a ground state with
gapless excitations, as evidenced by our results for the S = 1

2
distorted J1-J2 honeycomb lattice NaCuIn(PO4)2.

V. CONCLUSION

In this work, we have investigated the thermodynamic and
magnetic properties of the S = 1

2 material NaCuIn(PO4)2.
The compound is realized as an S = 1

2 HAFM 2D distorted
honeycomb lattice, which was validated by the results of
QMC simulations and the DFT electronic structure calcu-
lations. Magnetization and heat capacity studies revealed
the presence of short-range correlations typical of low-
dimensional spin systems. A weak AFM LRO was noticed
at 0.4 K. The magnetic transition was killed by applying
a magnetic field of 10 kOe. In addition, Cm(T ) follows
linear behavior above TN, indicating that the spin excita-
tions are gapless. These unusual excitations are probably due
to the low-connectivity nature and weak magnetic frustra-
tion of the distorted honeycomb layers. Overall, the system
NaCuIn(PO4)2 resides on the right side of the QPD, in a
far region of the Néel phase, and shows unusual low-energy
excitations. Local probe experiments like nuclear magnetic
resonance and inelastic neutron scattering at subkelvin tem-
peratures on the single-crystalline form of the material might
shed detailed microscopic insights concerning the ground
state and spin dynamics.
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TABLE IV. The fitting parameters used in the expression of the
S = 1

2 antiferromagnetic uniform chain model [35].

Parameter χ∗ (α = 1)

N1 −0.24026
N2 0.45118
N3 0.01258
N4 0.03579
N5 0.00801
N6 0.00182
N7 0.00005
N8 0.00018
N81 1.42347
N82 0.34160
t1 5.69602
D1 0.25973
D2 0.58105
D3 0.26145
D4 0.14268
D5 0.05722
D6 0.01764
D7 0.00390
D8 0.00011
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APPENDIX
The equations used for the S = 1

2 antiferromagnetic
Heisenberg uniform chain model χ (J2, T ) [35] in the coupled
spin chain expression [Eq. (3)] are as follows:

χ (J2, T ) = Ng2μ2
B

J2
χ∗(t ), (A1)

t = kBT

J2
, (A2)

where χ∗(t ) is the reduced spin susceptibility, t is the reduced
temperature, and J2 is the exchange interaction.

χ∗(t ) =
(

1

4t

)
1 + [∑7

n=1
Nn
tn

] + 4N8χ
∗
log(t )

t8

1 + [∑8
n=1

Dn
tn

] + N8
t9

. (A3)

In the above equation χ∗
log(t ) signifies the logarithmic correc-

tions to the reduced magnetic susceptibility, which are given
as follows:

1

π2

[
1 + 1

2L − ln
(
L + 1

2

) − N81

(2L)2
+ N82

(2L)3

]
, (A4)

L ≡ ln

(
t1
t

)
. (A5)

The above equations include all the parameters which are
given in Table IV.
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